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ε+ P

τ
+

dε

dτ
= 0. (6.34)

For ε(T ) and P (T ), this implies that T is a function of τ , but not of
y. This important result originates from the assumption that the proper
time τ of a fluid volume element is as given in Eq. (6.26), and it is in
particular independent of the transverse coordinates.
For a (nearly) relativistic gas v2s � 1

3 , and the decrease of the temper-
ature is slow. Explicitly, integrating Eq. (6.20), we obtain, assuming that
the velocity of sound changes slowly,

T = T0

(τ0
τ

)v2s
, (6.35)

where the initial temperature T0 is established at an initial (proper) time
τ0, at which local thermal equilibrium has been established and the isen-
tropic hydrodynamic expansion begins. In order to decrease the temper-
ature by a factor two, we need the time τ � 8τ0.
In a more realistic evolution of a fireball, which allows for transverse

expansion, the expansion cooling is faster [58, 163]; see section 6.2. On
the other hand, one also must allow for a less than fully relativistic sound
velocity. The properties of the equation of state obtained on the lattice
suggest that, in the vicinity of the phase transition, i.e., for T < 2Tc,
there are significant deviations from ideal-gas behavior. A seemingly small
change in vs matters: we note that, when vs � 0.5 (recall that 1/

√
3 �

0.58), for the scaling solution Eq. (6.35), the time needed to decrease the
temperature by a factor of two increases two-fold to τ � 16τ0.

7 Entropy and its relevance in heavy-ion collisions

7.1 Entropy and the approach to chemical equilibrium

Entropy is a quantity characterizing the arrow of time in the evolution
of a physical system – in every irreversible process the entropy increases.
In elementary interactions, and in particular those involving relativistic
collisions of two large atomic nuclei, there is considerable production of
particles and hence of entropy. A number of questions arise naturally in
this context:

1.When and how is entropy produced in a quantum process, such as a
nuclear collision?

2. How is production of hadronic particles related to production of en-
tropy?

3. How does one measure the entropy produced in the reaction?
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In the deconfined phase the color degree of freedom is ‘melted’. There-
fore, the specific entropy content per baryon (S/b), evaluated at some
given (measured) values of statistical parameters, is generally greater in
the deconfined state than it is in to the confined state. Entropy can only
increase, and thus, once an entropy-rich state has formed, we have an
opportunity, by measurement of the entropy created in the heavy-ion col-
lision, to determine whether the color bonds of valence quarks present in
the collision have been broken.
The final entropy content of the hadronic particles emerging has to

exceed the initial entropy of the thermal state. In fact, quantitative stud-
ies show that very little additional entropy is produced during the entire
evolution of a fireball, after the initial thermalization stage. For this rea-
son, the final hadronic state conveys key information about the initial
thermal state of dense and hot hadronic matter. For example, in the
expanding quark–glue fireball the quasi-entropy-conserving evolution has
been confirmed within a model study involving parton cascade [129]. The
final-state entropy is largely produced in the first instant of heavy-ion
collision.
The entropy can be obtained using the momentum-distribution function

fB,F:

SB,F =
∫

d3x

∫
d3p

(2π)3
[±(1± fB,F) ln(1± fB,F)− fB,F ln fB,F] . (7.1)

The upper sign + is for bosons (B) and the lower sign − is for fermions
(F), which is somewhat counterintuitive, but in fact in agreement with
Fermi and Bose statistics. We are reminded of this change by the change
in the usual sequence of letters ‘F, B’ in the subscript.
There are two well-known ways to obtain Eq. (7.1). It follows (up to

normalization) from Boltzmann’s H-function in the study of momentum
equilibration. It also arises naturally on rewriting Eq. (10.25) in terms of
the single-particle distribution function Eq. (4.42). Since in this approach
the statistical definition of entropy, which corresponds to the thermal
definition, is used, the normalization is fixed by the laws of thermody-
namics.
Entropies of different particles add, and the entropy of particles and

antiparticles adds as well. The entropy of fermions, in Eq. (7.1), vanishes
in the pure quantum-state limit for T → 0, since the value of the particle-
occupancy probability is either unity or zero. The ‘classical’ Boltzmann
limit arises when fB,F 	 1. In this case, with fB,F → f ,

Scl ≡
∫
dωf ln

(
e

f

)
=
∫
dω(f − f ln f),

∫
dω ≡

∫
d3x

∫
d3p

(2π)3
. (7.2)
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Generally, expression Eq. (7.1) is presented as the generalization of the
well-known classical micro-canonical definition Eq. (7.2) to quantum gases;
however, this language leads to the (frequent) omission of the first term on
the right-hand side, which is the number of particles present, and which
comprises 25% of the total entropy of the relativistic gas.
We will study the entropy of a statistical gas in more detail in sec-

tion 10.6. We note that, for massless particles (quarks, gluons), the en-
tropy per particle following from Eq. (7.1) and Eq. (7.2) is

S

N

∣∣∣∣B
m=0

= 3.61,
S

N

∣∣∣∣cl
m=0

= 4,
S

N

∣∣∣∣F
m=0

= 4.20. (7.3)

The effect of the finite pion mass is to increase the entropy per particle,
see Eq. (10.79) and Fig. 10.4 on page 206. Each pion (a boson) emerging
carries away just about 4 units of entropy from the source as long as the
temperature is T � mπ. These results are for a chemically equilibrated
system. In general, below equilibrium at a given fixed temperature, the
entropy density is lower, but the entropy per particle is higher than that in
Eq. (7.3), and the opposite is true for a system above chemical equilibrium,
γ > 1; section 7.5.
For an isolated system, like our hadronic fireball, a very important

physical property is that relatively little entropy is generated in the ap-
proach to chemical equilibrium, both from above and from below. This
happens since the change in number of particles consumes or releases ther-
mal energy and this changes the temperature. Thus, even after chemical
equilibration, the final-state entropy content is closely related to the initial
entropy of the thermal state generated in the collision.
To demonstrate this, we obtain the shape of the particle-occupancy

probability f of particles in the isolated fireball from the Boltzmann H-
theorem result, i.e., the principle that a physical system evolves toward
maximum entropy for a given energy and number of particles in the sys-
tem. We seek to maximize the entropy Eq. (7.1) subject to these con-
straints, i.e.,

T (f) =
∫
dω [±(1± f) ln(1± f)− f ln f − (αf + βεf )f ] , (7.4)

as a functional of the distribution shape {f}. Here, dω is the phase-space
integral seen in Eqs. (7.1) and (7.2).
The results are the standard Fermi and Bose distributions Eq. (4.42),

including the chemical nonequilibrium factor γ = e−α which allows that
the particle number is fixed independently from the temperature,

fF,B =
1

eβε+α ± 1 . (7.5)
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This demonstrates that an isolated system in the presence of suitable
internal dynamics, e.g., two-body elastic collisions, will evolve toward
the kinetic-equilibrium statistical Bose/Fermi distributions, which may
be in chemical nonequilibrium expressed by γ = 1, depending on the
initial energy and number of particles. When inelastic particle-production
processes are occurring, we further expect that also chemical equilibrium
should be reached, but on a slower time scale; see section 5.5.
Now, we are ready to show that the entropy content of a chemically

not fully equilibrated system is nearly the same as the entropy content
of a system in equilibrium. For the Boltzmann approximation, we can
show this analytically. The factor γ becomes a normalization factor that
describes the average occupancy of the phase space relative to the equi-
librium value; the additive term describes how the entropy per particle
changes as the occupancy changes. We find in the Boltzmann limit

N = γN|eq, (7.6)
E = γE|eq, (7.7)
S = γS|eq + ln

(
γ−1
)
γN|eq. (7.8)

For massless particles, the phase-space integrals are easily performed and
one obtains, see chapter 4,

N 0 = aV γT 3, (7.9)
E0 = 3aV γT 4, (7.10)
S0 = 4aV γT 3 + ln

(
γ−1
)
aV γT 3, (7.11)

where a = g/π2 and g is the degeneracy. One easily finds how, for E0 =
constant, the entropy varies as a function of γ,

S ∝ γ1/4(4− ln γ). (7.12)

This functional has a very weak maximum at γ = 1. For example, at
γ = 2 the entropy is 98.3% of the value at γ = 1.
One could imagine that an important change in number of particles is

required when γ increases by say a factor of ten from 0.1 to 1. However,
since the total energy and volume of the system (and hence the energy
density) do not vary, we obtain a result that contradicts our intuition.
Namely, at a high initial temperature the phase space is much greater
and, in the Boltzmann approximation, the number of particles scales with
γT 3, Eq. (7.6). Since E/V ∝ γT 4, we obtain

N|E/V ∝ γ1/4. (7.13)

Thus, a ten-fold increase in γ is accompanied by a 1.8-fold increase in
number of particles.
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At this point, it is perhaps wise to briefly review the more familiar
case of a fixed-temperature environment (a heat bath) in order to un-
derstand better the difference from the isolated-fireball system. Consider
the ‘black-body’ radiator: a thermally insulated box with a small emis-
sion hole, for which the loss of energy due to radiation through the hole is
externally compensated by keeping the temperature constant: the spec-
trum of the emitted radiation displays the Planck shape which minimizes
the free-energy content F of the photon gas, at a fixed temperature of
the walls – this spectrum is arising from interaction of the photons with
the walls, with the spectrum and number of photons changing due to ab-
sorption and re-emission by the walls. Recalling now that F = E − TS,
we can combine Eqs. (7.6) and (7.8), which gives, in the Boltzmann limit,

F = −aV T 4γ
[
1 + ln

(
γ−1
)]
, (7.14)

with a minimum at γ = 1. However, now a change by a factor of two in
γ, at fixed T , leads to a change by 35% in the value of the free energy and
an even greater change in entropy. Clearly, at fixed T , the equilibrium
point γ → 1 is much better defined than it is at fixed E .
The lack of sensitivity of entropy to chemical equilibration for an iso-

lated fireball assures that there is ample room to generate nonequilibrium
particle yields during the dynamic evolution of the system. Given that the
system we are considering is actually subject to a dynamic evolution, with
expanding volume V , it is natural to expect that chemical equilibrium is
an exception rather than a rule.

7.2 Entropy in a glue-ball

We are now ready to examine in detail the simplest system of dynamic
interest to us. We consider an initially thermal glue–parton ball far from
particle-abundance equilibrium. There are glue interactions that are pro-
ducing particles, driving the system to chemical equilibrium while the
temperature decreases, due to sharing of a fixed available amount of ther-
mal energy by an ever larger number of constituents. We assume, in the
example below, that, when chemical equilibrium is reached, the glue-gas
state is at T = 250 MeV.
The intuitive expectation is that a lot of entropy is produced while

this system evolves toward the particle-abundance equilibrium. However,
this is not so [179]. The reason is that, as the equilibrium in particle-
number abundance is approached, we must adjust the temperature of the
system. There is a subtle balance between the different effects, and the
result is that we find considerable constancy of the entropy of the isolated
particle-producing system.
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Fig. 7.1. The entropy density S/V (units fm−3), at a fixed energy density
E/V = 2.66 GeV fm−3, for mg = 0 (solid line), and at E/V = 1.89 GeV fm−3

for mg = 0.450 GeV (dashed line), for a (gluon) Bose gas, as a function of the
chemical occupancy γ, with T (γ = 1) = 250 MeV.

We consider both the massless-gluon case and the case of thermally
massive gluons, choosing for the thermal gluon mass mth

g = 0.450 GeV,
see Fig. 16.3 on page 308. A massless-gluon (Bose) gas, with g = 16,
has an energy density E/V = 2.66 GeV fm−3, at T = 250 MeV, at the
chemical-equilibrium point γ = 1. The massive gas, at the chemical-
equilibrium point γ = 1 at T = 250 MeV, has E/V = 1.89 GeV fm−3.
In Fig. 7.1, we see the entropy density S/V (units fm−3) as a func-

tion of γ; the solid line is for massless gluons and the dashed line is for
massive gluons. The maximum in entropy at γ = 1 is shallower than
would be the case for a Boltzmann gas. The curves end at the singu-
larity of the Bose distribution function, γ = 1 for massless gluons, and
γc = emg/T ∼ 2.7 (beyond the range shown in Fig. 7.1), which values
cannot be exceeded.
The vertical line, to the left in Fig. 7.1, shows that the entropy content

of the hot-glue system at γ = 0.1 is already nearly 90% of the chemical-
equilibrium entropy. The ‘hot’ glue is at this point at T � 453 MeV for
mg = 0, and at T = 426 MeV for mg = 0.450 GeV.
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Fig. 7.2. The temperature T as a function of the chemical occupancy γ for
massless gluons with E/V = 2.66 GeV fm−3 (solid line) and mthg = 0.450 GeV,
E/V = 1.89 GeV fm−3 (dashed line). The equilibrium point γ = 1 has been
chosen to occur at T = 250 MeV.

In order to maintain a fixed value of E/V , the temperature T and
phase-space occupancy γ are not independent, and, as a function of γ,
the temperature T drops rapidly, which is shown in Fig. 7.2. The dashed
line, corresponding to the case of massive gluons, coincides with the solid
line (massless gluons) at γ = 1, T = 250 MeV, by token of the judicious
choice of E/V . As Fig. 7.2 shows, the temperature can drop rapidly in
the process of chemical equilibration of the gluon gas.
It is interesting to note that, when the chemical cooling, seen for small

γ in Fig. 7.2, is fastest at small γ, the collective flow of the QGP fireball
should not yet be established. Therefore, it is probable that the initial-
state cooling is due to chemical processes. The mechanism for a chemical
equilibration of the hot initial glue phase which is faster than the volume
expansion has been proposed to be inherent in the multi-glue-production
reactions [247], gg→ ggg, gggg, . . ..
The number of gluons changes relatively slowly, in particular consider-

ing massive (thermal) gluons, as can be seen in Fig. 7.3. In the case of
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Fig. 7.3. The particle density N/V (units fm−3) as a function of the chemical
occupancy γ. Lines are as in Fig. 7.1.

massless gluons (solid line), when γ increases by a factor of ten from 0.1
to 1, the number of gluons increases five times slower. This increase is
considerably more modest for mth

g = 0.450 GeV (dashed line in Fig. 7.3).
To understand the greater change seen in Fig. 7.3 compared to Fig. 7.1 it
is important to know that the entropy per particle is noticeably greater
than four for a system far from chemical equilibrium, Fig. 7.8.
The process of chemical equilibration of glue involves, apart from an

increase in the number of gluons, a change in the momentum distribution.
In Fig. 7.4, we compare the spectra of gluons initially at γ = 0.1 with
equilibrium γ = 1. At equilibrium, the temperature is T = 250 MeV
and we see that the massless- (solid line) and massive-gluon (dashed line)
spectra coincide (lines ending at E � 3.5 GeV). The ‘missing’ gluons, at
low energies, contribute to the difference in energy density (2.66 versus
1.89 GeV fm−3 for massless and massive, mg = 450 MeV, gluons, respec-
tively). The relatively slowly falling spectra are for the early hot-glue
nonequilibrium stage at γ = 0.1, at which for massless gluons T = 453
MeV and for massive gluons T = 426 MeV (values determined for fixed
volume and energy of the fireball).
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Fig. 7.4. Spectra of massless (solid lines) and mg = 450 MeV (dashed lines),
gluons prior to (γ = 0.1, lines reaching to right lower corner) and at (γ = 1, T =
250 MeV) chemical equilibrium.

We have shown that the dynamics of chemical equilibration is often
counterintuitive. In particular, when one is considering the dynamics of
an isolated fireball, we learned that the entropy varies little if chemi-
cal equilibrium is not maintained. We infer that in a rapid evolution,
an isolated system can evolve away from chemical equilibrium, even if
this means that the chemical entropy is not at its maximum. On the
other hand, since the entropy content is not a sensitive probe of chemical-
equilibrium properties we can, in the following study of the experimental
entropy production, proceed as if chemical equilibrium were maintained,
without loss of generality.

7.3 Measurement of entropy in heavy-ion collisions

The final-state entropy content is visible in the multiplicity of particles
produced. In the HG and QGP phases of dense hadronic matter, the
entropy content is in general different. The entropy content per partici-
pant (specific entropy) offers a method to distinguish these two different
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hadronic phases. At a temperature T > Tc � 160MeV, the QGP is
the phase with the higher specific entropy; this difference occurs because
of the liberation of the color degrees of freedom in the color-deconfined
QGP phase. The question of whether it is possible to measure the en-
tropy per baryon in the fireball arises. A measure of entropy must count
the total production of particles, while the number of participants can
be measured using the positive-hadron multiplicity, which comprises, in
particular, protons participating in the reaction.
It has been argued that, in the SPS energy range, the ratio of net charge

multiplicity to the total charged multiplicity comprises information about
the specific entropy content of the matter phase in the fireball [182, 183]:

DQ ≡ N+ −N−

N+ +N− . (7.15)

DQ is understood to be a function of rapidity when considering particle
distribution in rapidity, rather than the total abundance number. In gen-
eral, DQ can be measured, it is an easy task if particles are not identified.
The sum of positive and negative hadron multiplicity can be identified by
the sign of the curvature in a magnetic field, and the emission angle; see
Fig. 5.5 and Eq. (5.25).
A first estimate of this ratio is

Dns
Q ≈ Af

Nπ

0.75
1 + 0.75 (Af/Nπ)

, (7.16)

where Af is the number of baryons in the fireball. We have considered
only non-strange particles ‘ns’, i.e., pions and nucleons, and assumed that
the system is symmetric in isospin, that is half of the participants in the
fireball Af are protons, and all yields of pions are equal: Nπ+ = Nπ− =
Nπ0 = Nπ/3.
As we see in Eq. (7.16), DQ is indeed a measure of the baryon-to-pion ra-

tio and thus of entropy per participant. However, this estimate Eq. (7.16)
is wrong by two partially compensating factors of order 2: both higher-
mass non-strange resonances and charged strange particles must also be
considered. We recall the significant kaon contribution seen in Eq. (5.33).
Theoretically, such calculations require knowledge of the relative abun-

dances of particles for higher-mass resonances as well as for strange parti-
cles. This can be determined in a statistical model of chemical freeze-out
as a function of a few parameters, in particular T . Similarly, the entropy
per baryon in the fireball is given as a function of the same statistical
variables. Both the charge-multiplicity ratio DQ and the specific entropy
S/Af are known functions of the statistical parameters.
As Eq. (7.16) suggests, the quantity

CQ ≡ DQ
S
Af

∝ DQ
Nπ

Af
(7.17)
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C
Q disintegration

HG–resonance

Fig. 7.5. The product CQ = DQ(S/b) before (upper curves) and after (lower
curves) resonance disintegration, as a function of λq, for fixed λs = 1 ± 0.05 and
conserved zero strangeness in an equilibrated HG.

should be a structure constant that depends somewhat on the mixture
of hadronic flavors, mass spectrum and similar general hadron-spectrum
properties, but should be largely independent from the statistical prop-
erties of the system. Once the value of CQ has been established within
a theoretical model, it should then apply in general – a value, CQ � 4.5,
was found [182] for a chemically equilibrated system, see the upper line in
Fig. 7.5. There is in addition the effect of hadron-resonance decays, and
this increases the final-state multiplicity of charged hadrons. According
to Eq. (7.15), the value of DQ diminishes. In consequence, the observable
value of CQ � 3 is seen to apply to the lower lines in Fig. 7.5.

7.4 The entropy content in 200A-GeV S–Pb interactions

Since DQ is generally a small number, it has not been studied extensively.
Experiment EMU05 at CERN–SPS has exposed a lead target located in
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η

Fig. 7.6. Emulsion data for the charged-particle-multiplicity ratio DQ obtained
in central S–Pb collisions at 200A GeV as a function of pseudorapidity η. The
bold black line is drawn to guide the eye.

front of a photographic emulsion to a 200A-GeV beam of sulphur atoms.
Since a magnetic field was present, the charge of particles produced was
determined and thus the experimental value of DQ, as a function of pseu-
dorapidity η, could be determined by evaluation of the angle of emission of
charged hadrons from the interaction vertex, which fixes η, see Eq. (5.25),
and the polarity of charged particles.
Selecting the most central events with charge multiplicity N+ +N− >

300, corresponding to a total central hadron multiplicity in the range
450–1000, in the central (pseudo)rapidity region, the value

DQ = 0.088± 0.007, η � 2.5± 0.5,

is found [104, 117]. The distribution DQ(η) is shown in Fig. 7.6. The
pseudorapidity distribution is flat in the central region, ∆η = (η− 2.6) ±
1.5. This suggests partial transparency and the presence of longitudinal
flow in the rapidity distributions of protons and K+; see section 8.3.
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Inspecting Fig. 7.5 and Fig. 7.6 we arrive at a first estimate of the
entropy content of a fireball formed in these interactions:

S

b
=

3± 0.1
0.088± 0.007 = 34± 4.

The sources of systematic error involved in the use ofDQ to fix the entropy
include the difference in the distribution between rapidity and pseudora-
pidity, and the uncertainty about yields of strange charged hadrons, which
vary with the degree of chemical equilibration of strangeness.
This high value of specific-entropy content in highly central S–Pb 200A-

GeV interactions, 40% higher than expected, suggests that an entropy-
rich (deconfined) state has been created [182]. Since a high specific-
entropy content can be found in the HG phase at smaller values of λq,
i.e., smaller baryon density, it is important in comparison to the HG to
have a good understanding of the baryochemical potential. The value of
µb = 3µq, see Eq. (4.18), needs to be reduced by nearly a factor of two,
to about µb = 100–120MeV, before the entropy content of HG becomes
consistent with these experimental data. Such a small baryochemical po-
tential is not in agreement with many measured yields of hadrons [176]. As
this simple case shows it is the simultaneous consideration of several ob-
servables (charged-particle asymmetry combined with specific (strange)
particle ratios) which allows understanding of the physics of heavy-ion
collisions.

7.5 Supersaturated pion gas

The excess of hadron multiplicity (entropy) is a consistently observed phe-
nomenon: the data obtained for Pb–Pb collisions supports this strongly.
We have seen in Fig. 1.6 a significant excess of hadron multiplicity in
high-energy A–A reactions compared to p–p and low-energy A–A reac-
tions. An important question is how this excess of abundance can be
theoretically described in terms of the final-state hadron phase space.
During hadronization, hadrons need to acquire the excess entropy aris-

ing from broken color bonds of QGP. We now look for the most entropy-
rich hadron gas and consider the super-saturated massive (pion) Bose
gas, in which the chemical potential, i.e., the abundance fugacity γ, is
nearly compensating for the suppressing effect of the mass, which occurs
at γe−m/T → 1.
For pions, composed of a light-quark–antiquark pair, it is convenient to

use as the abundance fugacity

γπ = γ2q. (7.18)
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Fig. 7.7. Pion-gas properties N/V for particles, E/V for energy, and S/V for
entropy density, as functions of γq at T = 142MeV.

This allows one to express, in terms of the abundance of pions, the relation
to the abundance of quarks at hadronization, see chapter 19. We study
the momentum-space distribution for pions of the form

fπ(E) =
1

γ−2q eEπ/T − 1
, Eπ =

√
m2

π+ p2. (7.19)

The range of values for γq is bounded from above by the Bose singularity
γcq:

γq < γcq = emπ/(2T ). (7.20)

For γq → γcq, we encounter condensation of pions, the lowest-energy state
will acquire macroscopic occupation. Formation of such a condensate
‘consumes’ energy without consuming entropy of the primordial high-
entropy QGP phase, and thus is not likely to occur.
In Fig. 7.7, we show the physical properties of a pion gas as functions

of γq, for a gas temperature T = 142MeV [181]. We see (solid line) that
a large range of entropy density can be accommodated by varying the
parameter γq. A super-saturated pion gas has an entropy density rivaling
that of the QGP at the point of transformation into hadrons, as we see
on comparing it with Fig. 16.7 on page 315, for T = 140–160MeV.

https://doi.org/10.1017/9781009290753.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290753.010


126 Experiments and analysis tools

Fig. 7.8. Specific pion-gas properties E/N for energy, S/N for entropy per
particle, and E/S for energy per unit of entropy, as functions of γq at T =
142MeV.

The presence of chemical nonequilibrium reduces and potentially elim-
inates discontinuities at the phase transition, promulgating rapid evolu-
tion. This implies that, in particular, the sudden hadronization of an
entropy-rich QGP should lead to the limiting value γq → γcq, since other
ways of increasing the entropy content involve secondary processes with
relatively slow dynamics amongst hadron degrees of freedom. In fact, in
an adiabatic equilibrium transformation, one allows an increase in V T 3,
characterizing the entropy content, either by expanding the volume V , or
invoking a rise of T (reheating), or both. Another remarkable feature of
the chemical-nonequilibrium mechanism is that a first order phase tran-
sition may appear in other observables more like a phase transformation
without large fluctuations.
It is important to remember that, in the hadronization of a quark–gluon

phase, it is relatively easy to ‘consume’ excess energy density, simply by
producing a few extra heavy hadrons. However, such particles, being in
fact non-relativistic at the temperature considered, are not effective con-
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Fig. 7.9. Pion-gas properties (N , number of particles; E, energy; and S, en-
tropy) relative to chemical equilibrium as functions of γq for T = 142MeV.

tributors to pressure and entropy. As we see now, the super-saturated pion
gas is just the missing element needed in order to allow rapid hadroniza-
tion.
The specific properties (E/N , S/N , and E/S) of the pion gas are shown

in Fig. 7.8, as functions of γq. We see a monotonic decrease of energy
and entropy per particle while the energy per unit of entropy increases
reaching the condition E/S > T , which plays an important role in sec-
tion 19.1. We see that the entropy per pion drops as γq increases, and, at
the condensation point γq → γcq, we can add pions without an increase in
entropy. Figure 7.8 can be better understood by considering the relative
(to chemical equilibrium) physical properties shown in Fig. 7.9. There
is, in particular, a large growth in the number of pions, which yield is
enhanced at fixed temperature by a factor 3.6 at the condensation point
– it is this feature that allows one to hadronize the QGP into a super-
saturated pion gas at low, supercooled temperature, accompanied by the
experimentally observed excess of pions. We also see, using the energy as
an example, that the Boltzmann approximation, i.e., simply a yield factor
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γ2q is not producing qualitatively wrong results, even though the increase
in number of particles is underestimated by 50%.

7.6 Entropy in a longitudinally scaling solution

We now study the relationship between hadron multiplicity and initial
conditions reached for the case of very-high-energy collisions, for which
the scaling hydrodynamic solutions can be used to understand the flow
of matter. The hydrodynamic expansion of an ideal fluid is entropy-
conserving, Eq. (6.13). What this means, in case of the longitudinal ex-
pansion, is best seen by considering, in Eq. (6.3), the entropy current
σµ = σuµ, and using Eq. (6.32) and the Euler relation Eq. (6.4):

0 =
∂σµ
∂xµ

=
σ

τ
+
dσ

dτ
=
1
τ

d(τσ)
dτ

. (7.21)

We have

τσ(τ) = σ(τ0)τ0 = σ(τf )τf = constant, (7.22)

where τσ is a constant of evolution independent of rapidity y.
The physical meaning of conservation of entropy, and thus conservation

of τσ(τ), becomes clear on remembering the volume element Eq. (6.30).
In the locally at rest frame of the fluid (the comoving frame) we have

∆S = σ dz dt = στ dy dτ, (7.23)

whence,

d

dτ

(
dS

dy

)
=

d

dτ
(τσ) = 0,

dS

dy
= constant, (7.24)

where, in the last equality, we have used the result Eq. (7.22). dS/dy is
independent of y and not a function of τ , i.e., it is independent of the
freeze-out condition.
Since entropy is characteristic of the particle yield, Eq. (7.24) implies

that the particle multiplicity is flat in rapidity, and is not evolving, i.e., it
will not depend on the (uncertain) freeze-out condition. It is established
during the initial period of time when the entropy density is built up
as the system approaches local thermal equilibrium. Qualitatively, this
result is shown in Fig. 5.2; baryons punch through and in between there
is a flat distribution in y of particle abundance, since the entropy density
per unit rapidity is constant.
It is important to appreciate that, as a matter of principle, the initial en-

tropy density reached in A–A collisions remains naturally undetermined,
it arises from microscopic-entropy-producing reactions occurring prior to
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the onset of the entropy-conserving hydrodynamic expansion. One can
try (and the diverse codes we described in section 6.1 do this) to model
the A–A collisions on the basis of the behavior of p–p reactions, but it is
far from certain that such an approach will be successful. In other words,
we cannot use scaling arguments, Eq. (7.24), to understand how big a
value of particle rapidity density we can expect to find. The microscopic
physics we introduce explicitly (or sometimes implicitly) into the dynamic
model determines the final-state particle multiplicity.
We now relate the observed final-state particle multiplicity to the initial

entropy density. Employing the volume element shown in Eq. (7.23), and
using the conservation law Eq. (7.24), we obtain

σ0 ≡
dS0
dV0

=
1
F⊥

1
τ0

dS0
dy0

=
1

F⊥τ0
dS

dy

∣∣∣∣
f

. (7.25)

The transverse surface is

F⊥ = π(1.2 fm)2A2/3, (7.26)

as given by the geometry of the collision, at zero impact parameter.
From Eq. (7.25), we obtain, for the initial-state entropy density,

σ0 =
1

π(1.2 fm)2A2/3τ0
4
3
2
dNch
dy

, (7.27)

where we have assumed that a final-state particle consumes on average 4
units of entropy (see Fig. 10.5), and that the charged-particle multiplicity
is two thirds of the total.
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