
7

From hydrodynamics to far-from-equilibrium dynamics

In Chapter 6 we have described ways in which holographic calculations have
yielded insight into various properties of strongly coupled plasma that is at rest
and in thermal equilibrium or, in our discussion of transport properties, infinitesi-
mally close to being at rest and in thermal equilibrium. In this chapter, we release
these restrictions. By the end of the chapter, we will be analyzing violent dynamical
processes that are initially very far from thermal equilibrium and that may provide
a caricature of the dynamics in the earliest moments of a heavy ion collision, or at
least what that dynamics would be if the physics then was already strongly coupled.
Before the development of gauge/gravity duality, there were no reliable quantum
field theoretical calculations valid in far-from-equilibrium, highly time-dependent,
strongly coupled matter. We shall build up the holographic tools that can now pro-
vide such calculations in stages over the course of the chapter. In doing so we shall
make the connections to heavy ion physics manifest throughout, but it is impor-
tant to realize that these tools are of considerable value in any other quantum field
theoretical context in which the physics is strongly coupled and the questions of
interest include far-from-equilibrium dynamics and thermalization.

We begin by letting the strongly coupled plasma move. In Sections 7.1 and 7.2
we show how to construct the gravitational description of solutions to the hydro-
dynamic equations for strongly coupled plasma in motion. That is, we continue
to assume local thermal equilibrium, but we let the plasma move and flow. Upon
making the standard assumptions that in a conventional description lead to hydro-
dynamics, namely upon assuming that the length scales that describe gradients of
the flow velocity are long compared to all microscopic length scales that describe
the plasma itself, we show that the flowing plasma has an equivalent gravitational
description as a black brane whose metric, including its horizon, is undulating.
This correspondence between hydrodynamic flow and the gravitational dynamics
of an undulating metric, which we make explicit in Section 7.2, is basic to the rel-
evance of holography to heavy ion collisions. In a heavy ion collision, the strongly
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coupled plasma that is produced explodes outwards and is never at rest. However,
as we have seen in Section 2.2, for much of the time that it is in existence the way
that it expands and flows is well described by the laws of hydrodynamics.

In Section 7.2, we use the correspondence between hydrodynamics and gravity
to recast the holographic determination of the constitutive relations that describe
the strongly coupled plasma itself. The explicit examples that we focus on include
its equation of state and the relation between its shear viscosity and its entropy
density, both of which we have already calculated in Chapter 6. As we saw in
that chapter, the results obtained from these holographic calculations resonate
in many ways with what we are learning from lattice QCD calculations and
from comparisons of hydrodynamic calculations to data from heavy ion collision
experiments.

In Section 7.3, we further relax our assumptions and begin our discussion of the
dynamics of strongly coupled matter that is far from equilibrium, and in particular
the processes by which such matter equilibrates. Because QCD is asymptotically
free, it is unlikely that the matter in the far-from-equilibrium conditions that char-
acterize the very earliest moments of a sufficiently high energy heavy ion collision
is itself strongly coupled. This means that, to the degree that realizable heavy ion
collisions approach this high energy regime, we should not expect holographic
calculations to provide as good models of, or as reliable insights into, the pre-
equilibrium dynamics in heavy ion collisions as is possible for the hydrodynamics
of the expanding strongly coupled plasma that emerges a little later or for the
probes of this plasma that we shall discuss in Chapter 8. However, before the
development of holographic approaches far-from-equilibrium dynamics in strongly
coupled many-body systems was famously difficult to understand by any means.
This makes the holographic analyses that we shall present beginning in Section 7.3
of considerable interest from a perspective that goes well beyond heavy ion colli-
sion physics. In the context of heavy ion collisions, understanding how the matter
produced at early times, whatever its nature, isotropizes, how its motion comes to
be governed by the laws of hydrodynamics, and how it reaches local thermal equi-
librium have long been seen as central puzzles. If we can find quantities that seem
to robustly characterize the equilibration of strongly coupled plasma starting from a
large variety of widely varying initial conditions, perhaps we can gain insights into
these questions even if holographic calculations are not able to capture the details
of the initial conditions specific to heavy ion collisions. By the end of this Chapter
we shall see that the equilibration timescale itself may be just such a quantity.

In Section 7.4 we describe how to prepare a far-from-equilibrium initial state
whose subsequent evolution we wish to follow. In Sections 7.5 and 7.6 we present
a complete analysis of the equilibration of a particularly simple class of far-from-
equilibrium initial states, namely states which are initially spatially homogeneous.
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196 From hydrodynamics to far-from-equilibrium dynamics

For example, perhaps the equation of state is initially very far from that in ther-
mal equilibrium. And, perhaps the matter is initially far from isotropic, with the
pressures acting in different directions far from equal. In all these cases, the final
state after enough time passes is strongly coupled plasma, at rest, in thermal equi-
librium. In Section 7.7 we generalize our analysis to circumstances in which the
final state is strongly coupled plasma in local thermal equilibrium that continues to
flow, in a boost invariant expansion. Finally, in Section 7.8 we describe the holo-
graphic analysis of the collision of two sheets of energy density, infinite in their
transverse extent, finite in thickness along the “beam direction”, slamming into
each other at the speed of light. The final state in this case is strongly coupled
plasma that continues to expand, hydrodynamically, but without boost invariance.
This calculation represents the best holographic caricature to date of the collision
of two large, highly Lorentz-contracted, nuclei.

7.1 Hydrodynamics and gauge/gravity duality

At distance and time scales much larger than the inverse temperature and any other
microscopic dynamical distance and time scales, a quantum many-body system in
local thermal equilibrium should be described by hydrodynamics. In the context of
gauge/gravity duality, we thus expect hydrodynamics to emerge from the gravity
description at large distance and time scales. More specifically, any solution to the
equations of hydrodynamics that describes some flowing strongly coupled plasma
in the boundary theory should have a corresponding bulk gravity solution. In Sec-
tion 5.2.1 we discovered that in the boundary theory a fluid that is at rest and in
thermal equilibrium with temperature T is described in the bulk gravity theory by
a black brane solution whose Hawking temperature is the same T . Now, a typi-
cal hydrodynamic flow can be thought of as long-wavelength “ripples” on top of
an equilibrium state. Accordingly, the corresponding dual gravity solution can be
heuristically visualized as long-wavelength “ripples” on top of a static black brane.

The holographic correspondence between hydrodynamics and gravity was pio-
neered in a series of works by Policastro, Son and Starinets who were the first to
work out the bulk gravity solutions for various hydrodynamic phenomena includ-
ing the diffusion of momentum and the propagation and attenuation of sound
waves [692, 691, 554, 748, 749]. In this section we describe bulk gravity solutions
dual to boundary hydrodynamic flows which eventually approach thermal equi-
librium. We shall follow the approach of Ref. [155]. (See also Refs. [705, 473].)
Later in the chapter we shall consider more general situations, including both boost
invariant hydrodynamic flows in which the fluid is in local thermal equilibrium but
never becomes static and far-from-equilibrium dynamics. To keep our presentation
manageable in scope, we shall consider only fluids that are conformal and that are
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7.1 Hydrodynamics and gauge/gravity duality 197

neutral with respect to all conserved charges. It is typically relatively straightfor-
ward to extend the construction that we discuss here to more general situations. We
will briefly comment on these generalizations, many of which are of considerable
current interest, at the end of Section 7.2.

We reviewed the formulation of hydrodynamics in Section 2.2.3. To set the
stage, let us first establish notation and highlight some of the salient aspects of
the standard formulation. In many applications (as in Section 2.2.3) it is helpful
to use curvilinear coordinates to describe the hydrodynamic flow even when the
boundary theory is flat or to consider boundary theories with curved geometry, as
in some examples in subsequent sections. However, in this introductory presenta-
tion in which our goal is to illustrate general ideas in a simple context we shall
consider only a flat boundary described with Cartesian coordinates. The general-
ization to curvilinear coordinates or a curved boundary can be made by replacing
∂μ by the covariant derivative throughout. For a neutral fluid, the equations for
hydrodynamics are simply the conservation of the stress tensor:

∂μT μν = 0 , (7.1)

where T μν denotes the expectation value of the quantum stress tensor operator. T μν

is in turn expressed via constitutive relations in terms of a derivative expansion of
four hydrodynamic fields which we will choose to be the temperature T (x) in the
local fluid rest frame and the local fluid four-velocity uμ(x), normalized according
to uμuμ = −1. Up to first order in derivatives, T μν can be written as

T μν = ε(T ) uμuν + P(T )�μν − η(T ) σμν − ζ(T ) ∂λuλ�μν + · · · , (7.2)

where

�μν ≡ ημν+uμuν and σμν ≡
(
�μ

α�ν
β − 1

3
�μν�

αβ

)
(∂αuβ+∂βuα) . (7.3)

The indices are raised and lowered using the Minkowski metric ημν . The coeffi-
cients ε(T ), P(T ), η(T ), and ζ(T ) are the energy density, pressure, shear and bulk
viscosities respectively. It is possible to continue the derivative expansion (7.2) to
any desired order by enumerating all possible terms allowed by symmetries and
the local second law of thermodynamics. For example, the expansion of T μν up to
second order in derivatives was given earlier in Eq. (2.24).

The question we would like to answer is how to derive (7.1) and (7.2) from the
bulk gravity theory. In particular, we should be able to use the dual gravitational
description to obtain precise expressions for ε, P , η, ζ and the coefficients of all
higher order terms (such as those in (2.24)) that specify the hydrodynamics in the
corresponding boundary theory. To achieve this goal, we need to find the most
general solution to the bulk Einstein equations which describes the moving fluid
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in local thermal equilibrium in the boundary theory and then obtain the bound-
ary stress tensor corresponding to such a solution. We shall first explain how the
conservation of the stress tensor (7.1) arises from the Einstein equations. Then,
in Section 7.2, we describe a systematic procedure for deriving the constitutive
relations (7.2) from solutions of Einstein equations and we provide an explicit
calculation of the relations that are needed up to first order.

7.1.1 Conservation of the stress tensor and the Einstein equations

We now show that the conservation of stress tensor (7.1) can be obtained from
a subset of the Einstein equations in an asymptotically AdS5 spacetime. The full
Einstein equations are given by

EM N ≡ RM N − 1

2
gM NR + � gM N = 0, where � ≡ − 6

R2
(7.4)

and R is the curvature of the asymptotic AdS5. We follow the index convention
of previous chapters with x M = (z, xμ), where z is the radial direction and xμ =
(t, �x) are the spacetime directions along the boundary. We will be mainly interested
in the evolution of the bulk metric along the radial direction. For this purpose, it is
convenient to visualize the bulk spacetime as foliated by constant-z hypersurfaces
!z , which are spanned by the boundary coordinates xμ, and treat the z-direction
as a Euclidean “time”. We can then apply well-developed techniques for analyzing
the time evolution of Einstein equations to the radial evolution that is of interest in
the present context.

The Einstein equations can be separated into three groups depending on whether
EM N has zero, one or two indices along boundary directions:

Hz ≡ EzMnM = 0, (7.5)

Hμ ≡ EμMnM = 0, (7.6)

Eμν = 0, (7.7)

where nM is the unit vector normal to !z . Equations (7.7) contain second deriva-
tives in z and are often called dynamical equations, while (7.5) and (7.6) contain
only first derivatives in z and are often called the Hamiltonian constraint and the
momentum constraint, respectively. A discussion of the implications of these con-
straint equations for the Ward identities of the boundary theory can be found in
Refs. [664, 665]. Via the Bianchi identity, the structure of the Einstein equations
is such that if the constraint equations (7.5) and (7.6) are satisfied on a single z-
slice, the dynamical equations (7.7) will ensure that they are satisfied everywhere.
Thus we need only impose (7.5) and (7.6) at a single value of z, for example at the
boundary z = 0.
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For a metric which does not have cross terms between z and xμ,

ds2 = gzzdz2 + gμνdxμdxν , (7.8)

Eqs. (7.5) and (7.6) reduce simply to Ezz = 0 and Eμz = 0. For more general
metrics that include cross terms,

ds2 = gzzdz2 + 2gzμdxμdz + gμνdxμdxν , (7.9)

the unit normal nM no longer lies along the z-direction. Equations (7.5) and (7.6)
are then the appropriate constraint equations. In (7.9), gμν is the induced metric for
!z and we denote its inverse by gμν .

It is standard textbook result (see e.g. Ref. [793]) that the momentum con-
straint (7.6) can be written explicitly as

Hμ = Dμ (Kμν − gμν K ) = 0, (7.10)

where Kμν is the extrinsic curvature for a constant-z hypersurface !z , K ≡ gμν Kμν

is its trace, and Dμ is the intrinsic covariant derivative on !z associated with gμν .
Now, according to the standard AdS dictionary, the boundary stress tensor can be
obtained from the bulk metric via [111]

T μν = lim
z→0

1

8πG5

R6

z6

(
Kμν − gμν K − 3

R
gμν

)
, (7.11)

with G5 the five-dimensional Newton constant and R the AdS radius. We reviewed
the derivation of (7.11) in Section 5.3.2, where it was Eq. (5.51). We have denoted
〈T μν〉 by just T μν on the left-hand side of (7.11) as is standard in the hydrodynamic
literature. At the boundary z = 0, gμν is proportional to the boundary Minkowski
metric ημν and Dμ becomes the ordinary derivative ∂μ. From (7.11) we therefore
conclude that when the constraint (7.10) is imposed at the boundary it implies that

∂μT μν = 0 . (7.12)

This then establishes that the constraint equations (7.6) correspond precisely to the
conservation of the stress tensor in the boundary theory.

A similar analysis of the Hamiltonian constraint (7.5) at the boundary (slightly
more involved than the analysis above because the Hamiltonian constraint is
quadratic in the extrinsic curvature) shows that it implies that the boundary stress
tensor is traceless [664, 665],

T μ
μ = 0 , (7.13)

expressing the fact that the boundary theory is conformal.
Equations (7.11)–(7.13) are valid for the case of pure gravity in AdS5 with a

flat boundary metric ημν . If the boundary metric is not flat then the expression in
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200 From hydrodynamics to far-from-equilibrium dynamics

parentheses in (7.11) contains an additional term −RGμν/2, with Gμν the Einstein
tensor of the boundary metric. Since this term is divergence free with respect to
the covariant derivative defined by the boundary metric, Eq. (7.12) then still holds
with the replacement of ∂μ by the covariant derivative. Finally, the right-hand side
of (7.13) is replaced by [450]

A = R3

8πG5

(
1

8
RμνR

μν − 1

24
R2

)
, (7.14)

where Rμν and R are the Ricci tensor and the Ricci scalar of the boundary metric,
respectively. This modification expresses the fact that the boundary theory may
possess a conformal anomaly when placed in a curved manifold.

7.2 Constitutive relations from gravity

Having identified how Eqs. (7.6), a subset of the Einstein equations governing the
gravitational physics in the bulk, imply the conservation of the stress tensor (7.1)
in the boundary theory, in this section we outline a systematic procedure for deriv-
ing the constitutive relations (7.2) from gravity to all orders. This is achieved by
finding the gravitational realization of any solution to the hydrodynamic equations
order by order in a derivative expansion, and in particular by making the heuristic
picture that boundary hydrodynamic flows correspond to “ripples” on a static black
brane explicit. So, the procedure boils down to developing an iterative procedure
with which to find a general solution of the bulk Einstein equations which describes
the flowing boundary fluid in local thermal equilibrium.

Our starting point is the black brane metric discussed in Section 5.2.1 which we
copy here for convenience:

ds2 = R2

z2

(
− f dt2 + d �x2 + dz2

f

)
, with f (z) ≡ 1 − (πT z)4 . (7.15)

This metric has an event horizon at

z = 1

πT
(7.16)

and describes a system in thermal equilibrium with temperature T . Instead of using
the coordinate t which becomes singular at the horizon where f = 0, it is more
convenient for our purposes to use the so-called Eddington–Finkelstein coordinate
v defined by

dv = dt − dz

f
, v = t −

∫ z

0

dz′

f (z′)
. (7.17)
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When written in terms of v, the metric (7.15) becomes

ds2 = R2

z2

(−2dvdz − f dv2 + d �x2
)
, (7.18)

from which we can see that lines of constant v and �x are light-like. The coordinate
v has the nice feature that it reduces to t at the boundary z = 0, but remains
non-singular at the horizon as can be seen from (7.18) and as is further illustrated in
the Penrose diagram of Fig. 7.1. As will become clear later, the use of a coordinate
like this that is regular at the horizon helps significantly in simplifying the analysis.
Henceforth, we will denote xμ ≡ (v, �x).

The metric (7.18) (or (7.15)) describes a system at rest. The metric correspond-
ing to a system moving with a constant four-velocity uμ can be obtained by a
Lorentz boost in xμ, resulting in

ds2 = R2

z2

[
2uμdxμdz + (− f uμuν + �μν)dxμdxν

]
, (7.19)

where �μν is the projector introduced earlier in (7.3). Here and below, we will
always use uμ = ημνuμ and uμuμ = −1.

Now let us consider a system which is only in local thermal equilibrium,
described by slowly varying local temperature T (xμ) and flow velocity uμ(xν).
The corresponding bulk metric describing such a non-equilibrium state is in general
not known precisely. Nevertheless, the metric

ds2
0 = g(0)

M N dx Mdx N = R2

z2

[
2uμ(x

λ)dxμdz + h(0)
μν(x

λ, z)dxμdxν
]

(7.20)

with

h(0)
μν(x

λ, z) = − f (T (xλ)z)uμ(x
λ)uν(x

λ) + �μν(x
λ) , (7.21)

obtained by replacing the constant parameters uμ and T in (7.19) by T (xλ)

and uμ(xλ) should provide a reasonable approximation. Owing to the coordinate
dependence of those parameters, (7.20) no longer solves the Einstein equations.
But, as T (xλ) and uμ(xλ) become more and more slowly varying, it should pro-
vide a better and better approximation. In particular, since the failure of (7.20) to
solve the Einstein equations is solely due to gradients of T (xλ), uμ(xλ) along the
boundary space and time directions, as these quantities do not depend on z, one
expects to be able to correct the metric (7.20) order by order in an expansion in
the number of derivatives of of T (xλ) and uμ(xλ). That is, the full metric can be
written in an expansion of the form

g = g(0)(T (xμ), uμ(x
ν); z) + εg(1)(T (xμ), uμ(x

ν); z)

+ ε2g(2)(T (xμ), uμ(x
ν); z) + · · · , (7.22)
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Figure 7.1 Penrose diagram for the region outside the horizon of an AdS black
brane. The metric on a Penrose diagram is related to the actual spacetime metric
by an overall (spacetime-dependent) scale factor chosen such that the entire infi-
nite spacetime is transformed into a diagram of finite size. Since an overall scale
factor in a metric does not change the causal structure, the Penrose diagram can
be used to visualize the causal structure of the actual spacetime. In particular, in a
Penrose diagram, light travels along 45 degrees lines. (For textbook discussions of
Penrose diagrams for black hole spacetimes, see Refs. [619, 683], for example.)
In the figure, the vertical line on the right denotes the AdS boundary z = 0 with
time running in the vertical direction. The boundary spatial directions �x are sup-
pressed. (Each point in the diagram should be considered as an R

3.) The red lines
ending at the boundary points t = 0, t1, t2 are lines of constant t , the time coordi-
nate in the metric (7.15). The dashed blue lines originating at the same boundary
points are lines of constant v, the Eddington–Finkelstein coordinate of (7.18).
Along each such slice z increases from 0 at the boundary to the value (7.16) at the
horizon. Notice that all constant-t slices meet at the “bifurcating horizon” which
is the point where the past and future horizons meet. This is one way to see that
the t-coordinate becomes singular at the horizon. In contrast, constant v-slices
are infalling null geodesics from the boundary to the horizon. They provide a
one-to-one map from points on the boundary to points on the future horizon.

where the zeroth metric g(0) is given by (7.20) and g(n) are local functions of T ,
uμ and their derivatives along boundary directions, with n being the number of
boundary derivatives. Here, ε is a book-keeping device to keep track of the total
number of boundary derivatives and will be set to 1 at the end.

We will see below that the structure of the Einstein equations does admit a
derivative expansion (7.22) of the metric in terms of hydrodynamic fields T (xμ)
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and uμ(xν). With this expansion in hand, the boundary stress tensor obtained
from (7.22) via (7.11) will then yield the constitutive relations. Combined with the
result from Section 7.1 that the constraint equations (7.6) from among the Einstein
equations imply the conservation of the boundary stress tensor, we will then have
a full description of hydrodynamics on the boundary emerging from the Einstein
equations that describe gravity in the bulk.

It is worth pausing to stress the picture that is intrinsic to the way we have writ-
ten the metric in (7.20) and (7.21). The functions appearing in this metric that are
varying as a function of the boundary coordinates xλ are the standard variables of
hydrodynamics, the flow velocity uμ and the temperature T , which describe how
the boundary theory fluid is flowing. If the procedure we have outlined can be car-
ried out, it implies that the same information is encoded in the undulations of the
bulk spacetime. In particular, since the T in (7.21) is undulating, the location at
which the black brane apparent horizon sits is moving “up and down” in z as the
fluid moves. At places and times where the boundary theory fluid is compressed, T
increases, and the apparent horizon in the bulk moves to smaller values of z, closer
to the boundary. Where the boundary fluid expands, T decreases, and the horizon
moves to larger z father away from the boundary. So, there is a direct relation-
ship between the undulation of the horizon and the metric in the bulk gravitational
theory on the one hand and the motion of the hydrodynamic fluid on the other.

Recalling that the horizon area of a stationary black hole in the bulk space-
time corresponds to the entropy of the boundary system, once we discover that a
quintessential feature of the bulk metric dual to a hydrodynamic flow is that the
event horizon is undulating and evolving dynamically it is natural to propose that
the local area element on the horizon in this dynamical context corresponds to the
local entropy current of the hydrodynamic flow [154]. More explicitly, writing the
area form of a spatial section of the horizon1 as

A = 1

3!aμ1μ2μ3dxμ1dxμ2dxμ3, (7.23)

one can define the entropy current J S
μ as the dual of A divided by the familiar

4G5, i.e.

Jμ

S = 1

4G5

1

3!ε
μμ1μ2μ3aμ1μ2μ3 . (7.24)

In the static case, this current has a nonzero component only in the time direc-
tion and J 0

S reduces to the standard area formula for the black hole entropy, as in
Eq. (6.1). As a further consistency check, it is possible to show that even though
1 At any point on the horizon the horizon is spanned by three spatial directions and one null direction. We can

use the affine parameter along the family of null geodesics to define a foliation of the horizon. A spatial section
of the horizon is a slice of the horizon at constant affine parameter, spanned by three spatial directions. For
the case of a static AdS black brane, the spatial section of the horizon is spanned by the �x-directions.
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Jμ

S in (7.24) is defined in terms of quantities at the horizon, when it is interpreted
as a boundary theory current its divergence ∂μ Jμ

S is a Lorentz scalar [154], as it
should be. And, finally, one can show that the fact that the area of the horizon in
the bulk spacetime does not decrease corresponds to the fact that in the boundary
theory ∂μ Jμ

S is non-negative [154], as expected for the entropy current.
Before turning to the construction of (7.22) in detail in the next subsection, let

us mention here some of its key features. While for a bulk metric to yield (7.2)
via (7.11) it is only necessary that a derivative expansion (7.22) exists near the
boundary z ∼ 0, we will see using the Eddington–Finkelstein coordinate (7.17) that
such an expansion in fact exists for all z outside the event horizon (i.e. everywhere
along the dashed lines in Fig. 7.1). Furthermore, we shall see that the problem of
solving the Einstein equations for (7.22) in a derivative expansion factorizes into
two separate problems:

(1) Solving hydrodynamic equations for the hydrodynamic fields T (xλ) and
uμ(xλ) in a derivative expansion.

(2) Finding the radial evolution of the Einstein equations at a given boundary point
xμ. This is a one-dimensional problem that reduces to ordinary differential
equations with sources, and can easily be solved.

7.2.1 Constitutive relations from gravity: explicit construction

In this subsection, we describe in detail how to solve the Einstein equations order-
by-order in derivatives to obtain the derivative expansion (7.22). We will first
discuss some general aspects of the construction and then carry out the explicit
calculation up to first order.

General aspects

The Einstein equations are invariant under bulk diffeomorphisms. We can use such
a diffeomorphism to impose that the metric satisfies

gzz = 0, gzμ = R2

z2
uμ (7.25)

to all orders. In other words, we fix a gauge in which the full metric can be
written as

ds2 ≡ gM N dx Mdx N = R2

z2

[
2uμdxμdz + hμν(x

λ, z)dxμdxν
]

(7.26)

and the expansion (7.22) becomes an expansion for hμν which can be written

hμν = h(0)
μν(T (xλ), uμ(x

λ), z) + εh(1)
μν(T (xλ), uμ(x

λ), z)

+ ε2h(2)
μν(T (xλ), uμ(x

λ), z) + · · · , (7.27)
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with h(0) given by (7.21). Once we go beyond zeroth order, the heuristic picture
of a direct relationship between undulations of the bulk metric and the motion of
the boundary hydrodynamic fluid remains, but the specific relation between the
location of the horizon and the local T in the fluid can become more complicated.

Given that the constraint equations (7.6) in the bulk imply the conservation of the
boundary stress tensor, the boundary hydrodynamic equations must be a part of the
Einstein equations which we shall solve order by order in a derivative expansion.
We thus expect that the hydrodynamic fields entering (7.27) should also have a
derivative expansion

T (xμ) = T (0)(xμ)+ εT (1)(xμ)+ · · · , uμ(x
ν) = u(0)

μ (xν)+ εu(1)
μ (xν)+ · · · .

(7.28)

Our task is then to substitute (7.26)–(7.28) into the Einstein equations (7.5)–(7.7),
and solve the resulting equations at each order in ε,

H(n)
z = 0, n = 0, 1, · · · (7.29)

H(n)
μ = 0, n = 0, 1, · · · (7.30)

E (n)
μν = 0, n = 0, 1, · · · (7.31)

where H(n)
z is the coefficient of εn in the expansion of Hz and similarly for the

others. Note that, when obtaining (7.29)–(7.31), in order for ε to keep track of
the total number of boundary derivatives each boundary derivative in the Einstein
equations should give rise to a factor of ε, in addition to those in (7.27) and (7.28).
Thus for each term in the nth order equations (7.29)–(7.31), the sum of the number
of xμ-derivatives and all the upper indices in h(m), T (k), u(l)

μ should be exactly n.
As we will see below this power counting rule has important consequences.

By construction, the zeroth order equations, which do not contain any boundary
derivatives, are solved by the zeroth order metric g(0)(T (0), u(0)

μ ; z) given in (7.20)
since the black brane metric satisfies the Einstein equations with a constant
T and uμ.

At any order n ≥ 1, from the general structure of the perturbative expansion of
differential equations and using the power counting that we have defined we can
deduce the following regarding Eqs. (7.29)–(7.31).

(1) u(n)
μ and T (n) cannot appear in the nth order equations at all. (Because they

are already of order n, u(n)
μ and T (n) certainly cannot appear with any bound-

ary derivatives acting on them. Thus, if they appear they effectively behave as
constant shifts of T and uμ, which solve all the equations but are trivial.)

(2) The constraint equations (7.30), which are the nth order terms in the expansion
of (7.6), become precisely the hydrodynamic equations (7.12) at nth order, i.e.

∂μT μν

(n−1) = 0, n = 1, 2, · · · , (7.32)
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206 From hydrodynamics to far-from-equilibrium dynamics

where T μν

(n−1) is the boundary stress tensor expanded to order n − 1 and is
obtained from g(n−1) via (7.11).

(3) Equations (7.29) and (7.31) can be used to solve for h(n). There are altogether
eleven equations to solve for the ten components of h(n)

μν . There is one redun-
dancy, as once the constraint equation (7.29) is imposed on a single constant-z
hypersurface, the other dynamical equations will ensure that it is satisfied
everywhere. The power counting rule implies that the differential equations
for h(n) with n ≥ 1 that are obtained from (7.29) and (7.31) must take the form

H
[
T (0), u(0)

μ

]
h(n)(z, xμ) = sn, n ≥ 1 (7.33)

where the differential operator H must have the following properties.
(a) It can not contain any boundary derivatives.
(b) It can depend on the zeroth order quantities T (0) and u(0)

μ only. Neither
boundary derivatives of T (0) or u(0)

μ nor higher order quantities like h(k),
T (k) or u(k)

μ with k ≥ 1 can appear. In other words, H evaluated at a
boundary point xμ only depends on the values of T (0) and u(0)

μ at that same
boundary point.

(c) It is independent of n.
(d) It is a linear differential operator in z with at most two derivatives.
The first three properties of H follow immediately from the power counting
rule, and can be described by saying that H is “ultra-local” along the boundary
directions. As a result, one can integrate (7.33) in z point-by-point in xμ. The
equations at different xμ’s do not interfere with one another. The last prop-
erty (d) follows from the fact that the Einstein equations are second order
differential equations.

(4) The sn on the right-hand side of (7.33) are source terms (i.e. terms with no z
derivatives) which “measure” the failure of the metric g to satisfy the Einstein
equations at each order due to the dependence of its parameters on location
in the boundary spacetime. The sn are local functions of h(n), T (k) and u(k)

μ

for k < n and their derivatives (subject to the power counting rule), and must
contain at least one boundary derivative in each term.

Given that the differential operator H is ultra-local, meaning that it can be inte-
grated along the radial direction at any location in the boundary directions with
no dependence on any other locations, solving the full Einstein equations (7.29)–
(7.31) factorizes into two separate problems: solving the boundary hydrodynamic
equations (7.32) and solving the radial evolution equation (7.33). We can then
integrate the radial equation at a single boundary point, say xμ = 0, and easily gen-
eralize the results to all points. It is also convenient to work in the local rest frame,
meaning that in (7.26) we choose coordinates such that uμ(xλ = 0) = (1, 0, 0, 0).
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7.2 Constitutive relations from gravity 207

With the above general aspects of the derivative expansion in hand, we are now
ready to work out the solutions of the Einstein equations (7.29)–(7.31) explicitly
up to first order. We shall only push our explicit results to this order as doing so is
already enough to illustrate the general procedure and to obtain the explicit form
of H in (7.33), whose integration could then be carried out to higher order.

Explicit solutions up to first order

At first order n = 1, the constraint equations (7.30), following from the discussion
of (7.10)–(7.12), reduce to

∂μT μν

(0) = 0 . (7.34)

T μν

(0) is the zeroth order boundary stress tensor obtained via (7.11) from g(0), given
by (7.20). Not surprisingly, one finds a perfect fluid form (see Appendix D for a
derivation)

T μν

(0) = (
ε(T (0)) + P(T (0))

)
uμ

(0)u
ν
(0) + P(T (0))ημν (7.35)

with

ε(T ) = 3R3(πT )4

16πG5
, P(T ) = R3(πT )4

16πG5
. (7.36)

For N = 4 super-Yang–Mills theory, from (5.12) which we reproduce here for
convenience,

R3

8πG5
= N 2

c

4π2
, (7.37)

we then have

ε(T ) = 3N 2
c π

2T 4

8
, P(T ) = N 2

c π
2T 4

8
, (7.38)

which agree with the expressions that we found for the energy density and pressure
previously in Section 6.1. So, we have reproduced the equation of state relating ε

and P , which is the only constitutive relation that arises in the zeroth order stress
tensor, for the strongly coupled plasma of N = 4 SYM theory.

Equations (7.34) are simply the hydrodynamic equations for a perfect fluid. They
can be solved for T (0)(x) and u(0)

μ . Expanding around xμ = 0 in the local rest frame,
working to first order we find that ∂μu0 = 0 and that Eqs. (7.34) reduce to

1

3
∇ · u = −∂vT

T
, (7.39)

∂vui = −∂i T

T
, (7.40)
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where

∇ · u ≡
3∑

i=1

∂i ui . (7.41)

These results can also be obtained directly from (7.30). Recalling how T appears in
the bulk metric specified by (7.20) and (7.21), we see that Eq. (7.39) is an explicit
illustration (to first order in the derivative expansion) of the fact that as the bound-
ary theory fluid expands or compresses the apparent horizon in the bulk spacetime
moves to larger or smaller z.

So far, we have pursued the general algorithm that we have laid out previously
through step (2) above, i.e. through Eq. (7.32). We have obtained the spacetime-
varying quantities T and uμ that specify the fluid motion and the bulk metric to
zeroth order in the derivative expansion, and have obtained T μν to zeroth order and
hence the zeroth order constitutive relation (7.38), namely the equation of state. To
get the first order constitutive relations, we need T μν to first order, which means
that we need to obtain the h(1)

μν by completing steps (3) and (4) in the general algo-
rithm, which is to say solving (7.33). Once we have hμν to first order, we will have
gμν to first order and from (7.11) we can then obtain T μν to first order, and the first
order constitutive relations.

Following this algorithm, let us look at (7.29) and (7.31) with n = 1. At xμ = 0,
the various components of h(1) can be classified according to their transformation
properties under spatial SO(3) rotations in the local rest frame:

scalar : h(1)
vv , h(1) ≡ 1

3

3∑
i=1

h(1)
i i (7.42)

vector : h(1)
vi (7.43)

tensor : α
(1)
i j ≡ h(1)

i j − δi jh
(1) (7.44)

and the Einstein equations for the three different sectors decouple from one another.
The equations for these components are of the form (7.33) and are given at
xμ = 0 in the local rest frame by the explicit expressions below, with primes
below denoting z-derivatives.

(1) The scalar sector:

z4
(
z−4hvv

)′ − (2 + f )h′ = −2∇ · u, (7.45)

h′′ = 0. (7.46)

(2) The vector sector:

f

[
z3∂z(z

−3h′
vi ) + 3

z
∂vui

]
+ 4π4T 3z3 (∂i T + T ∂vui ) = 0. (7.47)
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(3) The tensor sector:

z3
(
z−3 f α′

i j

)′ = −3

z
σi j , (7.48)

where

σi j ≡ ∂i u j + ∂ j ui − 2

3
δi j∇ · u . (7.49)

For notational simplicity, in the equations above we have suppressed various super-
scripts. One should understand h as h(1) while T and ui should be understood as
T (0) and u(0)

i . Note that the left-hand sides of Eqs. (7.45)–(7.48) can be understood
as the explicit definitions of the operator H, that we introduced in general terms
in (7.33), acting on fields in the different sectors. Equations (7.45)–(7.48) are all
first order ordinary differential equations in z with sources. Therefore, they can all
be integrated easily. We require the solutions to be normalizable at the boundary
and regular at the black brane horizon (7.16) of the zeroth order solution where the
function f is zero and a potential singularity could arise. These conditions fix some
of the integration constants, but not all. We will set all other integration constants
to zero as they arise from solving the homogeneous parts of Eqs. (7.45)–(7.48) and
simply correspond to shifting the parameters of the zeroth order solutions.

With these considerations in mind, the scalar sector equations (7.45)–(7.46) then
have solutions given by

h = 0, hvv = 2∇ · u

3
z . (7.50)

The vector equation (7.47) has a singularity at the event horizon coming from the
factor f on its left-hand side. Note, however, that Eq. (7.47) can be further sim-
plified using the constraint equation (7.40). In particular, the potential troublesome
factor f cancels on both sides, yielding

z3
(
z−3h′

vi

)′ = −3

z
∂vui , (7.51)

which now has a regular solution

hvi = z∂vui . (7.52)

Turning now to Eq. (7.48) for the tensor sector equation, upon integrating it once
we get

z−3 f α′
i j = σi j

(
z−3 − (πT )3

)
, (7.53)

where we have chosen the integration constant to ensure that αi j is regular at the
horizon in the next integration, namely

αi j = F(z)σi j (7.54)
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with

F(z) =
∫ z

0
dz′ z′3

f

(
z′−3 − (πT )3

)
. (7.55)

As mentioned earlier in our general discussion, u(1) and T (1) do not appear and are
unconstrained at this order.

Collecting (7.50), (7.52) and (7.54), we find that the bulk metric specified as in
(7.26) and (7.27) receives a first order contribution given by

R2

z2
h(1)
μνdxμdxν = R2

z2

(
2

3
(∇ · u)zdv2 + 2z ∂vui dvdxi + F(z) σi j dxi dx j

)
.

(7.56)
We have derived this expression in the fluid rest frame at xμ = 0. We can immedi-
ately generalize it to obtain the first order correction to the metric at a generic point
in spacetime where the fluid velocity four-vector is some generic uμ by making the
substitutions

ui → uμ, ∂v → uλ∂λ, ∂i → �μ
ν∂ν, dv → −uμdxμ, dxi → �μ

νdxν,

(7.57)
where �μν is the projector introduced in (7.3). Upon making these substitutions,
σi j becomes σμν defined in (7.3) and from (7.56) we find that the general expression
for the first order contribution to the bulk metric is given by

h(1)
μν = 2

3
z(∂λuλ)uμuν − zuλ∂λ(uμuν) + F(z)σμν . (7.58)

With the metric for the bulk spacetime now determined up to first order in the
derivative expansion, we take this metric and use (7.11) to obtain the first order
contribution to the stress tensor, finding

T (1)
μν = − R3(πT )3

16πG5
σμν . (7.59)

(For details, see Appendix D.) Comparing (7.59) with (7.2), we finally conclude
that the shear and bulk viscosities of the strongly coupled plasma are given by

η = R3(πT )3

16πG5
= s

4π
and ζ = 0 , (7.60)

respectively, where s is the entropy density of the system. In this way we recover
the results for these transport coefficients that were derived via a different method
in Section 6.2.

Finally, with the first order correction to the metric h(1)
μν in hand we can evalu-

ate the entropy current (7.24) explicitly to first order in the derivative expansion,
obtaining [154]

Jμ

S = s uμ, (7.61)
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where s is the entropy density given by the area of the horizon in the zeroth order
black brane metric. Note that (7.61) is the standard zeroth order expression; the
explicit evaluation of (7.24) shows that there is no first order contribution. We can
then take the divergence of (7.61) and use the conservation equation (7.12) (which
relates terms that are first and second order in the derivative expansion since Tμν

contains zeroth and first order terms) to show that for a neutral conformal fluid, in
which the bulk viscosity vanishes,

∂μ Jμ

S = η

2T
σμνσ

μν . (7.62)

As expected at leading order, we see that the shear viscosity η controls the produc-
tion of entropy as such a fluid flows. In a fluid with conserved currents like those
we have discussed in Section 6.2.5, both Eqs. (7.61) and (7.62) contain additional
terms proportional to the conductivity or conductivities and, if any of the currents
are anomalous, further terms introduced by the anomalies [750].

7.2.2 Generalizations

The first order calculation above can be extended to higher orders. At n-th order,
one first solves the constraint equations (7.30), or equivalently the hydrody-
namic equations (7.32), and then solves the equations (7.33) for h(n)

μν which arise
from (7.29) and (7.31). Around a single point, (7.32) become algebraic equations
at each order. The integration of (7.33) is very similar to that at the first order
except that the sources are different. Thus these equations can be solved straight-
forwardly to all orders although the number of terms in sn and T μν

n−1 increase
quickly.

As discussed around Eq. (2.24), in a conformal theory five additional transport
parameters arise at second order in the derivative expansion. The values of these
quantities can be found by extending the derivative expansion of the Einstein equa-
tions to second order [155], as we have described. In our discussion of transport
coefficients in Section 6.2.4, we have already quoted the values of these five sec-
ond order parameters for the strongly coupled plasma of N = 4 SYM theory in
Eq. (6.45), where their physical implications were also discussed.

The iterative procedure outlined here can also be straightforwardly generalized
to other fluid systems, including charged fluids, fluids with spontaneous symme-
try breaking and Goldstone bosons, including superfluids, fluids driven by external
forces, and nonconformal fluids. We refer readers to Refs. [705, 473] for reviews
and a more extensive reference list. A particularly interesting result among these
generalizations is the modification of charged fluid hydrodynamics that is induced
by quantum anomalies [787, 789, 788, 791, 792, 341, 117, 750] that we have
discussed in Section 6.2.5.
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7.3 Introduction to far-from-equilibrium dynamics

We have seen in previous sections that the equilibrium and near-equilibrium
properties of strongly coupled plasma with a gravity dual are encoded in the
equilibrium and near-equilibrium properties of the dual black brane. In par-
ticular, we saw in Section 7.1 that the effective theory that governs long-
wavelength fluctuations around an equilibrium black brane is hydrodynamics
itself.

In this section we turn to the formation of strongly coupled plasma starting
from some initial far-from-equilibrium state in a theory that is strongly coupled
at all length scales. Without taking advantage of holography, there are no known
methods for doing reliable calculations of far-from-equilibrium strongly coupled
dynamics in quantum field theory. Within conventional quantum field theoretical
methods, the adjectives “strong coupling” on the one hand and “time-dependent” or
“far-from-equilibrium” on the other represent major outstanding challenges, sep-
arately and even more so in concert. When holography can be applied, the dual
gravitational description of the far-from-equilibrium strongly coupled dynamics
consists of the formation of a highly disturbed, far-from-equilibrium black hole
horizon, and its subsequent relaxation towards an equilibrium state. This is in gen-
eral not easy to analyze, but much progress has occurred in recent years. The
study of this type of dynamics on the gravity side requires solving Einstein’s
equations in the presence of strong time (and possibly space) dependence. This
can be done analytically for certain highly fine-tuned initial conditions [361, 350]
or if some approximations are made [495, 642, 493, 152, 110, 109], but gener-
ically it can only be done numerically [696, 477, 163, 476, 164, 478, 368, 807,
492, 370, 290, 291, 292, 448, 119, 14, 287, 286, 218]. Thus we will focus on
what studies using numerical relativity methods have taught us about black hole
formation in 4+1-dimensional spacetimes that are asymptotically AdS and, con-
sequently, what these studies have taught us about equilibration of hot strongly
coupled matter in non-Abelian gauge theories. Since an important goal is to learn
generic lessons that provide insight into dynamics during the initial stages of
a heavy ion collision, we will concentrate on studies in which the gauge the-
ory lives on Minkowski space, as opposed to, for example, a three-dimensional
sphere.

As we discussed at the beginning of this chapter, because QCD is asymptoti-
cally free the dominant dynamics at the earliest moments of a sufficiently energetic
heavy ion collision is expected to be weakly coupled, with the relevant (weak) cou-
pling being αQCD evaluated at the (short) distance scale corresponding to the mean
spacing between gluons in the transverse plane at the moment when the two highly
Lorentz-contracted nuclei collide. As we have seen in Section 2.2, though, after
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a time that is of order or perhaps even less than 1 fm we find that the collision
has produced a strongly coupled nearly perfect liquid. A complete account of the
dynamics that starts with a far-from-equilibrium weakly coupled state and results
in a strongly coupled hydrodynamic liquid must involve both weakly and strongly
coupled dynamics. One motivation for the investigations in this chapter, where
we will watch the formation of a strongly coupled hydrodynamic liquid start-
ing from a wide variety of far-from-equilibrium states that are themselves also
strongly coupled, is the hope that by understanding far-from-equilibrium dynamics
and equilibration in both the strong and weak coupling limits we can bracket the
real world physics. We shall see that the equilibration timescale itself is an exam-
ple of a quantity where these investigations have indeed yielded insights along
these lines.

At present it is too ambitious to envision literally simulating the gravity dual of
a full collision that starts with widely separated nuclei heading towards each other
in 3 + 1-dimensional Minkowski space, since the weakly coupled aspects of the
nuclear physics present great challenges on the gravity side. Simulating the ultra-
relativistic collision of two Lorentz-contracted spheres of strongly coupled matter
is certainly conceivable, however. In Section 7.8 we will study a toy model of such
a collision in N = 4 super-Yang–Mills in an approximation in which the “nuclei”
are taken to be infinitely big and have been replaced by sheets of energy density
with a finite thickness in the “beam” direction that are translation-invariant in the
transverse directions. Before we get to this model, however, we will introduce the
construction of far-from-equilibrium states in general terms in Section 7.4 and will
then study several somewhat less physical but simpler systems. In Sections 7.5
and 7.6 we shall treat the formation of static strongly coupled plasma from initial
conditions that are homogeneous but strongly anisotropic, and in Section 7.7 we
shall consider the formation of an expanding, boost-invariant, volume of strongly
coupled plasma. Not only will these prior studies lay the ground work that will
allow us to understand Section 7.8, but they will also teach us interesting lessons
in their own right about the far-from-equilibrium dynamics of strongly coupled
matter and its equilibration. Because these settings are simpler, also, it has been
possible in these contexts to investigate a wide variety of initial conditions which
makes it possible to get a sense of what features of the non-equilibrium dynamics
are generic.

Useful references where holographic calculations of far-from-equilibrium
dynamics are reviewed from viewpoints complementary to those adopted here
include Refs. [143, 472, 494, 738].

Finally, a comment on notation. Throughout the rest of this chapter we will set
the AdS radius R to unity.
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Figure 7.2 Penrose diagram of the spacetime outside the horizon of: (a) vacuum
AdS; (b) the spacetime created when a source at the boundary of AdS is turned
on; (c) the spacetime associated with the evolution of an initial state specified on
an initial-time hypersurface in the bulk spacetime. Figure taken from Ref. [447].

7.4 Constructing far-from-equilibrium states

In order to study the far-from-equilibrium dynamics of plasma formation we must
first prepare a far-from-equilibrium initial state whose subsequent evolution and
thermalization we will study. This can be done in (at least) two ways. The initial
state can be defined implicitly as the state that results from acting on the ground
state of the theory with an external source [290, 291], or it can be defined explicitly
by specifying initial conditions [292, 448, 446, 447].

In the first approach one turns on a time-dependent source in the boundary gauge
theory with compact support in time. Before the source is turned on the system is in
its ground state. The work done on the system by the external source takes it from
its ground state to an excited state. This excited state evolves in time and, after the
source is turned off, eventually relaxes to a thermal state, in equilibrium.

The description of this process on the gravity side is encoded in the Penrose
diagram depicted in Fig. 7.2b. The physics is easy to understand by recalling that,
through the gauge/string duality, a source in the gauge theory is identified with
the value at the boundary of AdS of an appropriate supergravity (or string) field.
Turning on the source at some time ti therefore changes the boundary condition for
this field in a time-dependent way. As a result, a wave of radiation is sent into the
bulk at t = ti . Since this cannot propagate faster than the speed of light, causality
implies that this process cannot affect the geometry below the 45◦ black dashed
line in Fig. 7.2b. The part of the geometry below this line is therefore dual to the
CFT ground state, namely it is a piece of anti-de Sitter space with no excitations in
it, to which we will simply refer as “vacuum AdS”. The work done by the source
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in the gauge theory translates into the energy carried into the bulk by the wave. If
the injected energy is such that it results in a finite energy density (which means
that the total injected energy is infinite), then we expect the formation of a pla-
nar, regular, future horizon which at late times will be in equilibrium with some
Hawking temperature T > 0. This is easy to understand on the gauge theory side,
since we expect that an interacting system with finite energy density will eventually
reach thermal equilibrium. On the gravity side this corresponds to the formation of
a horizon with a nonzero Hawking temperature.

The region of interest is that labeled “Dynamics”, above the black dashed line in
Fig. 7.2b. As is clear from the causal structure of the Penrose diagram, the metric
and the other supergravity fields in this region are completely determined by the
fact that the spacetime is vacuum AdS below the dashed line, together with the
knowledge of the sources at the boundary of AdS for t ≥ ti . In other words,
the problem of determining the supergravity fields in the region of interest is well
posed. Once this problem is solved, which typically must be done numerically,
the entire evolution of the bulk gravitational state and therefore of the boundary
gauge theory state is known, and any observable can be computed. For example,
the time-dependent expectation values of operators can be read off from the form
of the corresponding dual fields near the AdS boundary at a given time. In subse-
quent sections we will illustrate this procedure by computing the expectation value
of the stress tensor.

The second, explicit, approach to preparing a far-from-equilibrium initial
state [292, 447] is illustrated by the Penrose diagram in Fig. 7.2c. In this case the
initial state is specified explicitly on the gravity side in terms of the metric and other
supergravity fields on some initial-time slice, depicted as a 45◦ thick red line in the
figure. The only restriction on these fields is that they must satisfy the constraints
associated with Einstein’s equations, as well as appropriate boundary conditions
near the AdS boundary. Once these initial values are specified along the thick line,
the problem of their future time evolution is again well posed, as illustrated by the
causal structure of the diagram. The initial-time slice shown in Fig. 7.2c is null, but
one can equally well choose a spacelike hypersurface, as in Refs. [448, 446]. In all
these explicit approaches, the region below the initial-time slice is not of interest;
only the future evolution of the system is. Moreover, no external sources are turned
on, which immediately defines the boundary conditions near the AdS boundary
mentioned above. One simply specifies an initial state, which generically will be
far from equilibrium, lets it go, and watches it evolve towards an equilibrium state.

The two approaches described above are related. For example, once the source
has been turned off in Fig. 7.2b and the evolution has been determined, one could
read off the values of the supergravity fields at an appropriate initial-time slice
such as that shown as a dotted red line in the figure. Obviously these values satisfy
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the supergravity constraints and evolve to the future in the absence of boundary
sources. Therefore any combination of sources à la Fig. 7.2b defines an initial
state à la Fig. 7.2c. Presumably the converse is also true, namely any admissible
initial state in Fig. 7.2c can also be obtained by turning on and off an appropriate
combination of sources. However, these sources may be highly non-local. For this
reason it is useful to explore both approaches rather than restricting attention to
either one of them.

7.5 Isotropization of homogeneous plasma

We will now illustrate the general discussion of the previous section with the
simplest possible case: the evolution of a homogeneous, but initially far-from-
equilibrium, CFT state towards an equilibrium plasma state. The homogeneity
assumption means that we work at strictly zero spatial momentum in Fourier space.
Since by definition hydrodynamic modes have dispersion relations ω(�q) such that
ω → 0 as q → 0, this implies that no hydrodynamic modes will get excited. To
further simplify the physics, we will restrict ourselves to studying pure gravity in
AdS5, which is a consistent truncation of type IIB supergravity on AdS5 × S5. On
the CFT side this simplification amounts to focusing on a sector of the dynamics
in which the stress tensor is the only operator that acquires a nonzero expecta-
tion value. All other operators have vanishing one-point functions in this sector.
Higher order correlation functions may be non-trivial and they could be computed
in principle, but we will focus on the one-point function of the stress tensor.

In order to “create” a far-from-equilibrium state, the authors of Ref. [290] turn
on a time-dependent, anisotropic source for the stress tensor of the boundary gauge
theory, following the general strategy that we have illustrated in Fig. 7.2b. In other
words, they turn on a non-normalizable mode of the bulk metric such that the metric
of the gauge theory takes the form

ds2 = −dt2 + eB0(t) dx2
T + e−2B0(t) dx2

L , (7.63)

where xT = {x1, x2} are referred to as the transverse directions and xL is referred
to as the longitudinal direction. There is rotational symmetry only within the trans-
verse plane. The function B0(t) describes a time-dependent shear in the gauge
theory metric and can be chosen at will. Ref. [290] chooses

B0(t) = 1

2
c

[
1 − tanh

(
t

�

)]
, (7.64)

where c is a nonzero constant and � is the characteristic time scale of the source.
At asymptotic early and late times, t → ∓∞, B0 becomes constant and has no
physical effect, since it can be simply absorbed in the metric (7.63) by a rescaling
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of the x-coordinates. Over a period of time of order �, however, B0 induces a
time-dependent rescaling of the transverse coordinates with respect to the longi-
tudinal one. This way of creating a far-from-equilibrium state can be thought of
as analogous to placing the gauge theory in a “cosmological” background or sub-
jecting it to a strong gravitational wave, for a finite period of time ∼ �. Once
the background metric becomes flat again, one is left with the gauge theory in
Minkowski space in a highly excited state which then relaxes to equilibrium in
the absence of external forces. As we will see, the excited state produced in this
way possesses an anisotropic stress tensor with different transverse and longitu-
dinal pressures, PT 
= PL . The process we are interested in is the evolution of
these pressures towards a common value at asymptotically late times, namely the
isotropization of the plasma once the source has been turned off.

The causal structure of the diagram in Fig. 7.2b suggests that it will prove
convenient to write the bulk metric in the Eddington–Finkelstein (EF) coordinates
that we introduced in (7.17) and (7.18). In the present context, the bulk metric takes
the form

ds2 = 2dvdr − A dv2 + !2
(
e−2Bdx2

L + eBdx2
T

)
(7.65)

in EF coordinates, with A, B and ! in general being functions of r and v that
must be chosen such that Einstein’s equations are satisfied. The coordinate v is
the EF time in the bulk. As we have seen, it coincides with the gauge theory time
at the boundary, which lies at r = ∞. Curves of constant v are infalling null
geodesics from the boundary, for which r is an affine parameter. Outgoing null
geodesics obey

dr

dv
= A

2
. (7.66)

In these coordinates the equilibrium black brane solution is given by

A = r2 f (r) , f (r) =
(

1 − r4
0

r4

)
, ! = r , B = 0 . (7.67)

This can be seen by setting

v = t − g(r) , g′(r) = − 1

A(r)
, (7.68)

which brings the metric (7.67) to the form

ds2 = r2
(− f (r)dt2 + dx2

L + dx2
T

) + dr2

r2 f (r)
, (7.69)

which is familiar from (7.18), in which z = R2/r .
The formulation of general relativity in which a spacetime is constructed by

means of a foliation by null hypersurfaces is called “the characteristic formulation”.
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The utility of this formulation lies in the fact that Einstein’s equations are integrated
in from the boundary along infalling null radial geodesics. Therefore, any numeri-
cal error made at the boundary, where Einstein’s equations are singular because of
the diverging conformal factor in the metric (7.69), instantaneously falls to finite r
away from the singular point in Einstein’s equations. While this tames the singular
point in Einstein’s equations at r = ∞, it does not completely ameliorate it. One
must still solve Einstein’s equations very well near the boundary. Two success-
ful approaches thus far are (i) to solve Einstein’s equations semi-analytically for r
greater than some UV cut-off rmax and match the semi-analytic solution onto the
numerical solution at r = rmax, as in e.g. Ref. [290], or (ii) to discretize Einstein’s
equations using pseudospectral methods, as in e.g. Refs. [292, 447]. In the latter
approach one can directly impose boundary conditions at r = ∞, as the exponen-
tial convergence of pseudospectral methods outpaces the power-law singularities
in Einstein’s equations.

In the coordinates (7.65) Einstein’s equations take the nested form

0 = ! (!̇)′ + 2!′ !̇ − 2!2 , (7.70)

0 = ! (Ḃ)′ + 3
2

(
!′ Ḃ + B ′ !̇

)
, (7.71)

0 = A′′ + 3B ′ Ḃ − 12!′ !̇/!2 + 4 , (7.72)

0 = !̈ + 1
2

(
Ḃ2 ! − A′ !̇

)
, (7.73)

0 = !′′ + 1
2 B ′2 ! , (7.74)

where h′ ≡ ∂r h and ḣ ≡ ∂vh + 1
2 A ∂r h are derivatives along ingoing and outgo-

ing null geodesics, respectively. Equations (7.70)–(7.72) are dynamical equations,
whereas Eqs. (7.73) and (7.74) are constraints. Equation (7.74) is a constraint in
the familiar sense of general relativity: if it holds on a given constant-time slice
then it holds at any other time by virtue of the dynamical equations. This equa-
tion therefore will constrain the possible states that we are allowed to specify on
the initial-time slice in Fig. 7.2c. Equation (7.73) is a constraint in a perhaps less
familiar but analogous sense: if it satisfied on a given constant-r slice then it is sat-
isfied everywhere by virtue of the dynamical equations. In our case we will impose
this constraint on the r = ∞ slice by imposing the boundary conditions

A(r, v) � r2 + · · · , (7.75)

!(r, v) � r + · · · , (7.76)

B(r, v) � B0(v) + · · · , (7.77)

where the dots stand for subleading terms in the large-r expansion. Substituting
these expressions in the bulk metric (7.65) and dividing by the conformal factor r2,
as usual, we see that we indeed reproduce the boundary metric (7.63).

https://doi.org/10.1017/9781009403504.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.007


7.5 Isotropization of homogeneous plasma 219

t

Figure 7.3 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4, as a function of boundary time for
c = 2. Recall that � is the characteristic timescale of the source (7.64). Figure
taken from Ref. [290].

The problem now reduces to integrating Eqs. (7.70)–(7.72) numerically. Once
a solution is found, the boundary stress tensor can then be read off from the nor-
malizable mode of the metric near the AdS boundary. Details on the numerical
integration can be found in the original references and we will not dwell into them
here. Instead, we will concentrate on describing the physical results.

The combination of homogeneity in three spatial dimensions and rotational
invariance in the two-dimensional transverse plane implies that the stress tensor
can be written as

〈T μ
ν 〉 = N 2

c

2π2
diag

[
E(t), PL(t), PT (t), PT (t)

]
. (7.78)

(Throughout the remainder of this chapter we will use E and P for energy densities
and pressures rescaled by a factor of N 2

c /2π2. We denote the longitudinal and
transverse pressure by PL and PT ; it is also common to refer to them as P‖ and
P⊥.) Figure 7.3 shows a plot of the energy density and transverse and longitudinal
pressures produced by the changing boundary geometry (7.63), with the parameter
c in (7.64) chosen as c = 2. The energy density and pressures all begin at zero in
the distant past when the system is in its vacuum state, and at late times approach
thermal equilibrium values given by

T μ
ν = π2

8
N 2

c T 4 diag(3, 1, 1, 1), (7.79)

where T is the final equilibrium temperature. Non-monotonic behavior is seen
when the boundary geometry changes most rapidly around time zero.

Figure 7.4 displays a congruence of outgoing radial null geodesics, again for
c = 2. The surface shading shows A/r2. In the SYM vacuum (i.e., at early times)
this quantity equals 1, while at late times
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Figure 7.4 The congruence of outgoing radial null geodesics. The boundary is
at 1/r = 0, at the top of the figure. The surface shading displays A/r2. The
excised region is beyond the apparent horizon, which is shown by the dashed
green line. The geodesic shown as a heavier black line is the event horizon; it sep-
arates geodesics which escape to the boundary from those which cannot escape.
Figure taken from Ref. [290].

A

r2
= 1 −

(r0

r

)4
. (7.80)

In the SYM vacuum, outgoing geodesics are given by

1

r
+ v

2
= const. , (7.81)

and appear as straight lines in the early part of Fig. 7.4. In the vicinity of
t = 0, when the boundary geometry is changing rapidly and producing infalling
gravitational radiation, the geodesic congruence changes dramatically from the
zero-temperature form to a finite-temperature form. As is evident from the figure,
at late times some outgoing geodesics do escape to the boundary, while others fall
into the bulk and never escape. Separating the “escaping” and “plunging” geodesics
is one geodesic that does neither – this geodesic, shown as the black line in Fig. 7.4,
defines the true event horizon of the geometry.

Excised from the plot is a region of the geometry behind the apparent horizon,
which is shown by the dashed line. This excision is necessary since somewhere
inside the apparent horizon there must be a singularity, and if the region of the
spacetime near the singularity were included in the calculation the numerics would
break down. This excision can have no consequences for physics outside the event
horizon, including in particular for the near-boundary behavior of the metric that
determines the boundary theory stress tensor. From the boundary point of view, it
would be safe to excise the entire region of the spacetime that lies inside the event
horizon. The event horizon is the null hypersurface of spacetime that separates
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Figure 7.5 We plot the area of the apparent horizon and the event horizon as a
function of boundary time, again for c = 2. Nearly all the growth of the apparent
horizon area occurs in the interval −2 < t < 0, during which the boundary
geometry is changing rapidly. In contrast, the area of the event horizon grows
in the distant past long before the boundary geometry is significantly perturbed,
reflecting the global nature of event horizons discussed in the text. Figure taken
from Ref. [290].

those points in the spacetime that are causally connected with the boundary from
those that are not. As such, the event horizon is a global, non-local, concept whose
determination requires knowledge of the entire history of the spacetime. In this
sense it is teleological in nature. One extreme manifestation of this in the case of
interest here is that the event horizon of Fig. 7.4 extends to the infinite past beyond
the time at which the boundary theory was first perturbed, as shown more clearly
in Fig. 7.5. Because the location of the event horizon can only be determined after
the entire calculation has been completed, it is not possible to excise the entire
region of spacetime inside the event horizon as the calculation is being done. In
contrast, if an apparent horizon (defined below) can be found its location can be
determined at any time and it is always inside the event horizon. So, excising a
region of spacetime inside the apparent horizon that includes the singularity is
guaranteed to be safe, and this is what has been done in Fig. 7.4.

The event horizon is coordinate independent but is defined only globally. In
contrast, the apparent horizon is a local but coordinate dependent concept. Tech-
nically it is defined as the outer-most marginally trapped surface. The reader
can consult Refs. [436, 793, 83, 172] for a general technical discussion, and
Refs. [173, 174, 175] for a discussion in the context of the fluid/gravity corre-
spondence. Here we will only give a heuristic explanation. Consider a spacelike
slice in a given spacetime, and a closed surface within this slice. For example,
in Minkowski spacetime one may consider a constant-t three-dimensional slice,
and a two-sphere within it. Now imagine constructing two new surfaces by fol-
lowing light rays shot both inwards and outwards from each point on the original
surface. In the presence of weak or no gravity, e.g. in the case of a two-sphere
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Table 7.1 Final equilibrium temperature T and isotropization
time tiso (in units of 1/T or �), for various values of c. The
isotropization time tiso is the time after which the pressures
deviate from their equilibrium values by less than 10%. Table
taken from Ref. [290].

|c| 1 1.5 2 2.5 3 3.5 4

T � 0.23 0.31 0.41 0.52 0.65 0.79 0.94
tiso T 0.67 0.68 0.71 0.92 1.2 1.5 1.8
tiso/� 3.0 2.2 1.7 1.8 1.8 1.9 1.9

in a Minkowski spacetime, the area of the surface increases along the outgoing
light rays and it decreases along the ingoing ones. In contrast, if the spacetime
curvature is sufficiently strong then the area may decrease along both sets of rays.
In this case the surface is called a “trapped surface”. A “marginally trapped sur-
face” corresponds to the limiting case in which the area remains constant along the
outgoing direction. The apparent horizon is a local concept, but it is not coordinate
independent because it depends on a choice of a specific spacelike hypersurface.
The importance of the apparent horizon lies in the fact that, under certain condi-
tions, it can be shown that it must always lie inside an event horizon, as is the case
in Fig. 7.4. This means that one can safely excise all the region (or part of it, as in
Fig. 7.4) inside the apparent horizon, since this will be causally disconnected from
the region outside the event horizon, and in particular from the boundary.

It is worth pointing out that in a fully dynamical, far-from-equilibrium, setting
neither the area density of the event horizon nor the area density of the apparent
horizon correspond to an entropy density of the far-from-equilibrium matter in the
boundary quantum field theory. The acausal nature of the event horizon illustrated
in Figs. 7.4 and 7.5 makes it clear that its area cannot be proportional to an entropy
density since if it were there would be entropy present in the quantum field theory
vacuum long before the process that excites it begins. The coordinate dependence
of the apparent horizon makes it clear that its area also cannot correspond to any
physical observable in the boundary theory. None of this should come as a surprise,
because in the quantum field theory there is in fact no notion of entropy density
that is well defined far from equilibrium. The standard thermodynamic relations
that determine the entropy density from the energy density and the pressure, which
are well defined, are (approximately) valid only in (near) equilibrium.

Table 7.1 shows, for various values of c, the final equilibrium temperature T and
a measure of the isotropization time tiso. (These quantities only depend on |c|, not
on the sign of c.) Let us define tiso as the earliest time after which the transverse
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and longitudinal pressures are always both equal to their final values to within 10%.
When |c| � 2, we find that tiso ≈ 2�, while for |c| � 2, tiso ≈ 0.7/T . So, tiso is
always comparable to either 2� or 0.7/T , whichever is larger. (When |c| ∼ 2, the
two quantities 2� and 0.7/T are comparable in magnitude.)

The results in Table 7.1 can be understood qualitatively with intuitive arguments.
If � � 1/T , the external source pumps energy into the system only during a very
brief time that, in the � → 0 limit, cannot control tiso. In this regime, both tiso

and the final equilbrium temperature must be determined only by (the appropriate
power of) the energy density that is pumped into the system, which is controlled
by |c|. So, on dimensional grounds, tiso must be proportional to 1/T . From a grav-
itational perspective, as we shall discuss further in the next section the relaxation
is controlled by the lowest quasinormal mode, whose damping rate is proportional
to 1/T . In the opposite regime, where � � 1/T , even though the total amount
of energy density that is pumped into the system is large (because this regime is
achieved when |c| is large) the energy is pumped in slowly and the system can
respond adiabatically to the deformation in the geometry. In this regime, the stress
tensor of the boundary fluid is never far from that of an equilibrium fluid, albeit
one whose temperature is changing with time. Once the source turns off, which
happens after a time of order �, the fluid is already close to its final equilibrium
state. Perhaps it takes a time of order 1/T to get there, but that time is much shorter
than �. So, tiso is proportional to �. From a gravitational perspective, this adiabatic
behavior arises because as we have discussed in Section 6.4 the relaxation times of
non-hydrodynamic quasinormal modes are proportional to the inverse of the one-
fourth power of the local energy density and hence vanish when |c| → ∞. These
qualitative considerations provide a complete understanding of the physics behind
the result of the full calculation, namely that tiso goes from ∼ 0.7/T to ∼ 2� as a
function of increasing |c|, but of course they do not give us the factors of 0.7 or 2.

Although the setting we have analyzed here is quite far from that in a heavy ion
collision, it is interesting to note that tiso ≈ 0.7/T corresponds to a time ∼ 0.3 fm/c
when T = 500 MeV. This is about a factor of two faster than the upper bounds
on the thermalization times inferred from hydrodynamic modeling of RHIC col-
lisions [543, 441]. Reference [735] provides a recent example of such modeling
that indicates that if the equilibration time in a RHIC collision were as short as 0.4
fm, the equilibration temperature would be just above 500 MeV. We shall return
to such comparisons later, after we have seen holographic calculations of the equi-
libration process starting from many more, different, far-from-equilibrium initial
states. Drawing conclusions from the results in this section alone would be hard to
justify, but these results do already hint that equilibration times in heavy ion colli-
sions may be longer than they would be if the physics were strongly coupled from
start to finish.
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Figure 7.6 Close-limit approximation for the collision of two black holes.

7.6 Isotropization of homogeneous plasma, simplified

In the previous section, we studied the isotropization of homogeneous plasma by
solving the non-linear Einstein’s equations in the presence of an external force, as
depicted in Fig. 7.2b. The purpose of this section, in which we follow Ref. [447]
closely, is two-fold. First, to perform a similar analysis in the absence of external
forces, as depicted in Fig. 7.2c. Second, to show that the problem can be dramati-
cally simplified by linearizing Einstein’s equations. This simplification will allow
us to analyze many possible initially far-from-equilibrium states.

Inspiration for this simplification comes from the so-called “close-limit approx-
imation” [697] in the context of black hole mergers in four-dimensional general
relativity in asymptotically flat spacetime – see Fig. 7.6 (left). If the impact param-
eter is small enough, then a single common horizon forms around the two incident
black holes when they are close enough. At much later times the system will settle
down to a single black hole in equilibrium. The close-limit approximation is the
statement that the evolution of the initial horizon, from the moment it forms until
the system settles down to its final state, is described well by Einstein’s equations
linearized around the final equilibrium black hole – see Fig. 7.6 (center). This is
quite surprising because a priori one might have expected that the initial common
horizon could not in general be viewed as a small perturbation of the horizon of
the final equilibrium black hole. Yet, the close-limit approximation predicts with
good accuracy, in particular, the form of the gravitational radiation emitted to infin-
ity in the merger and ring-down phases of the collision [57], depicted in Fig. 7.6
(right). The direct analogue of this radiation in our case will be the holographic
stress tensor determined from the metric near the boundary of AdS.

We will study the isotropization of a large number of anisotropic initial states
in the absence of external sources. Each state will be specified on the gravity side
by an entire function on the initial-time slice shown in Fig. 7.2c, and hence it
will be characterized by an arbitrary number of scales. Conservation of the stress
tensor for homogeneous plasma in the absence of external sources implies that the
energy density E (but not the entropy density) must be constant in time. Since in
a homogeneous situation an equilibrium state is completely characterized by its
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energy density, this means that the final state is known without solving for the
dynamical evolution. On the CFT side, it is the homogeneous, isotropic plasma
with an energy density E equal to the initial energy density, with a pressure given
by E/3 and with a temperature proportional to E1/4. On the gravity side it is a
static, isotropic black brane with the same temperature. This a priori knowledge of
the final state makes the linear approximation particularly simple: we will linearize
Einstein’s equations around the static black brane (7.67) and use them to evolve
each initial state. As expected on general grounds, the dynamical evolution shows
that an event horizon (but not necessarily an apparent horizon) is already present
on the initial-time slice for each of the states we consider. By comparing the full
numerical evolution on the gravity side with its linear approximation, we will see
that the latter predicts the time evolution of the CFT stress tensor with surprising
accuracy (see [119] for related observations), in analogy with the prediction of the
gravitational radiation at infinity by the close-limit approximation. As in that case,
we emphasize that the applicability of the linear approximation is not guaranteed
a priori, since in general our initial states will not be near-equilibrium states.

Let us now be more precise about the specification of the initial states. In the
absence of sources the asymptotic form of the metric functions takes the form2

A = r2 + a4

r2
− 2b4(v)

2

7r6
+ · · · , (7.82)

B = b4(v)

r4
+ b′

4(v)

r5
+ · · · , (7.83)

! = r − b4(v)
2

7r7
+ · · · . (7.84)

As usual, the normalizable modes a4 and b4(v) are not determined by the boundary
conditions but must be read off from a full bulk solution that is regular in the
interior. These modes are dual to the expectation value of the stress tensor (7.78).
In the absence of external sources, the energy density is constant and conservation
and tracelessness of the stress tensor imply that the two pressures in (7.78) may be
written as

PL(t) = 1

3
E − 2

3
�P(t) , (7.85)

PT (t) = 1

3
E + 1

3
�P(t) , (7.86)

in terms of E and a single function �P ≡ PT − PL that measures the degree of
anisotropy. For the specific case of strongly coupled SU (Nc) N = 4 super-Yang–
Mills theory at large Nc, this relation is
2 The case with sources is discussed in Ref. [290].
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E = −3a4

4
, �P(t) = 3b4(t) . (7.87)

Note that, although E is constant in time, a physical temperature can only be
assigned to the system once (near) equilibrium is reached, in which case E =
3π4T 4/4.

As we mentioned above, Eq. (7.74) is a constraint on the possible initial states
because it relates two of the metric functions on the initial-time slice. We choose
B as the independent variable because it is directly related to the CFT anisotropy
through Eq. (7.87). Thus each initial state is specified by a constant a4 and a func-
tion of the radial coordinate B(v = 0, r). Note that for positive ! the constraint
(7.74) implies !′′ ≤ 0, which in combination with the asymptotic behavior ! � r
means that ! will vanish at some r ≥ 0 on the initial-time slice. Generically this
corresponds to a curvature singularity. However, for all the initial states which the
numerical code of Ref. [447] was able to evolve in a stable manner, the region
where ! = 0 is hidden behind an event horizon and hence it has no effect on the
physics.

Upon considering small fluctuations around the equilibrium black brane solution
(7.67), one finds that A and ! are unmodified at linear order whereas the B fluctu-
ation obeys Eq. (7.71) with ! and A as in (7.67). Thus, in order to determine the
evolution of the boundary stress tensor in the linear approximation we only need to
solve a linear equation for B. At this order the position and the area of the horizon
are unmodified. The leading correction to these quantities is obtained by solving
the respective linear equations for A and ! with a source that is quadratic in the
leading solution for B.

The authors of Ref. [447] considered around 1000 initial states, for all of which
the numerical code converged nicely. Most of these states were generated by taking
the ratio of two tenth-degree polynomials in r with randomly generated coefficients
and subtracting from them the appropriate powers of r to ensure the correct near-
boundary asymptotics. A few other states were constructed “by hand” to ensure
qualitative differences between them by requiring that the initial B be localized
at different positions along the radial direction, that it be quickly oscillating, etc.
For some profiles, an apparent horizon was present on the initial-time slice. For
others, it was not. In order to evaluate the accuracy of the linearized analysis, the
authors of Ref. [447] first determined the time evolution of each state by solving
the full, nonlinear, Einstein’s equations. They then solved the linear equation for
B, again for each of the ∼ 1000 initial states. In each case, the pressure anisotropy
was read off by extracting b4(t) from the near-boundary behavior (7.82). The upper
panel of Fig. 7.7 shows the result obtained by solving the full Einstein’s equations
for a representative initial state. The lower panel in Fig. 7.7 shows the difference
between the full solution and the result obtained via the linear approximation for
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Figure 7.7 Upper panel: solution B(v, z) (with z ≡ 1/r ) obtained from the full
Einstein’s equations. The intersection of the surface with the v = 0 plane is the
initial profile B(v = 0, z) = 4

5 (z/zh)
4 sin(8z/zh), and is shown there as a thick

red curve. The intersection of the surface with the z = 0 plane corresponds to
�P(t)/E as obtained from the full Einstein’s equations, and is shown as a thick
blue curve. The thin purple curve on the same plane shows the value of �P(t)/E
as obtained from the linear approximation. Lower panel: difference between the
full solution and the linear approximation. As evidenced by the thick and thin
curves at z = 0 in the upper panel, this difference is small, so the scale on the
vertical axis has been stretched in order to make it visible. Figure taken from
Ref. [447].

this state. The ratio in the overall scales of the vertical axes in the plots, 2/10, gives
a rough estimate of the accuracy of the linear approximation, namely 20%, which is
remarkable given that the evolution is definitely far-from-equilibrium. This feature
is illustrated by the thick blue curve at z = 0 in the upper panel of Fig. 7.7, which
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Figure 7.8 Time evolution of the areas of the event (top curve) and apparent (red
curve) horizons for the initial state of Fig. 7.7. The dot at the origin signifies that
there is no apparent horizon for this state at the initial time. From that time until
the start of the lower curve there is no apparent horizon within the range of the
radial coordinate covered by our grid, but there could be one at a deeper position.
Figure taken from Ref. [447].

shows that the pressure anisotropy is almost an order of magnitude larger than the
energy density at some points during the evolution.

As in the previous section, it is interesting to examine the time evolution of the
area densities of the event and apparent horizons, since these coincide with the
entropy density once the system has reached equilibrium. Figure 7.8 shows that
both of these quantities are larger at the end of the evolution than at the beginning,
suggesting that entropy is indeed generated during the out-of-equilibrium evolution
of the system in the absence of sources that we are describing in this section.

As in the previous section, we define the isotropization time tiso as the time
beyond which �P(t)/E ≤ 0.1. Figure 7.9 is a histogram that summarizes
the isotropization times of the 1000 initial states. One of the horizontal axes
shows the isotropization times obtained from the full evolution, T tiso, measured
in units of the final temperature. The other horizontal axis shows the relative error
in the determination of this quantity that is made by using the linear approximation,
namely the difference between tiso as determined by the full Einstein’s equations
and by the linear approximation. The height of each bar indicates the number of
states in each bin. We see that isotropization times are typically tiso � 1/T , with T
the final temperature, although they can of course be shorter for some initial states
that happen to start closer to equilibrium. A large majority of the isotropization
times found in this study lie in the range (0.6 − 1)/T , indicating that the result
tiso ∼ 0.7/T that we found in Section 7.5 by analyzing how the system isotropizes
in response to a single family of sources is representative.

Figure 7.9 also shows that the linear approximation works with an accuracy
of 20% or better for most states. Inspection “by hand” of the cases where our
criterion suggests that the approximation is working less well indicates that in fact
it works remarkably well even for these initial states. This is illustrated in Fig. 7.10
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Figure 7.9 Results for the isotropization times obtained from the full evolution
of 1000 initial states, and for the differences between the full and the linearized
evolution (normalized by the full isotropization time). The height of each bar
indicates the number of states in each bin. Figure taken from Ref. [447].

which shows the time evolution of the pressure anisotropy for a state in the bin
marked with an arrow in the histogram of Fig. 7.9, where the linear approxima-
tion seems to be making a relatively large (around 65%) error in the final tiso. We
see that the linear approximation (thin curve) follows the exact evolution (thick
curve) very closely indeed on the scale of the initial anisotropy. However, the fact
that our isotropization criterion makes no reference to this scale means that a late-
time deviation that is tiny (∼ 1/30) on this scale translates into an error that our
isotropization criterion counts as large. One could develop an improved criterion,
but Fig. 7.9 already makes the points we need to make.

The fact that the linear approximation works fairly well for such a large number
of far-from-equilibrium states is surprising. Of course, it is well known that small
perturbations around equilibrated plasma can be described in linear-response the-
ory. Equivalently, small perturbations around the dual horizon can be described by
linearizing Einstein’s equations around the equilibrium black hole solution. This
means that, for a homogeneous but anisotropic perturbation, one may expect the
linear approximation to be applicable whenever �P/E � 1. What is remarkable
is that, in a strongly coupled CFT with a gravity dual, the linear approximation
actually works fairly accurately for perturbations that are far larger, even with �P
an order of magnitude larger than E .

We have focused on predicting the expectation value of the holographic stress
tensor. Since this is read off from the normalizable mode of the metric near the
boundary, it is the direct analog of the wave-form computed in the close-limit
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Figure 7.10 Time evolution of the pressure anisotropy for a state in the bin
marked with an arrow in the histogram of Fig. 7.9. The lower plot zooms in around
the isotropization time. The thick blue curve corresponds to the exact evolution.
The thin red curve corresponds to linear approximation. The horizontal green lines
lie at �P(t)/E = ±0.1. Figure courtesy of the authors of Ref. [449].

approximation in calculations of black hole mergers in asymptotically flat space-
time, as in Fig. 7.6. Note, though, that our results indicate that the linear
approximation in AdS works not only asymptotically but also deep within the bulk,
as illustrated by Fig. 7.7.

As we have seen in Section 6.4, in Fourier space one may distinguish between
hydrodynamic quasinormal modes with dispersion relations ω(q) such that ω→ 0
as q → 0, and nonhydrodynamic quasinormal modes (QNMs), for which ω(0) 
= 0.
If a perturbation is anisotropic but homogeneous then the relaxation back to
equilibrium involves exclusively the non-hydrodynamic QNMs. In this sense the
dynamics that we have studied in this section can be thought of as the far-from-
equilibrium dynamics of the non-hydrodynamic QNMs. If the perturbation is small
then these modes evolve towards equilibrium linearly, independently of each other
and on a time scale set by the imaginary parts of their frequencies. One could
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imagine extending the description to not-so-small perturbations by including non-
linearities in the form of interactions between the QNMs, but naively one would
expect this effective description to break down for order-one anisotropies. Instead,
the results of this section imply that, for homogeneous, strongly coupled plasma
with a gravity dual, the isotropization process is still reasonably well described
by nonhydrodynamic QNMs that evolve approximately linearly and independently
of each other, even in the presence of large anisotropies (see Ref. [119] for related
observations). This can be verified explicitly by expanding and evolving B in terms
of a sufficient number of QNMs. Figure 7.11 shows a comparison for several initial
states between the time evolution of the stress tensor as determined by the full non-
linear evolution (thick blue curves), by the full linear evolution (dotted red curves)
and by the linear evolution truncated to a few QNMs (thin purple curves). For each
plot, we have indicated the factor by which the area density of the event horizon
increases throughout the evolution. The fact that in some cases this factor can be as
large as Afin/Aini ∼ 25 is another indication that we are considering initial states
that are far from equilibrium.

The fact that the evolution is well described by QNMs means that, just as in the
near-equilibrium case, the relaxation towards equilibrium is characterized by a few
non-hydrodynamic quasinormal frequencies. In particular, a naive (under)estimate
of the isotropization time can be obtained from the imaginary part of the lowest
non-hydrodynamic quasinormal frequency, as in the top panel of Fig. 6.3 in Sec-
tion 6.4, and is given by Imω0 � −8.5T . Since our initial states typically have
anisotropies of the order of 1 � (�P/E)ini � 20, requiring(

�P
E

)
ini

exp
(

Imω0 tiso

)
� 0.1 (7.88)

gives 0.27 � T tiso � 0.62. The reason why this may be an underestimate is that the
degree of anisotropy carried by each individual QNM can be much larger, typically
as large as �P/E ∼ 500, with the total anisotropy being much smaller due to can-
cellations among different modes. Assuming (�P/E)ini � 500 one gets T tiso ∼ 1.

Intuitively (and very crudely) the applicability of the linear approximation seems
to be related to the fact that any nonlinearities generated by the Einstein equations
are quickly absorbed by the horizon. This suggests that the linear approximation
may be applicable to more general situations than the very simple one considered
here, in particular to situations in which the final state is not known a priori and/or
in which hydrodynamic modes become excited. The same intuition also suggests
that the linear approximation should not be applicable to the description of strong
gravitational dynamics in the absence of horizons. In particular, it is not expected
to describe the formation of a horizon. Yet, as we have seen, it can be very use-
ful indeed in describing its subsequent evolution. From a practical viewpoint this
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Figure 7.11 Time evolution of the pressure anisotropy for several initial states as
determined by the full nonlinear evolution (thick blue curves), by the full linear
evolution (dotted red curves) and by the linear evolution truncated to a few QNMs
(thin purple curves). The latter two are so similar that in all the panels they appear
on top of each other, differing by less than the width of the dotted curves. For each
plot we have indicated the factor by which the area density of the event horizon
increases throughout the evolution. Figure courtesy of the authors of Ref. [449].

is because of the technical simplification at the level of solving Einstein’s equa-
tions. However, the real power of this approximation lies on a more conceptual
level, since it implies that the superposition principle applies. In our case, for
example, this means that the evolution of an initial profile that takes the form
B(r) = ∑

n Bn(r) is given by the sum of the evolutions of each of the Bn(r).
We close this section with a comment on the accuracy of the linear approxima-

tion. If one is interested in doing precision physics in a specific CFT with a known
gravity dual, then 20% accuracy may not be good enough. However, if the goal
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is to learn robust lessons that might be extrapolated to the far-from-equilibrium
dynamics of real world QGP produced in heavy ion collisions, then this accuracy
is quite likely sufficient. The more important question is how to apply it in a setting
in which two zero-temperature objects collide and plasma results, meaning that on
the gravity side a horizon forms during the far-from-equilibrium evolution. Even if
the linear approximation can only be applied starting after the horizon has formed,
because of the insights that it yields and because the simplification that it brings
makes it feasible to analyze and compare very many “initial” states with horizons
it is a very important tool in our toolbox.

7.7 Hydrodynamization of boost-invariant plasma

The homogeneity assumed in previous sections provides a dramatic simplification
of Einstein’s equations in AdS5, since it reduces the generic problem of a 4 + 1-
dimensional evolution to one in 1+1 dimensions because the problem in the bound-
ary theory is 0+1-dimensional. The principal drawback of this assumption is that it
freezes the hydrodynamic modes, since at q = 0 (i.e. in homogeneous plasma) they
must have ω = 0. In any more generic setting, it is the hydrodynamic modes with
small but nonzero q and ω that would actually dominate the late-time dynamics.

The first step in relaxing the assumption of homogeneity is to allow the dynamics
of the fluid to depend on one spatial coordinate – that we shall call the longi-
tudinal direction – while maintaining translation invariance in the other two –
transverse – coordinates. Generically, this makes the hydrodynamic problem in
the boundary theory 1 + 1-dimensional and so makes the gravitational calculation
in AdS5 2 + 1 dimensional. We shall describe such a calculation in Section 7.8.
In this section we shall make the further simplifying assumption that the longi-
tudinal expansion is boost invariant, a simplification that has been used in many
hydrodynamic analyses since it was introduced by Bjorken more than 30 years
ago [165]. This has the great technical advantage of keeping the boundary theory
problem effectively 0+1-dimensional, and therefore keeping the dual gravitational
problem that must be solved in AdS5 1 + 1-dimensional, while nevertheless intro-
ducing hydrodynamic expansion. This is the simplest possible way of unfreezing
the hydrodynamic modes, permitting the study of their far-from-equilibrium evolu-
tion and equilibration. In this set-up we will be able to see the transition between an
early, far-from-equilibrium, phase of the dynamics when the boost invariant expan-
sion does not satisfy hydrodynamic equations of motion and a late phase when
the expansion becomes a conventional Bjorken flow solution of hydrodynamics.
In other words, we will see the fluid “hydrodynamize” as it expands. The gravity
solution that describes boost-invariant hydrodynamic expansion can be understood
analytically [495, 642, 493, 445, 530], so we will begin our presentation with this
late-time dynamics.
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7.7.1 Boost-invariant hydrodynamics

In order to describe boost-invariant dynamics, it is convenient to introduce proper
time τ and spacetime rapidity y coordinates through

t = τ cosh y , xL = τ sinh y. (7.89)

In these coordinates the Minkowski metric takes the form

ds2 = −dτ 2 + τ 2dy2 + dx2
T (7.90)

and boost transformations act as a shift of y, so boost invariance is simply the
statement that physical quantities are independent of y. Since we will retain homo-
geneity in the transverse plane, physical observables will only depend on τ . This
dependence leads to nonzero gradients with respect to the Cartesian coordinate xL

and therefore to hydrodynamic behavior.
Before we begin the calculation, it is important to provide some context for

the assumption of boost invariance in heavy ion collisions. If the hydrodynamic
expansion of the fluid produced in a heavy ion collision were independent of
the spacetime rapidity y, then after this fluid hadronizes the distribution of the
momenta of the final state hadrons would be independent of the momentum space
rapidity 1

2 ln((E + pL)/(E − pL)), introduced in Section 2.1 and also convention-
ally denoted by y. This can be argued for on symmetry grounds, and therefore
arises in any standard algorithm for relating the stress tensor of the hydrodynamic
fluid to the momenta of final state particles, the simplest of which can be found in
Ref. [299]. Of course, no finite energy collision can yield a flat rapidity distribution
extending from y = −∞ to y = +∞, but if the stress tensor of the hydrodynamic
fluid is independent of the spacetime y over some wide but finite range of y then
the distribution of final state hadrons in momentum-space y will feature a broad flat
plateau. As we mentioned in Section 2.1, however, we now know from data that
in heavy ion collisions at RHIC the charged particle rapidity distribution d Nch/dy
does not have this shape: it looks roughly Gaussian [762], meaning that if there is
a plateau around y ∼ 0 it is relatively narrow.

Because the data require it, nowadays the state of the art hydrodynamic cal-
culations that seek to describe the matter produced in heavy ion collisions as in
Section 2.2 describe droplets that expand with non-trivial dependence on all spatial
coordinates. Because these 3 + 1-dimensional relativistic viscous hydrodynam-
ics calculations are challenging, though, many authors begin by assuming boost
invariant longitudinal expansion and focusing on the hydrodynamic expansion in
the transverse directions. And, as we shall see below, if the initial conditions for
hydrodynamics are boost invariant then the hydrodynamic evolution remains boost
invariant, regardless of how the fluid flows in the transverse dimensions. We shall
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initially simplify even further, assuming translation invariance in the transverse
plane. We do so just for the purpose of making our calculations tractable and in
fact, as we shall see in Section 7.7.5, the first calculations in which the fluid is
allowed to move in the transverse plane are now being done.

Early motivations for assuming boost-invariant hydrodynamics, going back to
Ref. [165], were based upon a simplified picture of the dynamics of nucleus–
nucleus collisions in the limit of infinite collision energy. In this limit, in the
center-of-mass frame the incident nuclei are pancakes with zero thickness colliding
at the speed of light. After the collision, the fragments of the nuclei themselves are
assumed to stay arbitrarily close to the lightcones, at arbitrarily large positive and
negative y, while the future lightcone at finite y is seen as containing particles that
had been newly created in the collision. And, inspired by early data, it was assumed
that particle creation would be boost invariant in the high collision energy limit.

A large body of more recent data indicates that the dynamical assumptions we
have just described are not valid: d Nch/dy does not feature a broad flat plateau and
although the fragments of the incident nuclei, which can for example be tracked
by the net proton density as in Fig. 2.6b, do end up on average at higher |y| in
higher energy collisions, they are present also at y ∼ 0. These data have motivated
the investigation of other simplifying assumptions for the longitudinal dynamics
(going back to Landau’s assumption [565] that the incident nuclei initially stop at
y = 0, which is in many ways the antithesis of boost invariance, and including
assumptions that span the space from Landau to Bjorken [157]). For our purposes,
though, what we need is a simplifying assumption within which we can study how
matter that is initially far-from-equilibrium hydrodynamizes as it expands, and the
best choice for this specific purpose is the assumption of boost invariance.

Using the coordinates (7.90), it is straightforward to derive the equations of
motion for boost invariant hydrodynamics in any conformal plasma. Assuming for
simplicity y → −y symmetry, the stress tensor has only three nonzero components
Tττ , Tyy and Tx2x2 = Tx3x3 ≡ Txx . Since we are dealing with a conformal gauge
theory, Tμν is traceless:

− Tττ + 1

τ 2
Tyy + 2Txx = 0 . (7.91)

Energy–momentum conservation ∇μT μν = 0 gives a second relation among the
components:

τ
d

dτ
Tττ + Tττ + 1

τ 2
Tyy = 0 . (7.92)

Using the relations (7.91) and (7.92), all components of the energy momentum
tensor can be expressed in terms of the time-dependent energy density E(τ ):
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Tττ ≡ E , Tyy = −τ 3E ′ − τ 2E , Txx = E + 1

2
τE ′ , (7.93)

where E ′ ≡ dE/dτ and where we have now scaled a factor of N 2
c /(2π

2) out of all
components of the stress tensor so that E here is defined as in (7.78). Note that all
these conditions are purely kinematical in nature. The dynamics of the theory will
choose a specific E(τ ).

At sufficiently late times we expect (and shall confirm below) that, owing to
the continued expansion of the fluid, spatial gradients will decrease in magnitude,
making all viscous effects less and less important. We therefore expect the dynam-
ics to approach that of a perfect, inviscid, fluid. In particular, it should become
locally isotropic in the local rest frame. In terms of the pressures this means that
PL = T y

y = PT = T x
x . Using (7.93), this translates into the differential equation

− τE ′ − E = E + 1

2
τE ′ (7.94)

for the energy density. This equation has the simple and well-known “Bjorken
solution” E ∝ τ−4/3 [165] where, for later convenience, we shall write the
proportionality constant as

E = E0
�4

(�τ)4/3
, (7.95)

where E0 is defined by the relationship between the energy density of the conformal
plasma in local thermal equilibrium and its temperature, E = E0T 4, meaning that
E0 = 3π4/4 in strongly coupled N = 4 SYM theory. (Recall from (7.78) that
the energy density is given by the scaled energy density E multiplied by a factor
of N 2

c /(2π
2).) We have introduced the integration constant �, with dimensions

of energy, that specifies a particular solution. We shall further interpret � below.
Substituting into the expressions for the pressures we see that this leads to the
conformal equation of state E = 3P . Since E = E0T 4, the temperature decreases
at late times when the expansion is described by ideal hydrodynamics according to

T = �

(�τ)1/3
. (7.96)

We now see that we have defined � such that when τ = 1/� the temperature is
given by �. Equivalently, T = 1/τ at the time when τ = 1/�. The boost invariant
hydrodynamic expansion of a perfect liquid is thus fully specified by the value of
�, with solutions with larger � being those in which T (τ )τ reaches 1 at earlier τ .
Finally, the entropy density scales as

s ∼ T 3 ∼ �3

�τ
. (7.97)
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Since the volume element of the metric (7.90) grows as τ , it follows that the total
entropy remains constant, as expected for a fluid with zero viscosity.

Recall that the full solution to the equations describing boost-invariant expan-
sion starting from any arbitrary boost-invariant initial state is expected to behave
as an ideal fluid, as above, as τ → ∞, since at asymptotically late times gradient
corrections should become negligible and the system should approach local equi-
librium. At late but finite times, however, viscous effects produce corrections to
the leading behavior (7.95). In this way the hydrodynamic expansion becomes a
late-time expansion in powers of τ−2/3. This power can be understood from the
fact that the hydrodynamic expansion is controlled by the product T −1∇, with
T ∼ τ−1/3 and the size of gradient corrections being ∇ ∼ 1/τ . For example,
including the first and second order hydrodynamic corrections the stress-energy
tensor that describes the boost-invariant hydrodynamic expansion of a conformal
fluid takes the form [107, 291]

E = E0�
4

(�τ)4/3

[
1 − 2η0

(�τ)2/3
+ C

(�τ)4/3
+ · · ·

]
,

PT = E0�
4

3(�τ)4/3

[
1 − C

(�τ)4/3
+ · · ·

]
,

PL = E0�
4

3(�τ)4/3

[
1 − 6η0

(�τ)2/3
+ 5C

(�τ)4/3
+ · · ·

]
. (7.98)

The constant η0 is related to the shear viscosity of the plasma through η = η0E0T 3.
The constant C is related to second order hydrodynamic relaxation times. In the
plasma of strongly coupled N = 4 SYM theory [107, 530],

η0 = 1

3π
, C = 1 + 2 ln 2

18π2
. (7.99)

We see from (7.98) that, as expected, at later and later times the gradient terms
through which the effects of viscosity and higher order corrections to ideal
hydrodynamics enter become less and less important.

If the expansion (7.98) were extended to include terms that are higher and higher
order in τ−2/3, more and more coefficients that characterize the static plasma (like
η0 and C in (7.98)) would appear but the solution itself would still be specified just
by the single parameter �. The late-time hydrodynamic behavior of a boost invari-
ant expansion starting from any arbitrary boost invariant initial condition must be
of the form (7.98) for some value of �. This means that (7.98) is a scaling solution,
in the sense that for any value of � there are many different far-from-equilibrium
initial conditions that will evolve into the same form (7.98) at late time. As the
fluid expands, it loses the memory of the details of its initial conditions. And, if all
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one knows is the late-time expansion (7.98) it is impossible to run the clock back-
wards and reproduce the initial conditions from which the late-time state (7.98) was
obtained. In all these ways, the hydrodynamization of an expanding boost invariant
fluid is analogous to the equilibration that we described in Sections 7.5 and 7.6.

7.7.2 Late-time gravity solution

In this section, we follow Ref. [495]. These authors addressed the question of
whether the ideal-fluid behavior that is expected at late times on general grounds
arises dynamically from Einstein’s equations. For this purpose they considered the
most general 4 + 1-dimensional bulk metric allowed by the symmetries of the
problem:

ds2 = 1

z2

[
− ea(τ,z)dτ 2 + τ 2eb(τ,z)dy2 + ec(τ,z)dx2

⊥
]

+ dz2

z2
, (7.100)

where we are now using the radial coordinate z for which the boundary lies at
z = 0. They began their analysis by allowing for a general form of the energy
density E ∼ 1/τα, although α is constrained to lie in the range 0 < α < 4 just by
the requirement that the energy density be non-negative in any frame. The question
they posed was for what values of α a regular solution of the form (7.100) exists. In
principle, Einstein’s equations for this ansatz yield a system of coupled, nonlinear
partial differential equations in two variables, which in general is intractable ana-
lytically. The insight of Ref. [495] was the realization that at late times the solution
can be written in terms of a single scaling variable z/τα/4. This reduces Einstein’s
equations to ordinary differential equations for which an analytic solution valid at
asymptotically late times can be found. This solution exists for any α in the range
above, but the solution is free of naked curvature singularities only for α = 4/3.
For this particular value of α the solution takes the form

ds2 = 1

z2

[
−
(

1 − z4

z4
0

)2 (
1 + z4

z4
0

)−1

dτ 2 +
(

1 + z4

z4
0

)
(τ 2dy2 + dx2

⊥)

]
+ dz2

z2
,

(7.101)
with z0 ∼ τ 1/3. This metric is boost invariant and it possesses a receding horizon3

at z = z0, suggesting that it describes boost-invariant, cooling plasma with tem-
perature T ∼ 1/z0 ∼ 1/τ 1/3, as in (7.96). Similarly, the total entropy, which
is proportional to the total horizon area, scales as s ∼ τ/z3

0 ∼ const., again
in agreement with ideal-fluid hydrodynamics. We therefore conclude that Ein-
stein’s equations, together with the physical requirement of regularity of the gravity
solution, reproduce the late-time ideal-fluid dynamics expected on general grounds.
3 Note that at the asymptotically late times at which the solution (7.101) is valid the event and the apparent

horizons are expected to coincide.
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The leading correction to the metric (7.101) has been computed [642], and the
first correction to the energy density agrees with that in (7.98). Furthermore, the
corrected metric is regular at and outside the horizon if and only if the viscosity
coefficient η0 in (7.98) is given by (7.99) [493], which is to say if and only if η/s =
1/(4π) as in static plasma [690]. By computing the second order correction, the
authors of Ref. [444] then determined a coefficient of second order hydrodynamics,
the relaxation time. Further examination of this correction indicated the existence
of a subleading logarithmic divergence that could not be cancelled regardless of the
choice of transport coefficients [135], but this apparent singularity turned out to be
simply an artifact of the coordinates chosen to write the metric (7.101), which are
problematic for the discussion of regularity issues at the horizon [154, 153] (see
Section 7.2, in particular Fig. 7.1). In Refs. [445, 530, 531] the gravity solution
was constructed in the Eddington–Finkelstein coordinates, and it was found that in
these coordinates the geometry is indeed regular.

In summary, not only do the Einstein equations in a dynamical setting predict
the correct late-time behavior as a function of proper time, but they also predict
the correct transport coefficients at any order. Note that no information about the
initial conditions of the plasma is necessary to derive these late-time features. The
reason is that this information is dissipated along the flow, so the behavior at late
times is universal. All the information about the initial conditions is encoded in
the single dimensionful constant �. This loss of memory of details about the ini-
tial conditions is behind the existence of a scaling solution at late times. At early
times the dynamics is strongly dependent on the initial conditions and no universal
solution exists [151]. In order to connect the early-time dynamics and the late-time
behavior, a solution valid at all times is needed. This can be constructed by solving
Einstein’s equations numerically, as we now describe.

7.7.3 Full gravity solution

In this section we follow Ref. [291] closely. The strategy is the same as in Sec-
tion 7.5, namely to create a far-from-equilibrium state by acting on the CFT
vacuum with an external source during a finite period of time. In the present case
we are interested in replacing homogeneity along the longitudinal direction by
boost invariance, so the boundary metric (7.63) gets replaced by

ds2 = −dτ 2 + eγ (τ) dx2
T + τ 2 e−2γ (τ) dy2 . (7.102)

The function γ (τ) characterizes a time-dependent shear in the boundary metric
which serves to excite the CFT from its vacuum to some far-from-equilibrium state.
The authors of Ref. [291] choose
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Figure 7.12 A spacetime diagram depicting several stages of the evolution of the
field theory state in response to the changing spatial geometry. Figure taken from
Ref. [291].

γ (τ) = c "

(
1 − (τ−τ0)

2

�2

)[
1 − (τ−τ0)

2

�2

]6

× exp

[
− 1

1 − (τ−τ0)
2

�2

]
, (7.103)

where " is the unit-step function. Inclusion of the [1− (τ−τ0)
2/�2]6 factor makes

the first few derivatives of γ (τ) better behaved as τ−τ0 → ±�. The function γ (τ)

has compact support and is infinitely differentiable; γ (τ) and all its derivatives
vanish at and outside the endpoints of the interval (τi , τ f ), with τi ≡ τ0 − � and
τ f ≡ τ0 + �. We choose τ0 ≡ 5

4� so the geometry is flat at τ = 0. Choosing
τ0 ≥ � is convenient for numerics as our coordinate system becomes singular on
the τ = 0 lightcone. The particular choice τ0 = 5

4� is made so that the numerical
results (which begin at τ = 0) contain a small interval of unmodified geometry
before the deformation turns on. We choose to measure all dimensionful quantities
in units where � = 1, so τi = 1/4 and τ f = 9/4.

Figure 7.12 shows a spacetime diagram depicting several stages in the evo-
lution of the SYM state schematically. Hyperbolae inside the forward lightcone
are constant-τ surfaces. Prior to τ = τi , the system is in the ground state. The
region of spacetime where the geometry is deformed from flat space by the exter-
nal source specified by (7.103) is shown as the red region labeled I in Fig. 7.12.
At coordinate time t = τi the geometry of spacetime begins to deform in the
vicinity of xL = 0. As time progresses, the deformation splits into two local-
ized regions centered about xL ∼ ±t , which subsequently separate and move in
the ±xL directions at speeds asymptotically approaching the speed of light. After
the “pulse” of spacetime deformation passes, the system will be left at τ = τ f

in an excited, anisotropic, non-equilibrium state. That is, the deformation in the
geometry will have done work on the field theory state. As the excited far-from-
equilibrium state then evolves in time it is boost invariant but not hydrodynamic.
This region is shown as the yellow region labeled II in Fig. 7.12. It is in this region
that we can study the relaxation of a far-from-equilibrium non-equilibrium state.
After some later proper time τhydro, the system will have relaxed to a point where a
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hydrodynamic description of the continuing evolution is accurate. This final hydro-
dynamic regime, in green and labeled III in Fig. 7.12, is the regime whose dynamics
is described by (7.98). As the late-time hydrodynamic solution to boost invariant
flow is known analytically, we choose to define τhydro as the time after which the
stress tensor coincides with the hydrodynamic approximation to better than 10%.

Our task, then, is to find τhydro and, in particular, to see how it correlates with
quantities such as the energy density, from which an effective temperature can be
defined through

E(τ ) = E0 T 4(τ ) , (7.104)

where the purely numerical factor is E0 = 3π4/4 in N = 4 SYM theory after the
rescaling (7.78). If the system is far from equilibrium there is no sense in which a
temperature can be defined and the quantity T (τ ) should simply be thought of as an
alternative measure of the energy density. At late times, though, T (τ ) approaches
the local temperature in the hydrodynamic regime. We denote the effective temper-
ature at time τhydro by Thydro ≡ T (τhydro). As explained at the end of Section 7.5,
in the c → ∞ limit the energy pumped into the system by the source (here, the
source (7.103)) is large and so is Thydro, meaning that 1/Thydro � τ f . In this regime,
we expect that τhydro − τ f � τ f . And, we expect the evolution throughout region
II of Fig. 7.12 to be adiabatic in the sense that the non-hydrodynamic degrees of
freedom remain close to equilibrium and the description of the dynamics is close
to hydrodynamic (with a changing energy density) at all times. In particular, a
hydrodynamic description without driving terms will be accurate the moment the
geometry stops changing. Hence, in this regime one learns little about the dynamics
associated with the relaxation of non-hydrodynamic modes.

More interesting is the case where the effective temperature at τhydro satisfies
1/Thydro � τ f . This is the regime we will study. In this regime, the system can be
significantly out of equilibrium after the source turns off at τ f and the boundary
geometry becomes flat. We will see that when this is the case the entire process of
hydrodynamization occurs over a time which is less than or comparable to 1/Thydro.

Given the symmetries of the physical situation that we wish to study we can
write the metric on the gravity side in the form

ds2 = 2dr dv − A dv2 + !2
[
eBdx2

T + e−2Bdy2
]
, (7.105)

where A, B, and ! are all functions of r and Eddington–Finkelstein time v only.
Note that we are back to using the radial coordinate r , with the boundary at r → ∞.
In these coordinates, this metric is analogous to (7.65), except that the EF time v at
the boundary coincides in this case with the proper time τ of Eq. (7.102). Similarly,
our task is to solve Einstein’s equations (7.74) but with the boundary conditions
(7.77) replaced by
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Figure 7.13 The congruence of outgoing radial null geodesics. The surface shad-
ing displays A/r2. Before time vi = 1/4, this quantity equals one. The excised
region lies inside the apparent horizon, which is shown by the dashed purple line.
The event horizon is shown as a solid blue curve which separates geodesics which
escape to the boundary from those which cannot escape. At late times v � 1.5
the event horizon coincides with the apparent horizon, and both slowly fall deeper
into the bulk. This is the gravity dual of the hydrodynamic expansion of a boost
invariant fluid at late times. Figure taken from Ref. [291].

A(r, v) � r2 + · · · , (7.106)

!(r, v) � r v1/3 + · · · , (7.107)

B(r, v) � γ (v) − 2

3
log v + · · · , (7.108)

where the dots stand for subleading terms in the large-r expansion. Technical
details can be found in Ref. [291]. Here we will just describe the results.

On the gravity side, the results that we now describe are qualitatively the same
for any c. Figure 7.13 shows a congruence of outgoing radial null geodesics for
c = 1. The geodesics are obtained by integrating

dr

dv
= 1

2
A(r, v) . (7.109)

The shaded surface in the plot displays the value of A/r2. Excised from the plot is
a region of the geometry behind the apparent horizon, whose location is shown by
the dotted line.
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At times v < vi = 1/4, the boundary geometry is static and A/r2 = 1. The
outgoing geodesic congruence at early times therefore satisfies

v + 2

r
= const. , (7.110)

and hence appears as parallel straight lines on the left side of Fig. 7.13. These
are just radial geodesics in AdS5, which is the geometry dual to the initial zero-
temperature ground state. After time vi the boundary geometry starts to change,
A/r2 deviates from unity, and the congruence departs from the zero-temperature
form (7.110).

As is evident from Fig. 7.13, and just as we saw in Fig. 7.4 for the case of equili-
bration without expansion, at late times some geodesics escape up to the boundary
and some plunge deep into the bulk. Separating escaping from plunging geodesics
is precisely one geodesic that does neither. This geodesic, shown as the thick solid
curve in the figure, defines the location of a null surface inside which all events are
causally disconnected from observers on the boundary. This surface is the event
horizon of the geometry.

After the time v f = 9/4, the boundary geometry becomes flat and unchanging,
no additional gravitational radiation is produced, and the bulk geometry approaches
a slowly evolving form. The rapid relaxation of high frequency modes can clearly
be seen in the behavior of A/r2 shown in Fig. 7.13 – all of the high frequency struc-
ture in the plot appears only during the time interval where the boundary geometry
is changing and creating gravitational radiation. Physically, the rapid relaxation of
high frequency modes occurs because the horizon acts as an absorber of gravita-
tional radiation and low frequency modes simply take more time to fall into the
horizon than high frequency modes. Therefore, as time progresses the geometry
relaxes onto a smooth universal form whose temporal variations become slower
and slower as v → ∞.

As we saw in the previous section, one can systematically construct a boost-
invariant late-time solution to Einstein’s equations. At leading order the solution
takes the form (7.101) and is characterized by a receding horizon with approximate
position 1/r0 = z0 ∼ v1/3. As time progresses, the horizon slowly falls deeper into
the bulk, and the temperature of the black hole decreases as v−1/3. The falling of the
horizon into the bulk, as an inverse power of v, is clearly visible in the calculation
presented in Fig. 7.13.

We now turn to a discussion of the results for boundary field theory observ-
ables. Figure 7.14 shows plots of the energy density and transverse and longitudinal
pressures sourced by the changing boundary geometry (7.102) with c = ±1
between τi = 1/4 and τ f = 9/4 and evolving subsequently. These quantities
begin at zero before time τi , when the system is in the vacuum state, and deviate

https://doi.org/10.1017/9781009403504.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.007


244 From hydrodynamics to far-from-equilibrium dynamics

0 1 2 3 4

–40

–20

0

20

40

τ

E
P⊥

P ||

c = −1 c  = +1

0 1 2 3 4

–40

–20

0

20

40

τ

Figure 7.14 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4 , as functions of time for c = −1
(left) and c = +1 (right), where c and � were defined in (7.103). The energy
density and pressures start off at zero before time τi = 1/4, when the system is
in the vacuum state. During the interval of time τ ∈ (τi , τ f ) = (1/4, 9/4), the
boundary geometry is changing and doing work on the field theory state. After
time τ f , the deformation in the geometry turns off, the field theory state evolves,
and subsequently relaxes onto a hydrodynamic description. The smooth tails at
late times in both plots occur during the hydrodynamic regime. At late times,
from top to bottom, the three curves (in both plots) correspond to the energy den-
sity E , transverse pressure P⊥, and longitudinal pressure PL. Figure taken from
Ref. [291].

from zero once the boundary geometry starts to vary. During the interval of time
where the boundary geometry is changing, the energy density generally grows and
the pressures oscillate rapidly: work is being done by the source on the field theory
state. After time τ f , the boundary geometry becomes flat and no longer does any
work on the system. As time progresses, non-hydrodynamic degrees of freedom
relax and at late times the evolution of the system is governed by hydrodynamics.
The late time hydrodynamic behavior manifests itself as the smooth tails appearing
at late times in Fig. 7.14.

The two sets of plots in Fig. 7.14, contrasting c = +1 and c = −1, are qual-
itatively similar, with the main difference being the phase of the oscillations in
the pressures. For example, for c = −1 the transverse pressure is negative at τ f

whereas for c = +1 the transverse pressure is positive and larger than the lon-
gitudinal pressure, which is nearly zero at τ f . Furthermore, from the figure one
sees that, for either sign of c, the transverse pressure approaches the longitudinal
pressure from above, in agreement with the hydrodynamic prediction (7.98).

To facilitate a quantitative comparison between the numerical results for the
stress tensor and the late-time hydrodynamic expansions, Fig. 7.15 shows the
energy density and pressures for c = 1/4, 1 and 3/2, with the correspond-
ing hydrodynamic forms (7.98) plotted on top of the numerical data. The single
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Figure 7.15 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4, as functions of time for c = 1/4,
c = 1 and c = 3/2. From top to bottom, the continuous curves are the energy
density, the transverse pressure, and the longitudinal pressure. The dashed curves
in each plot show the second order viscous hydrodynamic approximation (7.98)
to the different stress tensor components. Figure taken from Ref. [291].

parameter � that specifies the hydrodynamic solution is obtained by fitting to the
late time results. The plots start at time τ = τ f . In all three plots, one clearly
sees the stress-energy components approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy even at the late times where
a hydrodynamic treatment is applicable. From (7.98) we see that this means that
the effect of viscosity is very evident in these results. On the time scales depicted
in Fig. 7.15, the boost invariant hydrodynamic expansion is described by viscous
hydrodynamics, not by ideal hydrodynamics.

Looking at the right-hand panel of Fig. 7.15, we see that for c = 3/2 the energy
density and both pressures are already quite close to their hydrodynamic values
at τ = τ f . Indeed, in this panel the time τhydro after which the full results are
within 10% of their hydrodynamic values is 2.3 [291], meaning that τhydro − τ f =
0.05. The system is almost hydrodynamic at τ f and hydrodynamizes very soon
thereafter. This reflects the fact that, as we have discussed, when |c| is large the
energy density, and the effective temperature T (τ ) defined from it, are pumped up
high enough that during the time between τi and τ f when the system is being driven
its nonhydrodynamic modes evolve almost adiabatically and so are hardly excited.
Hence the system is already almost hydrodynamic when the source turns off.

Looking at the left-hand panel of Fig. 7.15, with c = 1/4, we see that at the
time τ = τ f the transverse and longitudinal pressures are almost equal and
opposite in magnitude meaning that at this time the system is very far from hydro-
dynamic. The curves show the system hydrodynamizing, and it turns out that
τhydro − τ f = 0.85 [291]. In the units of the figure, the effective temperature at the
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time τhydro is given by Thydro = 0.27 [291], and τhydro − τ f = 0.24/Thydro. We see
that when measured in units of 1/Thydro the time that it takes the system to hydro-
dynamize after the source is turned off is still very short, even though at time τ f the
system is manifestly far from hydrodynamic. It would be premature based upon this
single example to conclude that τhydroThydro, with τhydro the hydrodynamization time
for a system whose final state is a boost invariant expanding plasma, is shorter than
the τiso T that we found in our analysis in Section 7.6 of the equilibration (i.e. in that
case isotropization) of a system whose final state is a static plasma with tempera-
ture T . It is true that in Section 7.6 we found τiso T = (0.6 − 1) and here we have
found (τhydro − τ f )Thydro = 0.24. But, first of all, it is not clear whether in making
this comparison we should or should not “count” some or all of the time between
τi and τ f when the boost invariant system is being driven. After all, the system
is presumably already hydrodynamizing while it is being driven. And, second, we
see from Fig. 7.15 that in a system with an expanding final state isotropization
happens long after hydrodynamization: if we were to define a τiso from the differ-
ence between the longitudinal and transverse pressures in this section as we did
in Section 7.6 it would be significantly greater than τhydro. In the present context,
however, and in fact in heavy ion collisions, it is the hydrodynamization time τhydro

that is of interest.
We can also use the results that we have presented here to investigate whether

hydrodynamic behavior sets in when higher order terms in the hydrodynamic
expansion (7.98) become comparable to lower order terms or, instead, sets in at
a time determined by when it is that non-hydrodynamic quasinormal modes have
damped away leaving the longer-lived hydrodynamic modes dominant. In the three
panels of Fig. 7.15, from left to right, hydrodynamization occurs when �τhydro is
given by 0.89, 1.9 and 2.6 [291], meaning that in all three panels �τhydro � 1.
Examining the size of the coefficients in the series (7.98) shows that the second-
order (�τ)−4/3 terms are quite small compared to the leading (�τ)−2/3 viscous
terms when �τ � 1; they only become comparable when �τ � 0.05. In other
words, in the period 0.05 � �τ � 1 higher order terms in the hydrodynamic
expansion (7.98) are small and yet hydrodynamics is still not yet applicable. This
indicates that the physics which determines the onset of hydrodynamic behavior is
not associated with higher order terms in the hydrodynamic expansion becoming
comparable to lower order terms. Rather, it must be the case that the expansion
hydrodynamizes at τ ∼ τhydro because it is at that time that the non-hydrodynamic
modes that are not described at all by (7.98) and that damp away exponentially
in time are becoming insignificant relative to the slowly relaxing hydrodynamic
modes. If |c| is not large, when τ < τhydro the nonhydrodynamic modes dominate
and the expansion is far from equilibrium. We can draw two (related) conclusions
from this. First, if all we know is the late-time gradient expansion (7.98), asking
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before what time this expansion breaks down is not an accurate way of identifying
the hydrodynamization time and the domain of validity of hydrodynamics. A sim-
ilar conclusion was also reached in Ref. [48] by analyzing small perturbations on
top of infinite static plasma. Second, even if we know many terms in the late-time
gradient expansion (7.98), knowing only this it is impossible to run the equations
of hydrodynamics backwards in time and reconstruct the far-from-equilibrium
initial conditions. This follows from the fact that many very different far-from-
equilibrium initial states can end up at late times in a boost-invariant hydrodynamic
expansion (7.98) with the same �. This loss of memory of the initial conditions is
characteristic of any equilibration process, and the hydrodynamization of a plasma
that in boost-invariant expansion is no exception.

It is also interesting to notice that in all three panels of Fig. 7.15 at the time
of hydrodynamization the fluid is markedly anisotropic, which means that in the
hydrodynamic expansion (7.98) the first derivative terms are not much smaller than
the zeroth derivative terms. The most extreme example is PL in the left-hand panel
of Fig. 7.15, where the first derivative term in (7.98) is almost 70% as large as the
zeroth order term at t = thydro. And yet, as we have described above, in all cases
the second order terms are very small at the time of hydrodynamization. What this
suggests is that although ideal, zeroth order, hydrodynamics of course becomes
valid at asymptotically late times, at the times shown in Fig. 7.15 it does rather
badly because it includes no dissipation and at these times dissipation is impor-
tant. However, once the lowest order term that includes dissipation (i.e. the first
order terms in the derivative expansion (7.98)) are included, the important physics
that was missed at zeroth order is incorporated. With no further qualitatively new
physics being missed, the second order terms are small. So, what we learn is that
at the time of hydrodynamization the hydrodynamics is dissipative hydrodynam-
ics, with first order terms behaving like additional leading terms since they are the
leading dissipative terms.

The results illustrated in Fig. 7.15 clearly show the system hydrodynamizing
before it isotropizes. Isotropization, like hydrodynamization, happens continuously
with strict isotropy only being achieved in the infinite time limit. So, to make a
quantitative comparison between τhydro and an isotropization time τiso we need to
introduce a criterion for isotropization, just as we did for hydrodynamization. If we
define τiso as the proper time when (PT −PL)/PT = 0.1, meaning that in the local
fluid rest frame the pressure in the fluid is within 10% of being isotropic, we see
from (7.98) that τiso = 15.6/� (τiso = 16.1/�) for an expanding boost invariant
hydrodynamic flow if we work to second (first) order in gradients. And, if we use
(7.96) as an operational definition of a temperature T (τ ) then τisoT (τiso) = 6.2
(τisoT (τiso) = 6.4). We saw above that in all three cases illustrated in Fig. 7.15 the
hydrodynamization time τhydro is substantially less than this τiso meaning that, as
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anticipated in Section 2.2, the strongly coupled plasma hydrodynamizes at a time
when it is still significantly anisotropic. It then expands and cools according to the
laws of viscous, i.e. dissipative, hydrodynamics with entropy being produced until
τ ∼ τiso. After τ ∼ τiso, the boost-invariant expansion continues but the fluid is now
close to isotropic meaning that gradient terms are unimportant and the expansion
is well described by ideal, inviscid, hydrodynamics with no further production of
entropy.4 We shall see via many examples throughout the remainder of this chapter
that this ordering of events, hydrodynamization before isotropization, is generic
when an expanding strongly coupled plasma forms, whether boost invariant or
not, starting from varied far-from-equilibrium initial states. Although we know of
no proof that hydrodynamization always happens first at strong coupling, we also
know of no counterexamples.

Although hydrodynamization before isotropization should always have been
seen as a logical possibility, in fact before the holographic calculations for strongly
coupled fluids that we are describing in this chapter were done this possibility was
not much considered. The expectation, based partly upon weak coupling intuition
and partly upon not anticipating that first order terms in the derivative expansion of
hydrodynamics could be significant at a time when second and higher order terms
have already become insignificant, was that hydrodynamization would occur after
the τiso defined above from (7.98). If this were the case, at the time of hydro-
dynamization the fluid would already be close to isotropic and the subsequent
hydrodynamic expansion would be close to ideal with almost no entropy produc-
tion. In such a setting, it was shown in Ref. [79] that isotropization could in fact
occur before hydrodynamization. In this case, isotropization cannot be described
hydrodynamically and τiso cannot be obtained from (7.98). It was even shown that
in the epoch between early isotropization and later hydrodynamization the expan-
sion of the weakly coupled matter can be described with equations that take the
same form as the equations of hydrodynamics [79] albeit with constitutive rela-
tions, including in particular the equation of state, that can differ from those of
hydrodynamics. This is possible because the processes that change the constitu-
tive relations back to the equilibrium ones take a time that is much longer than
τiso; in the perturbative analysis of Ref. [79], these two different time scales are
controlled by different powers of the small coupling constant. We now understand,
therefore, that all these considerations are relevant only if the plasma that forms is
weakly (possibly very weakly) coupled at the time that it hydrodynamizes. We have
learned from holographic calculations, like those illustrated in Fig. 7.15 and like

4 No further production of entropy unless or until there is some large increase in the viscosity of the fluid as it
cools, as can happen after a phase transition. For example, attempts to describe the late-time hadron gas phase
of QCD via hydrodynamics require viscosities that increase rapidly with decreasing temperature [695, 274,
275, 316]. However, with the methods of this chapter, and indeed of this book, we are not seeking to gain
insights into the physics of heavy ion collisions at late times, during or after the transition to hadronic matter.
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those described throughout the rest of this chapter, that when a strongly coupled
plasma is formed it hydrodynamizes first, then expands anisotropically and hydro-
dynamically, and only later isotropizes – with the isotropization and the associated
cessation of entropy production being described well by hydrodynamics.

It is important to note that if τhydro < τiso then in the analysis of flow observables
in heavy ion collisions that we described in Section 2.2 the important time scale is
τhydro. Following the conventions of the literature about flow in heavy ion collisions,
in that section we referred to an “equilibration time”. What is meant by this phrase,
in that context, is the time scale after which the expanding fluid can be described by
the equations of viscous hydrodynamics, which is to say τhydro. So, the conclusion
from that section that is of interest to us in this chapter should be phrased as saying
that the agreement between the data on single particle spectra and azimuthally
anisotropic flow in heavy ion collisions and hydrodynamic calculations implies
that τhydro ≤ (0.6–1) fm.

7.7.4 An all-order criterion for boost invariant hydrodynamization

In the previous subsection we introduced a deformation of the four-dimensional
boundary theory metric in order to pump energy and momentum into the vacuum
at early times and in this way create a boost-invariant far-from-equilibrium state.
As in Fig. 7.2b, and as in the analysis of a nonexpanding plasma in Section 7.5, we
had a source acting in the boundary for some duration in time. This made the iden-
tification of the hydrodynamization time a little ambiguous, since presumably the
system was already beginning to hydrodynamize while the source was still acting.
We now want to analyze the boost invariant expansion of an initial state created
as in Fig. 7.2c, as we did for a nonexpanding plasma in Section 7.6. This has
been accomplished by the authors of Refs. [448, 446], who found a way to impose
boost-invariant, far-from-equilibrium, initial conditions in the bulk at τ = 0. This
removes the ambiguity of the previous subsection, although from the perspective
of heavy ion physics it is also unrealistic: heavy ion collisions cannot be boost
invariant at τ = 0 since the colliding nuclei have a nonzero Lorentz-contracted
thickness. The authors of Refs. [448, 446] developed a new numerical framework
for solving the numerical relativity problem that, in the bulk, describes boost-
invariant expansion in the boundary theory. We shall not describe their formalism
but, very loosely speaking, it is a boost-invariant generalization of the formalism of
Appendix D. They were then able to analyze the evolution and hydrodynamization
of the expanding plasma resulting from a wide range of initial conditions at τ = 0.
These correspond, in their set-up, to specifying a single metric coefficient function
(the “initial profile”) for the initial geometry on the hypersurface τ = 0. We shall
describe the results they obtain for 29 different initial profiles below.
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Before we present results, we shall derive an all-order criterion for the validity
of boost-invariant hydrodynamics, i.e. for the determination of the hydrodynamiza-
tion time τhydro, introduced in Refs. [448, 446]. Doing so requires recasting the
equations of boost-invariant hydrodynamics in terms of the effective temperature
T (τ ) that we introduced in (7.104). Recall that T (τ ) is simply an alternative mea-
sure of the energy density if the system is far from equilibrium. All-order viscous
hydrodynamics, namely the extension of (7.98) to arbitrarily high order, amounts to
presenting the stress tensor as a series of terms expressed in terms of flow velocities
uμ and their derivatives with coefficients being proportional to appropriate powers
of T , the proportionality constants being the transport coefficients. Hydrodynamic
equations are just the conservation equations ∇μT μν = 0, which are then by con-
struction first order differential equations for T . In the case of a conformal fluid, in
boost invariant expansion, in the hydrodynamic regime the effective temperature
must take the form

T = � f (�τ) (7.111)

for some function f . This can be seen by taking the fourth root of the first equation
in (7.98), and relies upon the fact that if the fluid is conformal there can be no
dimensionful parameters present other than �. The only information about the
initial conditions that the fluid “remembers” after it hydrodynamizes is contained
in the constant �. Multiplying (7.111) by τ and inverting we arrive at

� = h(τT )

τ
, (7.112)

where h is the function defined such that h[x f (x)] = x . Differentiating (7.112),
we obtain

τ
d

dτ
τT = Fhydro(τT ) , (7.113)

where Fhydro(x) ≡ h(x)/h′(x). We conclude that in a conformal plasma in boost-
invariant expansion, the hydrodynamic equation for the scale invariant quantity

w ≡ τT (τ ) (7.114)

takes on the simple form
τ

w

d

dτ
w = Fhydro(w)

w
, (7.115)

where Fhydro(w) is completely determined in terms of the transport coefficients
of the theory [448, 446], much in the spirit of [586]. Intuitively, the reason that
(7.115) does not hold outside the hydrodynamic regime is that before the system
hydrodynamizes it has not yet lost memory of the initial conditions, and so the
evolution depends on the physical scales that characterize those initial conditions.
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For the plasma of strongly coupled N = 4 SYM theory, Fhydro(w) is known
explicitly up to terms corresponding to third order hydrodynamics [173]:

Fhydro(w)

w
= 2

3
+ 1

9πw
+ 1 − log 2

27π2w2
+ 15 − 2π2 − 45 log 2 + 24 log2 2

972π3w3
+ · · · .
(7.116)

The advantage of the result (7.115) over, for example, a seemingly simpler
expression like (7.111) lies in the fact that, if the boost-invariant expansion of the
fluid is governed entirely by hydrodynamics, including dissipative terms up to any
high order or even resummed, then, on a plot of τ

w
d

dτ w as a function of w, trajec-
tories for all initial conditions must lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine non-equilibrium processes intervene, i.e. if non-
hydrodynamic modes have been excited, then we should observe a wide range of
curves which all merge for sufficiently large w, after the system hydrodynamizes.
Thus Eq. (7.115) can be used to test whether the stress tensor is of hydrodynamic
form even without knowing the specific form of Fhydro(w). Thus, it provides an all-
order criterion for the hydrodynamization of a conformal plasma in boost invariant
expansion.

In the top panel of Fig. 7.16 we plot τ
w

d
dτ w as a function of w for trajec-

tories corresponding to 29 different initial states. It is clear from the plot that
non-hydrodynamic modes are very important in the initial stage of plasma evo-
lution. Yet, for all the sets of initial data, the curves merge into a single curve
characteristic of hydrodynamics for w > 0.7. When plotted on this scale, hydro-
dynamization appears to be occurring even earlier but the vertical scale in the top
panel has been extended in order to show all the very far-from-equilibrium dynam-
ics at early times. In the bottom panel of Fig. 7.16 we show a plot of the evolution
of the pressure anisotropy for a single initial state. Using (7.93) and (7.115),

1 − 3PL

E = 12
F(w)

w
− 8 , (7.117)

so the quantity plotted in the lower panel of Fig. 7.16 is almost the same as that plot-
ted in the upper panel, except now with a vertical scale chosen such that the details
of the approach to hydrodynamization are visible. We compare the result to the
corresponding curves for first, second and third order hydrodynamics. We observe,
on the one hand, excellent agreement with hydrodynamics for w > 0.63 and, on
the other hand, a quite sizable pressure anisotropy after hydrodynamization, as in
the previous subsection, meaning that the anisotropic fluid is described well by vis-
cous hydrodynamics. We can also see that, again as we discussed in the previous
subsection, the hydrodynamic expansion itself is well under control at the hydrody-
namization time. Non-hydrodynamic modes are important before w = 0.63, which
cannot be inferred if all we know is the late time hydrodynamic behavior.
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Figure 7.16 Top: plot of τ
w

d
dτ w versus w for 29 initial profiles. Bottom: the solid

curve shows 1 − 3PL/E = 2(PT −PL)/E , a measure of the pressure anisotropy,
for a selected profile. The three dotted curves (top, middle and bottom) represent
first, second and third order hydrodynamic fits. Figure taken from Ref. [448].

For all 29 initial conditions analyzed in Refs. [448, 446], hydrodynamization
occurs at the latest by w ≡ τT (τ ) = 0.7. In the example that we analyzed
in the previous subsection, when we pumped energy into the system over some
period of time ending at τ f , hydrodynamization occurred at τhydro with (τhydro −
τ f )T (τhydro) = 0.24. Our estimate here that when the system is initialized far from
equilibrium at τ = 0 it hydrodynamizes by a time τhydro with τhydroT (τhydro) = 0.7,
or perhaps somewhat smaller, confirms our speculation that in the analysis of the
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previous section the hydrodynamization process has already begun before τ f . It is
also interesting to notice how similar the criterion τhydroT (τhydro) = 0.7 is to the
results we obtained in Section 7.6 for the thermalization times of 1000 different
initial states that result in a static plasma with final temperature T . The analy-
ses of the equilibration of a homogeneous plasma in Sections 7.5 and 7.6 and the
hydrodynamization of an expanding boost invariant plasma in this section all point
toward the same conclusion: when strongly coupled plasma is formed by starting
with some far-from-equilibrium state and letting it equilibrate or hydrodynamize,
the time that this process takes is of order, or maybe even slightly less than, the
inverse of the temperature at which the process concludes.

7.7.5 Boost-invariant hydrodynamization with radial flow

Throughout this chapter, we have assumed homogeneity in the transverse plane.
It is of obvious interest to lift this restriction, since colliding ions are finite in
transverse extent and result in a distribution of energy density that varies nontriv-
ially in the transverse plane. The first step away from homogeneity is to assume
only rotational symmetry in the transverse plane, meaning that initially (and dur-
ing the subsequent expansion) the energy density profile is independent of the
azimuthal angle. Quite recently, analytic solutions to the equations of viscous
boost invariant hydrodynamics with this geometry have been found for the first
time by Gubser [397]. Even more recently, the hydrodynamization of initially
far-from-equilibrium states with this geometry which subsequently expand both
longitudinally (in a boost-invariant fashion) and radially in the transverse plane
has been analyzed for the first time by van der Schee [783]. The assumption of
boost invariance in the longitudinal direction together with rotational symmetry
in the transverse plane makes the gravitational problem 2 + 1-dimensional, and
it can be solved using pseudo-spectral methods [783]. The author of Ref. [783]
analyzes the boost invariant expansion of what is initially a “blob” of energy
about 14 fm in diameter in the transverse plane. He chooses initial conditions in
which the longitudinal pressure vanishes and the transverse pressure is half the
energy density. He watches these initial conditions evolve and hydrodynamize.
The result of the calculation is that hydrodynamization occurs at a τhydro at which
τhydroT (τhydro) ≈ 0.8–0.9, quite comparable to the hydrodynamization times found
above for boost invariant expansion with no transverse dynamics. With the choice
of initial transverse pressure profile in Ref. [783], gradients in the transverse
pressure are such that by the time of hydrodynamization the fluid is expand-
ing in the radial direction in the transverse plane with a velocity that reaches
about 0.1c near the edge of the blob, where the gradient in the pressure profile
is highest.
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7.8 Colliding sheets of energy

In the previous section we studied the hydrodynamization of expanding plasma
under the strong assumption of boost invariance. In this section we will relax this
condition and we will study the dynamics of a collision of two sheets of energy,
finite in thickness but infinite in transverse extent, in N = 4 SYM theory. Perhaps
this can be viewed as an instructive caricature of the collision of two large, highly
Lorentz-contracted, nuclei. Introducing nontrivial dynamics in the transverse plane
would yield an even better caricature with which to study the hydrodynamization
of strongly coupled plasma as in a heavy ion collision. We saw in Section 7.7.5 that
the first steps in this direction are just now being taken, albeit in a boost invariant
setting. As we show in this section, the assumption of boost invariance can also be
dispensed with.

Multiple authors have discussed collisions of infinitely extended planar shock
waves in SYM, which in the dual description becomes a problem of colliding
gravitational shock waves in asymptotically AdS spacetime. Existing work has
examined qualitative properties and trapped surfaces [390, 405, 35, 36, 546, 547,
411, 580, 533], possible early-time behavior [549, 390, 151, 773], and expected
late time asymptotics [495, 496]. As no analytic solution is known for this grav-
itational problem, solving the gravitational initial-value problem numerically is
the only way to obtain quantitative results which properly connect early- and
late-time behavior. This was done in Ref. [292], whose results we shall describe
here. Although much of the earlier work concerned singular shocks with vanishing
thickness, in Ref. [292] Chesler and Yaffe were able to analyze the collision and
subsequent evolution and hydrodynamization of planar sheets whose energy den-
sity is everywhere finite, with a Gaussian profile in the “beam” direction, incident
at the speed of light.

Diffeomorphism invariance plus translation invariance in two spatial directions
allows one to write the bulk metric in the form

ds2 = 2dv dr − A dv2 + !2
(
eBdx2

⊥ + e−2Bdz2
) + 2Fdv dz , (7.118)

where A, B, !, and F are all functions of the bulk radial coordinate r , of the time v,
and of the longitudinal coordinate z along which the waves will collide. As usual,
we use generalized infalling Eddington–Finkelstein (EF) coordinates, and the EF
time v coincides with the Minkowski time at the boundary, which lies at r → ∞.
Note that the crossed dvdz term in the metric is necessary to describe the expected
energy flux

S ≡ 2π2

N 2
c

T tz (7.119)

in the z direction.
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We want our initial gravitational data to be dual to two well-separated sheets
of energy in the gauge theory, with finite thickness and energy density, moving
towards each other at the speed of light. For a single sheet moving in the ∓z
direction, one possible choice on the gravity side is a planar shock of the form [495]

ds2 = r2
(−dx+dx− + dx2

⊥
) + 1

r2

[
dr2 + h(x±) dx2

±
]
, (7.120)

with x± ≡ t ± z, and h an arbitrary function – see e.g. Refs. [150, 91] for detailed
discussions of these type of solutions. Note that the time t in this form of the metric
is not an EF time but rather the analog of the time t shown in Fig. 7.1. The function
h is chosen to be a Gaussian with width w and amplitude μ3:

h(x±) ≡ μ3 (2πw2)−1/2 e− 1
2 x2±/w2

. (7.121)

Note that the term h(x±) dx2±/r2 in the metric has precisely the correct fall-off to
correspond to a vacuum expectation value of the T++ component of the boundary
stress tensor, i.e. 〈T++〉 ∝ h(x±), as corresponds to an excitation that propagates
at the speed of light. The energy density per unit area of the shock is μ3(N 2

c /2π2).
If the shock profile h has compact support, then a superposition of right- and
left-moving shocks solves Einstein’s equations at early times when the incoming
shocks have disjoint support. Although this is not exactly true for our Gaussian
profiles, the residual error in Einstein’s equations is negligible when the separa-
tion of the incoming shocks is more than a few times the shock width. Following
Ref. [292], we choose a width w = 0.75/μ and an initial separation of the shocks
�z = 6.2/μ. We evolve the system for a total time �t = 9.1/μ.

Because of its light-like nature, all the curvature invariants of the metric (7.120)
are finite. Nevertheless, as pointed out in [91], this metric possesses a naked cur-
vature singularity, since tidal forces diverge in the region h(x±) 
= 0, r → 0 [682].
Recall that r → 0 can be reached in finite affine parameter along future-directed
causal curves, in particular along geodesics, and that when h = 0 it corresponds to
the horizon of AdS. Presumably this singularity is related to the observation [292]
that, when expressed in terms of EF coordinates, the functions A and F in the
metric (7.118) seem to grow without bound as r → 0. Following Ref. [292], we
regulate this problem by adding to the metric (7.120) an additional piece represent-
ing a static, infinite thermal bath within which the shocks propagate. On the gravity
side this corresponds to a static, infinite horizon at a small value of r that cloaks
the singularity present for r → 0. The bath acts as a regulator in the sense that its
energy density is smaller by a factor of 50 than the peak energy in the shocks. This
large separation implies that the effect of the bath on the propagation of the shocks
is small and also implies that the temperature of the plasma at the time of hydrody-
namization is much larger than the regulator temperature. However, the presence
of the singularity means that the regulator cannot be strictly removed.
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Figure 7.17 Energy density E/μ4 as a function of the boundary time t and
longitudinal coordinate z. Figure taken from Ref. [292].

With the solution (7.120) plus the regulator in hand, the remaining tasks are (i)
to transform these initial data to the EF coordinates of the ansatz (7.118), which
is done numerically, (ii) to evolve Einstein’s equations with these initial data, and
(iii) to read off the boundary stress tensor from the near-boundary fall-off of the
resulting metric. Figure 7.17 shows the energy density E as a function of time
and longitudinal position obtained from this calculation. On the left, one sees two
incoming shocks propagating toward each other at the speed of light. After the col-
lision, centered on t = 0, energy is deposited throughout the region between the
two receding energy density maxima. As the dynamics of the collision is strongly
coupled, the energy density after the collision does not at all resemble two out-
going sheets of energy that have passed through each other. For example, after
the collision in Fig. 7.17 the two receding maxima are moving outwards at less
than the speed of light. To elaborate on this point, Fig. 7.18 shows a contour
plot of the energy flux S for positive t and z. The dashed curve shows the loca-
tion of the maximum of the energy flux. The inverse slope of this curve, equal to
the speed with which the receding maxima in the energy density are moving, is
v = 0.86 at late times. This is the most dramatic manifestation of the fact that
the dynamics is not boost invariant. The solid line shows the point beyond which
S/μ4 < 10−4, and has slope 1. Evidently, the leading disturbance from the col-
lision moves outwards at the speed of light, but the maxima in E and S move
significantly slower. The collision has substantially slowed down the sheets of
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Figure 7.18 Energy flux S/μ4 as a function of the boundary time t and
longitudinal coordinate z. Figure taken from Ref. [292].

energy and, furthermore, it has resulted in the deposition of energy density between
the receding sheets, in the vicinity of z = 0. This energy density, seen expand-
ing and cooling in Fig. 7.17, is the plasma whose hydrodynamization we wish to
quantify.

In Fig. 7.19 we plot the transverse and longitudinal pressures at z = 0 as a
function of time. At z = 0, the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far from equilibrium. At t =
−0.23/μ, where PL has its maximum, PL is roughly 5 times larger than PT . At
late times, the pressures asymptotically approach each other.

We expect that at sufficiently late times the evolution of T μν will be described
by hydrodynamics. To test the validly of hydrodynamics, in Fig. 7.19 we also plot
(as dashed lines) the pressures Phydro

T and Phydro
L predicted from the energy density

by the first order viscous hydrodynamic constitutive relations [107]. At z = 0 the
hydrodynamic constitutive relations hold within 15% at time thydro = 2.4/μ, with
improving accuracy thereafter.

At z = 0, where the flux S = 0, the constitutive relations imply that the dif-
ference between Phydro

T and Phydro
L is purely due to viscous effects. Figure 7.19

shows that there is a large difference between PT and PL when hydrodynamics
first becomes applicable, implying that viscous effects are substantial. As in all
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Figure 7.19 Longitudinal (continuous green curve) and transverse pressure (con-
tinuous blue curve) in units of μ4 as a function of time t , at z = 0. Also shown
for comparison (dashed black curves) are the pressures predicted by the viscous
hydrodynamic constitutive relations. Figure taken from Ref. [292].

the boost-invariant examples that we analyzed earlier, hydrodynamization of the
strongly coupled fluid produced by the collision between the sheets of energy
illustrated in Fig. 7.17 occurs before isotropization. Hydrodynamization is fol-
lowed by an epoch of anisotropic hydrodynamic expansion during which entropy
is produced. Only later, at an isotropization time that comes well after the times
visible in Figs. 7.17 and 7.19, the pressures in the fluid become locally isotropic,
entropy production ceases, and the subsequent expansion is described by ideal
hydrodynamics.

At z = 0, when t = thydro = 2.4/μ the effective temperature, defined from the
energy density according to (7.104) is T = 0.27μ, meaning that thydroT (thydro) =
0.65. We see that the hydrodynamization time for the plasma produced in the col-
lisions of this section is quite comparable to the estimates that we obtained in the
context of boost-invariant expansion in Section 7.7.

As we conclude this chapter, we see a common conclusion emerging from a
wide variety of calculations. We saw in Sections 7.5 and 7.6 that the thermalization
of a static strongly coupled plasma with equilibrium temperature T takes a time
in the range (0.6–1)/T , for a wide variety of far-from-equilibrium initial condi-
tions. We then saw in Section 7.7 that when a strongly coupled plasma forms in
a boost-invariant expansion, it hydrodynamizes in a time τhydro � 0.7/T (τhydro),
again for a wide variety of far-from-equilibrium initial states. Here, T (τhydro) is
the effective temperature of the plasma, defined from the fourth root of its energy
density, at the time that it hydrodynamizes. Finally, in this section where we have
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dispensed with boost invariance, at least in the one instance of colliding sheets of
energy density that we have analyzed we find thydroT (thydro) = 0.65. The conclu-
sion that the hydrodynamization of strongly coupled plasma takes a time satisfying
thydroT (thydro) = 0.6–1 seems robust indeed.

As we have discussed in Section 2.2, the comparison of data on identified par-
ticle spectra and elliptic flow in heavy ion collisions at RHIC to hydrodynamic
calculations indicates that the quark–gluon plasma produced in RHIC collisions
hydrodynamizes before a time of order 0.6–1 fm/c [443, 543]. Before the inves-
tigations described in this chapter, this was always seen as rapid thermalization
since analyses of thermalization that are based upon weakly coupled physics point
to significantly longer thermalization times. How does our strong coupling con-
clusion compare? In doing hydrodynamic calculations to compare with data from
heavy ion collisions, it has become conventional to initialize the hydrodynamic cal-
culation τ = 0.6 fm after the collision. For example, in Ref. [734] we find recent
viscous hydrodynamic calculations that fit RHIC data well if the temperature at the
middle of the fireball is initially T (0.6 fm) = 347–379 MeV, with the variation
coming from uncertainty in the shape of the energy density profile at that time. We
see that τ = 0.6 fm after a RHIC collision, τT (τ ) ∼ 1.1–1.2. Although we do
not have full-fledged hydrodynamic calculations that start this early to call upon,
we see that τT (τ ) = 0.65 corresponds to a τ that is somewhere around 0.3 fm.
In heavy ion collisions at the LHC, T (0.6 fm) = 444–485 MeV [734], meaning
that τT (τ ) = 0.65 corresponds to a τ that is somewhere around 0.2 fm. Follow-
ing the discussion with which we began this chapter, it would be inappropriate to
take these as estimates for the hydrodynamization times of heavy ion collisions
per se. We expect that at the very beginning of a heavy ion collision, the dominant
physics is not yet strongly coupled. The impact of these strong coupling estimates
is that they teach us that the more than ten-year-old result that the matter produced
in RHIC collisions takes at most 0.6–1 fm to hydrodynamize should no longer be
seen as “rapid thermalization”, since this time scale is comfortably longer than
what we now know we should expect if the physics of heavy ion collisions were
strongly coupled from the start.

We close by noting that there are two other ways to connect the results from the
calculation of colliding sheets in this section to heavy ion collisions. The authors of
Ref. [292] noted that if we equate the energy per unit transverse area of the sheets
with the mean energy per unit transverse area of the Lorentz-contracted nuclei inci-
dent at RHIC, this sets the scale for μ without appealing to the hydrodynamization
temperature in the final state. This estimate yields μ ∼ 2.3 GeV, which would then
mean that thydro = 2.4/μ corresponds to thydro ∼ 0.2 fm. The reason that this yields
a larger value of μ than the one that we obtained implicitly above when we used
the hydrodynamization temperature is that, in the collision of the two sheets of
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strongly coupled matter, the energy density near z ∼ 0 in the final state is greater
than in a collision between heavy ions with the same energy per unit transverse
area. The other option is to use the width of the sheets to set the scale. In the col-
lision that we have described, w = 0.75/μ meaning that thydro = 2.4/μ = 3.2w.
It is a little hard to compare the Gaussian profiles of the colliding sheets of energy
with the profiles of Lorentz-contracted nuclei in a quantitative way, but this sug-
gests thydro ∼ 0.3 fm, consistent with what we obtained via the hydrodynamization
temperature above. Based on experience in simpler contexts earlier in this chap-
ter, we expect that the hydrodynamization time is controlled by the inverse of the
hydrodynamization temperature when that time scale is much longer than w, and
by w when that is the longer time scale. For the specific value of wμ that we have
used, the two estimates are comparable. It would be interesting to investigate the
collisions of sheets of energy density with Gaussian profiles having varying values
of wμ, and then with profiles having other shapes. And, it will be interesting to
investigate colliding disks with a non-trivial profile in the transverse plane as, we
have seen in Section 7.7.5, is already now possible in a boost-invariant setting.
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