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Restriction of the Tangent Bundle of
G/P to a Hypersurface

Indranil Biswas

Abstract. Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group

G, defined over C, such that n := dimC G/P ≥ 4. Let ι : Z →֒ G/P be a reduced smooth hypersurface

of degree at least (n − 1) · degree(T(G/P))/n. We prove that the restriction of the tangent bundle

ι∗TG/P is semistable.

1 Introduction

Given a semistable vector bundle E over a polarized smooth projective variety X,

the restrictions of E to smooth hypersurfaces in X of sufficiently large degree remain

semistable; see [Fl] for general estimates of how large the degree should be. However,

for the case of X = CP
n, much sharper results are known for some vector bundles E of

special interest [Pa]. Our aim here is to consider the restrictions to the hypersurfaces

of the tangent bundle of a rational homogeneous space of Picard number one.

Let G be a connected simple linear algebraic group defined over the field of com-

plex numbers and P ⊂ G a maximal proper parabolic subgroup. Let ξ be the ample

generator of Pic(G/P) ∼= Z. The degree of a hypersurface on G/P lying in the linear

system |ξ⊗ j | is defined to be j. Similarly, the degree of a vector bundle V on G/P is

defined to be ℓ if
∧top

V ∼= ξ⊗ℓ.

We prove the following (see Theorem 2.2).

Theorem 1.1 Assume that n := dimC G/P ≥ 4. Let ι : Z →֒ G/P be a reduced

smooth hypersurface with degree(Z) ≥ degree(T(G/P))(n − 1)/n. Then the pull back

ι∗T(G/P) is semistable.

The key inputs in the proof of Theorem 1.1 are a result of [Br] and the Akizuki–

Nakano vanishing theorem.

2 Semistability of Restriction of Tangent Bundle

Let G be a connected simple linear algebraic group defined over C. Fix a maximal

proper parabolic subgroup P of G. Therefore, the quotient M := G/P is a smooth

projective variety with Pic(M) = Z.

Let ξ denote the ample generator of Pic(G/P). This line bundle ξ is actually very

ample. For any m ∈ Z, set degree(ξ⊗m) := m. The degree of a hypersurface Z ⊂ M

is defined to be degree(OM(Z)).
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For notational convenience, for a coherent sheaf E on M and an integer j, the

tensor product E ⊗ ξ⊗ j will be denoted by E( j).

Proposition 2.1 Assume that n := dimC G/P ≥ 3. Then Hn−1(M,Ωk
M(ℓ)) = 0 for

all k ∈ [1, n − 2] and ℓ > 0.

Proof Since ℓ > 0, the line bundle OM(ℓ) = ξ⊗ℓ over M is ample. Therefore, if

k ≥ 2, then the Akizuki–Nakano vanishing theorem says that

Hn−1(M,Ωk
M(ℓ)) = 0

(see [Ko, p. 74, Theorem 3.11; p. 68, (3.2)] for the Akizuki–Nakano vanishing theo-

rem).

Now assume that k = 1. We have a canonical isomorphism

Hn−1(M,Ω1
M(ℓ)) = H1,n−1(M,OM(ℓ)),

where H1,n−1(M,OM(ℓ)) is a Dolbeault cohomology. Since n − 1 > 1 and k > 0,

it follows from [Br, p. 161, Theorem 1(i)] that H1,n−1(M,OM(ℓ)) = 0 (see also [Br,

p. 155, lines 14–15]). This completes the proof of the proposition.

For a torsionfree coherent sheaf F on a reduced smooth hypersurface ι : Z →֒ M

of degree d, we define degree(F) := degree(F|C ), where C ⊂ Z is a general complete

intersection curve obtained by intersecting hyperplanes from the complete linear sys-

tem |ι∗ξ| on Z. In particular, degree(ι∗ξ⊗m) = mdc1(ξ)n ∩ [M] for all m ∈ Z.

We recall that a vector bundle E over a smooth projective variety X equipped with

a polarization is called semistable if

degree(F)

rank(F)
≤

degree(E)

rank(E)

for all nonzero coherent subsheaves F of E.

Theorem 2.2 Assume that n := dimC G/P ≥ 4. Let ι : Z →֒ M := G/P be a reduced

smooth hypersurface of degree d. If

(2.1) d ≥
degree(TM)(n − 1)

n
,

then the pullback ι∗TM is semistable.

Proof Let τ := degree(TM). Take any reduced smooth hypersurface ι : Z →֒ M of

degree d satisfying (2.1). Assume that ι∗TM is not semistable. Therefore, there is a

nonzero coherent subsheaf

(2.2) 0 6= F ⊂ ι∗TM =: W,

such that

(2.3)
δ

k
=

degree(F)

rank(F)
>

degree(ι∗TM)

rank(ι∗TM)
=

degree(ι∗ξ)τ

n
,
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where δ := degree(F) and k = rank(F) ∈ [1, n − 1]; both τ and n are defined above.

Let det F =
∧k

F be the determinant line bundle of F; see [Ko, Chapter V, § 6]

for the construction of a determinant line bundle. Since dim G/P ≥ 4 and H is a

reduced smooth ample hypersurface, from Grothendieck’s Lefschetz theory it follows

that the homomorphism Pic(M) → Pic(Z) defined by L 7→ ι∗L is an isomorphism;

see [Gr, Exposé X]. In particular, the determinant line bundle det F is the restriction

of ξ⊗δ ′

to Z for some δ ′ ∈ Z. Since degree(F) = δ, it follows that

(2.4) δ ′
=

δ

degree(ι∗ξ)
.

The rank of the subsheaf F ⊂ W in (2.2) being k, from the properties of a deter-

minant line bundle it follows that we have a nonzero homomorphism

φ : det F −→
k∧

W

(the existence of φ follows from [Ko, p. 166, Proposition 6.10]). This homomorphism

φ gives a nonzero section

(2.5) 0 6= σ ∈ H0(Z, (ι∗ξ⊗δ ′

)∗ ⊗
k∧

W ) = H0(Z, ι∗(ξ⊗−δ ′

⊗
k∧

TM)).

Since degree(Z) = d, the canonical line bundle KZ of Z is isomorphic to ι∗ξ⊗(d−τ ).

Therefore, the Serre duality gives

(2.6) H0(Z, ι∗(ξ⊗−δ ′

⊗
k∧

TM)) = Hn−1(Z, ι∗(ξ⊗(δ ′+d−τ ) ⊗ Ω
k
M))∗.

The theorem will be proved by showing that the left-hand side in (2.6) vanishes.

On M, we have the following short exact sequence of coherent sheaves

0 −→ OM(−d) −→ OM −→ OM |Z = ι∗OZ −→ 0,

which is obtained from the fact that OM(−Z) = OM(−d). Tensoring this exact se-

quence with Ω
k
M(δ ′ + d − τ ) we obtain the short exact sequence of sheaves on M

(2.7) 0 −→ Ω
k
M(δ ′ − τ ) −→ Ω

k
M(δ ′ + d − τ ) −→ Ω

k
M(δ ′ + d − τ )|Z −→ 0.

The short exact sequence in (2.7) gives the following long exact sequence of coho-

mologies:

(2.8) Hn−1(M,Ωk
M(δ ′ + d − τ )) −→ Hn−1(Z, ι∗Ωk

M(δ ′ + d − τ ))

−→ Hn(M,Ωk
M(δ ′ − τ )).

From (2.3) and (2.4) we have

(2.9) δ ′ >
kτ

n
.
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Combining this with (2.1) we have

δ ′ + d >
τ (k + n − 1)

n
.

Also, we have τ > 0 and k ≥ 1. Therefore, δ ′ + d − τ > 0. Consequently, from

Proposition 2.1 it follows that

(2.10) Hn−1(M,Ωk
M(δ ′ + d − τ )) = 0.

Since KM = OM(−τ ), the Serre duality gives

(2.11) Hn(M,Ωk
M(δ ′ − τ )) = H0(M,

k∧
TM(−δ ′))∗.

We have
degree(

∧k
TM(−δ ′))

rank(
∧k

TM(−δ ′))
=

kτ

n
− δ ′.

Therefore, from (2.9) it follows immediately that degree(
∧k

TM(−δ ′)) < 0. We also

know that the tangent bundle TM is semistable; this follows from [Um, p. 136, The-

orem 2.4] and the fact that the Harder–Narasimhan filtration of TM being canonical

is left invariant by the left-translation action of G on G/P. Since TM is semistable, we

conclude that
∧k

TM is also semistable [RR, p. 285, Theorem 3.18]. Therefore, the

vector bundle
∧k

TM(−δ ′) is also semistable. Now using the definition of semistabil-

ity, it can be shown that a semistable vector bundle of negative degree does not admit

any nonzero sections. Indeed, if f : OM → V is a nonzero section of a semistable

vector bundle of negative degree, then consider the image V ′ := f (OM) ⊂ V . Since

V is semistable, degree(V ′)/ rank(V ′) ≤ degree(V )/ rank(V ) < 0. This is a con-

tradiction because the degree of V ′
= OM is zero. Therefore, V does not admit any

nonzero sections. In particular, we have H0(M,
∧k

TM(−δ ′)) = 0. Therefore, (2.11)

yields that

(2.12) Hn(M,Ωk
M(δ ′ − τ )) = 0.

Now using (2.10) and (2.12), from the exact sequence in (2.8) we conclude that

Hn−1(Z, ι∗Ωk
M(δ ′ + d − τ )) = 0.

Consequently, from (2.6) we have

H0(Z, ι∗(ξ⊗−δ ′

⊗
k∧

TM)) = 0.

But this contradicts that the section σ in (2.5) is nonzero. Therefore, we conclude that

the vector bundle ι∗TM is semistable. This completes the proof of the theorem.
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globaux. (SGA 2). Advanced Studies in Pure Mathematics, Vol. 2. North-Holland Publishing,
Paris, 1968.

[Ko] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Publications of the
Mathematical Society of Japan 15. Princeton University Press, Princeton, NJ, 1987.

[Pa] R. Paoletti, Stability of Kapranov bundles on quadrics. Ann. Mat. Pura. Appl. 169(1995),
109–124. doi:10.1007/BF01759351

[RR] S. Ramanan and A. Ramanathan, Some remarks on the instability flag. Tôhoku Math. J.
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