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Short Kloosterman Sums
for Polynomials over Finite Fields

William D. Banks, Asma Harcharras and Igor E. Shparlinski

Abstract. We extend to the setting of polynomials over a finite field certain estimates for short Kloost-

erman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of

distribution results in the ring Fq[x]/M(x) for collections of polynomials either of the form f−1g−1

or of the form f−1g−1 + a f g, where f and g are polynomials coprime to M and of very small degree

relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums

where the summation runs over products of two irreducible polynomials of small degree. It is likely

that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials

over finite fields.

1 Introduction

Let q be a prime power, Fq the finite field with q elements, and R the polynomial ring

Fq[x]. Fix an irreducible polynomial M ∈ R of degree deg(M) = m > 0, and let RM

denote the field R/(M). Put

Rm = { f ∈ R | deg( f ) < m}, R∗
m = { f ∈ Rm | f 6= 0},

and observe the natural bijections

Rm
∼
←→ RM , R∗

m
∼
←→ R

×
M .

In particular, for every f ∈ R∗
m, there exists a unique element f ∗ ∈ R∗

m such that

f f ∗ ≡ 1 (mod M). Then f ∗ is the inverse of f if both polynomials are viewed as

elements of R
×
M .

For any subset E ⊂ {0, 1, . . . ,m− 1} and any two polynomials f , g ∈ Rm, with

f (x) =

m−1
∑

j=0

a jx
j , g(x) =

m−1
∑

j=0

b jx
j ,

write f ≈E g whenever a j = b j for all j ∈ E. Then ≈E defines an equivalence

relation on Rm, and we will denote by Rm/≈E the corresponding set of equivalence

classes.

In this paper, we study the distribution in Rm/≈E of polynomials of the form

( f g)∗, where f and g are nonzero polynomials of small degree relative to m. We

show that the polynomials ( f g)∗ are uniformly distributed in Rm/≈E provided that

the cardinality of E satisfies a certain upper bound. Our main result in this direction

is Theorem 6 of Section 5. As an application, our Theorem 6 implies the following

result:
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Theorem 1 Let ε be a real number such that 0 ≤ ε < 1/3, and suppose that m�ε 1

and q �m 1. Then for any polynomial F ∈ Rm and any set E ⊂ {0, 1, . . . ,m − 1} of

cardinality

|E| ≤ m3ε(log m)3,

there exist polynomials f , g ∈ R∗
m, with

deg( f ), deg(g) ≤ m2/3+ε log m,

such that

( f g)∗ ≈E F.

Moreover, if ε is at least 1/12, and m �ε 1, the result holds for any choice of the prime

power q.

We remark that the conditions of Theorem 1 are independent of the choice of M;

the conclusion therefore holds for every irreducible polynomial M of degree m.

Now for any f ∈ R, let { f } be the unique polynomial in Rm such that f ≡ { f }
(mod M). In this paper, we also study the distribution in Rm/≈E of polynomials of

the form {( f g)∗+a f g}, where a ∈ Rm, and f and g are nonzero polynomials of small

degree relative to m. We show that the polynomials {( f g)∗ + a f g} are uniformly

distributed in Rm/≈E, assuming again that the cardinality of E satisfies a certain

bound. Our main result in this direction is Theorem 7 of Section 5, which implies

the following:

Theorem 2 Let ε be a real number such that 0 ≤ ε < 1/3, and suppose that m�ε 1

and q �m 1. Then for any two polynomials F, a ∈ Rm and any set E ⊂ {0, 1, . . . ,
m− 1} of cardinality

|E| ≤
m3ε(log m)3

8
,

there exist polynomials f , g ∈ R∗
m, with

deg( f ), deg(g) ≤ m2/3+ε log m,

such that

{( f g)∗ + a f g} ≈E F.

Moreover, if ε is at least 1/12, and m �ε 1, the result holds for any choice of the prime

power q.

The main results of this paper (Theorems 6 and 7) rely primarily on bounds for

character sums of the form

∑

f ,g 6=0
deg( f )≤d
deg(g)≤e

χ
(

( f g)∗ + a f g
)

,

where χ is a nontrivial additive character of RM . Such bounds are provided by The-

orem 3 for the case a ∈ R∗
m, and by Theorem 4 for the case a = 0 (see Section 4).
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Theorems 3 and 4 are proved without the assumption that M is irreducible, and we

remark that Theorems 6 and 7 can be extended (with only minor modifications) to

arbitrary polynomials as well. For this reason, we do not make explicit use of the

isomorphism RM ' Fqm , and we do not formulate Theorems 6 and 7 in terms of

finite fields.

We also consider the interesting special case of sums of the form

∑

f ,g∈Pd

χ
(

( f g)∗
)

,

where Pd denotes the set of monic irreducible polynomials of degree d that are rela-

tively prime to M. For these sums, our techniques provide a much stronger estimate;

see Theorem 5. We remark that the analogous estimate for integers has been used to

improve the Brun-Titchmarsh theorem. Accordingly, we hope that our estimate can

be used to improve the function field analogue of the Brun-Titchmarsh theorem as

given in [3].

Our methods are essentially those of Karatsuba [5] (see also [2, 4]), which we have

extended to work over the polynomial ring Fq[x]. However, several of the underlying

results have been unknown for polynomials, and we have had to establish them in

the current paper (in fact, our results for polynomials exhibit some new effects that

do not occur in the case of integers). Some of these fundamental results may be of

independent interest and are likely to find several other applications; for example, see

Lemma 2.

Finally, we remark that several uniformity of distribution results on the inverses of

polynomials from small sets have recently been obtained in [1] by a different method.

The first author would like to thank Macquarie University for its hospitality. Work

supported in part by NSF grant DMS-0070628 (W. Banks) and by ARC grant

A69700294 (I. Shparlinski).

2 Notation

Throughout the paper, k and ` denote positive integers, while d and e are nonnegative

real numbers.

Let q be a fixed prime power, and let Fq be the finite field with q elements. Put

R = Fq[x], R∗
= Fq[x]− {0}.

Given f , g ∈ R∗, we write f ∼ g whenever f = ag for some a ∈ F
×
q . Then

the set of equivalence classes in R∗/∼ can be naturally identified with the set M

of monic polynomials in R. We denote the greatest common divisor of f1, . . . , fk ∈ R∗

by gcd( f1, . . . , fk); by definition, it is the element h ∈ M of greatest degree such

that h divides f j , j = 1, . . . , k. Similarly, the least common multiple will be denoted

by lcm[ f1, . . . , fk]; it is the element h ∈ M of least degree such that f j divides h,

j = 1, . . . , k.

For every d ≥ 0, let M(d) be the set of monic polynomials f ∈ M of degree

deg( f ) ≤ d.
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3 Preliminary Results

For every f ∈ R∗ and k ≥ 1, let τk( f ) be the number of ordered k-tuples ( f1, . . . , fk) ∈
Mk such that f ∼ f1 · · · fk. Observe that τk( f ) = τk(g) whenever f ∼ g.

Lemma 1 For all f , g ∈ R∗ and k ≥ 1, we have τk( f g) ≤ τk( f )τk(g). If gcd( f , g) =

1, then τk( f g) = τk( f )τk(g).

Proof For any f ∈ R∗, let Tk( f ) ⊂Mk be the collection of ordered k-tuples defined

by

Tk( f ) = {( f1, . . . , fk) ∈Mk | f ∼ f1 · · · fk}.

By definition, τk( f ) is the cardinality of Tk( f ). Consider the natural map Tk( f ) ×
Tk(g)→ Tk( f g) given by

(

( f1, . . . , fk), (g1, . . . , gk)
)

7→ ( f1g1, . . . , fkgk).

It can easily be verified that this map is a bijection if gcd( f , g) = 1, hence we obtain

the second statement of the lemma.

If p ∈M is irreducible and α ≥ 0 is any integer, one clearly has

τk(pα) =

(

α + k− 1

k− 1

)

.

From this it follows that τk(pα+β) ≤ τk(pα)τk(pβ) for all α, β ≥ 0. Now for arbitrary

f , g ∈ R∗, let p1, . . . , pr ∈ M be the complete set of irreducible polynomials that

occur in the factorization of the product f g. Then

f ∼ pα1

1 · · · p
αr
r , g ∼ p

β1

1 · · · p
βr
r ,

for some uniquely determined integers α j , β j ≥ 0, j = 1, . . . , r, so by our previous

results, it follows that

τk( f g) =

r
∏

j=1

τk(p
α j +β j

j ) ≤
r
∏

j=1

τk(p
α j

j )τk(p
β j

j ) = τk( f )τk(g).

This completes the proof.

Lemma 2 For all k, ` ≥ 1 and d ≥ 0, we have

(1)
∑

f∈M(d)

τk( f )`q− deg( f ) ≤

(

bdc + k

k

)k`−1

.

If ` = 1, then (1) holds with equality.
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Proof Let ` = 1 be fixed for the moment. Since τ1( f ) = 1 for all f ∈ R∗, and

∑

f∈M(d)

q− deg( f )
=

bdc
∑

j=0

∑

f∈M

deg( f )= j

q− j
=

bdc
∑

j=0

1 = bdc + 1,

we see that (1) holds with equality for all d ≥ 0 when k = 1. Proceeding inductively,

we now suppose that (1) holds with equality up to k− 1, where k ≥ 2. Since

τk( f ) =

∑

f1, f2∈M

f∼ f1 f2

τk−1( f2),

we therefore have
∑

f∈M(d)

τk( f )q− deg( f )
=

∑

f∈M(d)

∑

f1, f2∈M

f∼ f1 f2

τk−1( f2)q− deg( f1 f2)

=

∑

f1∈M(d)

q− deg( f1)
∑

f2∈M(d−deg( f1))

τk−1( f2)q− deg( f2)

=

∑

f1∈M(d)

q− deg( f1)

(

bdc − deg( f1) + k− 1

k− 1

)

=

bdc
∑

j=0

(

bdc − j + k− 1

k− 1

)

=

(

bdc + k

k

)

.

Hence the lemma is proved when ` = 1.

Now suppose that the inequality (1) holds up to ` − 1, ` ≥ 2, for all k ≥ 1 and

d ≥ 0. Using Lemma 1, it follows that

∑

f∈M(d)

τk( f )`q− deg( f )
=

∑

f∈M(d)

∑

f1,..., fk∈M

f∼ f1··· fk

τk( f1 · · · fk)`−1q− deg( f1··· fk)

≤
∑

f1,..., fk∈M

deg( f1··· fk)≤d

k
∏

j=1

τk( f j )
`−1q− deg( f j )

≤
∑

f1,..., fk∈M(d)

k
∏

j=1

τk( f j )
`−1q− deg( f j )

=

(

∑

f∈M(d)

τk( f )`−1q− deg( f )
) k

≤

(

(

bdc + k

k

)k`−2)k

=

(

bdc + k

k

)k`−1

.
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This completes the proof.

Using Lemma 2, we obtain the estimate

(2)
∑

f∈M(d)

τk( f )`q(α−1) deg( f ) ≤ qαbdc

(

bdc + k

k

)k`−1

,

which is valid for all k, ` ≥ 1, d ≥ 0, and any real number α ≥ 0. This will be used

to prove the following:

Lemma 3 For all k ≥ 1 and d ≥ 0, let J(k, d) be the number of ordered k-tuples

( f1, . . . , fk) ∈Mk such that

deg( f1 · · · fk) ≤ d,

and

f1 · · · fk ≡ 0 (mod lcm[ f 2
1 , . . . , f 2

k ]).

Then the following estimate holds:

J(k, d) ≤ qd/2

(

bd/2c + k

k

)k(
bd/3c + k

k

)k2

.

Proof For any f ∈M, let λk( f ) be the number of ordered k-tuples ( f1, . . . , fk) ∈Mk

such that f = f1 · · · fk and

f1 · · · fk ≡ 0 (mod lcm[ f 2
1 , . . . , f 2

k ]).

Clearly, we have

(3) J(k, d) =

∑

f∈M(d)

λk( f ).

If f j , g j ∈M and gcd( f j , g j) = 1 for j = 1, . . . , k, then

lcm[ f 2
1 , . . . , f 2

k ] · lcm[g2
1 , . . . , g

2
k ] = lcm[( f1g1)2, . . . , ( fkgk)2];

from this it follows that λk is multiplicative, i.e., that λk( f g) = λk( f )λk(g) whenever

gcd( f , g) = 1. Thus, if f ∈ M and f = pα1

1 · · · p
αr
r is a factorization into positive

powers of pairwise-distinct monic irreducibles, then

λk( f ) = λk(pα1

1 ) · · ·λk(pαr
r ).

Since it is also clear that λk(p) = 0 for any irreducible p ∈M, every nonzero term in

(3) arises from a polynomial f of the form

f = pα1

1 · · · p
αr
r , α1, . . . , αr ≥ 2,
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which implies that f = g2h3 for some g, h ∈M. Since λk( f ) ≤ τk( f ), we have

J(k, d) ≤
∑

g,h∈M

deg(g2h3)≤d

λk(g2h3) ≤
∑

g,h∈M

deg(g2h3)≤d

τk(g2h3).

By Lemma 1, it follows that

J(k, d) ≤
∑

g∈M(d/2)

τk(g)2
∑

h∈M((d−2 deg(g))/3)

τk(h)3.

Applying the estimate (2) with ` = 3 and α = 1, we see that

∑

h∈M((d−2 deg(g))/3)

τk(h)3 ≤ qb(d−2 deg(g))/3c

(
⌊(

d− 2 deg(g)
)

/3
⌋

+ k

k

)k2

≤ q−2 deg(g)/3qd/3

(

bd/3c + k

k

)k2

.

Applying (2) again with ` = 2 and α = 1/3, we have

∑

g∈M(d/2)

τk(g)2q−2 deg(g)/3 ≤ qbd/2c/3

(

bd/2c + k

k

)k

≤ qd/6

(

bd/2c + k

k

)k

.

The lemma follows.

4 Estimation of Character Sums

Throughout this section, we assume that M ∈ R is a fixed polynomial of degree

deg(M) = m > 0. Let RM be the quotient ring R/(M), let R
×
M be the multiplicative

group of RM , and let

R∗
M = { f ∈ R∗ | deg( f ) < m and gcd( f ,M) = 1}.

We note that the canonical surjection R → RM gives rise to a bijection R∗
M

∼
↔ R

×
M .

For any f ∈ R such that gcd( f ,M) = 1, we denote by f ∗ the unique polynomial in

R∗
M such that f f ∗ ≡ 1 (mod M). In particular, f ∗ is the inverse of f if we regard

both polynomials as elements of R
×
M .

For a real number d such that 0 ≤ d < m, let R(d) [resp. R∗
M(d)] denote the set

of polynomials f ∈ R [resp. f ∈ R∗
M] of degree deg( f ) ≤ d.
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Lemma 4 Suppose that k ≥ 1, d ≥ 0, and (2k − 1)bdc < m. Let I(k, d) be the

number of ordered 2k-tuples ( f1, . . . , f2k) ∈ R∗
M(d)2k such that

(4) f ∗1 + · · · + f ∗k ≡ f ∗k+1 + · · · + f ∗2k (mod M).

Then

I(k, d) ≤ (q− 1)2kJ(2k, 2kd),

where J is defined as in Lemma 3.

Proof Suppose that f1, . . . , f2k are elements of R∗
M(d) that satisfy (4). Multiplying

both sides of (4) by the product f1 · · · f2k and using the fact that f j f ∗j ≡ 1 (mod M),

we obtain

g1 + · · · + gk ≡ gk+1 + · · · + g2k (mod M),

where each g j is defined by the relation f jg j = f1 · · · f2k. Now since we have

deg(g j) ≤ (2k − 1)bdc < m for each j = 1, . . . , 2k, this congruence becomes an

equality

g1 + · · · + gk = gk+1 + · · · + g2k.

By definition, f j divides g` whenever ` 6= j, so this equality implies that f j divides g j

as well. Consequently

f1 · · · f2k = f jg j ≡ 0 (mod f 2
j ),

and therefore

f1 · · · f2k ≡ 0 (mod lcm[ f 2
1 , . . . , f 2

2k]).

Since deg( f1 · · · f2k) ≤ 2kd, the result follows.

An additive character of RM is a homomorphism

χ : RM → C
×.

For the sake of convenience in what follows, we will also denote by χ the correspond-

ing homomorphism R→ C
× which is trivial on the principal ideal (M), obtained by

composing χ : RM → C
× with the canonical surjection R→ RM .

For any additive character χ of RM , let

Ωχ = {α ∈ R | χ(αβ) = 1 for all β ∈ R}.

Then Ωχ is an ideal in R; since R is a principal ideal domain, it follows that Ωχ is

the ideal generated by a (unique) monic polynomial fχ ∈ M. Since M ∈ Ωχ, fχ is a

divisor of M. If χ is the trivial character, then fχ = 1. On the other hand, if fχ ∼ M,

then χ is said to be primitive.
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Theorem 3 Suppose that k, ` ≥ 1, d, e ≥ 0, and

(2k− 1)bdc < m, (2`− 1)bec < m.

Let F and G be arbitrary subsets of R∗
M(d) and R∗

M(e), respectively. Then for any prim-

itive character χ of RM and any element a ∈ R, the character sum

S =

∑

f∈F

g∈G

χ
(

( f g)∗ + a f g
)

satisfies the bound |S| ≤ |F| |G|∆, where

∆ =
(

|F|−2k|G|−2`qm+min(d,e)+1(q− 1)2k+2`J(2k, 2kd)J(2`, 2`e)
) 1/2k`

,

and J is defined as in Lemma 3.

Proof By Hölder’s inequality and the fact that ( f g)∗ ≡ f ∗g∗ (mod M), we have

|S|` ≤ |F|`−1
∑

f∈F

∣

∣

∣

∑

g∈G

χ( f ∗g∗ + a f g)
∣

∣

∣

`

= |F|`−1
∑

f∈F

∣

∣

∣

∑

β∈RM

∑

δ∈R(e)

σ`(β, δ)χ( f ∗β + a f δ)
∣

∣

∣
,

where σ`(β, δ) denotes the number of ordered `-tuples (g1, . . . , g`) in G` such that

g∗1 + · · · + g∗` ≡ β (mod M),

g1 + · · · + g` ≡ δ (mod M).

Now for each f ∈ F, let arg f denote the argument of the double summation inside

the absolute value in the preceding inequality. Then

|S|` ≤ |F|`−1
∑

β∈RM

∑

δ∈R(e)

σ`(β, δ)
∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β + a f δ)
∣

∣

∣
.

Raising both sides of this inequality to the power k and applying Hölder’s inequality

once more, we obtain

|S|k` ≤ |F|(`−1)k
(

∑

β∈RM

∑

δ∈R(e)

σ`(β, δ)
) k−1

×
∑

β∈RM

∑

δ∈R(e)

σ`(β, δ)
∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β + a f δ)
∣

∣

∣

k

.
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Applying Cauchy’s inequality to the last part of this expression, we therefore see that

(5) |S|k` ≤ |F|(`−1)k(L1)k−1(L2)1/2(L3)1/2,

where

L1 =

∑

β∈RM

∑

δ∈R(e)

σ`(β, δ),

L2 =

∑

β∈RM

∑

δ∈R(e)

σ`(β, δ)2,

L3 =

∑

β∈RM

∑

δ∈R(e)

∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β + a f δ)
∣

∣

∣

2k

.

The first sum L1 is equal to the total number of ordered `-tuples (g1, . . . , g`) ∈ G`:

(6) L1 = |G|`.

The second sum L2 is equal to the number of ordered 2`-tuples (g1, . . . , g2`) ∈ G2`

such that

g∗1 + · · · + g∗` ≡ g∗`+1 + · · · + g∗2` (mod M),

g1 + · · · + g` ≡ g`+1 + · · · + g2` (mod M).

Since (2` − 1)bec < m by hypothesis, we can use Lemma 4 to bound L2, and we

obtain

(7) L2 ≤ (q− 1)2`J(2`, 2`e).

For the third sum L3, we have

L3 =

∑

β∈RM

∑

δ∈R(e)

∑

f1,..., f2k∈F

e−i(arg f1+···+arg fk−arg fk+1−···−arg f2k)

× χ
(

( f ∗1 + · · · − f ∗2k)β + a( f1 + · · · − f2k)δ
)

≤
∑

f1,..., f2k∈F

∣

∣

∣

∑

β∈RM

∑

δ∈R(e)

χ
(

( f ∗1 + · · · − f ∗2k)β + a( f1 + · · · − f2k)δ
)

∣

∣

∣

≤
∑

α∈RM

∑

γ∈R(d)

σ̃k(α, γ)
∣

∣

∣

∑

β∈RM

∑

δ∈R(e)

χ(αβ + aγδ)
∣

∣

∣

=

∑

α∈RM

∑

γ∈R(d)

σ̃k(α, γ)
∣

∣

∣

∑

β∈RM

χ(αβ)
∑

δ∈R(e)

χ(aγδ)
∣

∣

∣
,
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where σ̃k(α, γ) is the number of ordered 2k-tuples ( f1, . . . , f2k) ∈ F2k that satisfy

(8) f ∗1 + · · · + f ∗k ≡ α + f ∗k+1 + · · · + f ∗2k (mod M),

and

f1 + · · · + fk ≡ γ + fk+1 + · · · + f2k (mod M).

Now since χ is a primitive character, the sum

(9)
∑

β∈RM

χ(αβ) =

{

qm if α = 0,

0 otherwise;

thus

L3 ≤ qm
∑

γ∈R(d)

σ̃k(0, γ)
∣

∣

∣

∑

δ∈R(e)

χ(aγδ)
∣

∣

∣
≤ qm+e+1

∑

γ∈R(d)

σ̃k(0, γ)

since |R(e)| = qe+1. As the sum

∑

γ∈R(d)

σ̃k(0, γ)

counts the total number of solutions to (8) with α = 0, and (2k − 1)bdc < m by

hypothesis, we have by Lemma 4:

(10) L3 ≤ qm+e+1(q− 1)2kJ(2k, 2kd).

Substituting the estimates (6), (7) and (10) into in (5), we obtain the bound stated

in the theorem except that we now have qm+e+1 instead of the term qm+min(d,e)+1. The

correct bound follows by symmetry.

When M divides a, we can improve the bound stated in Theorem 3.

Theorem 4 Using the notation of Theorem 3, the character sum

S =

∑

f∈F

g∈G

χ
(

( f g)∗
)

satisfies the bound |S| ≤ |F| |G|∆, where

∆ =
(

|F|−2k|G|−2`qm(q− 1)2k+2`J(2k, 2kd)J(2`, 2`e)
) 1/2k`

.

Proof By Hölder’s inequality, we have

|S|` ≤ |F|`−1
∑

f∈F

∣

∣

∣

∑

g∈G

χ( f ∗g∗)
∣

∣

∣

`

= |F|`−1
∑

f∈F

∣

∣

∣

∑

β∈RM

σ`(β)χ( f ∗β)
∣

∣

∣
,
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where σ`(β) denotes the number of ordered `-tuples (g1, . . . , g`) in G` such that

g∗1 + · · · + g∗` ≡ β (mod M).

For each f ∈ F, let arg f denote the argument of the summation inside the absolute

value in the preceding inequality. Then

|S|` ≤ |F|`−1
∑

β∈RM

σ`(β)
∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β)
∣

∣

∣
.

Raising both sides of this inequality to the power k and applying Hölder’s inequality

once more, we obtain

|S|k` ≤ |F|(`−1)k
(

∑

β∈RM

σ`(β)
) k−1 ∑

β∈RM

σ`(β)
∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β)
∣

∣

∣

k

.

Applying Cauchy’s inequality, we see that

|S|k` ≤ |F|(`−1)k(L1)k−1(L2)1/2(L3)1/2,

where

L1 =

∑

β∈RM

σ`(β),

L2 =

∑

β∈RM

σ`(β)2,

L3 =

∑

β∈RM

∣

∣

∣

∑

f∈F

e−i arg fχ( f ∗β)
∣

∣

∣

2k

.

The sums L1 and L2 can be estimated as in Theorem 3. For the third sum, we have

L3 =

∑

β∈RM

∑

f1,..., f2k∈F

e−i(arg f1+···−arg f2k)χ
(

( f ∗1 + · · · − f ∗2k)β
)

≤
∑

f1,..., f2k∈F

∣

∣

∣

∑

β∈RM

χ
(

( f ∗1 + · · · − f ∗2k)β
)

∣

∣

∣

≤
∑

α∈RM

σ̃k(α)
∣

∣

∣

∑

β∈RM

χ(αβ)
∣

∣

∣
,

where σ̃k(α) is the number of ordered 2k-tuples ( f1, . . . , f2k) ∈ F2k that satisfy

f ∗1 + · · · + f ∗k ≡ α + f ∗k+1 + · · · + f ∗2k (mod M).
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Using (9) and Lemma 4, we have

L3 ≤ qmσ̃k(0) ≤ qm(q− 1)2kJ(2k, 2kd).

The result follows.

Theorem 5 Suppose that (2k− 1) d < m. Then for any primitive character χ of RM ,

the character sum

S =

∑

f ,g∈Pd

χ
(

( f g)∗
)

satisfies the bound

|S| ≤ (k!)1/k2

|Pd|
2−1/kqm/2k2

.

Proof From the Hölder inequality, we obtain

|S|k ≤ |Pd|
k−1

∑

f∈Pd

∣

∣

∣

∑

g∈Pd

χ
(

( f g)∗
)

∣

∣

∣

k

= |Pd|
k−1

∑

f∈Pd

ϑ f

∑

g1,...,gk∈Pd

χ
(

f ∗(g∗1 + · · · + g∗k )
)

,

where ϑ f is such that |ϑ f | = 1. Denoting by Tk(ψ) the number of solutions of the

congruence

g∗1 + · · · + g∗k ≡ ψ (mod M), g1, . . . , gk ∈ Pd,

we derive that

|S|k ≤ |Pd|
k−1

∑

ψ∈RM

Tk(ψ)
∑

f∈Pd

ϑ fχ(ψ f ∗).

Applying the Hölder inequality again, we have

|S|2k2

≤ |Pd|
2k2−2k

(

∑

ψ∈RM

Tk(ψ)
) 2k−2 ∑

ψ∈RM

Tk(ψ)2
∑

ψ∈RM

∣

∣

∣

∑

f∈Pd

ϑ fχ(ψ f ∗)
∣

∣

∣

2k

.

Let W(k, d) denote the number of solutions of the congruence

(11) f ∗1 + · · · + f ∗k ≡ f ∗k+1 + · · · + f ∗2k (mod M), f1, . . . , f2k ∈ Pd.

Now, we have

∑

ψ∈RM

Tk(ψ) = |Pd|
k and

∑

ψ∈RM

Tk(ψ)2
= W(k, d).
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Consequently

|S|2k2

≤ |Pd|
4k2−4kW(k, d)

·
∑

ψ∈RM

∑

f1,..., f2k∈Pd

χ
(

ψ( f ∗1 + · · · + f ∗k − f ∗k+1 − · · · − f ∗2k)
)

k
∏

ν=1

ϑ fν

2k
∏

ν=k+1

ϑ̄ fν

≤ |Pd|
4k2−4kW(k, d)

·
∑

f1,..., f2k∈Pd

∣

∣

∣

∑

ψ∈RM

χ
(

ψ( f ∗1 + · · · + f ∗k − f ∗k+1 − · · · − f ∗2k)
)

∣

∣

∣
.

Applying (9), we see that

|S|2k2

≤ |Pd|
4k2−4kqnW(k, d)2.

To estimate W(k, d), we remark that (11) is equivalent to the congruence

k
∑

ν=1

2k
∏

i=1
i 6=ν

fi ≡

2k
∑

ν=k+1

2k
∏

i=1
i 6=ν

fi (mod M).

Since the degrees of the polynomials on the both sides of this congruence are at most

(2k− 1)d < n, this congruence yields an equality over Fq[X]:

k
∑

ν=1

2k
∏

i=1
i 6=ν

fi =

2k
∑

ν=k+1

2k
∏

i=1
i 6=ν

fi .

Hence,

f ∗1 + · · · + f ∗k = f ∗k+1 + · · · + f ∗2k.

Recalling that the polynomials f1, . . . , f2k are irreducible and comparing the denom-

inators of the expressions on both sides of this equation, we see that equality is pos-

sible if and only if

{ f1, . . . , fk} = { fk+1, . . . , f2k}.

Therefore

W(k, d) ≤ k! |Pd|
k,

and the result follows.

5 Results on Uniform Distribution

Throughout this section, let M ∈ R be a fixed irreducible polynomial of degree

deg(M) = m > 0. Put

Rm = { f ∈ R | deg( f ) < m}, R∗
m = { f ∈ Rm | f 6= 0},
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and for any real number d with 0 ≤ d < m, let

R∗(d) = { f ∈ R∗ | deg( f ) ≤ d}.

Note that R∗
m = R∗

M and R∗(d) = R∗
M(d) in our previous notation, since

gcd( f ,M) = 1 for all f ∈ R∗
m. As in the previous section, for each f ∈ R∗

m, let

f ∗ be the unique polynomial in R∗
m such that f f ∗ ≡ 1 (mod M). Then f ∗ is an

inverse for f in the multiplicative group R
×
M .

Since M is irreducible, RM = R/(M) is a field; consequently, an additive character

χ of RM is primitive if and only if it is nontrivial.

Lemma 5 Let k and d be positive integers such that

d =

⌊ m

2k− δ

⌋

,

where 0 < δ < 1. Then for every nontrivial character χ of RM , the character sum

S =

∑

f ,g∈R∗(d)

χ
(

( f g)∗
)

satisfies the bound |S| ≤ |R∗(d)|2 exp(∆), where

∆ = −
δm log q

2k2(2k− δ)
+

log q

k
+ 12k log m.

Proof Set e = d, ` = k, and F = G = R∗(d). Since

(2k− 1)d ≤
(2k− 1)

(2k− δ)
m < m,

we see that all of the conditions of Theorem 4 hold; thus

|S| ≤ |R∗(d)|2∆ ′,

where

(∆ ′)2k2

= |R∗(d)|−4kqm(q− 1)4kJ(2k, 2kd)2.

Since |R∗(d)| = qd+1 − 1, we have by Lemma 3:

(∆ ′)2k2

= qm
( q− 1

qd+1 − 1

) 4k

J(2k, 2kd)2

≤ qm−4kdJ(2k, 2kd)2

≤ qm−2kd

(

kd + 2k

2k

)4k(
b2kd/3c + 2k

2k

)8k2

.
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First, we estimate

m− 2kd < m− 2k
( m

2k− δ
− 1
)

= 2k−
δm

2k− δ
.

Next, since k ≥ 1, we have kd ≤ (2k− 1)d < m, hence kd + 1 ≤ m. Consequently,

(

kd + 2k

2k

)

≤ (kd + 1)2k ≤ m2k.

Similarly,
(

b2kd/3c + 2k

2k

)

≤ m2k,

and the result follows.

Recall that for a set E of nonnegative integers and two polynomials

f (x) =

∑

j≥0

a jx
j , g(x) =

∑

j≥0

b jx
j ,

we write f ≈E g to indicate that a j = b j for all j ∈ E. Then ≈E defines an equiva-

lence relation on R.

Theorem 6 Let k and d be positive integers such that

d =

⌊ m

2k− δ

⌋

,

where 0 < δ < 1. Fix an arbitrary subset E ⊂ {0, 1, . . . ,m− 1} of cardinality |E| = n

and a polynomial F ∈ R, and let N be the number of ordered pairs ( f , g) in R∗(d)2

such that ( f g)∗ ≈E F. Then

∣

∣

∣
N −

|R∗(d)|2

qn

∣

∣

∣
< |R∗(d)|2 exp(∆),

where ∆ is defined as in Lemma 5. In particular, if

n ≤
δm

2k2(2k− δ)
−

1

k
−

12k log m

log q
,

then

0 < N < 2
|R∗(d)|2

qn
.
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Proof Without loss of generality, we can assume that deg(F) < m. Let XE be the set

of polynomials in Rm whose coefficients vanish on E; that is,

XE =

{

f ∈ Rm

∣

∣

∣
f (x) =

∑

j /∈E

a jx
j
}

.

Note that XE is an additive subgroup of R: XE + XE = XE. Let Q be the number of

representations of the form

F = ( f g)∗ + φ− ψ,

where f , g ∈ R∗(d) and φ, ψ ∈ XE. Since ( f g)∗ ≈E F if and only if F − ( f g)∗ lies in

XE, and |XE| = qm−n, we have

Q = qm−nN.

Now

Q =

∑

f ,g∈R∗(d)

∑

φ,ψ∈XE

1

qm

∑

χ

χ
(

( f g)∗ − F − φ + ψ
)

,

=
1

qm

∑

χ

χ(F)
∑

φ,ψ∈XE

χ(ψ − φ)
∑

f ,g∈R∗(d)

χ
(

( f g)∗
)

=
1

qm

∑

χ

χ(F)
∣

∣

∣

∑

φ∈XE

χ(φ)
∣

∣

∣

2 ∑

f ,g∈R∗(d)

χ
(

( f g)∗
)

= |R∗(d)|2qm−2n +
1

qm

∑

χ6=1

χ(F)
∣

∣

∣

∑

φ∈XE

χ(φ)
∣

∣

∣

2 ∑

f ,g∈R∗(d)

χ
(

( f g)∗
)

.

By Lemma 5, we have

∣

∣Q− |R∗(d)|2qm−2n
∣

∣ ≤
1

qm

∑

χ6=1

∣

∣

∣

∑

φ∈XE

χ(φ)
∣

∣

∣

2 ∣
∣

∣

∑

f ,g∈R∗(d)

χ
(

( f g)∗
)

∣

∣

∣

≤
|R∗(d)|2 exp(∆)

qm

∑

χ6=1

∣

∣

∣

∑

φ∈XE

χ(φ)
∣

∣

∣

2

.

Using the estimate

∑

χ6=1

∣

∣

∣

∑

φ∈XE

χ(φ)
∣

∣

∣

2

= −q2m−2n +
∑

χ

∑

φ,ψ∈XE

χ(ψ − φ) = q2m−n − q2m−2n,

we have
∣

∣Q− |R∗(d)|2qm−2n
∣

∣ < |R∗(d)|2qm−n exp(∆).
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The result follows.

Using Theorem 6, we can now give a proof of Theorem 1 as stated in the intro-

duction.

Proof Put λ = (1/2)1/7 < 1, and consider the collection D of integers d in the

interval

λm2/3+ε log m ≤ d ≤ m2/3+ε log m.

For every d ∈ D, we have

m1/3−ε

log m
≤

m

d
≤

m1/3−ε

λ log m
.

If m�ε 1, the closed interval [m1/3−ε/ log m,m1/3−ε/(λ log m)] has length

(λ−1 − 1)
m1/3−ε

log m
> 2 + (1− λ).

On the other hand, if d and d + 1 both lie in D, then

m

d
−

m

d + 1
<

m

d2
≤

1

λ2m1/3+2ε(log m)2
< (1− λ)

provided that m �ε 1. Consequently, for some d ∈ D, there exists an integer k such

that m/d lies in the open interval
(

2k − 1, 2k − 1 + (1 − λ)
)

. Let k and d be fixed

with these properties, and set δ = 2k−m/d. Then we have λ < δ < 1, and

k =
m

2d
+
δ

2
> 0,

hence all of the conditions of Theorem 6 are satisfied. Applying the theorem, we see

that N > 0 provided that

(12) |E| ≤
δm

2k2(2k− δ)
−

1

k
−

12k log m

log q
.

Now for all m�ε 1, we have

k <
m

2d
+

1

2
≤

m1/3−ε

2λ log m
+

1

2
<

m1/3−ε

2λ2 log m
,

thus
δm

2k2(2k− δ)
>

λm

2k2(m/d)
=
λd

2k2
>

λ2m2/3+ε log m

2
(

m1/3−ε/(2λ2 log m)
) 2

;

that is,
δm

2k2(2k− δ)
> 2λ6m3ε(log m)3.
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Since−1/k ≥ −1, and

−
12k log m

log q
> −

6m1/3−ε

λ2 log q
,

it follows that the right side of (12) is bounded below by

2λ6m3ε(log m)3 −
6m1/3−ε

λ2 log q
− 1,

and this is bounded below by

2λ7m3ε(log m)3
= m3ε(log m)3

provided that

log q >
6m1/3−ε

(λ− λ2)m3ε(log m)3 − λ2
.

The theorem follows.

For the rest of this section, we study the distribution in RM of polynomials of the

form ( f g)∗ + a f g, where a is a fixed element of R, and f and g run through the sets

R∗(d) and R∗(e), respectively.

Lemma 6 Let k, `, d and e be positive integers such that

d =

⌊ m

2k− δ

⌋

, e =

⌊ m

2`− γ

⌋

,

where 0 < δ, γ < 1. Suppose that d ≤ e. Then for every nontrivial character χ of RM

and any polynomial a ∈ R, the character sum

S =

∑

f∈R
∗(d)

g∈R
∗(e)

χ
(

( f g)∗ + a f g
)

satisfies the bound |S| ≤ |R∗(d)| |R∗(e)| exp(∆), where

∆ =

(

−
δm

4k− 2δ
−

γm

4`− 2γ
+ k + ` + d + 1

) log q

2k`
+

(6k3 + 6`3) log m

k`
.

Proof Set F = R∗(d) and G = R∗(e). Since

(2k− 1)d ≤
(2k− 1)

(2k− δ)
m < m, (2`− 1)e ≤

(2`− 1)

(2`− γ)
m < m,

all of the conditions of Theorem 3 hold; thus

|S| ≤ |R∗(d)| |R∗(e)|∆ ′,
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where

(∆ ′)2k`
= |R∗(d)|−2k|R∗(e)|−2`qm+d+1(q− 1)2k+2`J(2k, 2kd)J(2`, 2`e).

The lemma now follows as in the proof of Lemma 5.

For any f ∈ R, we denote by { f } the unique element of Rm such that f ≡ { f }
(mod M).

Theorem 7 Let k, `, d and e be positive integers such that

d =

⌊ m

2k− δ

⌋

, e =

⌊ m

2`− γ

⌋

,

where 0 < δ, γ < 1. Suppose that d ≤ e. Fix a subset E ⊂ {0, 1, . . . ,m − 1} of

cardinality |E| = n and two polynomials F, a ∈ R, and let N be the number of ordered

pairs ( f , g), with f ∈ R∗(d) and g ∈ R∗(e), such that {( f g)∗ + a f g} ≈E F. Then

∣

∣

∣

∣

N −
|R∗(d)| |R∗(e)|

qn

∣

∣

∣

∣

< |R∗(d)| |R∗(e)| exp(∆),

where ∆ is defined as in Lemma 6. In particular, if

n ≤
δm

4k`(2k− δ)
+

γm

4k`(2`− γ)
−

k + ` + d + 1

2k`
−

(6k3 + 6`3) log m

k` log q
,

then

0 < N < 2 ·
|R∗(d)| |R∗(e)|

qn
.

Proof Using Lemma 6, the proof is very similar to the proof of Theorem 6; details

are left to the reader.

Using Theorem 7, we can now give a proof of Theorem 2.

Proof Put λ = (1/2)1/9 < 1, and consider the collection D of pairs of integers (d, e)

such that

λm2/3+ε log m ≤
2d

λ
≤ e ≤ m2/3+ε log m.

For all such pairs, we have

2m1/3−ε

λ log m
≤

m

d
≤

2m1/3−ε

λ2 log m
,

m1/3−ε

log m
≤

m

e
≤

m1/3−ε

λ log m
.
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If m�ε 1, the closed intervals [2m1/3−ε/(λ log m), 2m1/3−ε/(λ2 log m)] and

[m1/3−ε/ log m,m1/3−ε/(λ log m)] have lengths greater than 2 + (1 − λ). On the

other hand, if (d, e) and (d + 1, e + 1) lie in D, then

m

d
−

m

d + 1
<

m

d2
≤

4

λ4m1/3+2ε(log m)2
< (1− λ),

m

e
−

m

e + 1
<

m

e2
≤

1

λ2m1/3+2ε(log m)2
< (1− λ),

provided that m�ε 1. Consequently, for some (d, e) ∈ D, there exist integers k and

` such that m/d lies in the open interval
(

2k − 1, 2k − 1 + (1 − λ)
)

, and m/e lies

in the open interval
(

2` − 1, 2`− 1 + (1 − λ)
)

. Let k, `, d and e be fixed with these

properties, and set δ = 2k−m/d, γ = 2`−m/e. Then λ < δ, γ < 1, and

k =
m

2d
+
δ

2
> 0, ` >

m

2e
+
γ

2
> 0,

thus all of the conditions of Theorem 7 are satisfied. Applying the theorem, we see

that N > 0 if |E| is less than or equal to

δm

4k`(2k− δ)
+

γm

4k`(2`− γ)
−

k + ` + d + 1

2k`
−

(6k3 + 6`3) log m

k` log q
.

Since
γm

(2`− γ)
= γe > λe ≥ 2d,

it follows that N > 0 provided that

(13) |E| ≤
δm

4k`(2k− δ)
−

k + ` + 1

2k`
−

(6k3 + 6`3) log m

k` log q
.

Now for m�ε 1, we have

k <
m

2d
+

1

2
≤

m1/3−ε

λ2 log m
+

1

2
<

m1/3−ε

λ3 log m
,

and

` <
m

2e
+

1

2
≤

m1/3−ε

2λ log m
+

1

2
<

m1/3−ε

2λ2 log m
.

Consequently,

δm

4k`(2k− δ)
=

δd

4k`
>

(λ3m2/3+ε log m)/2

4
(

m1/3−ε/(λ3 log m)
)(

m1/3−ε/(2λ2 log m)
) ,

that is,
δm

2k2(2k− δ)
>
λ8m3ε(log m)3

4
.
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We also have

−
k + ` + 1

2k`
> −

3

2
.

Finally, since

k` >
m

2d
·

m

2e
≥

m2

(λm2/3+ε log m)(2m2/3+ε log m)
=

m2/3−2ε

2λ(log m)2
,

it follows that

−
(6k3 + 6`3) log m

k` log q
> −

( 3

λ10
+

3

8λ7

) m1/3−ε

log q
> −

8m1/3−ε

log q
.

Thus the right side of (13) is bounded below by

λ8m3ε(log m)3

4
−

8m1/3−ε

log q
−

3

2
,

and this is bounded below by

λ9m3ε(log m)3

4
=

m3ε(log m)3

8

provided that

log q >
32m1/3−ε

(λ8 − λ9)m3ε(log m)3 − 6
.

The theorem follows.
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