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Abstract

Let B(Ω) be a Banach space of holomorphic functions on a bounded connected domain Ω in Cn. In this
paper, we establish a criterion for B(Ω) to be reflexive via evaluation functions on B(Ω), that is, B(Ω) is
reflexive if and only if the evaluation functions span the dual space (B(Ω))∗.
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1. Introduction

Let B(Ω) be a Banach space of holomorphic functions on a bounded connected
domain Ω in Cn. When n > 1, we may assume that Ω is simply connected since any
holomorphic function on Ω can be analytically extended to the holes in Ω by Hartog’s
theorem. Let Kw denote the evaluation function at z ∈ Ω, that is,

Kz( f ) = f (z) for all f ∈ B(Ω).

The aim of this paper is to build a criterion for reflexivity of the Banach space B(Ω)
via the evaluation functions on B(Ω).

Characterization of reflexivity of different types of Banach spaces is a fundamental
problem in functional analysis. A very famous general criterion is the well-known
Kakutani theorem, which uses the closed unit ball of the Banach space.

Turning to the specific Banach space B(Ω) on which we focus in this paper, finding
a specific criterion for reflexivity is certainly an important problem.
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Our idea is to use evaluation functions on B(Ω), which play the role of reproducing
kernels on a Hilbert space. However, when compared to reproducing kernels (on a
Hilbert space), the properties of evaluation functions on Banach spaces are far less
known.

To further understand the properties of evaluation functions on B(Ω), we recall that
in a reproducing kernel Hilbert space of holomorphic functions, the reproducing kernel
has the very important property that {Kz | z ∈ U} spans the full space for any open sub-
set or dense subset U of the domain (see for example, [2]). A similar conclusion may
not hold in the general Banach space of holomorphic functions. Instead, we consider
the following question related to the reflexivity of the specific Banach space B(Ω).

QUESTION 1.1. Can we characterize the reflexivity of B(Ω) via evaluation functions
on B(Ω)?

Recall again that B(Ω) is the Banach space of holomorphic functions on a bounded
connected domain Ω in Cn. We list the following assumption about Ω and B(Ω) that is
used in stating our main result.

(a) For each z ∈ Ω and for every f ∈ B(Ω), the evaluation map Kz : f �→ f (z) is a
bounded linear functional on B(Ω).

We now state our main result as follows, which answers the Question above.

THEOREM 1.2. Let Ω and B(Ω) satisfy assumption (a). Then B(Ω) is reflexive if and
only if for every arbitrary open subset or dense subset U of Ω,∨

z∈U
{Kz} = (B(Ω))∗,

where
∨

z∈U{Kz} denotes the space spanned by {Kz}z∈U.

We note that the criterion established in Theorem 1.2 can be applied to various
settings. For example, taking Ω to be the unit disk D in C, we see that our criterion
applies to the Hardy spaces, Bergman spaces, Dirichlet spaces, Hardy–Sobolev spaces,
and Bloch spaces on D.

2. Properties of evaluation functions on B(Ω)

In this section, we discuss some properties of evaluation functions. It can be proved
that the closed unit ball of the Banach space of analytic functions is a normal family by
using the properties of evaluation functions. This conclusion is somewhat unexpected
since, in general, the closed unit ball of an infinite dimensional Banach space is not
weakly compact, which varies from the Hilbert space case. In fact, Kakutani’s theorem,
also called the Eberlein–Shmuleyan theorem, showed that a necessary and sufficient
condition for the closed unit ball of a Banach space to be weakly compact is that the
space is reflexive (see [1]).

We begin by recalling a basic result in [6, page 5], followed by several auxiliary
lemmas.
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LEMMA 2.1. If Λ is a uniformly bounded family of holomorphic functions inΩ, then Λ
is equicontinuous on every compact subset of Ω. In other words, Λ is a normal family.

LEMMA 2.2. Suppose Ω and B(Ω) satisfy assumption (a), and K is an arbitrary
compact subset of Ω. Then,

sup
z∈K
‖Kz‖ < ∞.

PROOF. For any f ∈ B(Ω), it is clear that

sup
z∈K
|Kz( f )| = sup

z∈K
| f (z)| < ∞

since f is holomorphic on Ω. By the uniform boundedness principle,

sup
z∈K
‖Kz‖ < ∞.

The proof is complete. �

LEMMA 2.3. Let Ω and B(Ω) satisfy assumption (a). Then, for an arbitrary sequence
{ fk} in (B(Ω))1, the unit ball in B(Ω), we obtain that { fk} is a normal family.

PROOF. Let K be an arbitrary compact subset of Ω. Choose another compact subset
K̃ ⊂ Ω and an open subset Ω̃ ⊂ Ω such that

K ⊂ Ω̃ ⊂ K̃ ,

then

sup
k

sup
z∈K̃
| fk(z)| = sup

k
sup
z∈K̃
|Kz( fk)|

≤ sup
k
‖ fk‖ · sup

z∈K̃
‖Kz‖

≤ sup
z∈K̃
‖Kz‖ < ∞

by Lemma 2.2. Thus,

sup
k

sup
z∈Ω̃
| fk(z)| < ∞.

This implies that { fk} is uniformly bounded on Ω̃ and also equicontinuous on every
compact subset of Ω̃ by Lemma 2.1. In particular, { fk} is equicontinuous on K . This
completes the proof. �

It is well known that for 1 < p < ∞, a sequence { fk} in Bergman space Ap(D)
converges weakly to zero if and only if {‖ fk‖}k is bounded, and fk(z)→ 0 uniformly
on compact subsets of D as k → ∞ (see [3, Exercise 1.6.1]). Since Ap(D)(1 < p < ∞)
is reflexive, we see that this conclusion is the consequence of Kakutani’s theorem and
our Lemma 2.3.
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PROPOSITION 2.4. Suppose Ω and B(Ω) satisfy assumption (a), and U is an open
subset or a dense subset of Ω. If B(Ω) is reflexive, then∨

z∈U
{Kz} = (B(Ω))∗.

PROOF. Write M =
∨

z∈U{Kz}. If M � (B(Ω))∗, then there is a nonzero F ∈ (B(Ω))∗∗

such that F|M = 0. Here, (B(Ω))∗∗ is the second dual space of B(Ω). Since B(Ω) is
reflexive, there is a nonzero function f ∈ B(Ω) that satisfies F = f ∗∗ ∈ (B(Ω))∗∗, and
thus

f (z) = Kz( f ) = F(Kz) = 0.

This implies that f = 0. Thus, F = f ∗∗ = 0, which contradicts F � 0. This contradic-
tion completes the proof. �

Let B be the Bloch space consisting of functions f with

sup
z∈D

(1 − |z|2)| f ′(z)| < ∞,

and the little Bloch space of D, denoted by B0, be the closed subspace of B consisting
of functions f with

lim
|z|→1−

(1 − |z|2) f ′(z) = 0.

The following lemmas are well known.

LEMMA 2.5 [8, Corollary 5.10]. B0 is the closure in B of the set of polynomials. In
particular, B0 is separable.

Suppose L1
a(dAα) is the weighted Bergman space with dAα = cα(1 − |z|2)α dA, a

positive Borel measure on D, where cα = α + 1 for α > −1 and cα = 1 for α ≤ −1
(see [8, page 72]). Then we have the following lemma.

LEMMA 2.6 [8, Theorem 5.15]. For any α > −1, we have (B0)∗ = L1
a(dAα) under the

integral pairing

〈 f , g〉α =
∫
D

f (z)g(z) dAα(z).

Here, B0 is equipped with the norm ‖ f ‖ = | f (0)| + ‖ f ‖B0 .

It is clear that L1
a(dA0) = A1(D), the classical Bergman space.

In general, if B(Ω) is not reflexive, then the set of evaluation functions may not span
the dual space of B(Ω). For example, it is well known that A1(D), the Bergman space
on D, is not reflexive; its dual space is the Bloch space B (see [3]). The following
proposition verifies our conclusion.
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PROPOSITION 2.7. Suppose A1(D) is the Bergman space on the unit disc D in the
complex plane C. Then for any z ∈ D, the evaluation function Kz is bounded on A1(D),
and ∨

z∈D
{Kz} = B0 � B.

PROOF. It is obvious that Kz is bounded for any z ∈ D. We prove that∨
z∈D
{Kz} = B0,

and further,
∨

z∈D{Kz} � B.
It is clear that for any z ∈ D, Kz ∈ B0. Hence,

∨
z∈D{Kz} ⊂ B0. If

∨
z∈D{Kz} � B0,

then there is a nonzero F ∈ (B0)∗ such that F|∨z∈D{Kz} = 0. By Lemma 2.6, there is an
f ∈ L1

a(dAα) such that

F(g) =
∫
D

g f dAα.

In particular, for any z ∈ D,

F(Kz) =
∫
D

Kz f dAα = 0.

This shows that f (z) = 0 for any z ∈ D, and hence f = 0. Consequently, F = 0. This
contradiction completes the proof. �

PROPOSITION 2.8. Let Ω and B(Ω) satisfy assumption (a). If {zk} ⊂ Ω is a sequence
that convergences to w ∈ Ω, then

‖Kzk − Kw‖ → 0.

PROOF. Assuming the contrary, then there is an ε0 > 0 and a sequence { fk} ⊂ (B(Ω))1,
the unit ball of B(Ω), such that

|(Kzk − Kw)( fk)| ≥ ε0.

That is,

| fk(zk) − fk(w)| ≥ ε0.

Write Fk = f ∗∗k ∈ [(B(Ω))∗∗]1, where (B(Ω))∗∗ is the second dual space of B(Ω),
[(B(Ω))∗∗]1 is the unit ball of (B(Ω))∗∗. Then there is a subsequence {Fkj} such that
Fkj converges in the weak-star topology to F0 ∈ (B(Ω))∗∗. In particular,

Fkj (Kz)→ F0(Kz) as j→ ∞.

However,

Fkj (Kz) = Kz( fkj ) = fkj (z),
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and hence there is a holomorphic function f on Ω such that

fkj (z)→ f (z) = F0(Kz) as j→ ∞.

Assume K ⊂ Ω is any compact subset of Ω, then

sup
kj

sup
z∈K
| fkj (z)| ≤ sup

kj

‖ fkj‖ · sup
z∈K
‖Kz‖ ≤ sup

z∈K
‖Kz‖ < ∞.

By Lemma 2.3, we know that { fkj} is a normal family. Further,

fkj |K → f |K uniformly as j→ ∞.

This contradicts | fk(zk) − fk(w)| ≥ ε0, which means ‖Kzk − Kw‖ → 0. �

According to an example of Manhas and Zhao in [4], it may happen in a reproducing
kernel Hilbert space that as z tends to the boundary of Ω, the kernel functions satisfy
‖Kz‖ → ∞ but the normalized reproducing kernels kz do not converge to 0 weakly.
However, if the polynomials are dense in the space, this phenomenon does not occur.

PROPOSITION 2.9. Let Ω and B(Ω) satisfy assumption (a), and P[Ω], the ring of
polynomials on Ω, is dense in B(Ω). For any sequence {zk} ⊂ Ω and ζ ∈ ∂Ω, if
‖Kzk‖ → ∞ as zk → ζ, then

kzk =
Kzk

‖Kzk‖
weak∗−→ 0 as k → ∞.

PROOF. Assuming P ∈ P[Ω], it is obvious that Kzk (P)→ P(ζ) as k → ∞. Since
‖Kzk‖ → ∞,

kzk (P) =
Kzk

‖Kzk‖
(P) =

P(zk)
‖Kzk‖

→ 0 as k → ∞.

For any f ∈ B(Ω), take a sequence {Pm} ⊂ P[Ω] such that ‖Pm − f ‖ → 0 as m→ ∞.
Then,

|kzk ( f )| =
∣∣∣∣∣ Kzk

‖Kzk‖
( f )
∣∣∣∣∣

≤
∣∣∣∣∣ Kzk

‖Kzk‖
( f ) −

Kzk

‖Kzk‖
(Pm)
∣∣∣∣∣ + ∣∣∣∣∣ Kzk

‖Kzk‖
(Pm)
∣∣∣∣∣

≤
∥∥∥∥∥ Kzk

‖Kzk‖

∥∥∥∥∥ · ‖ f − Pm‖ +
∣∣∣∣∣ Kzk

‖Kzk‖
(Pm)
∣∣∣∣∣

= ‖ f − Pm‖ +
∣∣∣∣∣ Kzk

‖Kzk‖
(Pm)
∣∣∣∣∣.

This shows that kzk ( f )→ 0. That is,

kzk =
Kzk

‖Kzk‖
weak∗−→ 0 as k → ∞.

The proof is complete. �
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It should be noted that, similar to the reproducing kernel of the Hilbert space of
analytic functions, the boundary behavior of the evaluation function on the Banach
space of analytic functions depends on the structure of the space. For example, as we
know, for 1 ≤ p < ∞, if β > n/p, then ‖Kz‖, the norm of the evaluation function Kz on
Hardy–Sobolev space Hp

β (see [5]), is bounded on Bn. As any function in Hp
β (Bn) is

continuous on the boundary of Bn, it can be seen that when the sequence {zk} in Bn

converges to a point ζ ∈ ∂Bn, then according to the norm in Hp
β (Bn), Kzk converges to

Kζ , the evaluation function at ζ. Thus,

‖kzk − kζ‖ → 0 as k → ∞,

where kzk = Kzk/‖Kzk‖, kζ = Kζ/‖Kζ‖. If β ≤ n/p, then ‖Kz‖ → ∞ as z→ ∂Bn and

kz =
Kz

‖Kz‖
weak∗−→ 0 as z→ ∂Bn.

3. Proof of Theorem 1.2

PROOF. We need only to prove the sufficiency by Proposition 2.4. Assume∨
z∈Ω
{Kz} = (B(Ω))∗.

We prove that (B(Ω))1 is weakly compact, and further B(Ω) is reflexive by Kakutani’s
theorem. Assume { fk} ⊂ (B(Ω))1. By Lemma 2.3, there is a subsequence { fkj} such that
fkj (z)→ f (z) uniformly on compact subsets of Ω, where f is a holomorphic function
on Ω. Thus, for any z ∈ Ω,

Kz( fkj ) = fkj (z)→ f (z).

This implies that {Kz( fkj )} is convergent. Further, for any finite linear combination∑m
i=1 αiKzi , {

∑m
i=1 αiKzi ( fkj )} is also convergent. Since∨

z∈Ω
{Kz} = (B(Ω))∗,

we see that {F( fkj )} is convergent for any F ∈ (B(Ω))∗. Since F is chosen arbitrarily, we
know that there is a G ∈ (B(Ω))∗∗ such that f ∗∗kj

(F)→ G(F) for any F ∈ (B(Ω))∗ since
(B(Ω))∗∗ is weak-star compact. Writing fG(z) = G(Kz) for any z ∈ Ω, we see that

fG(z) = G(Kz) = lim
j→∞

f ∗∗kj
(Kz) = lim

j→∞
fkj (z) = f (z).

Hence, fG is a holomorphic function. For any F ∈ (B(Ω))∗, F( fG) is well defined
and F( fkj )→ F( fG). By

∨
z∈Ω{Kz} = (B(Ω))∗ again, there exists a sequence {Pm} ⊂∨

z∈Ω{Kz} such that

Pm =

km∑
i=1

α(m)
i Kz(m)

i
→ F in (B(Ω))∗ as m→ ∞.
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For arbitrary α ∈ C, since

F(α fG) = lim
m→∞

Pm(α fG)

= α lim
m→∞

Pm( fG)

= α lim
m→∞

G(Pm)

= αG(F)

= αF( fG),

we see that F(α fG) = lim
m→∞

Pm(α fG) is well defined and F(α fG) = αF( fG). Define

‖ fG‖ := sup
F∈((B(Ω))∗)1

|F( fG)|.

Noting that

lim
j→∞

F( fkj ) = F( fG)

and

‖F( fkj )‖ ≤ ‖F‖‖ fkj‖ ≤ 1,

we get that ‖ fG‖ < ∞. We now prove fG ∈ B(Ω) by contradiction. Suppose fG � B(Ω),
then we define

B =
∨
{B(Ω), fG},

the space spanned by B(Ω) and fG. That is,

B = { f + α fG | f ∈ B(Ω),α ∈ C}.

For any g = f + α fG, define the norm of g as

‖g‖1 = ‖ f ‖ + |α|‖ fG‖.

Then ‖ · ‖1|B(Ω) = ‖ · ‖. It is easy to check that B∗ = (B(Ω))∗. In fact, for any
F ∈ (B(Ω))∗, F is well defined on B since F( fG) is well defined, and

|F( f + α fG)| = |F( f ) + αF( fG)| ≤ ‖F‖(‖ f ‖ + |α|‖ fG‖) = ‖F‖‖ f + α fG‖.

Hence, F ∈ B∗. Conversely, if F ∈ B∗, then for any f ∈ B(Ω), |F( f )| ≤ ‖F‖‖ f ‖1 =
‖F‖‖ f ‖, this shows that F ∈ (B(Ω))∗. By the assumption fG � B(Ω), there is an
F0 ∈ B∗ such that F0|B(Ω) = 0, and F0( fG) � 0. However, we know that the sequence
{ fkj} ⊂ B(Ω) such that F( fkj )→ F( fG) for any F ∈ (B(Ω))∗. This implies that
F0( fG) = 0 since B∗ = (B(Ω))∗. This contradiction shows that fG ∈ B(Ω). Thus,
G = f ∗∗G . This shows that (B(Ω))1 is weakly compact, and then B(Ω) must be reflexive
by Kakutani’s theorem.
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Now let U be any open subset or dense subset U of Ω. We are to prove that∨
z∈U
{Kz} = (B(Ω))∗

if and only if ∨
z∈Ω
{Kz} = (B(Ω))∗.

We prove this argument by contradiction. Assume that∨
z∈Ω
{Kz} = (B(Ω))∗

and there is an open subset or dense subset U of Ω with∨
z∈U
{Kz} � (B(Ω))∗.

Then there is a nonzero G ∈ (B(Ω))∗∗ such that G|∨z∈U {Kz} = 0. Since B(Ω) is reflexive,
there is a nonzero g ∈ B(Ω) such that G = g∗∗. Thus, for any z ∈ U,

g(z) = g∗∗(Kz) = G(Kz) = 0.

Further, g = 0 on Ω by the uniqueness of the extension of holomorphic functions. The
contradiction completes the proof. �

REMARK 3.1. It is well known that the dual space of H1(D) is BMOA, the holomor-
phic function space with bounded mean oscillation. According to Theorem 1.2, the
evaluation functions on H1(D) cannot span BMOA since H1(D) is not reflexive. Some
other classical holomorphic function spaces, such as the Dirichlet space D1(D), the
Hardy–Sobolev space H1

β(D)(β ∈ R), are also nonreflexive, so the evaluation functions
on them cannot span their dual spaces.

4. Further discussion

As we know, an evaluation function need not be well defined even in the Hilbert
space of holomorphic functions. For instance, let H2(β) be the weighted Hardy space
with weight βn = 1/2n (see [7]). If we set f (z) =

∑∞
n=0( 4

3 )nzn, then

‖ f ‖ =

√√ ∞∑
n=0

(4
3

)2n(1
2

)2n
=

√√ ∞∑
n=0

(2
3

)2n
< ∞.

However, Kz0 ( f ) =
∑∞

n=0(16/15)n = ∞ for z0 =
4
5 , a point in the unit disc D, which

means that for some z ∈ D, Kz is not well defined. This is why we have to make
assumption (a).

An interesting phenomenon is that the evaluation functions may still span the whole
dual space of the Banach space B(Ω) of analytic functions as long as the evaluation
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function is well defined and bounded on an open subset or dense subset of the domain
Ω. In fact, we have the following theorem.

THEOREM 4.1. Let B(Ω) be a Banach space of holomorphic functions on a bounded
connected domain Ω in Cn. If there is an open subset or dense subset U of the domain
Ω such that Kz is bounded on B(Ω), then B(Ω) is reflexive if and only if∨

z∈U
{Kz} = (B(Ω))∗.

PROOF. The proof is similar to that of Theorem 1.2, but for convenience, we give the
details here.

First, assume that B(Ω) is reflexive. Write M =
∨

z∈U{Kz}, and if M � (B(Ω))∗, then
there is a nonzero F ∈ (B(Ω))∗∗ such that F|M = 0. Here, (B(Ω))∗∗ is the second dual
space of B(Ω). Since B(Ω) is reflexive, there is a nonzero function f ∈ B(Ω), which
satisfies F = f ∗∗ ∈ (B(Ω))∗∗, and thus

f (z) = Kz( f ) = F(Kz) = 0.

This implies that f = 0. Thus, F = f ∗∗ = 0, which contradicts F � 0. This contradic-
tion means that ∨

z∈U
{Kz} = (B(Ω))∗.

Second, if ∨
z∈U
{Kz} = (B(Ω))∗,

we prove that (B(Ω))1 is weakly compact and further B(Ω) is reflexive by Kakutani’s
theorem. Assume { fk} ⊂ (B(Ω))1. By Lemma 2.3, there is a subsequence { fkj} such that
fkj (z)→ f (z) uniformly on compact subsets of Ω, where f is a holomorphic function
on Ω. Thus, for any z ∈ U,

Kz( fkj ) = fkj (z)→ f (z).

This implies that {Kz( fkj )} is convergent. Further, for any finite linear combination∑m
i=1 αiKzi , {

∑m
i=1 αiKzi ( fkj )} is also convergent. Since∨

z∈U
{Kz} = (B(Ω))∗,

we see that {F( fkj )} is convergent for any F ∈ (B(Ω))∗. Since F is chosen arbitrarily,
we know that there is a G ∈ (B(Ω))∗∗ such that f ∗∗kj

(F)→ G(F) for any F ∈ (B(Ω))∗ as
(B(Ω))∗∗ is weak-star compact. Writing fG(z) = G(Kz) for any z ∈ U,

fG(z) = G(Kz) = lim
j→∞

f ∗∗kj
(Kz) = lim

j→∞
fkj (z) = f (z).
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Hence, fG is a holomorphic function on U, and f is the holomorphic extension
of fG. Thus, for any F ∈ (B(Ω))∗, F( fG) is well defined, and F( fkj )→ F( fG). By∨

z∈U{Kz} = (B(Ω))∗ again, there exists a sequence {Pm} ⊂
∨

z∈U{Kz} such that

Pm =

km∑
i=1

α(m)
i Kz(m)

i
→ F in (B(Ω))∗ as m→ ∞.

For arbitrary α ∈ C, since

F(α fG) = lim
m→∞

Pm(α fG)

= α lim
m→∞

Pm( fG)

= α lim
m→∞

G(Pm)

= αG(F)

= αF( fG),

we see that F(α fG) = lim
m→∞

Pm(α fG) is well defined, and F(α fG) = αF( fG). Define

‖ fG‖ := sup
F∈((B(Ω))∗)1

|F( fG)|.

Note that

lim
j→∞

F( fkj ) = F( fG)

and

‖F( fkj )‖ ≤ ‖F‖‖ fkj‖ ≤ 1,

we get that ‖ fG‖ < ∞. We now prove fG ∈ B(Ω) by contradiction. Suppose fG � B(Ω),
then we define

B =
∨
{B(Ω), fG},

the space spanned by B(Ω) and fG. That is,

B = { f + α fG | f ∈ B(Ω),α ∈ C}.

For any g = f + α fG, define the norm of g as

‖g‖1 = ‖ f ‖ + |α|‖ fG‖.

Then ‖ · ‖1|B(Ω) = ‖ · ‖. It is easy to check that B∗ = (B(Ω))∗. In fact, for any
F ∈ (B(Ω))∗, F is well defined on B since F( fG) is well defined, and

|F( f + α fG)| = |F( f ) + αF( fG)| ≤ ‖F‖(‖ f ‖ + |α|‖ fG‖) = ‖F‖‖ f + α fG‖.

Hence, F ∈ B∗. Conversely, if F ∈ B∗, then for any f ∈ B(Ω), |F( f )| ≤ ‖F‖‖ f ‖1 =
‖F‖‖ f ‖, which shows that F ∈ (B(Ω))∗. By the assumption fG � B(Ω), there is an
F0 ∈ B∗ such that F0|B(Ω) = 0 and F0( fG) � 0. However, we know that there is a
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sequence { fkj} ⊂ B(Ω) such that F( fkj )→ F( fG) for any F ∈ (B(Ω))∗. This implies
that F0( fG) = 0 since B∗ = (B(Ω))∗. This contradiction shows that fG ∈ B(Ω). Thus,
G = f ∗∗G . This shows that (B(Ω))1 is weakly compact and then B(Ω) must be reflexive
by Kakutani’s theorem. This completes the proof. �

REMARK 4.2. We know that Kz is well defined on the weighted Hardy space H2(β)
with weight βn = 1/2n for z ∈ U = {z ∈ D||z| < 1

2 }. Although the functions in H2(β) are
not necessarily holomorphic on the entire unit disk, still∨

z∈U
{Kz} = H2(β).

In fact, if ∨
z∈U
{Kz} � H2(β),

then there exists a nonzero f ∈ H2(β) such that

f ⊥
∨
z∈U
{Kz}.

Thus,

f (z) = Kz( f ) = 0 for all z ∈ U.

Further, f = 0. This contradiction shows that
∨

z∈U{Kz} = H2(β).
However, there also exists a weighted Hardy space such that for any nonzero z ∈ D,

Kz cannot be well defined on it. For instance, let H2(β) be the weighted Hardy space
with the weight βn = 1/nn. Then, for arbitrary z ∈ D − {0}, Kz cannot be well defined
on H2(β). Hence, Theorem 4.1 fails although H2(β) is a Hilbert space.

Remark 4.2 shows that a function in the weighted Hardy space H2(β) may not
necessarily be a holomorphic function on the entire unit disk, and it may even be
undefined on a disk without center, or a space composed only of a formal power series.
When the weight β = {βn}∞n=0 satisfies some conditions, the space H2(β) is indeed
composed of holomorphic functions on the disk.

PROPOSITION 4.3. Assuming H2(β) is the weighted Hardy space with weight
β = {β(n)}, then Kz is bounded for arbitrary z ∈ D if and only if

lim
n→∞

n
√
β(n) ≥ 1.

PROOF. Assume for any z ∈ D, Kz is bounded on H2
β(D). Let en(z) = zn/‖zn‖ =

(1/β(n))zn, then Kz(w) =
∑∞

n=0 en(z)en(w) (see [8]) and

‖Kz‖2 = 〈Kz, Kz〉 =
∞∑

n=0

|en(z)|2 =
∞∑

n=0

1
β2(n)

|zn|2 < +∞,
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and thus,

lim
n→∞

1
n
√
β2(n)

|z|2 ≤ 1.

That is, limn→∞
n
√
β2(n) ≥ |z|2, which means limn→∞

n
√
β2(n) ≥ 1 by the arbitrariness

of z. Further, limn→∞
n
√
β(n) ≥ 1.

Conversely, assume limn→∞
n
√
β(n) ≥ 1, then limn→∞(1/ n

√
β(n))|z| < 1 for arbitrary

z ∈ D. Hence,
∞∑

n=0

1
β2(n)

|zn|2 < +∞,

that is, ‖Kz‖2 < +∞. �

The following proposition is almost obvious, but it tells us that the boundedness of
the evaluation function on the Banach space of the holomorphic functions depends on
some regularity of the functions in the space, that is, the convergence of the function
sequence in the space means the pointwise convergence of this function sequence.

PROPOSITION 4.4. Let Ω be a bounded domain in Cn, B(Ω) is the Banach space of
holomorphic functions on Ω. Then for z ∈ Ω, the evaluation function Kz is bounded on
B(Ω) if and only if for arbitrary fn, f in B(Ω) with ‖ fn − f ‖ → 0,

fn(z)→ f (z).

PROOF. Since for any f ∈ B(Ω), f is holomorphic on Ω, we see that | f (z)| < ∞, which
means that Kz is well defined for arbitrary z ∈ Ω. If Kz is bounded, then it is clear that
fn(z)→ f (z) if ‖ fn − f ‖ → 0.

Conversely, assume z ∈ Ω and for any { fn} ⊆ B(Ω), f ∈ B(Ω) with ‖ fn − f ‖ → 0, we
have fn(z)→ f (z), that is, Kz( fn)→ Kz( f ). Then Kz is continuous on B(Ω). Note the
continuity of Kz is equivalent to the boundedness of Kz on B(Ω), we see that Kz is
bounded. �

A natural question is as follows. Assume Ω is a bounded domain in Cn, and B(Ω) is
the Banach space of holomorphic functions on Ω. Then is Kz necessarily bounded?

We know that if B(Ω) is the Banach space of holomorphic functions on Ω, due to
the fact that any function in B(Ω) is holomorphic on the entire Ω, then for arbitrary
z ∈ Ω, Kz is well defined. Although in the case of common classical holomorphic
function spaces, evaluation functionals are bounded as long as Kz is well defined, we
do not know whether Kz must be bounded on the general Banach space of holomorphic
functions on Ω if Kz is well defined.
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