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Abstract . Secular changes in the rotational motion of a planet due to dissipation 
of energy in its core are investigated. It is assumed that the effect of a liquid core is 
equivalent to the action on a "frozen" planet of a special type of nonconservative 
torque. The Bogoliuboff-Mitropolsky method is used to explain the secular effects. 
The following qualitative features of the evolution of the motion are established: 
the fast rotation of a planet gradually becomes slower and the inclination of its 
equator to the orbital plane gradually increases. 

1. Introduct ion and Basic A s s u m p t i o n s 

We examine the rotational motion of an axisymmetric planet with a li
quid core in a central gravitational field. The planet's center of mass O 
moves about an at tracting center on a circular nonevolving orbit. The cha
racteristic rotational velocity of the planet about its center of mass urot 

substantially exceeds the orbital angular velocity u0: u0/wrot = 6 < 1 . 
The planet's core is represented as a spherical cavity containing a high-
viscosity incompressible fluid. The assumption of high viscosity means tha t 
the Ekman number 

E= £ 2 — > L 

where Rcore is the cavity radius, and v is the kinematic viscosity of the 
fluid. We further assume that E ~ e~n, n > 5. 

The problem of the motion of a planet with a liquid core was studied 
by Sludski, Poincare, and many other scientists. In particular, the secular 
effects due to the influence of the liquid core were examined by Aoki, Kubo, 
Neron de Surgy et al.. 
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2. M o t i o n of M a t t e r in a P lane tary Core 

In the system of coordinates Oxyz, rigidly connected to the mantle, the 
motion of matter in the core is described by the Navier-Stokes equation 

du , _ . „ dui 
— + u V u + 2 w x u | - x r 
at at 

A u + Vg = 0, 

q = u 
I + U - ^ X T ) 2 ] 

.P z (1) 

Here, r is the position vector of an arbitrary point relative to the planet's 
center of mass; u ( r , t) and p(r , t) are the velocity and pressure fields; 
U(r) is the gravitational and inertial potential due to the center of the 
mass' motion; p is the core density; and u is the rotational velocity of the 
trihedron Oxyz. 

Equation (1) is used in place of the continuity equation div u = 0 and 
the kinematic condition u | r = 0 , where V is the core-mantle boundary. 
We choose the units of mass, length, and time such tha t p = 0 ( 1 ) , RCOre = 
0 ( 1 ) , v = 0(E), and u0 = e. 
For E ^> 1, the motion of the matter in the planet's core is of the nature of 
a quasistationary Stokes flow (Landau et al., 1986), which allows the inertial 
terms in (1) to be neglected. The velocity field satisfying the conditions 

A u = Vg + — x TV, 
at 

d i v u = 0, u | r = 0, 

has the form 

u 
_ l n , du 

(2) 

where / ( r ) = - ( r 2 - R2
core)

2/40. 
It follows from (2) tha t the motion of the core matter is subordinate to 

the motion relative to the center of mass. As shown by Chernous'ko (1968), 
this fact permits to consider the rotational motion of a planet with a liquid 
core as the motion of a "frozen" planet under the influence of a special type 
of torque 

M c = K 
fd2ui\ /du\ 

V d t / / r j ' 
K = 

8npR[ core 

525i/ 
OiE-1). 

The derivatives (d?u)/dt2)fr and {du/dt)jr are calculated from the equa
tions of motion for a frozen planet in a gravitational field. 
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3. Mot ion of the P lanet Re lat ive t o t h e Center of M a s s 

To describe the rotational motion of a planet we will use the canonical 
variables of Andoyer (Deprit, 1967): 

L, G, H, I, g, h. 

Here L is the projection of the angular momentum G on the planet's figure 
axis, and H is the projection of the angular momentum on the normal to 
the orbital plane. The equations of motion in the Andoyer variables are 

d(L,G,H) dK , , 

— I t — - ~WU) f(L'G'H)' 

d(l,9,h) 8K 

dt ~ d(L,G,H) + ^'9'V- [6) 

The function K in (3) is the Hamiltonian of the "frozen" planet in the 
central gravitational field. It can be written as follows: 

K(L,G,H,l,g,h,t)=± 
\ { h - ^ 

+ h2(C-A)(s,e)\ 

Here A and C are the equatorial and axial moments of inertia of the planet 
(A < C); e is the unit vector of the planet's figure axis; s = R / | R | , where 
R is the vector from O to the attractive center. The scalar product is 

(s, e) = sin(/i—ei) sin J cos J+[cos(h—et)smg+sm(h —st) cos g cos / ] sin J, 

where J is the angle between the angular momentum vector G and normal 
to the orbital plane, and J is the angle between G and the planet's figure 
axis. 
Functions / L , fa, / / / , / / , fg, and fh characterize the influence of the non-
conservative torque M c on the rotational motion of the planet. 

The evolution of the motion can be separated into two stages with 
different timescales. In the first stage (stage of fast dissipative evolution) 

G w G ( O ) , H&H(0), L->GsignL{0). 

We assume that L —»• G (L(0) > 0). The change in the angle between the 
figure axis and G obeys the law 

= a r c t g ( C - " t g J ( 0 ) ) , CT = « ( ^ - ^ ) 
A2 

The characteristic timescale for fast dissipative evolution Tjast ~ E. 
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After completion of the fast dissipative evolution phase the planet's figure 
axis will precess around the normal to the orbital plane. This is the stage 
of slow dissipative evolution. 

Since for J -> 0 a singularity occurs in Eqs. (3), it is convenient to in
troduce canonical variables p, G, H, q, g, h guaranteeing regularity of the 
right-hand sides of the equations of motion. These variables are connected 
to the Andoyer variables by the relations 

p=^/2(G-L)cosl, G = G, H = H, 

q = —\/2(G — L)sml, g = g + l, h = h - et. 

Taking into account, tha t in the stage of slow dissipative evolution p = 

0(e2), q = 0(e2), we perform a noncanonical stretching substitution of 
variables __ _ 

P = e~2p, Q = e~\ 

The resulting equations of motion can be written as 

, ^ oo oo 

^ = 5 y n ( 3 ) + K £ e * W f c ( S ) , (4) 

fc=0 fe=0 

where S = {P,G,H,Q,~g,Ji). 
For an approximate description of the slow dissipative evolution, we will 

use the formal solution of equations (4) (Bogoliuboff et al., 1961): 

oo oo 

P = Y,£kMG,H,g,h), Q = Y,£kVk(G,H,g~,h), 
k=0 fc=0 

oo oo 
G = G + J2^NGk(G,H,^,h), H = H + ^ekNHk(G,H,g,h), 

fc=i k=i 

oo oo 

g = 9 + ^ekMgk{G,lI,g',h), h = h + ^ekMgk{G,H,g',h), 
fc=i k=i 

where the functions ukl, NGk2, Nnk2, v^, Mgk2, Mhki, (kx =J ) , 1^. ._.; 

k2 = 1,2,. . .) are periodic in both g and h with period 2TT , and G, H, g , 

and h are functions of time satisfying the differential equations 

^ = Kf2ekAGk(G,H), ^ = K-£ekAHk(G,H), 
fe=0 fc=0 

https://doi.org/10.1017/S025292110004673X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110004673X


EVOLUTION OF THE ROTATIONAL MOTION 317 

ft=G/C + Y;ekBak(G,H), % = - e + £ ^ ( G , / 7 ) . 
fe=l fc=2 

After elementary operations we find: 

AGO = Am = AGI = Am = AQ2 = AH2 = AQZ = AHZ = 0, 

AG4(G,H) = - H C
8 ^ ) 2 s in21(4 - 3s in 2 7 ) , 

AH4(G,H) = - 9 ( C Z A ) s i n 2 / c o s 7 . 

Here 7 = arccos H/G. To precise 0(e), I characterizes the angle between 
the planet's figure axis and the normal to the orbital plane during the slow 
dissipative evolution stage. 

4. Secular Changes in the M o t i o n of a P lanet 

For a qualitative analysis of the secular effects, we examine the reduced 
system 

^ = S4KAG4(G,H), ^ = S4KAH4(G,H). (5) 

Using (5), the following result can be obtained: 

y/GP(0) - 2Xdit < G{t) < ^/G2(0) - 2Xd2t, 

(
_3_ — 3 gin4 J(0) 

i _ 2xdit\ ^ cos7(Q / 2Xd2t\ ^ 

G2(0)J ~ cos7(0) - V G2(Q)J 
Here 
di = l, d2 = m i n i ±, sin2 7(0) 1 - | s i n 2 7(0)1} in the case | s i n 7 ( 0 ) | < 
y/2/3 and dx = sin2 7(0) 1 - \ sin2 7(0) , d2 = \ in the case | sin 7(0) | > 
^ 2 / 3 , x = 9 £ 4 K ( C - A)2/2C. 

Thus, the rotation of a planet with a liquid core gradually becomes 
slower, and the inclination of its equator to the orbital plane gradually 
increases. 

The final stage of evolution of the rotation was studied numerically. As 
it turns out, a sharp increase in the angle between the figure axis and the 
angular momentum vector occurs, when the angular velocity of rotation 
of the planet exceeds the velocity of its orbital motion u>o by two times. 
Subsequently, the cone around the normal to the orbital plane enclosing 
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the motion of the figure axis gradually constricts. The limiting motion of 
the planet is a prograde rotation about the normal to the orbital plane with 
angular velocity w 2OJQ. 
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