CONSTRUCTION OF STEINER TRIPLE SYSTEMS HAVING EXACTLY ONE TRIPLE IN COMMON

CHARLES C. LINDNER

1. Introduction. A Steiner triple system is a pair (Q, t) where Q is a set and t a collection of three element subsets of Q such that each pair of elements of Q belong to exactly one triple of t. The number |Q| is called the order of the Steiner triple system (Q, t). It is well-known that there is a Steiner triple system of order n if and only if $n \equiv 1$ or 3 (mod 6). Therefore in saying that a certain property concerning Steiner triple systems is true for all n it is understood that $n \equiv 1$ or 3 (mod 6). Two Steiner triple systems (Q, t_1) and (Q, t_2) are said to be disjoint provided that $t_1 \cap t_2 = \emptyset$. Recently, Jean Doyen has shown the existence of a pair of disjoint Steiner triple systems of order n for every $n \geq 7$ [1]. In this same paper Doyen raises the question as to whether it is possible to construct a pair of Steiner triple systems of order n having exactly one triple in common for every $n \geq 3$.

2. Preliminaries. A Steiner quasigroup is a quasigroup satisfying the identities $x^2 = x$, x(xy) = y, and (yx)x = y. It is well-known that a Steiner triple system is algebraically a Steiner quasigroup. We will say that the Steiner triple system (Q, t) and Steiner quasigroup (Q, o) are associated with each other provided that $\{x, y, z\} \in t$ if and only if $x \circ y = z$. In much of what follows we will consider Steiner triple systems algebraically. Steiner quasigroups (Q, o_1) and (Q, o_2) are disjoint or intersect in exactly one triple provided that their associated triple systems (Q, t_1) and (Q, t_2) have this property. Therefore the Steiner quasigroups (Q, o_1) and (Q, o_2) are disjoint provided that $x \circ_1 y \neq x \circ_2 y$ for all $x \neq y \in Q$ and intersect in exactly one triple provided that for some three element subset T of Q that (T, o_1) is a subquasigroup of $(Q, o_1), (T, o_2)$ is a subquasigroup of $(Q, o_2), x o_1 y = x o_2 y$ for all $x, y \in T$, and $x \circ_1 y \neq x \circ_2 y$, $x \neq y$, if at least one of x, $y \in Q \setminus T$. In this case we will say that (Q, o_1) and (Q, o_2) agree exactly on T. We will call a pair of Steiner quasigroups (Q, o_1) and (Q, o_2) of order q a (q, 0) pair if they are disjoint and a (q, 1) pair if they interesct in exactly one triple.

Most of the constructions in this paper are based on the following generalized singular direct product of quasigroups. (See [3; 4; 5; 6; 7].) We begin by defining the *conjugate* of a quasigroup (Q, \otimes) . Let (Q, \otimes) be any quasigroup and on the set Q define six binary operations $\otimes(1, 2, 3)$, $\otimes(1, 3, 2)$, $\otimes(2, 1, 3)$, $\otimes(2, 3, 1)$, $\otimes(3, 1, 2)$, and $\otimes(3, 2, 1)$ as follows:

Received September 13, 1972.

 $a \otimes b = c$ if and only if

 $a \otimes (1, 2, 3)b = c,$ $a \otimes (1, 3, 2)c = b,$ $b \otimes (2, 1, 3)a = c,$ $b \otimes (2, 3, 1)c = a,$ $c \otimes (3, 1, 2)a = b,$ $c \otimes (3, 2, 1)b = a.$

The six (not necessarily distinct) quasigroups $(Q, \otimes(i, j, k))$ are called the conjugates of (Q, \otimes) [8]. We will denote by (T, *) the Steiner quasigroup of order 3, where $T = \{1, 2, 3\}$. Let (V, \circ) be any Steiner quasigroup and (V, t) the associated Steiner triple system. Let t_1, t_2, \ldots, t_r be the triples in t. Then each (t_i, \circ) is a subquasigroup of (V, \circ) and is isomorphic to (T, *). Let α_i be a fixed isomorphism of (t_i, \circ) onto (T, *). Let Q be a set and for each v in V let $\circ(v)$ be a binary operation on Q so that $(Q, \circ(v))$ is a Steiner quasigroup. Further suppose that $P \subseteq Q$ is such that all of the operations agree on P and that $(P, \circ(v))$ is a subquasigroup of $(Q, \circ(v))$. Let $(\bar{P} = Q \setminus P, \otimes)$ be any quasigroup. If $p, q \in \bar{P}$ and $v \neq w \in V$, by $p \otimes (v, w, v \circ w) q$ is meant the element $p \otimes (v\alpha_i, w\alpha_i, v\alpha_i * w\alpha_i) q$ of $(Q, \otimes (v\alpha_i, w\alpha_i, v\alpha_i * w\alpha_i))$, where $\{v, w, v \circ w\} = t_i$. On the set $P \cup (\bar{P} \times V)$ define the binary operation \otimes as follows:

(1) $p \oplus q = p \circ (v) q = p \circ (w) q$, if $p, q \in P$; (2) $p \oplus (q, v) = (p \circ (v) q, v)$, if $p \in P, q \in \overline{P}, v \in V$; (3) $(q, v) \oplus p = (q, \circ (v) p, v)$, if $p \in P, q \in \overline{P}, v \in V$; (4) $(p, v) \oplus (q, v) = p \circ (v) q$, if $p \circ (v) q \in P$, and $= (p \circ (v) q, v)$ if $p \circ (v) q \in \overline{P}$; (5) $(p, v) \oplus (q, w) = (p \otimes (v, w, v \circ w)q, v \circ w), v \neq w$.

The quasigroup so constructed is denoted by $V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$. We remark here that the operations O(v) are not necessarily related other than agreeing on P and that although (V, \odot) and $(Q, \circ(v))$, all $v \in V$, are Steiner quasigroups, the quasigroup (\overline{P}, \otimes) is not necessarily Steiner. Finally, although we have used the same quasigroup (\overline{P}, \otimes) for every triple in t this is not necessary. Different quasigroups can be associated with each triple in t. In [6] the following theorem is proved.

THEOREM 1. The singular direct product $V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$ defined above is a Steiner quasigroup of order v(q - p) + p, where |V| = v, |Q| = q, and |P| = p.

3. Basic constructions. In this section we give the basic constructions to be used in constructing a pair of (q, 1) Steiner quasigroups for every $q \ge 3$.

THEOREM 2. Let q > 3. If there is a pair of (q, 1) Steiner quasigroups, there is a pair of (v(q-1) + 1, 1) Steiner quasigroups for all $v \equiv 1$ or 3 (mod 6).

226

Proof. Let (V, \odot) be any Steiner quasigroup based on $1, 2, \ldots, v$ and (Q, \circ_1) and (Q, \circ_2) a pair of (q, 1) Steiner quasigroups based on $1, 2, \ldots, q$ agreeing exactly on the subset $T = \{1, 2, 3\}$ of Q. Let $(Q, \overline{\circ}_1)$ and $(Q, \overline{\circ}_2)$ be a pair of (q, 0) Steiner quasigroups. Take $P = \{1\}$ so that P is a subquasigroup of all of the above quasigroups. Finally, set $\overline{P} = Q \setminus P$ and let $(\overline{P}, \otimes_1)$ and $(\overline{P}, \otimes_2)$ be a pair of totally disjoint quasigroups; i.e., $x \otimes_1 y \neq x \otimes_2 y$ for all $x, y \in \overline{P}$. Now form the singular direct products (S, \oplus_1) and (S, \oplus_2) defined as follows:

(1) $(S, \oplus_1) = V(\circ) \times Q(\circ(v), P, \overline{P} \otimes (u, v, w))$, where $\circ(1) = \circ_1, \circ(i) = \overline{\circ}_1, i > 1, P = \{1\}$, and $(\overline{P}, \otimes_1)$ is used to define $(\overline{P}, \otimes (u, v, w))$.

(2) $(S, \oplus_2) = V(\circ) \times Q(\circ(v), P, \overline{P} \otimes (u, v, w))$, where $\circ(1) = \circ_2, \circ(i) = \overline{\circ}_2, i > 1, P = \{1\}$, and $(\overline{P}, \otimes_2)$ is used to define $(\overline{P}, \otimes (u, v, w))$.

Set $\overline{T} = \{1, (2, 1), (3, 1)\}$. Then both \oplus_1 and \oplus_2 agree on T. We show that \oplus_1 and \oplus_2 agree exactly on \overline{T} . We consider three cases.

(1) $x \neq y \in P \cup (\bar{P} \times \{1\})$. Since $(P \cup (\bar{P} \times \{1\}), \oplus_1)$ is a copy of (Q, \circ_1) and $(P \cup (\bar{P} \times \{1\}), \oplus_2)$ is a copy of (Q, \circ_2) it follows that $x \oplus_1 y = x \oplus_2 y$ if and only if both x and y are in T.

(2) $x \neq y \in P \cup (\bar{P} \times \{v\}), v \neq 1$. Since $(P \cup (\bar{P} \times \{v\}), \oplus_1)$ is a copy of (Q, \bar{o}_1) and $(P \cup (\bar{P} \times \{v\}), \oplus_2)$ is a copy of (Q, o_2) we must have $x \oplus_1 y \neq x \oplus_2 y$.

(3) $x = (p, v), y = (q, w), v \neq w$. In this case we have

$$(p, v) \oplus_1 (q, w) = (p \otimes_1 (v, w, v \odot w)q, v \odot w)$$

and

$$(p, v) \oplus_2 (q, w) = (p \otimes_2 (v, w, v \odot w) q, v \odot w).$$

Since (\bar{P}, \otimes_1) and (\bar{P}, \otimes_2) have the property that $x \otimes_1 y \neq x \otimes_2 y$ for all $x, y \in \bar{P}$ it follows that their corresponding conjugates also have this property. Hence $p \otimes_1 (v, w, v \circ w)q \neq p \otimes_2 (v, w, v \otimes w)q$.

Now combining cases (1), (2), and (3) shows that the singular direct products (S, \oplus_1) and (S, \oplus_2) agree exactly on \overline{T} completing the proof.

THEOREM 3. Let q > 3. If there is a pair of (q, 1) Steiner quasi-groups, there is a pair of (v(q - 3) + 3, 1) Steiner quasigroups for all $v \equiv 1$ or 3 (mod 6).

Proof. Again let (V, \circ) be any Steiner quasigroup and (Q, \circ_1) and (Q, \circ_2) a pair of (q, 1) Steiner quasigroups agreeing exactly on the three element subset T of Q. Set $\overline{P} = Q \setminus T$ and let $(\overline{P}, \otimes_1)$ and $(\overline{P}, \otimes_2)$ be a pair of completely disjoint quasigroups; i.e., $x \otimes_1 y \neq x \otimes_2 y$ for all $x, y \in \overline{P}$. Form the singular direct products (S, \oplus_1) and (S, \oplus_2) defined below.

(1) $(S, \oplus_1) = V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$, where $\odot(v) = \odot_1$, all $v \in V, P = T$, and $(\overline{P}, \otimes_1)$ is used to define $(\overline{P}, \otimes (u, v, w))$.

(2) $(S, \oplus_2) = V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$, where $\odot(v) = \odot_2$, all $v \in V, P = T$, and $(\overline{P}, \otimes_2)$ is used to define $(\overline{P}, \otimes (u, v, w))$.

Clearly both of \oplus_1 and \oplus_2 agree on *T*. There are two cases to consider.

(1) $x \neq y \in P \cup (\bar{P} \times \{v\}), v \in V$. Since $(P \cup (\bar{P} \times \{v\}), \oplus_1)$ is a copy of

CHARLES C. LINDNER

 (Q, o_1) and $(P \cup (\overline{P} \times \{v\}), \oplus_2)$ is a copy of (Q, o_2) it follows that $x \oplus_1 y = x \oplus_2 y$ if and only if $x, y \in T$.

(2) $x = (p, v), y = (q, w), v \neq w$. This is identical to case (3) in the proof of Theorem 2.

Combining cases (1) and (2) shows that (S, \oplus_1) and (S, \oplus_2) are a pair of (v(q-3)+3, 1) Steiner quasigroups.

THEOREM 4. If $v \equiv 1$ or 3 (mod 6) there is a pair of (2v + 1, 1) Steiner quasigroups.

Proof. Let (V, \odot) be a Steiner quasigroup based on $1, 2, \ldots, v$ and let (Q, \circ) be the Steiner quasigroup of order 3 with $Q = \{1, 2, 3\}$. Take $P = \{1\}$ as a subquasigroup of order 1. Set $\overline{P} = \{2, 3\}$ and define quasigroups $(\overline{P}, \otimes_1)$ and $(\overline{P}, \otimes_2)$ by the following tables.

\otimes_1	$2 \ 3$	\otimes_2	2 3
2	$egin{array}{ccc} 2 & 3 \ 3 & 2 \end{array}$	2	$\begin{array}{ccc} 3 & 2 \\ 2 & 3 \end{array}$
3	3 2	3	$2 \ 3$
	$(ar{P}, \otimes_1)$	($(ar{P},\otimes_2)$

Note that (\bar{P}, \otimes_1) and (\bar{P}, \otimes_2) are both totally symmetric and therefore invariant under conjugation. Also (\bar{P}, \otimes_1) and (\bar{P}, \otimes_2) are totally disjoint; i.e., $x \otimes_1 y \neq x \otimes_2 y$ for all $x, y \in \bar{P}$. Now form the following singular direct products.

(1) $(S, \bigoplus_1) = V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$, where $\odot(v) = \odot$, all $v \in V, P = \{1\}$, and $(\overline{P}, \bigotimes_1)$ is used to define $(\overline{P}, \bigotimes(u, v, w))$.

(2) $(S, \oplus_2) = V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$, where $\odot(v) = \odot$, all $v \in V, P = \{1\}$, and $(\overline{P}, \otimes_2)$ is used to define $(\overline{P}, \otimes(u, v, w))$.

Let (S, t_1) and (S, t_2) be the associated Steiner triple systems. It is a routine matter to show that (S, t_1) and (S, t_2) have exactly the triples $\{1, (2, v), (3, v)\}$, all $v \in V$, in common. Let α be the permutation on V defined by $\alpha = (2 \ 3) (4 \ 5)$ $\dots (v - 1v)$ and denote by $(S, t_1\alpha)$ the Steiner triple system obtained from (S, t_1) by replacing all ordered pairs (2, v) by $(2, v\alpha)$. Claim: $(S, t_1\alpha)$ and (S, t_2) intersect exactly in the triple $\{1, (2, 1), (3, 1)\}$. Since α fixes 1, the Steiner triple systems $(S, t_1\alpha)$ and (S, t_2) have the triple $\{1, (2, 1), (3, 1)\}$ in common. Now let t be any triple in $t_1\alpha$ other than $\{1, (2, 1), (3, 1)\}$. There are two cases to consider.

(i) $1 \in t$. Since each triple in t_1 containing 1 is of the form $\{1, (2, v), (3, v)\}$, each triple in $t_1\alpha$ containing 1 is of the form $\{1, (2, v\alpha), (3, v)\}$. Since $v \neq 1$, $v\alpha \neq v$ so that t cannot belong to t_2 .

(ii) $1 \notin t$. In t_1 each triple not containing 1 is of the form $\{(p, v), (q, w), (p \otimes_1 q, v \circ w)\}$. Hence in $t_1 \alpha$ each triple not containing 1 is of the form

 $\{(p, v\alpha), (q, w\alpha), (p \otimes_1 q, v\alpha \odot w\alpha)\}.$

This triple cannot belong to t_2 because $p \otimes_1 q \neq p \otimes_2 q$ for all $p, q \in \overline{P}$. Com-

228

bining cases (i) and (ii) shows that $(S, t_1\alpha)$ and (S, t_2) intersect in exactly one triple completing the proof.

THEOREM 5. If $v \equiv 1$ or 3 (mod 6) there is a pair of (40v + 9, 1) Steiner quasigroups.

Proof. We begin by constructing a certain pair of (49, 1) Steiner quasigroups. Let (V, \odot) be the Steiner quasigroup of order 7 based on 1, 2, 3, 4, 5, 6, 7. We can assume that $\{1, 2, 3\}$ belongs to the associated triple system. Let (Q, \circ_1) and (Q, \circ_2) be a pair of (7, 1) Steiner quasigroups based on 1, 2, 3, 4, 5, 6, 7 and agreeing exactly on $T = \{1, 2, 3\}$. Let $(Q, \overline{\circ}_1)$ and $(Q, \overline{\circ}_2)$ be a pair of (7, 0) Steiner quasigroups and (Q, \otimes_1) and (Q, \otimes_2) a pair of totally disjoint quasigroups. Finally, let $(Q, \overline{\otimes}_1)$ and $(Q, \overline{\otimes}_2)$ be the quasigroups defined below.

\otimes_1	1	2	3	4	5	6	7	\otimes_2	1	2	3	4	5	6	7
1	1	3	2	6	7	4	5	1	1	3	2	7	4	5	6
2	3		1	5	4	7	6	2	3	2	1	6	5	4	7
3	2	1	3	7	6	5	4	3	2	1	3	4	7	6	5
4	6	5	7	4	2	1	3	4	7	6	4	5	3	2	1
5	7	4	6	2	5	3	1	5	4	5	7	3	6	1	2
6	4	7	5	1	3	6	2	6	5	4	6	2	1	7	3
7	5	6	4	3	1	3	7	7	6	7	5	1	2	3	4
$(Q, \overline{\otimes}_1)$								$(Q, \overline{\otimes}_2)$							

Note that both $\overline{\otimes}_1$ and $\overline{\otimes}_2$ agree on $\{1, 2, 3\}$ while if at least one of $x, y \notin \{1, 2, 3\}$ then $x \otimes_1 y \neq x \otimes_2 y$ and this is true even if x = y. It also remains true for corresponding conjugates. Note also that $(\{1, 2, 3\}, \overline{\otimes}_1) = (\{1, 2, 3\}, \overline{\otimes}_2)$ is the Steiner quasigroup of order 3 so that while the quasigroups $(Q, \overline{\otimes}_1)$ and $(Q, \overline{\otimes}_2)$ are not necessarily invariant under conjugation the subquasigroups $(\{1, 2, 3\}, \overline{\otimes}_1)$ and $(\{1, 2, 3\}, \overline{\otimes}_2)$ are. Now form the following singular direct products.

(1) $(S, \oplus_1) = V(\odot) \times Q(\odot(v), \emptyset, \overline{P} \otimes (u, v, w))$, where $\odot(1) = \odot(2) = \odot(3) = \odot_1, \ \odot(4) = \odot(5) = \odot(6) = \odot(7) = \odot_1, \ P = \emptyset, \ (Q, \ \overline{\otimes}_1)$ is used to define $(\overline{P}, \otimes (u, v, w))$ for the triple $\{1, 2, 3\}$, and (Q, \otimes_1) is used to define $(\overline{P}, \otimes (u, v, w))$ for the remaining triples.

(2) $(S, \oplus_2) = V(\odot) \times Q(\circ(v), \emptyset, \overline{P} \otimes (u, v, w))$, where $\circ(1) = \circ(2) = \circ(3) = \circ_2$, $\circ(4) = \circ(5) = \circ(6) = \circ(7) = \circ_2$, $P = \emptyset$, (Q, \otimes_2) is used to define $(\overline{P}, \otimes (u, v, w))$ for the triple $\{1, 2, 3\}$, and (Q, \otimes_2) is used to define $(\overline{P}, \otimes (u, v, w))$ for the remaining triples.

Clearly |S| = 49. We show that (S, \oplus_1) and (S, \oplus_2) agree exactly on the 9 element subquasigroup $T = \{(i, j) | i, j \in \{1, 2, 3\}\}$. Let $x, y \in S$. There are two main cases to consider.

 \oplus_1) is a copy of (Q, \bar{o}_1) and $(Q \times \{v\}, \oplus_2)$ is a copy of (Q, \bar{o}_2) it follows that $x \oplus_1 y \neq x \oplus_2 y$.

(2) $x = (p, v), y = (q, w), v \neq w$. If $v, w \in \{1, 2, 3\}$, since the quasigroups associated with this triple in (S, \oplus_1) and (S, \oplus_2) are (Q, \bigotimes_1) and (Q, \bigotimes_2) respectively, it follows that $x \oplus_1 y = x \oplus_2 y$ if and only if $p, q \in \{1, 2, 3\}$; i.e., if and only if $x, y \in T$. If at least one of v, w does not belong to $\{1, 2, 3\}$, then the quasigroups associated with the triple $\{v, w, v \circ w\}$ in (S, \oplus_1) and (S, \oplus_2) are (Q, \bigotimes_1) and (Q, \bigotimes_2) respectively and so $x \oplus_1 y \neq x \oplus_2 y$. Now combining cases (1) and (2) shows that (S, \oplus_1) and (S, \oplus_2) agree exactly on T. Now let $(T, *_1)$ and $(T, *_2)$ be a pair of (9, 1) Steiner quasigroups. Unplug the subquasigroups (T, \oplus_1) and (T, \oplus_2) from (S, \oplus_1) and (S, \oplus_2) and replace them with the quasigroups $(T, *_1)$ and $(T, *_2)$. The result is a pair of (49, 1) Steiner quasigroups containing a pair of (9, 1) Steiner quasigroups.

We are now in a position to prove the statement of the theorem. Let (V, \odot) be any Steiner quasigroup and (Q, \circ_1) and (Q, \circ_2) a pair of (49, 1) Steiner quasigroups containing a pair of (9, 1) Steiner quasigroups (P, \circ_1) and (P, \circ_2) . Set $\overline{P} = Q \setminus P$ and let $(\overline{P}, \otimes_1)$ and $(\overline{P}, \otimes_2)$ be a pair of totally disjoint quasigroups. Now form the following singular direct products.

(1) $(S, \oplus_1) = V(\odot) \times Q(\odot(v), P, \overline{P} \otimes (u, v, w))$, where $O(v) = O_1$, all $v \in V$ and $(\overline{P}, \otimes_1)$ is used to define $(\overline{P}, \otimes (u, v, w))$.

(2) $(S, \oplus_2) = V(\odot) \times Q(\circ(v), P, \overline{P} \otimes (u, v, w))$, where $\circ(v) = \circ_2$, all $v \in V$, and $(\overline{P}, \otimes_2)$ is used to define $(\overline{P}, \otimes (u, v, w))$. Clearly S has order v(49 - 9) + 9. The proof that (S, \oplus_1) and (S, \oplus_2) are a

pair of (40v + 9, 1) Steiner quasigroups is analogous to the proof of Theorem 3.

4. Construction of a pair of (q, 1) Steiner quasigroups of every order. We begin by exhibiting pairs of Steiner triple systems intersecting in exactly

one triple of orders 7, 9, and 13.

(1) $n = 7. S = \{1, 2, 3, 4, 5, 6, 7\},\$

$$t_1 = \{\{1, 2, 3\}, \{2, 6, 7\}, \{6, 4, 1\}, \{4, 5, 2\}, \{5, 3, 6\}, \{3, 7, 4\}, \{7, 1, 5\}\},\$$

and

$$t_2 = \{\{1, 2, 3\}, \{6, 2, 5\}, \{4, 3, 6\}, \{5, 3, 7\}, \{4, 5, 1\}, \{7, 4, 2\}, \{1, 7, 6\}\}$$

(2) n = 9. $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},\$

 $t_1 = \{\{1, 2, 3\}, \{1, 4, 7\}, \{1, 5, 9\}, \{1, 6, 8\}, \{4, 5, 6\}, \{2, 5, 8\}, \}$

 $\{2, 6, 7,\}$ $\{2, 4, 9\}$, $\{7, 8, 9\}$, $\{3, 6, 9\}$, $\{3, 4, 8\}$, $\{3, 5, 7\}$,

and

$$t_{2} = \{\{1, 2, 3\}, \{1, 5, 8\}, \{1, 6, 4\}, \{1, 7, 9\}, \{5, 6, 7\}, \{2, 6, 9\}, \\ \{2, 7, 8\}, \{2, 5, 4\}, \{8, 9, 4\}, \{3, 7, 4\}, \{3, 5, 9\}, \{3, 6, 8\}\}.$$

$$(3) n = 13. S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\},$$

$$\begin{split} t_1 &= \{\{1,\,2,\,3\},\,\{2,\,11,\,12\},\,\{11,\,4,\,13\},\,\{4,\,5,\,1\},\,\{5,\,6,\,2\},\,\{6,\,7,\,11\},\\ &\{7,\,8,\,4\},\,\{8,\,9,\,5\},\,\{9,\,10,\,6\},\,\{10,\,3,\,7\},\,\{3,\,12,\,8\},\,\{12,\,13,\,9\},\\ &\{13,\,1,\,10\},\,\{1,\,11,\,8\},\,\{2,\,4,\,9\},\,\{11,\,5,\,10\},\,\{4,\,6,\,3\},\,\{5,\,7,\,12\},\\ &\{6,\,8,\,13\},\,\{7,\,9,\,1\},\,\{8,\,10,\,2\},\,\{9,\,11,\,3\},\,\{10,\,12,\,4\},\,\{3,\,13,\,5\},\\ &\{12,\,1,\,6\},\,\{13,\,2,\,7\}\}, \end{split}$$

and

$$\begin{split} t_2 &= \{\{1,\,2,\,3\},\,\{11,\,2,\,6\},\,\{4,\,11,\,7\},\,\{3,\,4\,,8\},\,\{6,\,3,\,9\},\,\{7,\,6,\,10\},\,\{8,\,7,\,5\},\\ &\{9,\,8,\,12\},\,\{10,\,9,\,13\},\,\{5,\,10,\,1\},\,\{12,\,5,\,2\},\,\{13,\,12,\,11\},\,\{1,\,13,\,4\},\\ &\{11,\,1,\,9\},\,\{4,\,2,\,10\},\,\{5,\,3,\,11\},\,\{6,\,4,\,12\},\,\{7,\,3,\,13\},\,\{8,\,6,\,1\},\\ &\{9,\,7,\,2\},\,\{10,\,8,\,11\},\,\{5,\,9,\,4\},\,\{12,\,10,\,3\},\,\{13,\,5,\,6\},\,\{1,\,12,\,7\}, \end{split} \end{split}$$

 $\{2, 13, 8\}\}.$

The following equalities are due to A. J. W. Hilton [2].

36t + 1 = 3((12t + 1) - 1) + 1, 36t + 3 = 2(18t + 1) + 1, 36t + 7 = (6t + 1)(7 - 1) + 1, 36t + 9 = (6t + 1)(9 - 3) + 3, 36t + 13, see below, 36t + 15 = 2(18t + 7) + 1, 36t + 19 = (6t + 3)(7 - 1) + 1, 36t + 21 = (6t + 3)(9 - 3) + 3, 36t + 25 = 3((12t + 9) - 1) + 1, 36t + 27 = 2(18t + 13) + 1, 36t + 31 = 2(18t + 15) + 1,36t + 33 = 3(12t + 13) - 3) + 3.

In view of these equalities, Theorems 2, 3, 4 and 5, and the examples at the beginning of this section, a pair of (q, 1) Steiner quasigroups of every order can be constructed provided we can fill in the details when n = 36t + 13. In [2], Hilton has shown that 36t + 13 can always be expressed in one of the following forms.

 $(6n + 1)(k - 1) + 1, k \equiv 1 \text{ or } 3 \pmod{6},$ $(18n + 15)(s - 1) + 1, s \equiv 1 \text{ or } 3 \pmod{6},$ $u(13 - 3) + 3, u \equiv 1 \text{ or } 3 \pmod{6}, \text{ or}$ $w(49 - 9) + 9, w \equiv 1 \text{ or } 3 \pmod{6}.$

Theorem 5 is necessary for the use of the very last equality. Combining all of the results in this section gives the following theorem.

THEOREM 6. There is a pair of Steiner triple systems of order n having exactly one triple in common for every $n \ge 3$.

CHARLES C. LINDNER

References

- 1. Jean Doven, Construction of disjoint Steiner triple systems, Proc. Amer. Math. Soc. 32 (1972). 409 - 416.
- 2. A. J. W. Hilton, A simplification of Moore's proof of the existence of Steiner triple systems, J. Combinatorial Theory Ser. A 13 (1972), 422-425.
- 3. C. C. Lindner, Construction of quasigroups using the singular direct product, Proc. Amer. Math. Soc. 29 (1971), 263-266.
- 4. —— Identities preserved by the singular direct product, Algebra Universalis 1 (1971), 86-89.
 5. —— Identities preserved by the singular direct product. II, Algebra Universalis 2 (1972), 113-117.
- 6. C. C. Lindner and N. S. Mendelsohn, Construction of perpendicular Steiner quasigroups, Aequationes Math. 9 (1973), 150-156.
- 7. A. Sade, Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens, Ann. Soc. Sci. Bruxelles Sér. I 74 (1960), 91-99.
- 8. S. K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228-256.

Auburn University, Auburn, Alabama