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Abstract

We develop a novel Monte Carlo algorithm for the vector consisting of the supremum,
the time at which the supremum is attained, and the position at a given (constant) time of
an exponentially tempered Lévy process. The algorithm, based on the increments of the
process without tempering, converges geometrically fast (as a function of the computa-
tional cost) for discontinuous and locally Lipschitz functions of the vector. We prove
that the corresponding multilevel Monte Carlo estimator has optimal computational
complexity (i.e. of order ε−2 if the mean squared error is at most ε2) and provide its
central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier
option prices and various risk measures based on drawdown under the tempered stable
(CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and
asymptotic comparisons of our algorithm with existing approximations, leading to rule-
of-thumb principles guiding users to the best method for a given set of parameters. We
illustrate the performance of the algorithm with numerical examples.
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1. Introduction

1.1. Setting and motivation

The class of tempered stable processes is very popular in the financial modelling of asset
prices of risky assets; see e.g. [10]. A tempered stable process X = (Xt)t≥0 naturally addresses
the shortcomings of diffusion models by allowing for the large (often heavy-tailed and asym-
metric) sudden movements of the asset price observed in the markets, while preserving the
exponential moments required in exponential Lévy models S0eX of asset prices [7, 10, 26, 36].
Of particular interest in this context are the expected drawdown (the current decline from a his-
torical peak) and its duration (the elapsed time since the historical peak) (see e.g. [3, 8, 28, 38,
39]), as well as barrier option prices [2, 14, 27, 37] and the estimation of ruin probabilities in
insurance [25, 29, 31]. In these application areas, the key quantities are the historic maximum
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Stick-breaking approximation for tempered Lévy processes 1363

XT at time T , the time τT (X) at which this maximum was attained during the time interval
[0,T], and the value XT of the process X at time T .

In this paper we focus on the Monte Carlo (MC) estimation of E[g(XT , XT , τT (X))], where
the payoff g is (locally) Lipschitz or of barrier type (cf. Proposition 3.1 below), covering the
aforementioned applications. We construct a novel tempered stick-breaking algorithm (TSB-
Alg), applicable to a tempered Lévy process, if the increments of the process without tempering
can be simulated, which clearly holds if X is a tempered stable process. We show that the bias
of TSB-Alg decays geometrically fast in its computational cost for functions g that are either
locally Lipschitz or of barrier type (see Subsection 3 for details). We prove that the corre-
sponding multilevel Monte Carlo (MLMC) estimator has optimal computational complexity
(i.e. of order ε−2 if the mean squared error is at most ε2) and establish the central limit the-
orem (CLT) for the MLMC estimator. Using the CLT we construct confidence intervals for
barrier option prices and various risk measures based on drawdown under the tempered stable
(CGMY) model. TSB-Alg combines the stick-breaking algorithm in [18] with the exponential
change of measure for Lévy processes, also applied in [33] for the MC pricing of European
options. A short YouTube video [17] describes TSB-Alg and the results of this paper.

1.2. Comparison with the literature

Exact simulation of the drawdown is currently out of reach. Under the assumption that the
increments of the Lévy process X can be simulated (an assumption not satisfied by tempered
stable models of infinite variation), the algorithm SB-Alg in [18] has a geometrically small
bias, significantly outperforming other algorithms for which the computational complexity
analysis has been carried out. For instance, the computational complexity analysis for the pro-
cedures presented in [12, 24], applicable to tempered stable processes of finite variation, has
not been carried out, so that a direct quantitative comparison with SB-Alg [18] is not possible at
present. If the increments cannot be sampled, a general approach utilises the Gaussian approxi-
mation of small jumps, in which case the algorithm SBG-Alg [16] outperforms its competitors
(e.g. random walk approximation; see [16] for details), while retaining polynomially small
bias. Thus it suffices to compare TSB-Alg below with SB-Alg [18] and SBG-Alg [16]. Table 1
below provides a summary of the properties of TSB-Alg, SB-Alg, and SBG-Alg as well as the
asymptotic computational complexities of the corresponding MC and MLMC estimators based
on these algorithms (see also Subsection 3.4 below for a detailed comparison).

The stick-breaking (SB) representation in (2) plays a central role in the algorithms TSB-Alg,
SB-Alg, and SBG-Alg. The SB representation was used in [18] to obtain an approximation
χn of χ := (XT , XT , τT (X)) that converges geometrically fast in the computational cost when
the increments of X can be simulated exactly. In [16], the same representation was used in
conjunction with a small-jump Gaussian approximation for arbitrary Lévy processes. In the
present work we address a situation in between those of the two aforementioned papers, using
TSB-Alg below. TSB-Alg preserves the geometric convergence in the computational cost of
SB-Alg, while being applicable to general tempered stable processes (unlike SB-Alg [18] in
the infinite-variation case) and asymptotically outperforming SBG-Alg [16]; see Table 1 for an
overview.

1.3. Organisation

The remainder of the paper is structured as follows. In Section 2 we recall the SB repre-
sentation and construct TSB-Alg. In Section 3 we describe the geometric decay of the bias
and the strong error in Lp and explain what the computational complexities of the MC and
MLMC estimators are. We discuss briefly in Subsection 3.3 the construction and properties of
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TABLE 1. Summary of the properties of TSB-Alg, SB-Alg [18], and SBG-Alg [16]. The index β∗, defined
in (21) below, is slightly larger than the Blumenthal–Getoor index β; see Section 5 below for details. The
bias and level variance are parametrised by computational effort n as n → ∞, while the MC and MLMC
complexities are parametrised by the accuracy ε (i.e., the mean squared error is at most ε2) as ε → 0.

Algorithm TSB-Alg SB-Alg [18] SBG-Alg [16]

Class of Lévy
processes to
which algorithm
applies

Tempered Lévy
process for which the
increments of the
process without
tempering can be
simulated (includes all
tempered stable
processes!)

Lévy process whose
increments can be
simulated (among
tempered stable,
includes only
finite-variation
processes)

Lévy process whose
jumps of magnitude
greater than any δ > 0
can be simulated
(includes all tempered
stable processes)

Bias and level
variance

Both decay
exponentially as
O(e−ϑgn) where ϑ > 0
depends on g and β

(see Proposition 3.1
below)

Both decay
exponentially as
O(e−ϑgn) where ϑ > 0
depends on g and β

(see [18, Propositions
1–3])

Bias and level variance
decay polynomially as
O(n−p) and O(n−q),
respectively, where
p ≥ q > 0 depend on g
and β (see [16, Section
3.2] for bias and [16,
Section 6.5.2] for level
variance)

MC complexity O(ε−2 log (1/ε)) for
locally Lipschitz or
barrier-type g (see
Section 3 below)

O(ε−2 log (1/ε)) for
locally Lipschitz or
barrier-type g (see [18,
Section 2.4])

O(ε−2−β∗ ) for locally
Lipschitz g; otherwise,
complexity is larger (see
[16, Table 2])

MLMC
complexity

O(ε−2) for locally
Lipschitz or
barrier-type g (see
Section 3 below)

O(ε−2) for locally
Lipschitz or
barrier-type g (see [18,
Section 2.4])

O(ε−2 min{β∗,1}) for
locally Lipschitz g;
otherwise, complexity is
larger (see [16, Table 3])

unbiased estimators based on TSB-Alg. In Subsection 3.4 we provide an in-depth comparison
of TSB-Alg with the SB and SBG algorithms, identifying where each algorithm outperforms
the others. In Section 4 we consider the case of tempered stable processes and illustrate the
previously described results with numerical examples. The proofs of all the results except
Theorem 2.1, which is stated and proved in Section 2, are given in Section 5 below.

2. The tempered stick-breaking algorithm

Let T > 0 be a time horizon and λ = (λ+, λ−) ∈R
2+ a vector with non-negative coordinates,

different from the origin 0 = (0, 0). A stochastic process X = (Xt)t∈[0,T] is said to be a tempered
Lévy process under the probability measure Pλ if its characteristic function satisfies

t−1 log Eλ

[
eiuXt

]=iubλ − 1

2
σ 2u2 +

∫
R\{0}

(
eiux − 1 − iux · 1(−1,1)(x)

)
νλ(dx),

for all u ∈R, t > 0,
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where Eλ denotes the expectation under the probability measure Pλ, and the generating (or
Lévy) triplet (σ 2, νλ, bλ) is given by

νλ(dx) := e−λsgn(x)|x|ν(dx) and bλ := b +
∫

(−1,1)
x
(
e−λsgn(x)|x| − 1

)
ν(dx), (1)

where σ 2 ∈R+, b ∈R, and ν is a Lévy measure on R \ {0}, i.e. ν satisfies
∫

(−1,1) x2ν(dx) < ∞
and ν(R \ (−1, 1)) < ∞. (All Lévy triplets in this paper are given with respect to the cutoff
function x �→ 1(−1,1)(x), and the sign function in (1) is defined as sgn(x) := 1{x>0} − 1{x<0}.)
The triplet

(
σ 2, νλ, bλ

)
uniquely determines the law of X via the Lévy–Khintchine formula

for the characteristic function of Xt for t > 0 given in the displays above (for details, see [35,
Theorems 7.10 and 8.1, Definition 8.2]).

Our aim is to sample from the law of the statistic (XT , XT , τT ) consisting of the position XT

of the process X at T , the supremum XT := sup{Xs:s ∈ [0, T]} of X on the time interval [0,T],
and the time τT := inf{s ∈ [0, T]:Xs = XT} at which the supremum was attained in [0,T]. By
[18, Theorem 1] there exists a coupling (X, Y, �) under a probability measure Pλ, such that
� = (�n)n∈N is a stick-breaking process on [0,T] based on the uniform law U(0, 1) (i.e. L0 := T ,
Ln := Ln−1Un, and �n := Ln−1 − Ln for n ∈N, where the Un are independent and identically
distributed (i.i.d.) as U(0, 1)), independent of the Lévy process Y with law equal to that of X,
and the SB representation holds Pλ-almost surely (a.s.):

χ := (XT , XT , τT ) =
∞∑

n=1

(
ξn, max{ξn, 0}, �n · 1{ξn>0}

)
, where ξn := YLn−1 − YLn , n ∈N.

(2)
We stress that � is not independent of X. In fact (�, Y) can be expressed naturally through
the geometry of the path of X (see [32, Theorem 1] and the coupling in [18]), but further
details of the coupling are not important for our purposes. The key step in the construction of
our algorithm is given by the following theorem. Its proof is based on the coupling described
above and the change-of-measure theorem for Lévy processes [35, Theorems 33.1 and 33.2].

Theorem 2.1. Denote by σB, Y (+), Y (−) the independent Lévy processes with generating
triplets

(
σ 2, 0, 0

)
, (0, νλ|(0,∞), 0), (0, νλ|(−∞,0), 0), respectively, satisfying Yt = σBt + Y (+)

t +
Y (−)

t + bλt for all t ∈ [0, T], Pλ-a.s. Let Eλ (resp. E0) be the expectation under Pλ (resp. P0)
and define

ϒλ := exp
(−λ+Y (+)

T + λ−Y (−)
T − μλT

)
, where (3)

μλ :=
∫
R

(
e−λsgn(x)|x| − 1 + λsgn(x)|x| · 1(−1,1)(x)

)
ν(dx). (4)

Then for any σ (�, ξ )-measurable random variable ζ with Eλ|ζ | < ∞ we have Eλ[ζ ] =
E0[ζϒλ].

Proof. The exponential change-of-measure theorem for Lévy processes (see [35, Theorems
33.1 and 33.2]) implies that for any measurable function F with Eλ|F((Yt)t∈[0,T])| < ∞, we
have the identity Eλ[F((Yt)t∈[0,T])] =E0[F((Yt)t∈[0,T])ϒλ], where ϒλ is defined in (3) in the
statement of Theorem 2.1. Since the stick-breaking process � is independent of Y under both Pλ
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and P0, this property extends to measurable functions of (�, (Yt)t∈[0,T]) and thus to measurable
functions of (�, ξ ), as claimed. �

By the equality in (2), the measurable function ζ of the sequences � and ξ in Theorem 2.1
may be equal either to g(χ ) (for any integrable function g of the statistic χ ) or to its
approximation g(χn), where χn is as introduced in [18]:

χn := (
YLn , max{YLn , 0}, Ln · 1{YLn>0}

)+
n∑

k=1

(
ξk, max{ξk, 0}, �k · 1{ξk>0}

)
. (5)

Theorem 2.1 enables us to sample χn under the probability measure P0, which for any tempered
stable process X makes the increments of Y stable and thus easy to simulate. Under P0, the law
of Yt equals that of Y (+)

t + Y (−)
t + σBt + bt, where σBt + bt is normal N

(
bt, σ 2t

)
with mean

bt and variance σ 2t and the Lévy processes Y (+) and Y (−) have triplets (0, ν|(0,∞), 0) and

(0, ν|(−∞,0), 0), respectively. Denote their distribution functions by F(±)(t, x) := P0
(
Y (±)

t ≤ x
)
,

x ∈R, t > 0.

TSB-Alg

Unbiased simulation of g(χn) under Pλ

Require: Tempering parameter λ ∈R
2+ \ {0}, generating triplet

(
σ 2, ν, b

)
, time horizon

T > 0, test function g, approximation level n ∈N

1: Set L0 = T and compute μλ in (4)
2: for k = 1, . . . , n do
3: Sample Uk ∼ U(0, 1) and put Lk = UkLk−1 and �k = Lk−1 − Lk

4: Sample ξ
(±)
k ∼ F(±)(�k, ·), Gk ∼ N

(
�kb, σ 2�k

)
and put ξk = ξ

(+)
k + ξ

(−)
k + Gk

5: Sample ζ
(±)
n ∼ F(±)(Ln, ·), Hn ∼ N

(
Lnb, σ 2Ln

)
and put ζn = ζ

(+)
n + ζ

(−)
n + Hn

6: end for
7: Set χn =∑n

k=1 (ξk, max{ξk, 0}, �k1{ξk>0}) + (ζn, max{ζn, 0}, Ln1{ζn>0}) and

Y (±)
T = ζ

(±)
n +∑n

k=1 ξ
(±)
k

8: return g(χn) exp
(−λ+Y (+)

T + λ−Y (−)
T − μλT

)
Note that the output g(χn)ϒλ of TSB-Alg is sampled under P0 and, by Theorem 2.1 above,

is unbiased since E0[g(χn)ϒλ] =Eλ[g(χn)]. As our aim is to obtain MC and MLMC estima-
tors for Eλ[g(χ )], our next task is to understand the expected error of TSB-Alg; see (6) in
Subsection 3.1 below. In [18] it was proved that the approximation χn converges geometrically
fast in computational effort (or equivalently as n → ∞) to χ if the increments of Y can be
sampled under Pλ (see [18] for more details and a discussion of the benefits of the ‘correction
term’ (YLn , max{YLn , 0}, Ln · 1{YLn>0}) in (5)). Theorem 2.1 allows us to weaken this require-
ment in the context of tempered Lévy processes, by requiring that we be able to sample the
increments of Y under P0. The main application of TSB-Alg is to general tempered stable pro-
cesses, as the simulation of their increments is currently out of reach for many cases of interest
(see Section 3.4 below for comparison with existing methods when it is not), making the main
algorithm in [18] not applicable. Moreover, Theorem 2.1 allows us to retain the geometric
convergence of χn established in [18]; see Section 3 below for details.
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3. Monte Carlo and multilevel Monte Carlo estimators based on TSB-Alg

3.1. Bias of TSB-Alg

An application of Theorem 2.1 implies that the bias of TSB-Alg equals

Eλ[g(χ )] −E0[g(χn)ϒλ] =E0
[
�g

n

]
, where �

g
n := (g(χ ) − g(χn))ϒλ. (6)

The natural coupling
(
χ, χn, Y (+)

T , Y (−)
T

)
in (6) is defined by Y (±)

T := ∑∞
k=1 ξ

(±)
k , ξk := ξ

(+)
k +

ξ
(−)
k + ηk for all k ∈N, χ in (2), and χn in (5) with YLn := ∑∞

k=n+1 ξk, where, conditional on

the stick-breaking process � = (�k)k∈N, the random variables {ξ (±)
k , ηk:k ∈N} are independent

and distributed as ξ
(±)
k ∼ F(±)(�k, ·) and ηk ∼ N

(
�kb, σ 2�k

)
for k ∈N.

The following result presents the decay of the strong error �
g
n for Lipschitz, locally

Lipschitz, and two classes of barrier-type discontinuous payoffs that arise frequently in applica-
tions. Observe that, in all cases and under the corresponding mild assumptions, the pth moment
of the strong error �

g
n decays exponentially fast in n with a rate ϑ > 0 that depends on the

payoff g, the index β∗ defined in (21) below, and the degree p of the considered moment.
In Proposition 3.1 and throughout the paper, the notation f (n) =O(g(n)) as n → ∞ for func-
tions f , g:N→ (0, ∞) means lim supn→∞ f (n)/g(n) < ∞. Put differently, f (n) =O(g(n)) is
equivalent to f (n) being bounded above by C0g(n) for some constant C0 > 0 and all n ∈N.

Proposition 3.1. Let λ = (λ+, λ−), ν, and σ 2 be as in Section 2, and fix p ≥ 1. Then, for the
classes of payoffs g(χ ) = g(XT , XT , τT ) below, the strong error of TSB-Alg decays as follows
(as n → ∞).

(Lipschitz.) Suppose |g(x, y, t) − g(x, y′, t′)| ≤ K(|y − y′| + |t − t′|) for some K and all
(x, y, y′, t, t′) ∈R×R

2+ × [0, T]2. Then E0
[∣∣�g

n
∣∣p]=O(

e−ϑpn
)
, where ϑp ∈ [ log (3/2), log 2]

is in (23) below.

(Locally Lipschitz.) Let |g(x, y, t) − g(x, y′, t′)| ≤ K(|y − y′| + |t − t′|)emax{y,y′} for
some constant K > 0 and all (x, y, y′, t, t′) ∈R×R

2+ × [0, T]2. If λ+ ≥ q > 1 and∫
[1,∞) ep(q−λ+)xν(dx) < ∞, then E0

[∣∣�g
n
∣∣p]=O(

e−(ϑpr/r)n
)
, where r := (1 − 1/q)−1 > 1

and ϑpr ∈ [ log (3/2), log 2] is as in (23).

(Barrier type 1.) Suppose g(χ ) = h(XT ) · 1{XT ≤ M} for some M > 0 and a measurable
bounded function h:R→R. If P0(M < XT ≤ M + x) ≤ Kx for some K > 0 and all x ≥ 0,
then for α∗ ∈ (1, 2] in (22) and any γ ∈ (0, 1) we have E0

[∣∣�g
n
∣∣p]=O(

e−[γ log (2)/(γ+α∗)]n
)
.

Moreover, we may take γ = 1 if any of the following hold: σ 2 > 0 or
∫

(−1,1) |x|ν(dx) < ∞ or
Assumption 5.1 below.

(Barrier type 2.) Suppose g(χ ) = h(XT , XT ) · 1{τT ≤ s}, where s ∈ (0, T), and h is measurable
and bounded with |h(x, y) − h(x, y′)| ≤ K|y − y′| for some K > 0 and all (x, y, y′) ∈R×R

2+. If
σ 2 > 0 or ν(R \ {0}) = ∞, then E0

[∣∣�g
n
∣∣p]=O(

e−n/e
)
.

Remark 3.1. (i) The proof of Proposition 3.1, given in Section 5 below, is based on Theorem
2.1 and analogous bounds in [18] (for Lipschitz, locally Lipschitz, and barrier-type-1 pay-
offs) and [16] (for barrier-type-2 payoffs). In particular, in the proof of Proposition 3.1 below,
we need not assume λ+ > 0 to apply [18, Proposition 1], which works under our standing
assumption λ �= 0.
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(ii) For barrier option payoffs under a tempered stable process X (i.e. the barrier-type-1
class in Proposition 3.1), we may take γ = 1 since X satisfies either

∫
(−1,1) |x|ν(dx) < ∞ or

Assumption 5.1.
(iii) The restriction p ≥ 1 is not essential, as we may consider any p > 0 at the cost of a

smaller (but still geometric) convergence rate. In particular, our standing assumption λ �= 0
(and λ+ > 1 in the locally Lipschitz case) guarantees the finiteness of the p-moment of the
strong error �

g
n for any p > 0. However, the restriction p ≥ 1 covers the cases p ∈ {1, 2}

required for the MC and MLMC complexity analyses and ensures that the corresponding
rate ϑs in (23) lies in [ log (3/2), log 2]. In fact, for any payoff g in Proposition 3.1 we have
E0

[∣∣�g
k

∣∣p]=O(
e−ϑgk

)
for p ∈ {1, 2} and a positive rate ϑg > 0 bounded away from zero:

ϑg ≥ 0.23 (resp. log (3/2), (1 − 1/λ+) log (3/2)) for barrier-type-1 and barrier-type-2 (resp.
Lipschitz, locally Lipschitz) payoffs.

3.2. Computational complexity and the central limit theorem for the Monte Carlo and
multilevel Monte Carlo estimators

Consider the MC estimator

θ̂
g,n
MC := 1

N

N∑
i=1

θ
g,n
i , (7)

where {θg,n
i }i∈N is the i.i.d. output of TSB-Alg with θ

g,n
1

d= g(χn)ϒλ (under P0) and n, N ∈N.
The corresponding MLMC estimator is given by

θ̂
g,n
ML: =

n∑
k=1

1

Nk

Nk∑
i=1

Dg
k,i, (8)

where {Dg
k,i}k,i∈N is an array of independent variables satisfying Dg

k,i
d= (g(χk) − g(χk−1))ϒλ

and Dg
1,i

d= g(χ1)ϒλ (under P0), for i ∈N, k ≥ 2, and n, N1, . . . , Nn ∈N. Note that TSB-Alg
can easily be adapted to sample the variable Dg

k,i by drawing the ingredients for (χk, ϒλ)
and computing (χk−1, χk, ϒλ) deterministically from the output; see [18, Subsection 2.4] for
further details. In the following, we refer to V0

[
Dg

k,1

]
as the level variance of the MLMC

estimator.
The computational complexity analysis of the MC and MLMC estimators is given in the

next result (the usual notation �x
 := inf{k ∈N:k ≥ x}, x ∈R+, is used for the ceiling func-
tion). In Proposition 3.2 and throughout the paper, the computational cost of an algorithm is
measured as the total number of operations carried out by the algorithm. In particular, we
assume that the following operations have computational costs uniformly bounded by some
constant (measured, for instance, in units of time): simulation from the uniform law; simula-
tion from the laws F(±)(t, ·), t > 0; evaluation of elementary mathematical operations such as
addition, subtraction, multiplication, and division; and evaluation of elementary functions such
as exp, log, sin, cos, tan, and arctan.

Proposition 3.2. Let the payoff g from Proposition 3.1 also satisfy E0
[
g(χ )2ϒ2

λ

]
< ∞. For any

ε > 0, let n(ε) := inf{k ∈N:|E0[g(χk)ϒλ] −Eλ[g(χ )]| ≤ ε/
√

2}. Let c be an upper bound on
the expected computational cost of line 2 in TSB-Alg for a time horizon bounded by T, and let
V0[ · ] denote the variance under the probability measure P0.
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(MC.) Suppose n = n(ε) and N = �2ε−2
V0[g(χn)ϒλ]
. Then the MC estimator θ̂

g,n
MC is

ε-accurate, i.e. E0
[∣∣θ̂g,n

MC −Eλ[g(χ )]
∣∣2]≤ ε2, with expected cost CMC(ε) := c(n + 1)N =

O(
ε−2 log (1/ε)

)
as ε → 0.

(MLMC.) Suppose n = n(ε) and set

Nk :=
⌈

2ε−2
√
V0

[
Dg

k,1

]
/k

(
n∑

j=1

√
jV0

[
Dg

j,1

])⌉
, k ∈ {1, . . . , n}. (9)

Then the MLMC estimator θ̂
g,n
ML is ε-accurate, and the corresponding expected cost equals

CML(ε) := 2cε−2

(
n∑

k=1

√
kV0

[
Dg

k,1

])2

=O(
ε−2) as ε → 0. (10)

Proposition 3.1 (with p = 1) implies that the bias in (6) equals E0
[
�

g
n
]=O(

e−ϑgn
)

as
n → ∞ for some ϑg > 0. Thus, the integer n(ε) in Proposition 3.2 is finite for all payoffs g
considered in Proposition 3.1, and moreover, n(ε) =O( log (1/ε)) as ε → 0 in all cases. In
addition, by Remark 3.1(i) above, the variance of θ

g,k
1 is bounded in k ∈N:

V0
[
θ

g,k
1

]≤E0
[
g(χk)2ϒ2

λ

]≤ 2E0
[
g(χ )2ϒ2

λ

]+ 2E0
[(

�
g
k

)2]→ 2E0
[
g(χ )2ϒ2

λ

]
< ∞ as k → ∞.

Note that barrier-type payoffs g considered in Proposition 3.1 satisfy the second moment
assumption, while in the Lipschitz or locally Lipschitz cases it is sufficient to assume addition-
ally that λ+ is either positive or strictly greater than one, respectively. Moreover, V0

[
Dg

k,1

]≤
2E0

[(
�

g
k

)2 + (
�

g
k−1

)2]=O(
e−ϑgk

)
for ϑg > 0 bounded away from zero (see Remark 3.1(iii)

above). These facts and the standard complexity analysis for MLMC (see e.g. [16, Appendix
A] and the references therein) imply that the estimators θ̂

g,n
MC and θ̂

g,n
ML are ε-accurate with the

stated computational costs, proving Proposition 3.2.
We stress that the payoffs g in Proposition 3.2 include discontinuous payoffs in the supre-

mum XT (barrier type 1) or the time τT when this supremum is attained (barrier type 2), with
the corresponding computational complexities of the MC and MLMC estimators given by
O(

ε−2 log (1/ε)
)

and O(
ε−2

)
, respectively. This theoretical prediction matches the numeri-

cal performance of TSB-Alg for barrier options and the modified ulcer index; see Section 4.2
below.

For obtaining confidence intervals (CIs) for the MC and MLMC estimators θ̂
g,n
MC and θ̂

g,n
ML, a

CLT can be very helpful. (The CIs derived in this paper do not account for model uncertainty or
the uncertainty in the estimation or calibration of the parameters.) In fact, the CLT is necessary
to construct a CI if the constants in the bounds on the bias in Proposition 3.1 are not explicitly
known (e.g. for barrier-type-1 payoffs, the constant depends on the unknown value of the
density of the supremum XT at the barrier); see the discussion in [18, Section 2.3]. Moreover,
even if the bias can be controlled explicitly, the concentration inequalities typically lead to
wider CIs than those based on the CLT; see [4, 20]. The following result establishes the CLT
for the MC and MLMC estimators valid for payoffs considered in Proposition 3.1.

Theorem 3.1. [CLT for TSB-Alg] Let g be any of the payoffs in Proposition 3.1, satisfying in
addition E0

[
g(χ )2ϒ2

λ

]
< ∞. Let ϑg ∈ (0, log 2] be the rate satisfying E0

[∣∣�g
n
∣∣]=O(

e−ϑgn
)
,

given in Proposition 3.1 and Remark 3.1(iii) above (with p = 1). Fix c0 > 1/ϑg, let n = n(ε) :=
�c0 log (1/ε)
, and suppose N and N1, . . . , Nn are as in Proposition 3.2. Then the MC and
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MLMC estimators θ̂
g,n
MC and θ̂

g,n
ML respectively satisfy the following CLTs (Z is a standard normal

random variable):

√
2ε−1(θ̂g,n(ε)

MC −Eλ[g(χ )]
) d→ Z, and

√
2ε−1(θ̂g,n(ε)

ML −Eλ[g(χ )]
) d→ Z, as ε → 0.

(11)

Theorem 3.1 works well in practice: in Figure 7 of Section 4.2 below we construct CIs (as
a function of decreasing accuracy ε) for an MLMC estimator of a barrier option price under
a tempered stable model. The rate c0 can be taken arbitrarily close to 1/ϑg, where ϑg is the
corresponding geometric rate of decay of the error for the payoff g in Proposition 3.1 (ϑg is
bounded away from zero by Remark 3.1(iii) above), ensuring that the bias of the estimators
vanishes in the limit.

By Lemma 5.2 below, the definition of the sample sizes N and N1, . . . , Nn in Proposition 3.2
implies that the variances of the estimators θ̂

g,n(ε)
MC and θ̂

g,n(ε)
ML (under P0) satisfy

V0
[
θ̂

g,n(ε)
MC

]
ε2/2

= V0
[
θ

g,n(ε)
1

]
ε2N/2

→ 1 and
V0

[
θ̂

g,n(ε)
ML

]
ε2/2

=
n(ε)∑
k=1

V0
[
Dg

k,1

]
ε2Nk/2

→ 1 as ε → 0.

Hence, the CLT in (11) can also be expressed as follows:(
θ̂

g,n(ε)
MC −Eλ[g(χ )]

)
/V0

[
θ̂

g,n(ε)
MC

]1/2 d→ Z

and
(
θ̂

g,n(ε)
ML −Eλ[g(χ )]

)
/V0

[
θ̂

g,n(ε)
ML

]1/2 d→ Z, as ε → 0.

Since the variances V0
[
θ̂

g,n(ε)
MC

]
and V0

[
θ̂

g,n(ε)
ML

]
can be estimated from the sample, this is in fact

how the CLT is often applied in practice. The proof of Theorem 3.1 is based on the CLT for
triangular arrays and amounts to verifying Lindeberg’s condition for the estimators θ̂

g,n
MC and

θ̂
g,n
ML; see Section 5 below.

3.3. Unbiased estimators

It is known that when the MLMC complexity is optimal, it is possible to construct unbiased
estimators without altering the optimal computational complexity O(

ε−2
)

as ε → 0. Such debi-
asing techniques are based around randomising the number of levels sup{k ∈N:Nk > 0} and
number of samples (Nk)k∈N at each level of the variables {Dg

k,i}k,i∈N in the MLMC estimator in
(8); see e.g. [30, 34, 40]. More precisely, following [40, Theorem 7], for any g in Proposition
3.1 and a parameter N ∈N, we may construct an almost surely finite sequence of random inte-
gers (Nk)k∈N (i.e. sup{k ∈N:Nk > 0} < ∞ a.s.) with explicit means E0[Nk] > 0, such that the
estimator

P̂N :=
∞∑

k=1

1

E0[Nk]

Nk∑
i=1

Dg
k,i (12)

is unbiased, E0[P̂N] =Eλ[g(χ )], and its variance V0[P̂N] and expected computational cost
(under P0) are proportional to 1/N and N, respectively, as N → ∞. The MC complexity anal-
ysis of the estimator P̂N is then nearly identical to that of the classical MC estimator for exact
simulation algorithms.

There are several parametric ways of constructing the random sequence (Nk)k∈N (see e.g.
[40]), and it is also possible to optimise for the parameters appearing in these constructions
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as a function of the considered payoff g and other characteristics of X (see e.g. [18, Section
2.5]). The details of such optimisations have been omitted in the present work in the interest
of brevity, since they coincide with those found in [18, Section 2.5 and Appendix A.3]. We
comment that, as pointed out by the referee, in addition to achieving the optimal complexity,
unbiased estimators (referred to as ‘single-term estimators’ in [34, 40]) also achieve the same
asymptotic variance as the MLMC estimators (see [40, Theorem 19]). Moreover, there are
cases where unbiased estimators of a different form (referred to as ‘coupled-sum estimators’
in [34, 40]) achieve much smaller asymptotic variance than the MLMC (see Table 17 in the
online supplement of [34]). We are grateful to the referee for this observation.

3.4. Comparisons

This subsection provides non-asymptotic and asymptotic performance comparisons of esti-
mators based on TSB-Alg. The main aim is to develop rule-of-thumb principles guiding the
user to the most effective estimator. In Subsection 3.4.1, for a given value of the accuracy ε, we
compare the computational complexity of the MC and MLMC estimators based on TSB-Alg.
The MLMC estimator based on TSB-Alg is compared with the ones based on SB-Alg [18]
with rejection sampling (available only when the jumps of X are of finite variation) and SBG-
Alg [16] in Subsections 3.4.2 and 3.4.3, respectively. In both cases we analyse the behaviour
of the computational complexity in two regimes: (I) ε tending to 0 and fixed time horizon T;
(II) fixed ε and time horizon T tending to 0 or ∞.

Regime (II) is useful when there is a limited benefit to arbitrary accuracy in ε but the con-
stants may vary greatly with the time horizon T . For example, in option pricing, estimators
with accuracy smaller than a basis point are of limited interest. For simplicity, in the remainder
of this subsection the payoff g is assumed to be Lipschitz. However, analogous comparisons
can be made for other payoffs under appropriate assumptions.

3.4.1. Comparison between the Monte Carlo and multilevel Monte Carlo estimators based on
TSB-Alg Recall first that both MC and MLMC estimators have the same bias, since the latter
estimator is a telescoping sum of a sequence of the former estimators, controlled by n(ε) given
in Theorem 3.1 above.

Regime (I). Propositions 3.1 and 3.2 imply that the MLMC estimator outperforms the
MC estimator as ε → 0. Moreover, since V0[g(χn)ϒλ] →V0[g(χ )ϒλ] and ε2CML(ε) →
2c
(∑∞

k=1 (kV0
[
Dg

k,1

]
)1/2

)2
< ∞ as ε → 0, the MLMC estimator is preferable to the MC

estimator for ε > 0 satisfying

n(ε) >

( ∞∑
k=1

√
kV0

[
Dg

k,1

])2

/V0
[
g(χ )ϒλ

]
.

Since the payoff g is Lipschitz, Proposition 3.1 implies that this condition is close to

log (1/ε) > ϑ1

( ∞∑
k=1

√
k
(
2−k − e−2ϑ1k

))2

,

where we recall that ϑ1 ∈ [ log (3/2), log 2] is defined in (23) below. In particular, the latter
condition is equivalent to ε < 0.0915 if ϑ1 = log (3/2), or ε < 5.06 × 10−5 if ϑ1 = log 2.

Regime (II). Assume ε > 0 is fixed. In this case, the MC and MLMC estimators share
the value of n = n(ε), which is O( max{1, log T}) as either T → 0 or T → ∞. Moreover,
the variances V0[g(χn)ϒλ] (appearing in CMC) and V0

[
Dg

k,1

]
, k ∈N (appearing in CML; see
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Proposition 3.2 above) are all proportional to O((
T + T2

)
e(μ2λ−2μλ)T

)
as either T → 0 or

T → ∞. Therefore, by Proposition 3.2, the quotient CMC/CML is proportional to a constant
as T → 0 and a multiple of log T as T → ∞.

In conclusion, the MLMC estimator is preferable to the MC estimator when either ε is small
or T is large. Otherwise, when ε is not small and T is small, the two estimators have similar
performance.

3.4.2. Comparison with SB-Alg In the special case when the jumps of X have finite variation
(or equivalently,

∫
(−1,1) |x|ν(dx) < ∞), the increments Xt can be simulated under Pλ using

rejection sampling (see [19, 23]), making SB-Alg [18] applicable to sample χn (see (5) for its
definition) under Pλ. The rejection sampling is performed for each of the increments of the
subordinators

Ỹ (±)
t := ±Y (±)

t + d±t, where d+ :=
∫

(0,1)
xν(dx) and d− :=

∫
(−1,0)

|x|ν(dx),

and the processes Y (±) are as in Theorem 2.1. The algorithm proposes samples under P0

and rejects independently with probability exp
(−λ±Ỹ (±)

t
)
. Let λ+ := (λ+, 0) and λ− :=

(0, λ−); then the expected number of proposals required for each sample equals exp
(
γ

(±)
λ t

)=
1/E0

[
exp

(−λ±Ỹ (±)
t

)]
, where we define

γ
(±)
λ := λ±d± − μλ± =

∫
R±

(
1 − e−λ±|x|)ν(dx) ∈ [0, ∞). (13)

(Note that μpλ − pμλ = p
(
γ

(+)
λ + γ

(−)
λ

)− (
γ

(+)
pλ + γ

(−)
pλ

)
; see (4).)

We need the following elementary lemma to analyse the computational complexity of SB-
Alg with rejection sampling.

Lemma 3.1. (a) Let � be a stick-breaking process on [0,1]; then for any n ∈N we have

0 ≤ n +
∫ 1

0

1

x

(
ecx − 1

)
dx −

n∑
k=1

E
[
ec�k

]≤ 2−n
∫ 1

0

1

x

(
ecx − 1

)
dx. (14)

(b) We have c−1e−c
(
1 + c2

) ∫ 1
0 x−1

(
ecx − 1

)
dx → 1 as either c → 0 or c → ∞.

Assume that the simulation of the increments Y (±)
t under P0 has constant cost independent

of the time horizon t (we also assume without loss of generality that the simulation of uni-
form random variables and the evaluation of operators such as sums and products and of the
exponential functions have constant cost). Since SB-Alg requires the rejection sampling to be
carried out over random stick-breaking lengths, the expected cost of SB-Alg with rejection
sampling is, by (14) in Lemma 3.1, asymptotically proportional to

n∑
k=1

E

[
eγ

(+)
λ �k + eγ

(−)
λ �k

]
= 2n + (

1 +O(
2−n)) ∫ 1

0

1

x

(
eγ

(+)
λ Tx + eγ

(−)
λ Tx − 2

)
dx, as n → ∞.

(15)
In fact, by Lemma 3.1(a), the absolute value of the term O(

2−n
)

is bounded by 2−n. Moreover,
by Lemma 3.1(b), the integral in (15) may be replaced with an explicit expression

�λ(T) := γ
(+)
λ T

1 + (
γ

(+)
λ T

)2
eγ

(+)
λ T + γ

(−)
λ T

1 + (
γ

(−)
λ T

)2
eγ

(−)
λ T , (16)

as T tends to either 0 or ∞.
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TABLE 2. Level variance and expected cost of SB-Alg and TSB-Alg, up to multiplicative constants that
do not depend on the time horizon T . The bounds on the level variances (defined in the first paragraph of
Subsection 3.2 above) follow from [18, Theorem 2] for SB-Alg and Proposition 3.1 for TSB-Alg.

Algorithm Bias Level variance Cost

SB-Alg e−ϑ1n
(√

T + T
)

e− log (2)n
(
T + T2

)
2n + �λ(T)

TSB-Alg e−ϑ1n
(√

T + T
)

e− log (2)n
(
T + T2

)
e(μ2λ−2μλ)T 2n

Table 2 shows how SB-Alg with rejection sampling compares to TSB-Alg above.
Regime (I). By Table 2, we can deduce that the MC and MLMC estimators of both algo-

rithms have the complexities O(
ε−2 log (1/ε)

)
and O(

ε−2
)

as ε → 0, respectively, for all the
payoffs considered in Proposition 3.1.

Regime (II). Assume ε is fixed. The biases of the two algorithms agree and equal
O(

e−ϑ1n
(√

T + T
))

, implying n = log
((√

T + T
)
/ε
)
/ϑ1 +O(1) (with ϑ1 defined in (23)).

The level variances of SB-Alg and TSB-Alg are O(
e− log (2)n

(
T + T2

))
and O(

e− log (2)n
(
T +

T2
)
e(μ2λ−2μλ)T

)
, with costs O(n + �λ(T)) and O(n), respectively. Thus, by (16), the ratios of

the level variance and cost converge to 1 as T → 0, so the ratio of the complexities of both
algorithms converges to 1, implying that one should use TSB-Alg, as its performance in this
regime is no worse than that of the other algorithm, but its implementation is simpler. For mod-
erate or large values of T , by [16, Equation (A.3)], the computational complexity of the MLMC
estimator based on TSB-Alg is proportional to ε−2e(μ2λ−2μλ)T (T + T2) and that of SB-Alg is
proportional to ε−2(1 + �λ(T))(T + T2), where, in both cases, the proportionality constants do
not depend on the time horizon T . Since both constants are exponential in T , for large T we
need only compare max

{
γ

(+)
λ , γ

(−)
λ

}
with μ2λ − 2μλ. Indeed, TSB-Alg has a smaller com-

plexity than SB-Alg for all sufficiently large T if and only if μ2λ − 2μλ < max
{
γ

(+)
λ , γ

(−)
λ

}
.

In Subsection 4.3.1 below, we provide an explicit criterion for the tempered stable process in
terms of the parameters; see Figure 8.

In conclusion, when X has jumps of finite variation, it is preferable to use TSB-Alg if T
is small or e(μ2λ−2μλ)T < 1 + �λ(T). Moreover, this typically holds if the Blumenthal–Getoor
index of X is larger than log2 (3/2) < 0.6; see Subsection 4.3.1 and Figure 8 below for details.

3.4.3. Comparison with SBG-Alg. Given any cutoff level κ ∈ (0, 1], the algorithm SBG-Alg
approximates the Lévy process X (under Pλ with the generating triplet

(
σ 2, νλ, bλ

)
) with

a jump-diffusion X(κ) and samples exactly the vector
(
X(κ)

T , X
(κ)
T , τT

(
X(κ)

))
; see [16] for

details. The bias of SBG-Alg is O(
min{√Tκ1−β∗/2, κ}(1 + log+ (

Tκ−β∗))) with correspond-
ing expected cost O(

Tκ−β∗). Thus, when parametrised by computational effort n, the bias of
SBG-Alg is O(

T1/β∗n−1/β∗ log n
)

while the bias of TSB-Alg is O(
e−ϑ1n

(√
T + T

))
.

Regime (I). The complexities of the MC and MLMC estimators based on SBG-Alg are,
by [16, Theorem 22], equal to O(

ε−2−β∗) and O(
ε− max{2,2β∗}(1 + 1{β∗=1} log (ε)2

))
, respec-

tively, where β∗, defined in (21) below, is slightly larger than the Blumenthal–Getoor index of
X. Since, by Subsection 3.2 above, the complexities of the MC and MLMC estimators based on
TSB-Alg are O(

ε−2 log (1/ε)
)

and O(
ε−2

)
, respectively, the complexity of TSB-Alg is always

dominated by that of SBG-Alg as ε → 0.
Regime (II). Suppose ε > 0 is fixed. Then, as in Subsection 3.4.2 above, the computa-

tional complexity of the MLMC estimator based on TSB-Alg is O(
ε−2(T + T2)e(μ2λ−2μλ)T

)
,
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where the multiplicative constant does not depend on the time horizon T . By [16, Theorems
3 and 22] and [16, Equation (A.3)], the complexity of the MLMC estimator based on
SBG-Alg is O(

ε−2
(
C1T + C2T2

))
if β∗ < 1, O(

ε−2
(
C1T + C2T2 log2 (1/ε)

))
if β∗ = 1, and

O(
ε−2

(
C1T + C2T2ε−2(β∗−1)

))
otherwise, where

C1 := erβ∗/
(
1 − er(β∗/2−1))2

,

C2 := erβ∗/
(
1 − er(β∗−1))2 · 1{β∗ �=1} + (e/2)2 · 1{β∗=1}, and

r := (2/|β∗ − 1|) log (1 + |β∗ − 1|/β∗) · 1{β∗ �=1} + 2 · 1{β∗=1}.

None of the other multiplicative constants in these bounds depend on the time horizon T . Thus
TSB-Alg outperforms SBG-Alg if and only if we are in one of the following cases:

• β∗ < 1 and (1 + T)e(μ2λ−2μλ)T < C1 + C2T ,

• β∗ = 1 and (1 + T)e(μ2λ−2μλ)T < C1 + C2T log2 (1/ε),

• β∗ > 1 and (1 + T)e(μ2λ−2μλ)T < C1 + C2Tε−2(β∗−1).

Note that the constant C2 is unbounded for β∗ close to 1, favouring TSB-Alg.
In conclusion, TSB-Alg is simpler than SBG-Alg [16] and outperforms it asymptotically as

ε → 0. Moreover, TSB-Alg performs better than SBG-Alg for a fixed accuracy ε > 0 if either
(I) β∗ < 1 and the time horizon T � 1 satisfies the inequality T < log (C1)/(μ2λ − 2μλ) or (II)
β∗ ≥ 1 and T is not large. In Subsection 4.3.2 below, we apply this criterion to tempered stable
processes; see Figure 9 for the case (I) with β∗ < 1 and Figure 10 for the case (II) with β∗ ≥ 1.

3.5. Variance reduction via exponential martingales

It follows from Subsection 3.4 that the performance of TSB-Alg deteriorates if the expec-
tation E0

[
ϒ2

λ

]= exp ((μ2λ − 2μλ)T) is large, making the variance of the estimator large. This
problem is mitigated by using the control variates method, a variance reduction technique,
based on exponential P0-martingales, at (almost) no additional computational cost.

Suppose we are interested in estimating Eλ[ζ ] =E0[ζϒλ], where ζ is either g(χn) (MC) or
g(χn) − g(χn−1) (MLMC). We propose to draw samples of ζ̃ under P0, instead of ζϒλ, where

ζ̃ := ζϒλ − w0(ϒλ − 1) − w+(ϒλ+ − 1) − w−(ϒλ− − 1),

and w0, w+, w− ∈R are constants to be determined (recall λ+ = (λ+, 0) and λ− = (0, λ−)).
Clearly E0[ζ̃ ] =E0[ζϒλ] since the variables ϒλ, ϒλ+ , and ϒλ− have unit mean under P0. We
choose w0, w+, and w− to minimise the variance of ζ̃ , by minimising the quadratic form [15,
Section 4.1.2] of V0[ζ̃ ]:⎛⎜⎜⎝

−1
ω0
ω+
ω−

⎞⎟⎟⎠
� ⎛⎜⎜⎝

V0[ζϒλ] cov0(ζϒλ, ϒλ) cov0(ζϒλ, ϒλ+ ) cov0(ζϒλ, ϒλ− )
cov0(ζϒλ, ϒλ) V0[ϒλ] cov0(ϒλ, ϒλ+ ) cov0(ϒλ, ϒλ− )

cov0(ζϒλ, ϒλ+ ) cov0(ϒλ, ϒλ+ ) V0[ϒλ+] cov0(ϒλ+ , ϒλ− )
cov0(ζϒλ, ϒλ− ) cov0(ϒλ, ϒλ− ) cov0(ϒλ+ , ϒλ−) V0[ϒλ− ]

⎞⎟⎟⎠
⎛⎜⎜⎝

−1
ω0
ω+
ω−

⎞⎟⎟⎠ .

The solution, in terms of the covariance matrix (under P0) of the vector
(ζϒλ, ϒλ, ϒλ+ , ϒλ− ), is⎛⎝w0

w+
w−

⎞⎠=
⎛⎝ 2V0[ϒλ] cov0(ϒλ, ϒλ+) cov0(ϒλ, ϒλ−)

cov0(ϒλ, ϒλ+ ) 2V0[ϒλ+ ] cov0(ϒλ+ , ϒλ− )
cov0(ϒλ, ϒλ− ) cov0(ϒλ+ , ϒλ− ) 2V0[ϒλ− ]

⎞⎠−1 ⎛⎝ cov0(ζϒλ, ϒλ)
cov0(ζϒλ, ϒλ+ )
cov0(ζϒλ, ϒλ− )

⎞⎠ .
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In practice, these covariances are estimated from the same samples that were drawn to esti-
mate E0[ζϒλ]. The additional cost is (nearly) negligible as all the variables in the exponential
martingales are by-products of TSB-Alg. It is difficult to establish theoretical guarantees for
the improvement of ζ̃ over ζϒλ. However, since most of the variance of the estimator based on
ζϒλ comes from ϒλ, the proposal ζ̃ typically performs well in applications; see e.g. the CIs in
Figures 3 and 4 for a tempered stable process.

4. Extrema of tempered stable processes

4.1. Description of the model

In the present section we apply our results to the tempered stable process X. More precisely,
given λ ∈R

2+ \ {0}, the tempered stable Lévy measure νλ specifies the Lévy measure ν via (1):

ν(dx)

dx
= c+

xα++1
· 1(0,∞)(x) + c−

|x|α−+1
· 1(−∞,0)(x), (17)

where c± ≥ 0 and α± ∈ (0, 2). The drift b is given by the tempered stable drift bλ ∈R via (1),
and the constant μλ is given in (4). Both b and μλ can be computed using (18) and (19) below.
TSB-Alg samples from the distribution functions F(±)(t, x) = P0

(
Y (±)

t ≤ x
)
, where Y (±) are the

spectrally one-sided stable processes defined in Theorem 2.1, using the Chambers–Mallows–
Stuck algorithm [9]. In the appendix we include a version of this algorithm, given explicitly in
terms of the drift b and the parameters in the Lévy measure ν; see Algorithm 2 below.

Next, we provide explicit formulae for b and μλ in terms of special functions. We begin by
expressing b in terms of bλ (see (1) above):

b = bλ − c+Bα+,λ+ + c−Bα−,λ− , where Ba,r :=
∫ 1

0

(
e−rx − 1

)
x−adx. (18)

We have Ba,0 = 0 for any a ≥ 0 and, for r > 0,

Ba,r =
∞∑

n=1

(−r)n

n!(n − a − 1)
=
{(

e−r − 1 + ra−1γ (2 − a, r)
)
/(1 − a), a ∈ (0, 2) \ {1},

−γ − log r − E1(r), a = 1,

where γ (a, r) = ∫ r
0 e−xxa−1dx =∑∞

n=0 (−1)nrn+a/(n!(n + a)), a > 0, is the lower incom-
plete gamma function, E1(r) = ∫∞

r e−xx−1dx, r > 0, is the exponential integral, and γ =
0.57721566 . . . is the Euler–Mascheroni constant. Similarly, to compute μλ from (4), note
that

μλ = c+Cα+,λ+ + c−Cα−,λ− , where Ca,r :=
∫ ∞

0

(
e−rx − 1 + rx · 1(0,1)(x)

)
x−a−1dx.

(19)
Clearly, Ca,0 = 0 for any a ≥ 0 and, for r > 0,

Ca,r = −1

a

(
e−r + r(1 + Ba,r)

)+ ra�(−a, r),

where �(a, r) = ∫∞
r e−xxa−1dx is the upper incomplete gamma function. When a < 1, this

simplifies to Ca,r = ra�(−a) + r/(1 − a), where �( · ) is the gamma function.
As discussed in Subsection 3.4 (see also Table 2 above), the performance of TSB-Alg dete-

riorates for large values of the constant μ2λ − 2μλ. As a consequence of the formulae above,
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FIGURE 1. The picture shows the map l �→ μλ, where c+ = c− = 1, α+ = α− = α, λ = (l, l), and α ∈
{0.2, . . . , 1.8}.

it is easy to see that this constant is proportional to λ
α++ /(2 − α+) + λ

α−− /(2 − α−) as either
λ± → ∞ or α± → 2; see Figure 1.

It is natural to expect the performance of TSB-Alg to deteriorate as λ± → ∞ or α± → 2,
because the variance of the Radon–Nikodym derivative ϒλ tends to ∞, making the variance of
all the estimators very large.

4.2. Monte Carlo and multilevel Monte Carlo estimators for tempered stable processes

Let X denote the tempered stable process with generating triplet
(
σ 2, νλ, bλ

)
given in

Subsection 4.1. Then St = S0eXt models the risky asset for some initial value S0 > 0 and all
t ≥ 0. Observe that St = S0eXt and that the time at which S attains its supremum on [0,t] is
also τt. Since the tails ν(R \ (−x, x)) of ν decay polynomially as x → ∞ (see (17)), St and
St satisfy the following moment conditions under Pλ: Eλ

[
Sr

t

]
< ∞ (resp. Eλ

[
S

r
t

]
< ∞) if and

only if r ∈ [ − λ−, λ+] (resp. r ≤ λ+). In the present subsection we apply TSB-Alg to estimate
Eλ[g(χ )] using the MC and MLMC estimators in (7) and (8), respectively, for payoffs g that
arise in applications and calibrated/estimated values of tempered stable model parameters.

4.2.1. Monte Carlo estimators Consider the estimator in (7) for the following payoff functions
g: (I) the payoff of the up-and-out barrier call option g(χ ) = max{ST − K, 0}1{ST ≤ M} and
(II) the function g(χ ) = (ST/ST − 1)2 associated to the ulcer index (UI) given by 100

√
Eλg(χ )

(see [11]). We plot the estimated value along with a band representing the empirically con-
structed CIs of level 95% via Theorem 3.1; see Figures 2 and 3. We set the initial value
S0 = 100, assume bλ = 0, and consider multiple time horizons T (given as fractions of a cal-
endar year): we take T ∈ { 30

365 , 90
365

}
in (I) and T ∈ { 14

365 , 28
365

}
in (II). These time horizons are

common in their respective applications, (I) option pricing and (II) real-world risk assessment
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FIGURE 2. Solid lines indicate the estimated value of Eλ[g(χn)] for the USD/JPY currency pair and the

function g(χ ) = max{ST − K, 0}1{ST ≤ M} using N = 106 samples with T ∈
{

30
365 , 90

365

}
, K = 95, and

M = 102. Dotted lines (the symmetric bands around each solid line) indicate the CI of the estimates with
confidence level 95%. These CIs are very tight, making them hard to discern in the plot.

FIGURE 3. Solid lines indicate the estimated value of the ulcer index (UI) 100
√
Eλ[g(χn)] using N = 107

samples, where g(χ ) = (ST/ST − 1)2. Dotted lines (the bands around each solid line) indicate the 95%
CI of the estimates.

(see e.g. [1, 7]). The values of the other parameters, given in Table 3 below, are either cali-
brated or estimated: in (I) we are pricing an option and thus use calibrated parameters with
respect to the risk-neutral measure obtained in [1, Table 3] for the USD/JPY foreign exchange
(FX) rate, and in (II) we are assessing risks under the real-world probability measure and hence
use the maximum likelihood estimates in [7, Table 2] for various time series of historic asset
returns. In both (I) and (II), it is assumed that α± = α; (II) additionally assumes that c+ = c−
(i.e., X is a CGMY process). The stocks MCD, BIX, and SOX in (II) were chosen with α > 1
to stress-test the performance of TSB-Alg when μ2λ − 2μλ is big, forcing the variance of the
estimator to be large; see the discussion at the end of Subsection 4.1 above and Figure 1.
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TABLE 3. Calibrated/estimated parameters of the tempered stable model. The first two sets of parame-
ters were calibrated in [1, Table 3] based on FX option data. The bottom three sets of parameters were
estimated using the maximum likelihood estimators in [7, Table 2], based on a time series of equity
returns.

Stock σ α c+ c− λ+ λ− μ2λ − 2μλ

USD/JPY (v1) 0.0007 0.66 0.1305 0.0615 6.5022 3.0888 0.9658
USD/JPY (v2) 0.0001 1.5 0.0069 0.0063 1.932 0.4087 0.0395
MCD 0 1.50683 0.08 0.08 25.4 25.4 41.47
BIX 0 1.2341 0.32 0.32 37.42 47.76 96.6
SOX 0 1.3814 0.44 0.44 34.73 34.76 196.81

FIGURE 4. Solid lines indicate the estimated value of the ulcer index (UI) 100
√
Eλg(χn) using N = 107

samples and the control variates method of Subsection 3.5, where g(χ ) = (ST/ST − 1)2. Dotted lines (the
bands around each solid line) indicate the CI of the estimates with confidence level 95%.

The visible increasein the variance of the estimates for the SOX (see Figure 3) as the matu-
rity increases from 14 to 28 days is a consequence of the unusually large value of μ2λ − 2μλ;
see Table 3 above. If μ2λ − 2μλ is not large, we may take long time horizons and relatively few
samples to obtain an accurate MC estimate. In fact this appears to be the case for calibrated
risk-neutral parameters (we were unable to find calibrated parameter values in the literature
with a large value of μ2λ − 2μλ). However, if μ2λ − 2μλ is large, then for any moderately
large time horizon, an accurate MC estimate would require a large number of samples. In such
cases, the control variates method from Subsection 3.5 becomes very useful.

To illustrate the added value of the control variates method from Subsection 3.5, we apply it
in the setting of Figure 3, where we observed the widest CIs. (Recall that the CIs derived in this
paper do not account for model uncertainty or the uncertainty in the estimation or calibration
of the parameters.) Figure 4 displays the resulting estimators and CIs, showing that this method
is beneficial in the case where the variance of the Radon–Nikodym derivative ϒλ is large, i.e.,
when (μ2λ − 2μλ)T is large. The CIs for the SOX asset at n = 12 shrank by a factor of 4.23;
in other words, the variance became 5.58% of its original value.

4.2.2. Multilevel Monte Carlo estimators. We will consider the MLMC estimator in (8) with
parameters n, N1, . . . , Nn ∈N given by [16, Equations (A.1)–(A.2)]. In this example we
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FIGURE 5. The top two panels show the bias and level variance decay as a function of k for the pay-
off g(χ ) = max{ST − K, 0}1{ST ≤ M} with S0 = 100, T = 90/365, K = 95, M = 102 and the parameter
values for the USD/JPY FX rate (v2) in Table 3. The theoretical predictions (dashed) are based on
Proposition 3.1 for barrier-type-1 payoffs. The bottom two panels show the corresponding values of the
complexities and parameters n, N1, . . . , Nn associated to the precision levels ε ∈ {2−9, 2−10, . . . , 2−19}.

chose (I) the payoff g(χ ) = max{ST − 95, 0}1{ST ≤ 102} from Subsection 4.2.1 above and
(II) the payoff g(χ ) = (ST/ST − 1)21{τT<T/2}, associated to the modified ulcer index (MUI)
100

√
Eλ[g(χ )], a risk measure which weighs trends more heavily than short-time fluctuations

(see [16] and the references therein).
The payoff in (I) is that of a barrier up-and-out option, so it is natural to use the risk-neutral

parameters for the USD/JPY FX rate (see (v2) in Table 3) over the time horizon T = 90/365.
For (II) we take the parameter values of the MCD stock in Table 3 with T = 28/365. In both
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FIGURE 6. The top two panels show the bias and level variance decay as a function of k for the payoff
g(χ ) = (ST/ST − 1)21{τT<T/2} with S0 = 100, T = 28/365 and the parameter values for MCD in Table 3.
The theoretical predictions (dashed) are based on Proposition 3.1 for barrier-type-2 payoffs. The bottom
two panels show the corresponding values of the complexities and parameters n, N1, . . . , Nn associated

to the precision levels ε ∈
{

2−9, 2−10, . . . , 2−13
}

.

cases we set S0 = 100. Figure 5 (resp. Figure 6) shows the decay of the bias and level variance,
the corresponding value of the constants n, N1, . . . , Nn, and the growth of the complexity for
the first (resp. second) payoff.

In Figure 7 we plot the estimator θ̂
g,n
MC in Theorem 3.1 for (I), parametrised by ε → 0. To

further illustrate the CLT in Theorem 3.1, the figure also shows the CIs of confidence level
95% constructed using the CLT.
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FIGURE 7. The solid line indicates the estimated value of the expectation Eλg(χn) for the payoff g(χ ) =
max{ST − K, 0}1{ST ≤ M} with S0 = 100, T = 90/365, K = 95, M = 102 and the parameter values for
the USD/JPY FX rate (v2) in Table 3. We use the MLMC estimator θ̂

g,n
ML in (8), and the CIs (dotted lines)

are constructed using Theorem 3.1 with confidence level 95%.

FIGURE 8. The picture shows the map � �→ φ(�), � ∈ [0, 1]. Assuming α± = α and defining � :=
min{c+λα+, c−λα−}/ max{c+λα+, c−λα−}, TSB-Alg is preferable to SB-Alg when (�, α) lies in the shaded
region.

4.3. Comparing TSB-Alg with existing algorithms for tempered stable processes

In this subsection we take the analysis from Subsection 3.4 and apply it to the tempered
stable case.

4.3.1. Comparison with SB-Alg Recall from Subsection 3.4.2 that SB-Alg is only applicable
when α± < 1, and under Regime (II), SB-Alg is preferable over TSB-Alg for all sufficiently
large T if and only if max

{
γ

(+)
λ , γ

(−)
λ

}≤ μ2λ − 2μλ, where γ
(±)
λ = −c±λ

α±± �(−α±) ≥ 0 is

defined in (13). By the formulae in Subsection 4.1, it is easily seen that max
{
γ

(+)
λ , γ

(−)
λ

}≤
μ2λ − 2μλ is equivalent to

min{c+λ
α++ �(−α+), c−λ

α−− �(−α−)}
≥ c+λ

α++ (2 − 2α+ )�(−α+) + c−λ
α−− (2 − 2α− )�(−α−).

Assuming that α± = α, the inequality simplifies to α ≤ φ(�), where we define φ(x) :=
log2

(
1 + x

1+x

)
and � := min{c+λα+, c−λα−}/ max{c+λα+, c−λα−}. In particular, a symmet-

ric Lévy measure yields � = 1 and φ(1) = log2 (3/2) = 0.58496 . . ., and a one-sided Lévy
measure gives � = 0 and φ(0) = 0.

4.3.2. Comparison with SBG-Alg Recall from Subsection 3.4.3 that TSB-Alg is preferable to
SBG-Alg when max{α+, α−} ≥ 1 (as it is equivalent to β∗ ≥ 1). On the other hand, if α± < 1
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FIGURE 9. The shaded region is the set of points (T, α) where TSB-Alg is preferable to SBG-Alg
assuming α± = α ∈ (0, 1) and all other parameters are as in the USD/JPY (v1) currency pair in Table 3.

FIGURE 10. The shaded region is the set of points (T, ε) where TSB-Alg is preferable to SBG-Alg when
α± = α ∈ [1, 2) and all other parameters are as in the MCD stock in Table 3.

(or equivalently, β∗ < 1), TSB-Alg outperforms SB-Alg if and only if (1 + T)e(μ2λ−2μλ)T ≤
C1 + C2T . For large enough T , SB-Alg will outperform TSB-Alg; however, it is generally
hard to determine when this happens. In Figure 9 we illustrate the region of parameters (T, α)
where TSB-Alg is preferable, assuming α± = α ∈ (0, 1) and all other parameters are as in the
USD/JPY (v1) currency pair in Table 3.

4.4. Concluding remarks

TSB-Alg is an easily implementable algorithm for which optimal MLMC (and even unbi-
ased) estimators exist. TSB-Alg combines the best of both worlds: it is applicable to all
tempered stable processes (as is SBG-Alg in [16]), while preserving the geometric conver-
gence of SB-Alg in [18]. The only downside of TSB-Alg is the enlarged variance by the
factor exp ((μ2λ − 2μλ)T). This factor is typically small (see the discussion in Subsection
4.2.1 above), and when it is large, easily implementable variance reduction techniques exist
(see details in Subsection 3.5 above). These facts favour the use of the MLMC estimator based
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on TSB-Alg over its competitors when (μ2λ − 2μλ)T is not large (for more concrete rules of
thumb, see the concluding paragraphs of Subsections 3.4.1, 3.4.2, and 3.4.3 above).

In practice, in the implementation of the MC and MLMC estimators of TSB-Alg, the leading
constants of the bias and variance decay are hard to compute and often overestimate the error.
The general practice in this situation (see e.g. [13, Section 2]) is to numerically estimate these
constants along with the integers n(ε), N, and (Nk)k∈N in Proposition 3.2. Such estimation
requires few simulations for the first few levels and some extrapolation but typically performs
well in practice. This is particularly true in our setting as the MLMC estimator is optimal; see
[13, Section 3] for a detailed discussion and a generic MATLAB implementation.

5. Proofs

Let us introduce the geometric rate ϑp used in Proposition 3.1 above. Let β be the
Blumenthal–Getoor index [6], defined as

β := inf{p > 0 : Ip
0 < ∞}, where Ip

0 :=
∫

(−1,1)
|x|pν(dx), for any p ≥ 0, (20)

and note that β ∈ [0, 2] since I2
0 < ∞. Moreover, I1

0 < ∞ if and only if the jumps of X have
finite variation. In the case of (tempered) stable processes, β is the greatest of the two activity
indices of the Lévy measure. Note that Ip

0 < ∞ for any p > β but Iβ

0 can be either finite or

infinite. If Iβ

0 = ∞ we must have β < 2 and can thus pick δ ∈ (0, 2 − β), satisfying β + δ < 1
whenever β < 1, and define

β∗ := β + δ · 1{
Iβ0 =∞

} ∈ [β, 2]. (21)

The index β∗ is either equal to β or arbitrarily close to it. In either case we have Iβ∗
0 < ∞.

Define α ∈ [β, 2] and α∗ ∈ [β∗, 2] by

α := 2 · 1σ �=0 + 1σ=0

{
1, I1

0 < ∞ and b0 �= 0,

β, otherwise,
and α∗ := α + (β∗ − β) · 1α=β .

(22)
Finally, we may define

ϑp := log
(

1 + 1p>α + p

α∗
· 1p≤α

)
∈ (0, log 2], for any p > 0, (23)

and note that ϑp ≥ log (3/2) for p ≥ 1.
In order to prove Proposition 3.1 for barrier-type-1 payoffs, we need to ensure that XT has

a sufficiently regular distribution function under Ppλ. The following assumption will help us
establish that in certain cases of interest.

Assumption 5.1. Under P0, the Lévy process X = (Xt)t∈[0,T] is in the domain of attraction of
an α-stable process as t → 0 with α ∈ (1, 2]. Put differently, there exists a positive function g
such that the law of Xt/g(t), under P0, converges in distribution to an α-stable law for some
α ∈ (1, 2] as t → 0.

When X is tempered stable, Assumption 5.1 holds trivially if max{α+, α−} > 1 or σ �= 0.
The index α in Assumption 5.1 necessarily agrees with the one in (22); see [5, Subsection
2.1]. For further sufficient and necessary conditions for Assumption 5.1, we refer the reader to
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[5, 21]. In particular, Assumption 5 remains satisfied if the Lévy measure ν is modified away
from 0 or the law of X is changed under an equivalent change of measure; see [5, Subsection
2.3.4].

Lemma 5.1. For any Borel set A ⊂R×R+ × [0, T] and p > 1 we have

Pλ(χ ∈ A) ≤ e(μpλ−pμλ)T/p
P0(χ ∈ A)1−1/p, (24)

where the constants μλ and μpλ are defined in (4). Moreover, if I1
0 < ∞, then we also have

Pλ(χ ∈ A) ≤ e
(
γ

(+)
λ +γ

(−)
λ

)
T
P0(χ ∈ A), (25)

where the constants γ
(±)
λ are defined in (13).

The proofs of Lemma 5.1 and Proposition 3.1 rely on the identity ϒ
p
λ = ϒpλe(μpλ−pμλ)T ,

which is valid for any λ ∈R
2+ and p ≥ 1.

Proof of Lemma 5.1. Fix the Borel set A. By Theorem 2.1 and Hölder’s inequality with
p > 1, we get

Pλ(χ ∈ A) =E0
[
ϒλ1{χ∈A}

]≤E0
[
ϒ

p
λ

]1/p
E0

[
1

q
{χ∈A}

]1/q = e(μpλ−pμλ)T/p
P0(χ ∈ A)1/q,

where 1/q = 1 − 1/p, implying (24). If I1
0 < ∞, then μpλ − pμλ = p

(
γ

(+)
λ + γ

(−)
λ

)− (
γ

(+)
pλ +

γ
(−)
pλ

)≤ p
(
γ

(+)
λ + γ

(−)
λ

)
. Thus, taking p → ∞ (and hence q → 1) in (24) yields (25). �

Proof of Proposition 3.1. Theorem 2.1 implies that all the expectations in the statement of
Proposition 3.1 can be replaced with the expectation Epλ[|g(χ ) − g(χn)|]. Since λ �= 0, imply-
ing that min{Epλ[ max{Xt, 0}],Epλ[ max{−Xt, 0}]} < ∞, [18, Proposition 1] yields the result
for Lipschitz payoffs. By the assumption in Proposition 3.1 for the locally Lipschitz case, the
Lévy measure νpλ in (1) satisfies the assumption in [18, Proposition 2], implying the result for
locally Lipschitz payoffs. The result for barrier-type-2 payoffs follows from a direct application
of [16, Lemmas 14 and 15] and [18, Theorem 2].

The result for barrier-type-1 payoffs follows from [18, Proposition 3 and Remark 6] if we
show the existence of a constant K’ satisfying Ppλ(M < XT ≤ M + x) ≤ K′xγ for all x > 0. If
γ ∈ (0, 1), such a K’ exists by (24) in Lemma 5 above with p = (1 − γ )−1 > 1 and A =R×
(M, M + x] × [0, T]. If γ = 1 and I1

0 < ∞, the existence of K’ follows from the assumption in
Proposition 3.1 and (25) in Lemma 5.1. If γ = 1 and Assumption 5.1 holds, then [5, Theorem
5.1] implies the existence of K’. �
Lemma 5.2. Let the payoff g be as in Proposition 3.1 with p = 2 and E0

[
g(χ )2ϒ2

λ

]
< ∞. Let

n = n(ε), N, and N1, . . . , Nn be as in Proposition 3.2; then the following limits hold as ε → 0:

ε2Nk → 2
√
V0

[
Dg

k,1

]
/k

∞∑
j=1

√
jV0

[
Dg

j,1

] ∈ (0, ∞), k ∈N, (26)

V0
[
θ̂

g,n(ε)
MC

]
ε2/2

= V0
[
θ

g,n(ε)
1

]
ε2N/2

→ 1, and
V0

[
θ̂

g,n(ε)
ML

]
ε2/2

=
n∑

k=1

V0
[
Dg

k,1

]
ε2Nk/2

→ 1. (27)
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Proof. Since x + 1 ≥ �x
 ≥ x, we have Bk(ε) ≥ ε2Nk ≥ Bn,k(ε), where

Bk(ε) := ε2 + 2
√
V0

[
Dg

k,1

]
/k

∞∑
j=1

√
jV0

[
Dg

j,1

]
and Bn,k(ε) := 2

√
V0

[
Dg

k,1

]
/k

n∑
j=1

√
jV0

[
Dg

j,1

]
,

implying the limit in (26) (note that since V0
[
Dg

k,1

]≤ 2E0
[(

�
g
k

)2 + (
�

g
k−1

)2]=O(
e−ϑgk

)
for

some ϑg > 0, the limiting value in (26) is finite). The first limit in (27) follows similarly: ε2/2 +
V0[g(χn)ϒλ] ≥ ε2N/2 ≥V0[g(χn)ϒλ], where V0

[
θ

g,n
1

]=V0[g(χn)ϒλ] →V0[g(χ )ϒλ] > 0 as
ε → 0 by the convergence in L2 of Proposition 3.1. By the same inequalities, we obtain

n∑
k=1

V0
[
Dg

k,1

]
Bk(ε)/2

≤
n∑

k=1

V0
[
Dg

k,1

]
ε2Nk/2

≤
n∑

k=1

V0
[
Dg

k,1

]
Bn,k(ε)/2

= 1.

The left-hand side converges to 1 by the monotone convergence theorem with respect to the
counting measure, implying the second limit in (27) and completing the proof. �

Proof of Theorem 3.1. We first establish the CLT for the MLMC estimator θ̂
g,n(ε)
ML , where

n = n(ε) is as stated in the theorem and the numbers of samples N1, . . . , Nn are given in (9).
By (6) and (8) we have

√
2ε−1

(
θ̂

g,n(ε)
ML −Eλ[g(χ )]

)
= √

2ε−1
E0

[
�

g
n(ε)

]+
n(ε)∑
k=1

Nk∑
i=1

ζk,i,

where

ζk,i :=
√

2

εNk

(
Dg

k,i −E0
[
Dg

k,i

])
.

By assumption we have c0 > 1/ϑg. Thus, the limit
√

2ε−1
E0

[
�

g
n(ε)

]=O(
ε−1+c0ϑg

)→ 0 as

ε → 0 follows from Proposition 3.1. Hence the CLT in (11) for the estimator θ̂
g,n(ε)
ML follows if

we prove
n(ε)∑
k=1

Nk∑
i=1

ζk,i
d→ Z as ε → 0,

where Z is a normal random variable with mean zero and unit variance. Thus, by [22, Theorem
5.12], it suffices to note that the ζk,i have zero mean E0[ζk,i] = 0,

n(ε)∑
k=1

Nk∑
i=1

E0
[
ζ 2

k,i

]=
n(ε)∑
k=1

2

ε2Nk
V0

[
Dg

k,1

]→ 1 as ε → 0,

which holds by (27), and to establish the Lindeberg condition, which states that for any r > 0
the following limit holds:

∑n(ε)
k=1

∑Nk
i=1 E0[ζ 2

k,i1{|ζk,i|>r}] → 0 as ε → 0.
To prove the Lindeberg condition, first note that

Nk∑
i=1

E0
[
ζ 2

k,i1{|ζk,i|>r}
]= NkE0

[
ζ 2

k,11{|ζk,i|>r}
]≤ NkE0

[
ζ 2

k,1

]
for any k ∈N. (28)
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By (26), the bound NkE0
[
ζ 2

k,1

]= 2V0
[
Dg

k,1

]
/
(
ε2Nk

)
converges for all k ∈N as ε → 0 to some

ck ≥ 0 and
∑n

k=1 NkE0
[
ζ 2

k,1

]→ 1 =∑∞
k=1 ck. Lemma 5.2 also implies that εNk → ∞ and

ε2Nk converges to a positive finite constant as ε → 0. Since V0
[
Dg

k,1

]
< ∞ for all k ∈N, the

dominated convergence theorem implies

NkE0
[
ζ 2

k,11{|ζk,i|>r}
]=

2E0

[(
Dg

k,1 −E0
[
Dg

k,1

])2
1{∣∣Dg

k,1−E0

[
Dg

k,1

]∣∣>rεNk/2
}]

ε2Nk
→ 0, as ε → 0.

Thus, the inequality in (28) and the dominated convergence theorem [22, Theorem 1.21] with
respect to the counting measure yield the Lindeberg condition, establishing the CLT for θ̂

g,n(ε)
ML .

Let us now establish the CLT for the MC estimator θ̂
g,n(ε)
MC , with the number of samples N

given in Proposition 3.2. As before, by Proposition 3.1 and the definition of n(ε) in the theorem,
the bias satisfies

√
2ε−1

E0
[
�

g
n(ε)

]=O(
ε−1+c0ϑg

)→ 0 as ε → 0. Thus, by [22, Theorem 5.12],

it suffices to show that 2V0[g(χn)ϒλ]/
(
ε2N

)→ 1 as ε → 0 and the Lindeberg condition holds:
for any r > 0,

C(ε) :=
N∑

i=1

E0

[∣∣ζ ′
i,n(ε)

∣∣21{∣∣ζ ′
1,n(ε)

∣∣>r
}]→ 0, as ε → 0,

where

ζ ′
i,n :=

√
2

εN

(
θ

g,n
i −E0

[
θ

g,n
i

])
.

The limit 2V0[g(χn)ϒλ]/
(
ε2N

)→ 1 as ε → 0 follows from Lemma 5.2. To establish the

Lindeberg condition, let θ̃ε := θ
g,n(ε)
1 −E0

[
θ

g,n(ε)
1

]
and note that

C(ε) = NE

[∣∣ζ ′
1,n(ε)

∣∣21{∣∣ζ ′
1,n(ε)

∣∣>r
}]= 2E

[∣∣θ̃ε

∣∣21{|θ̃ε |>rεN/2}
]
/
(
ε2N

)
.

Since θ
g,n
1

L2→ g(χ )ϒλ as n → ∞ by Proposition 3.1, we get θ̃ε
L2→ g(χ )ϒλ −E0[g(χ )ϒλ] as

ε → 0. By Lemma 5.2, ε2N → 2V0[g(χ )ϒλ] > 0, and the indicator function in the inte-
grand vanishes in probability since εN → ∞. Thus, the dominated convergence theorem [22,
Theorem 1.21] yields C(ε) → 0, completing the proof. �

Proof of Lemma 3.1. (a) Note that the density of �n is given by x �→ log (1/x)n−1/(n −
1)!, x ∈ (0, 1). Note that x−1 = elog (1/x) =∑∞

k=0 log (1/x)k/k!; hence
∫ 1

0 x−1φ(x)dx =∑∞
k=1 E[φ(�k)]. This yields

n +
∫ 1

0

1

x

(
ecx − 1

)
dx −

n∑
k=1

E
[
ec�k

]=
∞∑

k=n+1

E
[
ec�k − 1

]=
∞∑

k=n+1

∞∑
j=1

cj

j!E
[
�

j
k

]
=

∞∑
j=1

cj

j!
∞∑

k=n+1

(1 + j)−k =
∞∑

j=1

cj

j!j (1 + j)−n.

Since
∫ 1

0 x−1(ecx − 1)dx =∑∞
j=1 cj/(j!j) and (1 + j)−n ≤ 2−n for all j ≥ 1, the inequality in (14)

holds, implying (a).
(b) Note that

∫ 1
0 x−1

(
ecx − 1

)
dx = ∫ c

0 x−1
(
ex − 1

)
dx and apply l’Hôpital’s rule. �
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Appendix A. Simulation of stable laws

In this section we adapt the Chambers–Mallows–Stuck simulation of the increments of a
Lévy process Z with generating triplet (0, ν, b), where

ν(dx)

dx
= c+

xα+1
· 1(0,∞)(x) + c−

|x|α+1
· 1(−∞,0)(x),

for arbitrary (c+, c−) ∈R
2+ \ {0} and α ∈ (0, 2). First, we introduce the constant υ, given as

follows (see (14.20)–(14.21) in [35, Lemma 14.11]):

υ =
∫ ∞

1
x−2 sin (x)dx +

∫ 1

0
x−2( sin (x) − x)dx = 1 − γ .

Then the characteristic function of Zt is given by the following (see [35, Theorem 14.15]):

E
[
eiuZt

]= exp
(
t�(u)

)
, u ∈R,

�(u) = iμu −
{

ς |u|α(1 − iθ tan
(

πα
2

)
sgn(u)

)
, α ∈ (0, 2) \ {1},

ς |u|(1 + iθ 2
π

sgn(u) log |u|), α = 1,

where θ = (c+ − c−)/(c+ + c−) and the constants μ and ς are given by

(μ, ς ) =
{(

b + c−−c+
1−α

, −(c+ + c−)�(−α) cos
(

πα
2

))
, α ∈ (0, 2) \ {1},(

b + υ(c+ − c−), π
2 (c+ + c−)

)
, α = 1.

(29)

Finally, we define Zolotarev’s function,

Aa,r(u) = (
1 + θ2 tan2 (πα

2

)) 1
2α

sin (a(r + u)) cos (ar + (a − 1)u)1/a−1

cos (u)1/a
, u ∈ (− π

2 , π
2

)
.

Algorithm 2. (Chambers–Mallows–Stuck)

Simulation of Zt with triplet (0, ν, b)
Require: Parameters (c±, α, b) and time horizon t > 0
1: Compute θ = (c+ − c−)/(c+ + c−) and (μ, ς ) in (29)
2: Sample U ∼ U

(− π
2 , π

2

)
and E ∼ Exp(1)

3: if α �= 1 then
4: Compute δ = arctan

(
θ tan

(
πα
2

))
/α and return (ς t)1/αAα,δ(U)E1−1/α + μt

5: else

6: return 2
π
ς t
((

π
2 + θU

)
tan (U) − θ log

(
πE cos (U)
ς t(π+2θU)

))
+ μt

7: end if
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