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Abstract. In a recent paper we presented a truncation-type method of deriving
Bäcklund transformations for ordinary differential equations. This method is based
on a consideration of truncation as a mapping that preserves the locations of a
natural subset of the movable poles that the equation possesses. Here we apply this
approach to the third and fifth Painlevé equations. For the third Painlevé equation
we are able to obtain all fundamental Bäcklund transformations for the case where
the parameters satisfy �� 6¼ 0. For the fifth Painlevé equation our approach yields
what appears to be all known Bäcklund transformations.

2000 Mathematics Subject Classification. 34M55, 33E17.

1. Introduction. In a recent paper [1] we introduced a new approach to finding
Bäcklund transformations for ordinary differential equations (ODEs). This trunca-
tion-type method constituted an extension to ODEs of an approach that had been
successfully developed for partial differential equations (PDEs) [2]. The main idea in
[1] is to consider truncation as a mapping that preserves the locations of a natural
subset of movable singularities. The generic solution of each of the Painlevé equa-
tions (except PI) has pairs of movable simple poles with leading order coefficients of
opposite sign. Thus the set of all poles of a solution yðxÞ decomposes into the union
of two nonintersecting subsets Pþ and P�, where Pþ is the set of poles with positive
choice of coefficient and P� is that with negative choice. In what follows we trans-
form a generic solution yðxÞ of a Painlevé equation to a solution QðxÞ of the same
equation, but with possibly different parameters, as

yðxÞ ¼ �ðxÞ þQðxÞ; ð1Þ

where we demand that �ðxÞ has poles at the elements of Pþ and QðxÞ has them at
P�, or vice versa. We are then able to find Bäcklund transformations through a
procedure that relies only on singularity analysis of the transformed equation.

Glasgow Math. J. 43A (2001) 23–32. # Glasgow Mathematical Journal Trust 2001. Printed in the United Kingdom

https://doi.org/10.1017/S0017089501000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501000039


In [1] we applied this approach to PII and PIV. In addition to obtaining Bäck-
lund transformations for these equations we also discussed transformations to rela-
ted ODEs (the ODEs satisfied by �ðxÞ), as well as the application of a ‘‘double-
singularity approach.’’ In the present work we apply our approach to PIII and PV, in
order to obtain Bäcklund transformations. Transformations to related ODEs and
the double-singularity approach for PIII and PV will be considered elsewhere.
Descriptions of Bäcklund transformations for PIII and PV can be found in [3–9].

2. Bäcklund transformations for PIII. We take the third Painlevé equation in the
form

y00 ¼
ðy0Þ2

y
�
y0

x
þ
�y2 þ �

x
þ �2y3 �

�2

y
ð2Þ

where we have renamed two of the parameters as �2 and ��2 (conventionally label-
led as � and � respectively). A generic solution yðxÞ of the third Painlevé equation is
transformed to another solution QðxÞ of the same equation but with possibly dif-
ferent parameters a; b; c and d as

yðxÞ ¼ �ðxÞ þQðxÞ: ð3Þ

The dominant terms in the expression that results from the substitution of equation
(3) into (2) are, assuming � 6¼ 0,

��00 � ð�0Þ2 	 �2�4; ð4Þ

which can be integrated to give

�0 	 
��2: ð5Þ

Taking first of all the minus sign in this last equation, we write

�0 ¼ ���2 þ ��: ð6Þ

Substituting this into the transformed version of equation (2) and looking once
again at dominant terms, we get

�ðxÞ ¼ �2�QðxÞ �
�þ �

�x
þ

	

�
: ð7Þ

Using this in the transformed equation yields a linear equation for �, which has to
be compatible with the Riccati equation

�0 ¼ ���2 � 2�QðxÞ þ
�þ �

�x

� �
�þ 	: ð8Þ

The analysis of the resulting compatibility condition depends on whether or not 	 is
assumed to depend only on x or if it is allowed to depend also on QðxÞ. (We do not
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consider here the possible dependence of 	 on Q0ðxÞ.) Assuming 	 ¼ 	ðx;QðxÞÞ and
using the fact that QðxÞ satisfies PIII, we obtain a polynomial in Q0ðxÞ. The coeffi-
cient of the highest degree term gives

Q2	QQ �Q	Q þ 	 ¼ 0; ð9Þ

whose general solution is given by

	 ¼ f1ðxÞ þ f2ðxÞ logQ½ �Q; ð10Þ

where f1ðxÞ and f2ðxÞ are functions to be determined. If we now insert this form for 	
in the compatibility condition and set to zero coefficients of the resulting polynomial
in Q, Q0 and logQ, we first obtain

f1ðxÞ ¼
a� �

�x
; ð11Þ

f2ðxÞ ¼ 0; ð12Þ

c2 ¼ �2; ð13Þ

d 2 ¼ �2; ð14Þ

which means that the actual form of 	 is

	ðx;QÞ ¼
a� �

�x
Q: ð15Þ

Note that if we had taken 	 to be a function of x only, our compatibility condition
would have led to 	 ¼ 0 and thus to a ¼ �, and we would only have obtained
restricted results. The main difference between the application of our method to PIII,
and its previous application to PII and PIV [1], is that for PIII, allowing 	 to depend
on Q leads to more general results, whereas for PII and PIV it does not.

Inserting the above results into the compatibility condition, we obtain from the
coefficient of the next term (in the polynomial in Q0) the parameter shift,

2�ðb� �Þ þ ba� �� ¼ 0: ð16Þ

We now consider separately the remainder of our compatibility condition for the
two cases b ¼ 0 and b 6¼ 0. We take first the case b 6¼ 0. Solving equation (16) for a
and substituting back into the compatibility condition gives the following additional
constraints between the parameters,

ðb� �Þðbþ �Þð�b� ��� 2��Þð�bþ ��þ 2��Þ ¼ 0; ð17Þ

ðb� �Þðbþ �Þð�b� ��� 2��Þð�bþ ��þ 2��Þð2��þ ��� �bÞ ¼ 0: ð18Þ

Taking b ¼ � in (17) just leads to the identity yðxÞ ¼ QðxÞ. However the remaining
factors in (17) lead to nontrivial Bäcklund transformations. Taking b ¼ �� leads to
the Bäcklund transformation
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� ¼ �2Q2 A1ðx;Q;Q0Þ

A2ðx;Q;Q0Þ
; ð19Þ

A1 ¼ ð2�2xþ ��xÞQ0 þ ð��2xþ 2�3xÞQ2 � ð6�2 þ 5�� þ �2ÞQ� ��2x; ð20Þ

A2 ¼ �2x2ðQ0Þ
2
þ 2�3x2Q2Q0 � 2�2xQQ0 þ �4x2Q4 � 2�3xQ3

� ð3�2 þ 4�� þ �2ÞQ2 � 2��2xQ� �2�2x2; ð21Þ

a ¼ ��� 4�; ð22Þ

b ¼ ��; ð23Þ

c2 ¼ �2; ð24Þ

d2 ¼ �2; ð25Þ

whereas taking �b
 �ð�þ 2�Þ ¼ 0 (which requires � 6¼ 0) leads to

� ¼ 

ð��
 ��
 2��ÞQ2

� �xQ0 þ �2xQ2 þ ð�þ �ÞQ
 ��x½ �
; ð26Þ

a ¼ �� 2 

�

�

� �
; ð27Þ

b ¼ 
 2�þ
��

�

� �
; ð28Þ

c2 ¼ �2; ð29Þ

d2 ¼ �2: ð30Þ

Here the choice of sign of � arises because of the way we have written this parameter
in PIII.

If we now consider the case with b ¼ 0 and we use this in the remainder of our
compatibility condition, we recover the two Bäcklund transformations above (with
b ¼ 0), and in addition

� ¼
ða� �ÞQ2

�xQ0 þ �2xQ2 þ ð� þ �ÞQ
; ð31Þ

b ¼ � ¼ 0; ð32Þ

c2 ¼ �2; ð33Þ

d ¼ � ¼ 0: ð34Þ

We note however that in the case � ¼ � ¼ 0, PIII is explicitly solvable [4,8,9].
We now consider taking the opposite sign in front of the term in �2 in (6), i.e.

�0 ¼ ��2 þ ��: ð35Þ

However the results thus obtained can be written down simply by changing the sign
of � in the results obtained above.

Thus far we have assumed � 6¼ 0. However, since the change of variables

yðxÞ ¼
1

mðxÞ
ð36Þ
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transforms PIII in yðxÞ into PIII in mðxÞ but with new parameters ~�� ¼ ��, ~�� ¼ ��,
~��2 ¼ �2 and ~��2 ¼ �2, the case � ¼ 0 can be dealt with as above provided that � 6¼ 0.
The remaining case � ¼ � ¼ 0 can be dealt with by another change of variables
which maps PIII with parameters �, �, � ¼ 0 and � ¼ 0 onto PIII with parameters
�̂� ¼ 0, �̂� ¼ 0, �̂� ¼ 2� and �̂� ¼ 2� [9] (and noting that if in addition � ¼ 0 or � ¼ 0
the original copy of PIII is in any case explicitly solvable [4,8,9]).

The four Bäcklund transformations obtained by taking (26)–(30) together with
the possible change of sign � ! �� correspond to the four fundamental Bäcklund
transformations for PIII in the case �� 6¼ 0 (denoted Ti, i ¼ 1; 2; 3; 4, in [8]; see also
[4]). All other known Bäcklund transformations for PIII in this case �� 6¼ 0 can be
expressed in terms of these Ti together with (36) and simple rescalings [8].

The two Bäcklund transformations obtained by taking (19)–(25) together with
the possible change of sign � ! �� correspond in the case � ¼ 0 (and �� 6¼ 0) to a
second iteration of a Bäcklund transformation given in [9] (see also Theorem 4.1 in
[4] for � ¼ 0, or Transformation V in [8], for �� 6¼ 0) combined with (36) and sui-
table rescalings. In the case � 6¼ 0 they correspond to the second iteration of appro-
priate combinations of (26)–(30) (i.e. of the transformations Ti in [8]). However the
general formulation of these second iterations presented here, of Bäcklund trans-
formations which are usually treated separately, appears to be new.

We note that consideration of the ODE satisfied by �ðxÞ leads to Bäcklund
transformations between PIII and an ODE of second order and second degree, and
between PIII and PV, for (19)–(25) and (26)–(30) respectively.

3. Bäcklund transformations for PV. We take PV in the form

y00 ¼
1

2y
þ

1

y� 1

� �
ðy0Þ2 �

y0

x
þ
ðy� 1Þ2

2x2
�2y�

�2

y

� �
þ
�y

x
�
�2yðyþ 1Þ

2ðy� 1Þ
; ð37Þ

where we have renamed three of the parameters as �2=2, ��2=2 and ��2=2 (con-
ventionally labelled as �, � and � respectively). When applying the approach out-
lined above to PV in this form, the presence of a resonance at first order after the
leading term means that � [in an equation corresponding to (6)] is not determined by
a linear algebraic equation. Rather than continuing with the resulting set of equa-
tions thus obtained, we make instead the change of variables

yðxÞ ¼
mðxÞ

mðxÞ � 1
ð38Þ

which gives

mðm� 1Þx2m00 ¼ m�
1

2

� �
x2ðm0Þ

2
þmð1 �mÞxm0 þ �2x2m5

� � þ
5

2
x�2

� �
xm4 þ 2ð� þ �2xÞxm3

þ
1

2
�2 � �2 � �2x2 � 2�x
� �

m2 � �2mþ
1

2
�2; ð39Þ

in which form no resonance at first order after the leading term occurs. A generic
solution mðxÞ of this last equation is transformed into another solution QðxÞ of the
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same equation (39) but with possibly different values of the parameters that we
denote by a; b; c and d, as

mðxÞ ¼ �ðxÞ þQðxÞ: ð40Þ

Substitution of (40) into equation (39) gives an equation whose dominant terms near
a pole of �, assuming � 6¼ 0, are

�2�5 þ �ð�0Þ2 	 �2�00; ð41Þ

which can be integrated to give

�0 	 
��2: ð42Þ

We consider first the case with the plus sign in this last, and write

�0 ¼ ��2 þ ��: ð43Þ

Substituting this into the transformed version of equation (39) and looking once
again at dominant terms, we get

�ðxÞ ¼ 2�QðxÞ �
�þ � þ �2x

�x
þ

	

�
: ð44Þ

Using this in the transformed equation we obtain, as we did for the fourth Painlevé
equation [1], a quadratic in � which has to be compatible with the Riccati equation

�0 ¼ ��2 þ 2�QðxÞ �
�þ � þ �2x

�x

� �
�þ 	: ð45Þ

Again the analysis of the resulting compatibility condition depends on whether or
not 	 is assumed to depend only on x, or on both x and QðxÞ. [Once again, for
simplicity, we do not consider here the case where 	 may depend on Q0ðxÞ.] Assum-
ing 	 ¼ 	ðx;QðxÞÞ, and using the fact that Q satisfies PV, we obtain a polynomial in
Q0 whose coefficient at highest degree gives the following differential equation for 	,

2Qð2Q3 � 4Q2 þ 3Q� 1Þ	QQ þ ð�4Q3 þ 6Q2 � 1Þ	Q þ 2ð2Q2 � 2Q� 1Þ	 ¼ 0: ð46Þ

This has general solution

	 ¼ ð2Q� 1Þ f1ðxÞ þ f2ðxÞ log Q�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðQ� 1Þ

p� �� �
þ 2f2ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðQ� 1Þ

p
; ð47Þ

where f1ðxÞ and f2ðxÞ are functions to be determined. Inserting this form for 	 into
the compatibility condition we next obtain

f1ðxÞ ¼
1

2�x
ðc� �Þ; ð48Þ

f2ðxÞ ¼ 0; ð49Þ

d2 ¼ �2; ð50Þ
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which means that 	 in fact takes the form

	 ¼
1

2�x
ðc� �Þð2Q� 1Þ: ð51Þ

From this last we see that if we had assumed 	 to be a function of x only, then as for
PIII we would only have obtained restricted results. Thus once again we see that
allowing 	 to depend on Q leads to more general results.

Using the above results in our compatibility condition, we obtain from the next
higher order term the following shift between the parameters,

a2 ¼
�2 � c2 þ 2�2ð�2 þ �2 � b2Þ þ 2�ð� � cÞ

2�2
: ð52Þ

Using this in our compatibility condition then leads to

b2 ¼
4�2�3 þ 2 ðcþ �Þ�2 þ ðc� �Þð�2 � 1Þ

	 

�2 þ ð�2 � 3c2 þ 2c�Þ�� c3 þ c�2

4�2ðcþ �Þ
ð53Þ

where we have assumed that cþ � 6¼ 0 (the case cþ � ¼ 0 has to be considered
separately). Substituting back once again then provides the additional condition

ðc� �Þðcþ � þ 2�Þðcþ �� ��� ��Þðcþ �þ ��� ��Þðcþ �� ��þ ��Þ

� ðcþ �þ ��þ ��Þ ¼ 0: ð54Þ

This provides essentially three different cases to consider, since the last three factors
are related to the third under changes of sign of � and �. These three cases are:

c ¼ �; ð55Þ

c ¼ �� � 2�; ð56Þ

c ¼ �ð�þ �� 1Þ: ð57Þ

The case c ¼ � corresponds to the identity transformation (this is easily seen by
substituting this condition into the above expressions for a2 and b2.) The other two
cases lead to two nontrivial Bäcklund transformations, i.e.

� ¼ QðQ� 1Þ
A1ðx;Q;Q0Þ

A2ðx;Q;Q0Þ
; ð58Þ

A1 ¼ �2�xð�þ �ÞQ0 þ 2�2xð�þ �ÞQ2 þ 2ð�2 � �3xþ 2��� �2�xþ �2ÞQ

þ �2ð�2 � �2 � 1Þ � 2��� �2; ð59Þ

A2 ¼ �2x2ðQ0Þ
2
þ 2�3x2ðQ�Q2ÞQ0 þ �4x2Q4 � 2�4x2Q3 � �2�2

þ ð�4x2 � �2 � 2��� �2ÞQ2 þ ð�2 þ �2�2 � �2�2 þ 2��þ �2ÞQ; ð60Þ

a2 ¼ �2; ð61Þ

b2 ¼ �2; ð62Þ

c ¼ �� � 2�; ð63Þ

d2 ¼ �2; ð64Þ
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and

� ¼
2QðQ� 1Þð��þ ��� � � �Þ

2�xQ0 � 2�2xQ2 þ 2ð� þ �þ �2xÞQþ �ð�� �� 1Þ � �
; ð65Þ

a2 ¼
� þ �ð�� �þ 1Þ

2�

� �2

; ð66Þ

b2 ¼
�� þ �ð�� �� 1Þ

2�

� �2

; ð67Þ

c ¼ �ð�þ �� 1Þ; ð68Þ

d2 ¼ �2: ð69Þ

We also have of course Bäcklund transformations obtained from the above
under combinations of � ! ��, � ! ��. As mentioned earlier, we also have our
compatibility condition for the case cþ � ¼ 0, which needs to be considered sepa-
rately. However this leads only to restricted cases of the above Bäcklund transfor-
mations.

We now consider taking the opposite sign in front of the term in �2 in (43), i.e.

�0 ¼ ���2 þ ��: ð70Þ

The results thus obtained are as above with � ! ��.
In the above we have assumed � 6¼ 0. We note that PV in the case � ¼ 0 can be

reduced to PIII with �� 6¼ 0 [9], which we considered in the previous section.
The Bäcklund transformations represented by (58)–(64) correspond to second

iterations, with appropriate choices of signs, of (65)–(69). The Bäcklund transfor-
mations represented by (65)–(69) can be found in [6] (see also [7]), and correspond to
a composition of what appear to be the only previously known auto-Bäcklund
transformations for PV in the case � 6¼ 0 [3,4,9]. These known Bäcklund transfor-
mations, as well as this composition, are derived in our approach by consideration
of the ODE satisfied by �ðxÞ, as we now indicate.

We eliminate Q between the Riccati equation

�0 ¼ ��2 þ 2�QðxÞ �
�þ � þ �2x

�x

� �
�þ

1

2�x
�ð�þ �� 1Þ � �ð Þð2Q� 1Þ ð71Þ

and the solution (65) for � and obtain a second order ODE for �. The change of
variable

� ¼
�ð�þ �� 1Þ � �ð Þ

2�2x
ðw� 1Þ ð72Þ

then yields

w00 ¼
1

2w
þ

1

w� 1

� �
w02 �

w0

x
þ
ðw� 1Þ2

2x2
A2w�

B2

w

� �
þ
Cw

x
�
D2wðwþ 1Þ

2ðw� 1Þ
; ð73Þ

where
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A2 ¼
�ð�þ �Þ � �� �ð Þ

2

4�2
; C ¼ �ð�� �Þ; ð74Þ

B2 ¼
�ð�þ �Þ � �þ �ð Þ

2

4�2
; D2 ¼ �2: ð75Þ

Equation (73) is a copy of PV in canonical form, and so we see that we have deduced
a further Bäcklund transformation for PV. That is, equation (73) is related to (39) by

m ¼
ð�ð�þ �Þ � �� �Þw2 � ð�ð�þ �Þ � �þ �Þ þ 2�wþ 2�2xwþ 2�xw0

4�2xw
; ð76Þ

and then to our original copy of PV in canonical form (37) via y ¼ m=ðm� 1Þ, with
parameters related by (74), (75). Equation (73) is related to our equation in Q by a
Bäcklund transformation equivalent, up to choices of sign, to (74)–(76).

The class of Bäcklund transformations (74)–(76) was given in [3,4,9]. We there-
fore see that, for appropriate choices of signs, the Bäcklund transformations repre-
sented by (65)–(69) can be written as compositions of these known Bäcklund
transformations. The class of Bäcklund transformations (74)–(76) give rise to
Bäcklund transformations of PV that are fundamental: the derivation given here is
analogous to that given in [1] of the fundamental Bäcklund transformations ŷy and ~yy
of the fourth Painlevé equation (which were also obtained when considering the
ODE satisfied by �ðxÞ).

Finally, we note that for (58)–(64), consideration of the ODE in �ðxÞ leads to a
Bäcklund transformation between PIII and an ODE of second order and second
degree.

4. Conclusions. We have applied our approach to obtaining Bäcklund trans-
formations, which is based on mappings preserving natural subsets of movable
poles, to PIII and PV. For PIII we have recovered the four fundamental Bäcklund
transformations for the case �� 6¼ 0, as well as what appears to be a new general
formulation of the second iteration of these or of a further Bäcklund transformation
which exists in the case �� ¼ 0. For PV our approach allows us to recover what
appear to be all known nontrivial Bäcklund transformations. A crucial point in
obtaining such general results for PIII and PV is our allowing 	 to depend not only
on x but also on QðxÞ.
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5. Appendix. In this appendix we briefly compare the approach outlined here
with the standard Painlevé truncation. We take as an example the third Painlevé
equation PIII.

Seeking a solution of (2) in the form of a so-called truncated Painlevé expan-
sion, we obtain
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y ¼
’0

�’
�

1

2�

’00

’0
þ
�þ �

�x

� �
; ð77Þ

together with an equation of the form A’�1 þ B ¼ 0, for some A, B.
The truncated expansion (77) can be compared with the results obtained in

Section 2 by linearising the Riccati equation (8), (15) by setting � ¼ ’0=ð�’Þ, which
then leads to

Q ¼ �
1

2� �
ða��Þ’
x’0

’00

’0
þ
�þ �

�x

� �
; ð78Þ

and thus (3) becomes

y ¼
’0

�’
�

1

2� �
ða��Þ’
x’0

’00

’0
þ
�þ �

�x

� �
: ð79Þ

This is the same as the truncated Painlevé expansion (77) only in the case a ¼ �, and
thus we see that the only results obtainable using (77) will be those for this restricted
case. That is, we can only obtain the identity or restricted cases of the Bäcklund
transformations presented in Section 3. Deriving these results requires applying the
method presented in [10,11] rather than a standard truncation approach.

Similar remarks hold for PIV and PV, or in general when the function 	 6¼ 0.
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