§8. Area.
The area of a triangle is a menn proportional betueen the rectangle contained by the semiperimeter and its pxesss above any one side and the rectangle containod by its excesses above the other tuo sides.

First Demonstration.

Figure 72.
Let $A B C$ be the given triangle, and let each of its sides be given : to find the area.

Inscribe in the triangle the circle DEF whose centre is I, and join I with the points A, B, C, D, E, F.

Then the rectangle $\mathrm{BC} \cdot \mathrm{ID}=$ twice triangle BCI , the rectangle $\mathrm{CA} \cdot I E=t$ wice triangle CAI , and the rectangle $A B \cdot I F=t$ wice triangle $A B I$;
hence the rectangle under the perimeter of triangle $A B C$ and $I D$, the cadius of the circle $\mathrm{DFE}=$ twice triangle ABC .

- Produce BC, and make CD_{2} equal to AE ; then BD_{2} is the semiperimeter, and the rectangle $B D_{:} \cdot I D=$ triangle $A B C$.
But the rectangle $\mathrm{BD}_{2} \cdot \mathrm{ID}$ is a side of the solid contained by BD_{2} and the square of ID : therefore the area of the triangle will be a side of the solid contained by BD_{2} and the square of ID.

Draw IL perpendicular to IB, CL perpendicular to CB , and join BL.

Since each of the angles BIL, BCL is right,
the points $\mathrm{B}, \mathrm{I}, \mathrm{C}, \mathrm{L}$ are concyclic ;
therefore the angles BIC, BLC are equal to two right angles.
But the angles BIC, AIE are equal to two right angles, because AI, BI, CI bisect the angles at the point I;
therefore angle AIE = angle BLC,
and triangle AIE is similar to triangle BLC.
Hence

$$
\begin{aligned}
\mathrm{BC}: \mathrm{LC} & =\mathrm{AE}: \mathrm{IE}, \\
& =\mathrm{CD}_{2}: \mathrm{ID} ;
\end{aligned}
$$

therefore $\quad \mathrm{BC}: \mathrm{CD}_{2}=\mathrm{LC}: \mathrm{ID}$, by alternation,
$=\mathrm{CK}: \mathrm{DK}$;
and $\quad \mathrm{BD}_{2}: \mathrm{CD}_{2}=\mathrm{CD}: \mathrm{DK}$, by composition.

Consequently $\mathrm{BD}_{2}{ }^{2}: \mathrm{BD}_{2} \cdot \mathrm{CD}_{2}=\mathrm{CD} \cdot \mathrm{BD}: \mathrm{BD} \cdot \mathrm{DK}$, $=\mathrm{CD} \cdot \mathrm{BD}: \mathrm{ID}^{2}$;
therefore
$\mathrm{BD}_{2}{ }^{2} \cdot \mathrm{ID} \mathrm{D}^{2}=\mathrm{BD}_{2} \cdot \mathrm{CD}_{2} \cdot \mathrm{BD} \cdot \mathrm{CD}$.
Now each of the lines $\mathrm{BD}_{2}, \mathrm{CD}_{2}, \mathrm{BD}, \mathrm{CD}$ is given ;
for BD_{2} is the semiperimeter, CD_{2} the excess of the semiperimeter above BC, BD the excess of the semiperimeter above AC , and CD the excess of the semiperimeter above $A B$.
The area of the triangle therefore is given.

[Numerical illustration.]

Let AB consist of 13 parts, BC of $14, \mathrm{CA}$ of 15 .
Add the three together; the result is 42 , of which the half is 21 . Subtract 13 ; there remain 8:14, there remain $7: 15$, there remain 6 . $21,8,7,6$ into one another produce 7056 , the square root of which is 84 .

The area of the triangle is 84 .
This useful theorem occurs in a treatis," "On the Dioptri" ($\pi \in \rho!$ Diontpas) which many mathematical historians attribute to Heron of Alexandria (alrout
 Mr Maximilien Marie, however (Histoirc des Sciences Mathtm"eques et Physiques. I. 177-190), thinks the theorem cannot belong to so early a period, and ascribe it to Heron of Constantinople. The theorem was known to the Hind mathematician Brahmegupta (horn 598 A.D.) and to the Arabs. A good deal of historical information regarding it will lef found in Chasles Aprer, Historiquc, Note XII.

I have translated the demonstration in the text from Hultecli: Hum:
 have not transliterated the notation.

Shcomi Demonstration.

Figure 3 石.
Let $A B C$ be a triangle, AX the perpendicular ${ }^{*}$ from A to $B C$.
Then

$$
A B^{\prime}=\mathrm{BC}^{2}+\mathrm{CA}^{2}-2 \mathrm{BC} \cdot \mathrm{CX}
$$

that is

$$
c^{2}=a^{2}+b^{2}-2 a \cdot \mathrm{CX} ;
$$

therefore

$$
\mathrm{CX}=\frac{a^{2}+\frac{l^{2}-c^{2}}{2 a}}{2 a}
$$

[^0]Now

$$
A X^{2}=A C^{2}-C X^{2}
$$

$$
=b^{2}-\left(\frac{a^{2}+b^{2}-c^{2}}{2 a}\right)^{2}
$$

$$
=\frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4 a^{2}}
$$

$$
=\frac{\underline{2}_{3} \cdot \underline{v s}_{1} \cdot \underline{2}_{s_{2}} \cdot \underline{s_{s}}}{4 a^{2}} ;
$$

therefore

$$
A X=\frac{9}{a} \sqrt{s s_{1} s_{j} s_{j}}
$$

Hence

$$
\begin{aligned}
\Delta & =\frac{1}{2} \mathrm{BC} \cdot \mathrm{AX} \\
& =\frac{a}{2} \cdot \frac{2}{a} \cdot \sqrt{s_{1} s_{2} s_{3}} \\
& =\sqrt{s_{1} s_{3}} .
\end{aligned}
$$

Third Denonstration.
 Figure 28.

Decause triangles $A F I, A F_{1} I_{1}$ are similar,
therefore $\quad A F: I F=A F_{1}: I_{1} F_{1}$;
therefore $\lambda F_{1} \cdot A F: A F_{1} \cdot I F=A F_{I} \cdot I F: I_{1} F_{1} \cdot I F$.
Because triangles $\mathrm{IBF}, \mathrm{BI}_{1} \mathrm{~F}_{1}$ are similar,
therefore $\quad \mathrm{BF}: \mathrm{IF}=\mathrm{I}_{1} \mathrm{~F}_{1}: \mathrm{BF}_{1}$;
therefore $\quad \mathrm{IF} \cdot \mathrm{I}_{1} \mathrm{~F}_{1}=\mathrm{BF} \cdot \mathrm{BF}_{1}$.
Hence $\quad \Delta F_{1} \cdot \lambda F: A F_{1} \cdot I F=A F_{1} \cdot I F: B F \cdot \mathrm{BF}_{1}$:
therefore $s s_{1}: \Delta=\triangle: s_{s} s_{s}$.

$$
\begin{equation*}
\Delta=\frac{1}{4} \sqrt{2}\left(b^{2} c^{2}+c^{2} a^{4}+a^{2} b^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right) \tag{1}
\end{equation*}
$$

This expression is convenient when a, b, c are irrational quantities.
(ㄹ) The following method will enable us to discover the expression for the area of a triangle, $i f$ it is known that the square of its area is an integral function of its sides.*

[^1]Let Δ denote the area of the triangle, a, b, c its sides.
Then \triangle^{2} is a symmetrical function of the sides of the fourth degree. If one side becomes equal to the sum of the two others, the area vanishes;
therefore Δ^{2} contains the three factors - $a+b+c, a-b+c, a+b-c$. The fourth factor must therefore be of the form $m(a+l+c)$, where m is a constant number ;
therefore $\Delta^{2}=m(a+b+c)(-a+b+c)(a-b+c)(a+b-c)$.
To determine the value of m, suppose the three sides of the triangle to be equal ;
then

$$
\Delta^{z}=3 m e^{4}
$$

But the square of the area of an equilateral triangle,
whose side is a,

$$
=\frac{3}{16^{n^{\prime}}}
$$

therefore

$$
m=\frac{1}{16} .
$$

Formulae for the areas of certain triangles.
See the notation, pp. 7-11.
Tria egles connected with the Centroid.

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{AC}^{\prime} \mathrm{B}^{\prime}=\mathrm{C}^{\prime} \mathrm{BA}^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}={ }_{4}^{1} \triangle \tag{1}
\end{equation*}
$$

If R, S, T be the projections of G on the sides

$$
\begin{align*}
& \operatorname{RST}=\frac{4}{9} \cdot \frac{a^{2}+\vec{y}+c^{2}}{a^{2} / y^{2}} \triangle \tag{2}
\end{align*}
$$

Wriangles connected with the Circumentre.

$$
\left.\begin{array}{l}
\mathrm{OBC}=\frac{1}{2} a h_{i}=\frac{a^{2}\left(-a^{2}+b^{2}+c^{2}\right)}{16 \triangle} \tag{4}\\
\mathrm{OCA}=\frac{1}{2} b k_{i}=\frac{b^{2}\left(a^{2}-b^{2}+c^{2}\right)}{16 \triangle} \\
\mathrm{OAB}=\frac{1}{2} c k_{i}=\frac{c^{2}\left(a^{2}+b^{2}-c^{2}\right)}{16 \triangle}
\end{array}\right\}
$$

Sect. I.

Since O is the orthocentre of $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$,
therefore $\quad O^{\prime} B^{\prime}, \mathrm{C}^{\prime} \mathrm{OA}^{\prime}, \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{O}$
stand in the same relation to $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ as

$$
\mathrm{HCB}, \mathrm{CHA}, \mathrm{BAH}
$$

stand to ABC .
Hence expressions for the areas of these triangles may be derived from (27).

Triangles connected with the Incentre and Excentres.

$$
\begin{align*}
& \frac{\mathrm{DEF}}{r}=\frac{\mathrm{D}_{i} \mathrm{E}_{4} \mathrm{~F}_{1}}{r_{1}}=\frac{\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{3}}{r_{2}}=\frac{\mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}}{r_{3}}=\frac{\triangle}{2 \mathrm{R}} \tag{0}\\
& D_{1} E_{1} F_{1}+D_{2} E_{2} F_{2}+D_{3} E_{3} F_{3}-D E F=2 \triangle \tag{6}\\
& D E F \cdot D_{1} E_{1} F_{1} \cdot D_{2} E_{2} F_{2} \cdot D_{3} E_{3} F_{3}=\frac{\Delta^{6}}{16 R^{6}} \tag{7}\\
& \frac{1}{D_{1} E_{1} F_{1}}+\frac{1}{D_{2} E_{2} F_{2}}+\frac{1}{D_{3} E_{3} F_{3}}-\frac{1}{D E F}=0 \tag{8}\\
& \frac{A E F \cdot B F D \cdot C D E}{I E F \cdot I F D \cdot I D E}=\frac{\triangle^{2}}{r^{4}} \\
& \left.\frac{A E_{1} F_{1} \cdot B F_{1} D_{1} \cdot C D_{1} E_{1}}{I_{1} E_{1} F_{1} \cdot I_{1} F_{1} D_{1} \cdot I_{1} D_{2} E_{1}}=\frac{\Delta^{2}}{r_{1}{ }^{4}}\right\} \tag{9}
\end{align*}
$$

and so on.

$$
\left.\begin{array}{c}
\frac{\mathrm{AEF} \cdot \mathrm{BFD} \cdot \mathrm{CDE}}{(\mathrm{DEF})^{2}}=\frac{\mathrm{DE}_{1} \mathrm{~F}_{1} \cdot \mathrm{BF}_{1} \mathrm{D}_{1} \cdot \mathrm{CD}_{1} \mathrm{E}_{1}}{\left(\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}\right)^{2}}=\cdots=\frac{\triangle}{4} \\
\triangle_{0}=2 \mathrm{R} s, \quad \triangle_{1}=2 R s_{1}, \triangle_{2}=2 \mathrm{Rs}_{2}, \triangle_{3}=2 \mathrm{Rs}_{3} \\
\triangle_{0} \triangle_{1} \triangle_{1} \triangle_{3}=16 \mathrm{R}^{+} \triangle^{2} \\
\triangle_{0}: \triangle=2 \mathrm{R}: r \tag{13}\\
\triangle_{1}: \triangle=2 \mathrm{R}: r
\end{array}\right\},
$$

and so on.

$$
\left.\begin{array}{c}
\frac{\Delta}{\triangle_{1}}+\frac{\Delta}{\triangle_{2}}+\frac{\Delta}{\triangle_{3}}-\frac{\Delta}{\triangle_{0}}=2 \\
2 \triangle \triangle_{0}=a b c s=4 \mathrm{R} r_{1} r_{2} r_{3} \tag{15}\\
2 \triangle \triangle_{1}=a b c s_{1}=4 \mathrm{R} r r_{2} r_{3}
\end{array}\right\}
$$

and so on.

$$
\left.\begin{array}{c}
2 r \triangle_{0}=2 r_{1} \triangle_{1}=2 r_{2} \triangle_{2}=2 r_{3} \triangle_{0}=a b c \\
\triangle_{0}: \triangle=\triangle: D E E F \tag{17}\\
\triangle_{1}: \triangle=\triangle: \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{1}
\end{array}\right\}
$$

and so on.

$$
\begin{align*}
& \triangle_{1}: \mathrm{DEF}=4 \mathrm{R}^{2}: r^{2} \tag{18}\\
& \triangle_{:}: \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}=4 \mathrm{R}^{2}: r_{1}^{2}
\end{align*}
$$

and so on.

$$
\left.\begin{array}{l}
\triangle_{0}^{2}=\mathrm{R}\left(r_{2}+r_{i}\right)\left(r_{i j}+r_{1}\right)\left(r_{1}+r_{3}\right) \tag{19}\\
\triangle_{1}^{2}=\mathrm{R}\left(r_{2}+r_{i}\right)\left(r_{2}-r\right)\left(r_{3}-r\right) \\
\triangle_{2}^{2}=\mathrm{R}\left(r_{3}+r_{1}\right)\left(r_{1}-r\right)\left(r_{1}-r\right) \\
\triangle_{2}^{2}=\mathrm{R}\left(r_{1}+r_{2}\right)\left(r_{1}-r\right)\left(r_{2}-r\right)
\end{array}\right\}
$$

Corresponding expressions may be obtained for
$\mathrm{ABC}, \mathrm{HCD}, \mathrm{CHA}, \mathrm{BAH}$
by substituting instead of

$$
\begin{align*}
& \text { R. } \quad r, r, r \\
& \text { R. } \quad \text { ! }: \quad \text { P. } \quad \beta \\
& 4 \triangle_{0}=2\left(\alpha_{2}+\alpha_{0}\right) \mu_{1}=2\left(\beta_{0}+\beta_{1}\right) \beta_{2}=2\left(\sigma_{1}+i\right) ; \\
& =\left(a_{1}-\alpha\right)\left(\alpha_{2}+\alpha_{3}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)+\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+j\right) \\
& 4 \triangle_{1}=2\left(a_{2}+\alpha_{3}\right) a \quad=2\left(\beta_{0}-\beta\right) \beta_{3} \quad=2(\gamma-\gamma) \gamma \\
& =-\left(\alpha_{1}-\alpha\right)\left(\alpha_{2}+\alpha_{3}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)+(\gamma-\gamma)(\gamma+\gamma) \\
& 4 \triangle_{2}=2\left(\alpha_{1}-\alpha\right) a_{2}=2\left(\beta_{3}+\beta_{1}\right) \beta=2\left(\gamma_{3}-\gamma\right) \gamma_{1} \\
& =\left(a_{1}-a\right)\left(\alpha_{2}+a_{3}\right)-\left(\beta_{2}-\beta\right)\left(\beta_{i}+\beta_{1}\right)+\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right) \\
& 4 \triangle_{5}=2\left(\alpha_{1}-\alpha\right) u_{2}=2\left(\beta_{1}-\beta\right) \beta_{1}=2\left(\gamma_{1}+\gamma_{2}\right) \gamma \\
& \left.=\left(u_{1}-\alpha\right)\left(u_{2}+u_{j}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{1}+\beta_{1}\right)-\left(\gamma_{1}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right)\right)
\end{align*}
$$

$$
\begin{align*}
& \mathrm{I}_{1} \mathrm{BC}=\frac{a r_{1}}{2}=\frac{r_{1}^{2}\left(r_{2}+r_{3}\right)}{2 \sqrt{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}}} \\
& \mathrm{~A}_{2} \mathrm{C}=\frac{b r_{2}}{2}=\frac{r_{2}^{2}\left(r_{3}+r_{1}\right)}{2 \sqrt{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}}} \tag{21}\\
& \mathrm{AB} \mathrm{I}_{3}=\frac{c r_{3}}{2}=\frac{r_{3}^{2}\left(r_{1}+r_{2}\right)}{2 \sqrt{r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}}}
\end{align*}
$$

The three preceding triangles are similar to $I_{1} I_{2} I_{3}$ and expressions for them may be derived from the expressions for \triangle_{0} by the comparison of homologous lines in the triangles.

Thus in $I_{1} B C, I_{1} I_{2} I_{5 j}$ the perpendiculars $I_{1} D_{1}, I_{1} A$, or r_{1}, a_{1}, are homologous lines;
therefore

$$
\mathrm{I}_{1} \mathrm{BC}: \triangle_{0}=r_{1}{ }^{2}: u_{1}{ }^{2} .
$$

Similarly expressions may be found for
triangles
$\mathrm{IBC}, \mathrm{AI}_{3} \mathrm{C}, \mathrm{ABI}_{2}$
$I_{i j} \mathrm{BC}, \mathrm{AIC}, \mathrm{ABI}_{1}$
$I_{2} B C, A I_{1} C, A B I$
which are similar to

$$
\begin{aligned}
& \mathrm{I}_{3} \mathrm{I}_{2} \text { or } \triangle_{1} \\
& \mathrm{I}_{2} \mathrm{I} \mathrm{I}_{1} \text { or } \triangle_{2} \\
& \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I} \text { or } \triangle_{0}
\end{aligned}
$$

From these again, by making the appropriate changes in the letters, corresponding expressions may be found for
triangles
AYZ, XBZ, XYC
HYZ, XCZ, XYB
CYZ, XHZ, XYA
BYZ, XAZ, XYH
which are similar to
ABC
HCB
CHA
BAH.

Triangles connected with the Angular Bisectors.

$$
\begin{align*}
& \mathrm{LMN}=\frac{2 a b c \Delta}{(b+c)(c+a)(a+b)}=\frac{l_{1} l_{2} l_{3}}{4 s} \\
& \mathbf{L M}^{\prime} \mathrm{N}^{\prime}=\frac{2 a b c \Delta}{(b+c)(a-c)(a-b)}=\frac{l_{1} \lambda_{2} \lambda_{3}}{4 s_{1}} \\
& \mathbf{L}^{\prime} \mathrm{MN}^{\prime}=\frac{2 a b c \Delta}{(b-c)(c+a)(a-b)}=\frac{\lambda_{1} l_{2} \lambda_{2}}{4 s_{2}} \tag{22}\\
& \mathrm{~L}^{\prime} \mathbf{M}^{\prime} \mathrm{N}^{\prime}=\frac{2 a b c \Delta}{(b-c)(a-c)(a+b)}=\frac{\lambda_{1} \lambda_{2} l_{3}}{4 s_{j}}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{L} \mathrm{~L}^{\prime} \mathrm{M}=\frac{2 a b c \Delta}{(a+a)\left(b^{2}-c^{2}\right)} \mathrm{L} \mathrm{~L}^{\prime} \mathrm{N}=\frac{2 a b c \Delta}{(a+b)\left(b^{2}-c^{2}\right)} \\
& \mathrm{MM}^{\prime}=\frac{2 a b c \Delta}{(a+b)\left(a^{2}-c^{-}\right)} \quad \mathrm{M} \mathrm{M}^{\prime} \mathrm{L}=\frac{2 a b c \Delta}{(b+c)\left(a^{-2}-c^{2}\right)} \tag{23}\\
& \mathrm{N} \mathrm{~N}^{\prime} \mathrm{L}=\frac{2 a b c \Delta}{(b+c)\left(a^{2}-b^{-}\right)} \mathrm{N} \mathrm{~N}^{\prime} \mathrm{M}=\frac{\because a \cdots \Delta}{(c+a)\left(\cdot b^{\prime}\right)}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{LL}^{\prime} \mathrm{M}^{\prime}=\frac{2 a a^{\prime} \triangle}{(a-c)\left(b^{\prime}-c^{2}\right)} \mathrm{L} \mathrm{~L}^{\prime} \mathrm{N}^{\prime}=\frac{2 a b c \Delta}{(a-b)\left(b^{2}-c^{2}\right)} \\
& \mathrm{MM}^{\prime} \mathrm{N}^{\prime}=\frac{\underline{2}^{\prime} a^{\prime}, \cdot \Delta}{(\cdots-b)\left(a^{\prime}-c^{\prime \prime}\right)} \quad M \mathrm{I}^{\prime} \mathrm{L}^{\prime}=\frac{2 a b c \Delta}{(b-c)\left(a^{2}-c^{2}\right)} \tag{21}
\end{align*}
$$

$\mathrm{L} M \mathrm{~N}: \triangle_{V}=4 \dot{c}_{1} \mathrm{~s}_{2} s_{j}:(b+c)(c+a)(a+b)$
$\mathrm{L} \mathrm{M}^{\prime} \mathrm{N}^{\prime}: \triangle_{1}=4 s \varepsilon_{2} \varepsilon_{3}:(b+c)(a-c)(a-l)$
$\mathrm{L}^{\prime} \mathrm{N} \mathrm{N}^{\prime}: \triangle_{2}=4 s s_{s} s_{1}:(b-c)(c+a)(a-b)$
L'N'N $^{\prime}: \triangle_{\mathrm{i}}=4 \varepsilon s_{1} s_{i}:(b-c)(a-c)(a+b)$

Triangles connected with the Orthocentie.

$$
\begin{align*}
& \mathrm{ABX}=\frac{\left(a^{2}-l^{2}+c^{2}\right) \triangle}{2 a^{2}} \quad \mathrm{ACX}=\frac{\left(a^{2}+b^{2}-c^{2}\right) \triangle}{2 a^{2}} \\
& \mathrm{BCY}=\frac{\left(a^{2}+b^{2}-c^{2}\right) \triangle}{2 b^{2}} \quad \mathrm{BAX}=\frac{\left(-a^{2}+b^{2}+c^{2}\right) \triangle}{2 b^{2}} \tag{26}\\
& \mathrm{CAZ}=\frac{\left(-a^{2}+b^{2}+c^{2}\right) \triangle}{2} \quad \mathrm{CBZ}=\frac{\left(a^{2}-b^{2}+c^{2}\right) \triangle}{2 c^{2}}
\end{align*}
$$

$$
\begin{aligned}
& \triangle_{a}=\mathrm{HCB}=\frac{\left(a^{2}-l^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)}{1 \mathrm{~A} \triangle} \\
& \triangle_{1}=\mathrm{CHA}=\frac{\left(a^{2}+b^{2}-c^{2}\right)\left(-a^{2}+b^{2}+c^{2}\right)}{16 \triangle} \\
& \triangle_{c}=\mathrm{BAH}=\frac{\left(-a^{2}+b^{2}+c^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)}{16 \triangle}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{HBX}=\frac{\left(a^{2}-b^{2}+c^{2}\right)^{2}\left(a^{2}+b^{2}-c^{2}\right)}{32 a^{2} \triangle} \tag{28}\\
& \mathrm{HCX}=\frac{\left(a^{2}-b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)^{2}}{32 a^{2} \triangle}
\end{align*}
$$

$$
\left.\begin{array}{c}
A Y Z=\frac{\left(-a^{2}+b^{2}+c^{2}\right)^{2} \triangle}{4 b^{2} c^{2}}, \quad \text { IBZ }=\frac{\left(c^{2}-b^{2}+c^{2}\right)^{2} \triangle}{4 c^{2} a^{2}} \tag{29}\\
\mathrm{XYC}=\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2} \triangle}{4 a^{2} b^{2}}
\end{array}\right\}
$$

$$
\begin{equation*}
\mathrm{XYZ}=\frac{\left(-a^{2}+b^{2}+c^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right) \triangle}{4 a^{2} b^{2} c^{2}} \tag{30}
\end{equation*}
$$

$\left.\begin{array}{cc}\text { DEF:XYZ=r }: 2 \rho \\ \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}: \mathrm{XYZ}=r_{1}: 2 \rho\end{array}\right\}$

$$
\begin{align*}
& \triangle_{0}: \Delta=4 s: x+y+z \tag{32}\\
& \triangle_{1}: \triangle=4 s_{1}: x+y+z
\end{align*}
$$

Miscellaneous.

$$
\left.\begin{array}{l}
\text { I } 10 \cdot 8 \Delta=a b c(c-b) \tag{33}\\
\text { IIO } \mathrm{O} \cdot 8 \Delta=a b c(c-a) \\
\text { IIO } \mathrm{O} \triangle=a b c(a-b)
\end{array}\right\}
$$

$\left.\left(2 \mathrm{I}_{2} \mathrm{I}_{0} \mathrm{I}-\mathrm{I}_{2} \mathrm{I} \mathrm{H}\right) \delta \Delta=a(b+c)\left(b^{2}+c^{2}-a^{2}\right)\right)$
$\left(2 \mathrm{I}_{3} \mathrm{I}_{1} \mathrm{I}-\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{H}\right), ~ S \triangle=b(c+a)\left(c^{2}+a^{2}-l^{2}\right)$
$\left(2 \mathrm{I}_{2} \mathrm{I}_{2} \mathrm{I}-\mathrm{I}_{2} \mathrm{~J}_{2} \mathrm{H}\right): \triangle=c(a+b)\left(a^{2}+b^{2}-c^{2}\right)$

I $\mathrm{I}_{1} \mathrm{O} \cdot \mathrm{S} \triangle=\left(r_{1}-r\right)\left(r_{3}-r_{2}\right)\left(r_{2} r_{3}+r r_{1}\right)$)
and so on. $\left.\quad \mathrm{I} \mathrm{I}_{2} \mathrm{H} \cdot 4 \Delta=\left(r_{1}-r\right)\left(r_{3}-r_{2}\right)\left(r_{2} r_{3}-r r_{1}\right)\right\}$
$\left.\begin{array}{l}\left.\quad\left(2 \mathrm{I}_{2} \mathrm{I}_{3} \mathrm{I}-\mathrm{I}_{2} \mathrm{I}_{3} \mathrm{O}\right) 8 \triangle=\left(r+r_{3}\right)\left(r_{2}+r_{3}\right)\left(r_{2} r_{3}+r r_{1}\right)\right\} \\ \text { and so on. }\end{array}\right\}$
$\left.\left(2 \mathrm{I}_{2} \mathrm{I}_{; 2} \mathrm{I}-\mathrm{I}_{2} \mathrm{I}_{2} \mathrm{H}\right) 4 \Delta=\left(r+r_{1}\right)\left(r_{2}+r_{3}\right)\left(r_{2} r_{3}-r_{1}\right)\right\}$
and so on.

$$
\left.\begin{array}{l}
\text { I H O } 32 \triangle=\frac{1}{\operatorname{R} r}\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right) \\
\text { I H O }_{1} 32 \triangle=\frac{1}{\mathrm{R}_{1}}\left(r_{1}+r_{2}\right)\left(r_{1}+r_{: 3}\right)\left(r_{3}-r_{2}\right)\left(r_{1}-r\right)\left(r_{2}+r\right)\left(r_{3}+r\right) \\
\text { and so on. }
\end{array}\right\}(4 \underline{2})
$$

It is probable that some of the preceding 42 formulae may belong to earlier dattic, and to other authors than those indicated below. I shall be glad if any reader, who knows of earlier sources than those I have recorded, will take the trouble to inform me.
(2), (3) Mr E. Hain in Nourclle Correspondance Muthénatique, I. in (1874-5).
(5), (6) Fenerbach, Eiyenschuften...des...Drciecks, §S S, 9 (1822).
(7), (8) Mr B. Mollmann in Grumert's Archiv, XVII., 396 (1851).
(9), (10) Mr Combier gives the first of each of these expressions in the Journal de Mrathémutiques Élémentaires, III., 351 (1879).
(11), (12), (14) Mr B. Möllmann in Grunert's Archir, XVII., 393-6 (1851).
(13) C. J. Matthes gives the first expression in Commentatio de Proprietatibus Quinque Circulorum, p. $5 \check{0}$ (1831); T. S. Davies gives the others in the Lady's and Gentleman's Diary for 1842, p. 87.
(15) The first expression is given by Mr A. R. Clarke in 1847 in the Mathematician, III., 45 (18:5); all are given by Mr C. Hellwig in Grunert's Archir, XIX., 43 (1852).
(17) These proportions are implied in Feuerbach, Eigenschaften...des...Dreiecks, §61'(1822). The first of them is given by C. J. Matthes in his Commentatio, p. 55 , and also the first of (18).
(19) The first expression is given by C. Adams in his Eicfenschaften...des... Dreiecks, p. 61 (1846); the corresponding expression for $A B C$ is given on p. 62.
(20) The last values of each of these seta are given by Thomas Weddle in the Lady's and Gentleman's Diary for 1845, p. 75.
(21) T. S. Davies in the Lady's and Gentleman's Diary for 1842, p. 8x.
(22)-(25) Mr Georges Dostor in the Journal de Mathématiqucs E'lémentaires ot Spéciales, IV. $21-23$ (1880). The first expression for LMN, however, is given by Grunert in his article " Dreieck," quoted on p. 25. C. F. A. Jacobi, Dc Triangulorum Rectilincorum Proprictatilus, p. 15 (182:), gives the expression

$$
\frac{2 \Delta}{(a+b+c)\left(\frac{1}{1}+\frac{1}{b}+\frac{1}{c}\right)-1} .
$$

(26)-(28) Mr C. Hellwig in Grunert's Archir, XIX., 25.20 (1850).
(30) Feuerbach, Eigenschaften...des...Dreiechs, $\$ 23$ (1822).
(31)-(32) C. Adams, Eigenschaften...dcs...Dreicchs, pp. 54, 53 (1846).
(33)-(42) Mr C. Hellwig in Grunert's Archir, XIX., 43-50 (18\%)2).

[^0]: * Whatever be the slape of the triangle one of the perpendicular: will alwayfall inside the tringle. Let that perpendicular be $\mathbf{A X}$.

[^1]: * Terquem in Nouvellcs Annales, III. 219-220 (1844). The method is also applied by Terquem to find the expression for the area of a cyclic quadrilateral, and it had previously been applied by P. L. Cirodde in Nourelles Annales, I. 117 (1842), to find the volume of a spherical segnent when it is known that the volume is a function of the third degree of its height.

