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Abstract

The problem of heat transfer in a duct or tube for large values of the
Peclet number has traditionally been solved by assuming that diffusion in the
axial direction is negligible. This approach was used by Graetz [2] for the
circular tube and by Prins et al [5] for the flat duct to obtain a series solution
for downstream temperature field.

Since these series converge very slowly in the neighbourhood of the
origin, some other approach is necessary in the thermal entrance region.
This was supplied by Leveque [3] and extended by Mercer [4] who matched
the Leveque solution to the eigenfunction expansion.

In all these solutions it was assumed that the axial diffusion of heat was
negligible, but this assumption is invalid close to the discontinuity, since in
this region the axial temperature gradient is large and the fluid velocity is
small, so that axial diffusion plays an important role.

In this paper, the assumptions implicit in Leveque's solution are
re-examined, and the correct approximation in the neighbourhood of the
discontinuity as well as the solution which matches this into Leveque's
solution are presented. In the first of these solutions, diffusion is the only
heat-transfer mechanism, while in the matching solution diffusion and
convection are in balance.

The corresponding solutions for the case of prescribed flux on the
boundary are also considered.

1. Introduction

If we consider the forced convection of heat in a tube or duct in which
there is a sudden change of temperature in the wall, we see that there must
also be a rapid axial change in temperature in the fluid adjacent to the wall.
Furthermore, because of the no-slip boundary condition on fluid flows, the
fluid velocity adjacent to the wall is low. This means that in this region at
least, the diffusion of heat in the axial direction is important.
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[2] Heat transfer in a duct 147

The effects of axial diffusion on the solution can be investigated in two
ways. The first, which has recently been adopted in many papers, is to
determine the overall solution of the diffusion-convection equation retaining
the term corresponding to axial diffusion. While this leads to a solution
theoretically valid throughout the fluid, it retains the difficulty inherent in the
Graetz solution that convergence of the series solution is slow in the thermal
entrance region.

The alternative approach, which is adopted in this paper, is to consider a
series of local approximations, none of which retain all the terms of the
diffusion-convection equation, but which together provide an accurate rep-
resentation of the thermal field. Since these solutions are of a simpler form
than the general solution, they are more amenable to calculation, and as well
they indicate the regions in which the various heat transfer mechanisms are
relevant.

In this paper we consider heat transfer in a two-dimensional flat duct.
The results however apply equally well to tubes with smooth cross-sections
since the effects of curvature are negligible to the orders of magnitude
considered here. Two cases are considered. The 'isothermal' case where the
wall temperature is specified, and the 'adiabatic' case where we have insulated
walls and point heat sources on the boundaries.

•

2. Mathematical model

We consider a flat duct with sides at -q = 0 and TJ = a through which is
flowing a fluid in fully developed steady laminar Poiseuille flow. Ignoring
viscous dissipation, and assuming that the physical properties of the fluid are
independent of the temperature, the diffusion-convection equation for the
temperature 0(£, 17) of the fluid is

d2e d2e
+

wnere K is the thermal diffusivity, um is the mean fluid velocity and £ is the
axial co-ordinate.

For the 'isothermal' case, the boundary conditions are

8,,
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148 A. S. Jones [3]

This corresponds to an incoming fluid, initially having the same temperature
as the walls, which encounters a step change in wall temperature at the origin
f = 0.

For the 'adiabatic' case, the boundary conditions are

6& 7))-+6f, £-*°°

where Of is determined by considering the heat balance. This gives 6f =
0O + 2K<£ / aum.

This corresponds to forced convection in an insulated duct with point
sources of heat on the walls at the origin.

Equation 2.1 is rendered non-dimensional by setting x = £/a, y = rj/a
and introducing the Peclet number P = 6um a IK, which is assumed to be large.
Simultaneously we scale the temperature by setting

T = (0 - 0o)/(0i - do) in the isothermal case

and

T = (8 - 6o)/4> in the adiabatic case.

This yields the equation

T» + Tyy = Py(l-y)Tx, (2.2)

with boundary conditions

(a)

for the

(b)

T(x,0)=T(x,l) =

=

T(x,y)-»0 x-

isothermal case and

ry(x,o)=-s(*
Ty(x,l)=S(x),

T(x,y)->0

r(x,y)-»12/P

0

1

» -

),

x

x <0 ;

x >0.

oo;

- - 0 0 ,

X^°°,
for the adiabatic case.
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3. The isothermal case

(a) The Leveque solution.

If we set x = PX, equation 2.2 reduces to

and the Graetz approximation is now obtained by ignoring the term P'2TXX.
The resulting equation is further simplified near y = 0 if we ignore the term
y2Tx in comparison with yTx. This gives the Leveque approximation.

Tyy = yTx. (3.1)

One important consequence of the Graetz approximation is that it
converts the differential equation from elliptic to parabolic type, so that the
solution for x < 0 is T = 0.

The solution of 3.1 for x >0 is obtained by putting r\ ^ yX"1'3, and
assuming T = /(T/) . This gives

where /(0) = 1 and / —* 0 as
The solution is

which for small TJ is approximately

= l~r e

In order to determine the region in which the Leveque solution is
relevant, it is necessary to rederive equation 3.1 in a more systematic fashion.

If we set x = P~"X, y = P~"Y in equation 2.2, we obtain

TVy + P2ip-">TX^ = P1-3"-" YTX ~ P ' - 4 ' * " Y2TX. (3.2)

The Leveque equation TYY = YTX is therefore a valid approximation pro-
vided

l-3q+p =0

2(p-q)<0

and
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150 A. S. Jones [5]

1 - Aq + p < 0,

that is: p = 3q - 1, p < q and q > 0.
These restrictions are satisfied if Q<q<\ and -\<p <§. As q—»0,

p —» — 1, the form of the equation becomes

TYY - (Y - y2)Tx i.e. the Graetz equation.

This means that the Leveque solution matches into the Graetz solution when
y is O(l) and x is O(P).

On the other hand, as q—>\, p—>{, the equation becomes

TXX + Tyy = VTx, (3.3)

so that the effects of axial conduction should be included when x is O{P~m)
and y is O(P~m).

It should be noted that

"1/3 = P1'3 yx"I/3
v = YX"1'3 = po-"'3 yX"1/3 = P1'3 yx

so that the Leveque solution does not depend on the choice of p, q in the
relevant range.

From this analysis, we see that the Leveque solution is valid in a region
extending from close to the origin up to the region where the full Graetz
solution applies. This agrees with Mercer's results, where calculations based
on the first four perturbations of the Leveque solution gave excellent
agreement with those made using the Graetz solution.

(b) The approximation near the origin.

Near the origin, diffusion is the important heat transfer mechanism. Since
the fluid is isotropic, we adopt equal scaling for both the x and y variables.

Setting p = q in 3.2, we obtain

T x x + TVv = P1-2' YTX - P'-3p Y2TX.

For p > i this gives the approximation

TxX + Tyy — 0,

and the solution which satisfies

T(X,0) = 0, X<0,

= 1, X>0,

and is bounded as (X2 + Y2)—»o°; is

T = 1 - iarc tan (Y/X) = 1 - iarc tan (y/x),
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[6] Heat transfer in a duct 151

where the determination of arc tan is chosen to make T continuous; i.e.
0 g arc tan Z^TT.

In this region convection plays a negligible role in the heat transfer
process.

As p —> i we obtain again the equation

Txx + TYY
 = YTx,

which serves to link the diffusion solution with Leveque's solution,

(c) The intermediate solution: heat transfer in linear shear flow.

In the intermediate zone between the diffusion region at the origin and
the Leveque boundary layer, we have a region in which diffusion in both the
axial and transverse directions is balanced by convection.

The boundary conditions applicable to equation 3.3 are

T(X,O) =

=

T(*y) ->

o,
1,

o,

X

X

x

< 0 ;

> 0 .

-+0, Y-^+co.

To obtain the solution, we take the two-sided Laplace transform of 3.3
with respect to X.

If

e-pXT(X, Y)dX, then

f(p,0)=l/p ( 4 1 )

f(p,Y)-*0, Y^cc.

The solution of 4.1 which satisfies the boundary conditions is

f = Ai(p"3(Y-p))/pAi(-p4 '3) (4.2)

where Ai(z) is the Airy function.
The inversion of 4.2 is complicated by the presence of a branch point at

p = 0. If we introduce a branch cut from - °° to 0 along the negative real p
axis, we find that arg (p1/3(Y - p)) and a rg ( - p4/3) vary from - TT/3 to 7TT/3 as
arg p varies from - TT to TT.
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The zeros of Ai(z) occur when arg z = (2n + 1)TT, so that the poles of T
occur when p = 0 and at those points on the positive real axis for which

p*n = a,, where -a, is the sth zero of Ai(z).

Now

where 0 < c < a3,'* in order to ensure convergence of fZ«,e~pXT(X,0)dX and
to ensure that T—*0, X-* — oo.
For X < 0, we can close the path of integration on the right to obtain

T(X Y^-f3 exp((a,)3 /4X)Ai(ary-a,)

For X > 0, we deform the contour until it runs from — » to 0 and back along
each side of the branch cut, bearing in mind the pole, residue 1, at p = 0.
This-gives

-—r
2 7T/' Jo

Ai(s4/3e—/3)

1 r°°e-lXAi(
1 77 Jo 5 Ai2(-s4/3)+Bi2(-s4/3)

where Bi(z) is the second solution of the Airy equation, and extensive use has
been made of the formula

For large X( > 0) the asymptotic form of T(X, Y) is obtained by
expanding the non-exponential part of the integral in powers of s.

This gives

1 jn77" 3"3r(2/3)

3"3

J >\

r(i/3)
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[8] Heat transfer in a duct 153

Hence for large X, this solution matches with the Leveque solution.
For small X( > 0) we employ the polar form of the Airy functions

A i ( - z ) = M(z)cos0(z)

B i ( - z ) = M(z)sin0(z).
Hence

Setting t = sX we have

) 77 Jo / M{{tixy»)

Since the integrand behaves like C • t~wYX~m in the neighbourhood of
t = 0, the first integral is 0(81/3) provided YX~m remains bounded.

In the second integral we now consider X, Y < 8, subject to the above
provision.

For large Z,

and

Hence the second integral

—arctan(y/X).
7T
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Consequently, for small X, Y,

T(X, Y) ~ 1 - — arc tan (Y/X)

= 1 arctan(y/x)

so that this solution also matches into the diffusion solution near the origin.
In the upstream region we have the power series representation for

T(X, Y). For large | X | this gives

T(X, y)~3exp(arX)Ai(a! / 4 y -

~ e189X Ai(1.24Y-2.34)/2.1826

which has a maximum value of .245e189X when Y = 1.07.
This approximation gives T< .01 for X < - 1 . 7 , so that significant

preheating of the fluid is confined to a region of radius O(P in) of the origin,
and the upstream temperature decays exponentially as Pm.

For small |X| , the series converges slowly, which makes approximations
difficult. However, if we consider 7V(X,0) we have

and (a , ) 3 / 4~ V(3TTS/2) , SO that for small X,

Ty(X, 0) ~ 1 f ds exp (37rsx2/2)1'2/(37rs/2)1/2 = - 1/TTX,

which agrees with the derivative of 1 - (l/7r)arctan(Y/X), offering an
indirect proof that the upstream solution also matches the diffusion solution.

The behaviour of the solution near the origin is illustrated in Figure 1,
which shows some isotherms for the shear flow solution.

4. The adiabatic case

The scaling analysis which determines the regions of interest for the
isothermal case carries over unchanged for the adiabatic case. Hence we will
once again have a diffusion region close to the origin, a shear region around
this, a Leveque boundary layer region and a Graetz region far downstream.

Some care is needed in computing the boundary conditions since they are
affected by the scaling.

If x = p-"X, and y = p-"Y, then dT/dY = P'qdT/dy, and S(x) =
P"5(X).

https://doi.org/10.1017/S0334270000001041 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001041


[10] Heat transfer in a duct 155

T= 01

T=-5

T=-75

- 2 - 1

Figure 1. Isotherms in the neighbourhood of the origin.

Therefore the boundary condition

becomes

dT
dY

= P"-q8(X).

In the diffusion and shear regions p = q so that the form of the boundary
condition is unchanged, but in the Leveque region p = 3q — 1, giving

and in the Graetz region p = - 1, q = 0, so that 3TI3Y = P~l S(X).
In the diffusion region we have

TXX + 1 YY ~ 0,

TY(X,0)= -S(X),

for which the solution which grows least at infinity is

T(X, Y) = - - log V(X2 + Y2)-+ c
7T

= _J_
77

where the constant Ro is indeterminate.
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In the shear region we have

Txx ~t~ TYY
 = YTx

with boundary conditions

7Y(X,0)= -S(X)

T(X, Y)->0 X-*-°°

-•0 Y^oo.

Using the same method of solution as before, we obtain

3 y, exp((a ',)3/4X)Ai((a j)"4 Y - a \)
4$ (al)3/2Ai( a\)'-a\)

for X < 0, where - a \ is the sth zero of the derivative Ai'(Z) of Ai (Z), and

J_ [
77 Jo

, e - s x Ai ( - S"3(Y + S))Bi'(- S4/3)- Ai'(- S4/3)Bi(- Sm(Y + S))
d i S "3 (Ai'( - S4'3))2 + Bi'( - S4/3))2

for X > 0 .

For large X ( > 0),

, e^_ ( T(l/3)sin (TT/3)
asSm'\ 31/3r(2/3)

= 3-"3X-2/3/r(2/3)

= (3P)-1/3x-2/3/r(2/3).

For small X (> 0) the behaviour of T is more difficult to determine.

Once again we use the polar representations of the Airy functions. In this
case it gives

T(X, Y) = 1 J ff • M ( S J f f i | S)) • sin {^(54/3) - fl(S"3( Y + S))} ds
77

where N and <f> are the modulus and amplitude of the derived functions.
Splitting this integral to give T(X,Y)= (l/v)(JZ +f~)( )ds, the first

integral is O(KW) since the integrand is O(S~Vi) at the origin.
In the second integral we set t = SX to give

T — — \ V
7T J« X
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[12] Heat transfer in a duct 157

Now assuming K is large enough to justify the asymptotic forms for M and N,
we obtain

= - f dr(«-/«)(i + xy/0"1/4cos f Ir2/x2((l + xy/rf2-1))

~—[ dt(e-'/t)cos(tY/X)

= -e-cos(/y/X)logr]:x
77

— f y/Xsin(fy/X))

— lOgKX

+ —f dre-'logf(cos(ry/X)+ y/X sin (/y/X)) as X,
T Jo

= - ± log KX - ± log (y V(l

Hence T(X, Y) (l/7r)logV(^2+ Y2)+c, which agrees with the solution
in the diffusion region, but gives no analytic information regarding the
indeterminate constant.

A numerical value for the constant can however be obtained by
considering T(X, 0) for X < 0. The sum

T(X, 0) = \ 2 exp (p,X)/p] where p, = (a I)3'4

converges slowly for small X since p, is O(Sir2), as we would expect from the
logarithmic singularity in T when X = 0. This limits the accuracy to which the
calculations can be performed. However the values computed give T —
-log(|X|/2.8) for - . 1 < X < - . O 2 .

Hence near the origin we have
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The boundary layer approximation is given by the solution of

TYY
 = YTx

subject to the boundary conditions

7V(X,0)= -P2"-'S(X)

T(0, Y) = 0

Using the normal Laplace transform we obtain

fYY = pYf

with

fY = - P2q-1 when Y = 0,

so that

f(p, Y) = ̂ riltyP2"-1 Ai(pwY)lpm

the inverse of which is

T(X, Y) -= 3"1/3 P2"-' X~2n exp ( - Y3/9X)/r(2/3)

= (3P)'"3x-2/3exp(- Py3/9x)/r(2/3)

which matches into the shear flow solution.
The downstream "Graetz" solution is usually given in terms slightly of

different boundary conditions (Cess and Shaffer [1]) involving a constant
boundary flux. However, the modification for the boundary conditions used
here is straightforward, and the solution is

T(X, Y) = ^ + 2 c'nYn({)exp(-16(llX)

where £ = 2{Y-{) and the eigenvalues and eigenfunctions are those calcu-
lated by Cess and Shaffer [1].

5. Summary

From the above analysis we can see that there are four regions of physical
significance for forced convection at large Peclet number. To these may be
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[14] Heat transfer in a duct 159

added the core region in which the fluid temperature is essentially unchanged
from its upstream value.

In the region close to the origin, where x, y are O(P~m~°) convection is
negligible and we obtain a simple diffusion solution. Since there is no
convective term in the equation, we have an essentially symmetric tempera-
ture field in the neighbourhood of the origin. This region encompasses the
singularities of the solution, and in the isothermal case we have an infinite
amount of heat transferred through this region.

Surrounding this region is the shear flow region in which the effects of
convection first become apparent. All significant upstream diffusion takes
place in this region, with the temperature decaying exponentially as Pmx as x
tends to — °°, with less than one percent of the heat escaping further than a
distance O(P~"2) upstream of the origin. Downstream the heat is confined to a
region close to the wall and the solution matches into the boundary layer
solution. The effects of diffusion in the axial direction are confined to these
two regions so that axial diffusion is significant only in a region of radius
O(P~"2) near the origin.

The third region is the boundary layer adjacent to the wall downstream
of the origin. In this region, as in the first two, the temperature field is not
affected by either curvature effects or by the presence of a second wall, so that
to all intents and purposes we have forced convection from a flat plate. This is
especially noticeable in the adiabatic case, where in the absence of a second
boundary the shear and boundary layer solutions tend to zero far down-
stream. However, when x is O(P) the solutions are O(P~l) as they should be
for the matching into the downstream solution.

In the final downstream region the solution takes on the character of the
tube or duct in which the heat transfer is taking place. In the two dimensional
case treated here this corresponds to the interaction of the two boundary
layers, while in other cases there are also curvature effects to be taken into
account. It should be noted that an analysis of the case of a circular tube
shows that there is no intermediate region in which curvature effects on the
boundary layer are significant.

For small values of the Peclet number all these regions coalesce to a
certain extent and we have a significant region of upstream heat penetration.
However the diffusion region close to the origin and the downstream region
retain their character; the former because it represents a region in which
convection is not important, an effect which is enhanced as the Peclet number
becomes smaller, and the latter because it is a region in which the tempera-
ture field varies only slowly in the axial direction, the difference being the rate
at which the temperature approaches its final value.
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