CONSTRUCTION OF STEINER TRIPLE SYSTEMS HAVING EXACTLY ONE TRIPLE IN COMMON

CHARLES C. LINDNER

1. Introduction. A Steiner triple system is a pair (Q, t) where Q is a set and t a collection of three element subsets of Q such that each pair of elements of Q belong to exactly one triple of t. The number $|Q|$ is called the order of the Steiner triple system (Q, t). It is well-known that there is a Steiner triple system of order n if and only if $n \equiv 1$ or $3(\bmod 6)$. Therefore in saying that a certain property concerning Steiner triple systems is true for all n it is understood that $n \equiv 1$ or $3(\bmod 6)$. Two Steiner triple systems $\left(Q, t_{1}\right)$ and $\left(Q, t_{2}\right)$ are said to be disjoint provided that $t_{1} \cap t_{2}=\emptyset$. Recently, Jean Doyen has shown the existence of a pair of disjoint Steiner triple systems of order n for every $n \geqq 7[\mathbf{1}]$. In this same paper Doyen raises the question as to whether it is possible to construct a pair of Steiner triple systems of order n having exactly one triple in common for every $n \geqq 3$. The purpose of this paper is to show that such a pair exists for every $n \geqq 3$.
2. Preliminaries. A Steiner quasigroup is a quasigroup satisfying the identities $x^{2}=x, x(x y)=y$, and $(y x) x=y$. It is well-known that a Steiner triple system is algebraically a Steiner quasigroup. We will say that the Steiner triple system (Q, t) and Steiner quasigroup (Q, \circ) are associated with each other provided that $\{x, y, z\} \in t$ if and only if $x \circ y=z$. In much of what follows we will consider Steiner triple systems algebraically. Steiner quasigroups $\left(Q, o_{1}\right)$ and $\left(Q, o_{2}\right)$ are disjoint or intersect in exactly one triple provided that their associated triple systems $\left(Q, t_{1}\right)$ and $\left(Q, t_{2}\right)$ have this property. Therefore the Steiner quasigroups $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ are disjoint provided that $x \circ_{1} y \neq x \circ_{2} y$ for all $x \neq y \in Q$ and intersect in exactly one triple provided that for some three element subset T of Q that $\left(T, \circ_{1}\right)$ is a subquasigroup of $\left(Q, \circ_{1}\right),\left(T, \circ_{2}\right)$ is a subquasigroup of $\left(Q, \circ_{2}\right), x \circ_{1} y=x \circ_{2} y$ for all $x, y \in T$, and $x \circ_{1} y \neq x \circ_{2} y, x \neq y$, if at least one of $x, y \in Q \backslash T$. In this case we will say that $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ agree exactly on T. We will call a pair of Steiner quasigroups $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ of order $q a(q, 0)$ pair if they are disjoint and a ($q, 1$) pair if they interesct in exactly one triple.

Most of the constructions in this paper are based on the following generalized
 fining the conjugate of a quasigroup (Q, \otimes). Let (Q, \otimes) be any quasigroup and on the set Q define six binary operations $\otimes(1,2,3), \otimes(1,3,2), \otimes(2,1,3)$, $\otimes(2,3,1), \otimes(3,1,2)$, and $\otimes(3,2,1)$ as follows:

Received September 13, 1972.
$a \otimes b=c$ if and only if

$$
\begin{aligned}
& a \otimes(1,2,3) b=c, \\
& a \otimes(1,3,2) c=b, \\
& b \otimes(2,1,3) a=c, \\
& b \otimes(2,3,1) c=a, \\
& c \otimes(3,1,2) a=b, \\
& c \otimes(3,2,1) b=a .
\end{aligned}
$$

The six (not necessarily distinct) quasigroups $(Q, \otimes(i, j, k))$ are called the conjugates of $(Q, \otimes)[8]$. We will denote by $(T, *)$ the Steiner quasigroup of order 3 , where $T=\{1,2,3\}$. Let (V, \odot) be any Steiner quasigroup and (V, t) the associated Steiner triple system. Let $t_{1}, t_{2}, \ldots, t_{r}$ be the triples in t. Then each $\left(t_{i}, \odot\right)$ is a subquasigroup of ($\left.V, \odot\right)$ and is isomorphic to ($T, *$). Let α_{i} be a fixed isomorphism of $\left(t_{i}, \odot\right)$ onto $(T, *)$. Let Q be a set and for each v in V let $\circ(v)$ be a binary operation on Q so that $(Q, \circ(v))$ is a Steiner quasigroup. Further suppose that $P \subseteq Q$ is such that all of the operations agree on P and that $(P, \circ(v))$ is a subquasigroup of $(Q, \circ(v))$. Let $(\bar{P}=Q \backslash P, \otimes)$ be any quasigroup. If $p, q \in \bar{P}$ and $v \neq w \in V$, by $p \otimes(v, w, v \odot w) q$ is meant the element $p \otimes\left(v \alpha_{i}, w \alpha_{i}, v \alpha_{i} * w \alpha_{i}\right) q$ of $\left(Q, \otimes\left(v \alpha_{i}, w \alpha_{i}, v \alpha_{i} * w \alpha_{i}\right)\right)$, where $\{v, w, v \odot w\}=t_{i}$. On the set $P \cup(\bar{P} \times V)$ define the binary operation \otimes as follows:
(1) $p \oplus q=p \circ(v) q=p \circ(w) q$, if $p, q \in P$;
(2) $p \oplus(q, v)=(p \circ(v) q, v)$, if $p \in P, q \in \bar{P}, v \in V$;
(3) $(q, v) \oplus p=(q, \circ(v) p, v)$, if $p \in P, q \in \bar{P}, v \in V$;
(4) $(p, v) \oplus(q, v)=p \circ(v) q$, if $p \circ(v) q \in P$, and

$$
=(p \circ(v) q, v) \text { if } p \circ(v) q \in \bar{P} ;
$$

$(5)(p, v) \oplus(q, w)=(p \otimes(v, w, v \odot w) q, v \odot w), v \neq w$.
The quasigroup so constructed is denoted by $V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$. We remark here that the operations $O(v)$ are not necessarily related other than agreeing on P and that although (V, \odot) and $(Q, \circ(v))$, all $v \in V$, are Steiner quasigroups, the quasigroup (\bar{P}, \otimes) is not necessarily Steiner. Finally, although we have used the same quasigroup (\bar{P}, \otimes) for every triple in t this is not necessary. Different quasigroups can be associated with each triple in t. In [6] the following theorem is proved.

Theorem 1. The singular direct product $V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$ defined above is a Steiner quasigroup of order $v(q-p)+p$, where $|V|=v$, $|Q|=q$, and $|P|=p$.
3. Basic constructions. In this section we give the basic constructions to be used in constructing a pair of $(q, 1)$ Steiner quasigroups for every $q \geqq 3$.

Theorem 2. Let $q>3$. If there is a pair of ($q, 1$) Steiner quasigroups, there is a pair of $(v(q-1)+1,1)$ Steiner quasigroups for all $v \equiv 1$ or $3(\bmod 6)$.

Proof. Let (V, \odot) be any Steiner quasigroup based on $1,2, \ldots, v$ and $\left(Q, \circ_{1}\right)$ and $\left(Q, o_{2}\right)$ a pair of ($q, 1$) Steiner quasigroups based on $1,2, \ldots, q$ agreeing exactly on the subset $T=\{1,2,3\}$ of Q. Let $\left(Q, \bar{o}_{1}\right)$ and $\left(Q, \bar{o}_{2}\right)$ be a pair of $(q, 0)$ Steiner quasigroups. Take $P=\{1\}$ so that P is a subquasigroup of all of the above quasigroups. Finally, set $\bar{P}=Q \backslash P$ and let $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) be a pair of totally disjoint quasigroups; i.e., $x \otimes_{1} y \neq x \otimes_{2} y$ for all $x, y \in \bar{P}$. Now form the singular direct products $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ defined as follows:
(1) $\left(S, \oplus_{1}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(1)=\circ_{1}, \circ(i)=$ $\bar{o}_{1}, i>1, P=\{1\}$, and $\left(\bar{P}, \otimes_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
(2) $\left(S, \oplus_{2}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(1)=\circ_{2}, \circ(i)=$ $\bar{o}_{2}, i>1, P=\{1\}$, and $\left(\bar{P}, \otimes_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
Set $\bar{T}=\{1,(2,1),(3,1)\}$. Then both \oplus_{1} and \oplus_{2} agree on T. We show that \oplus_{1} and \oplus_{2} agree exactly on \bar{T}. We consider three cases.
(1) $x \neq y \in P \cup(\bar{P} \times\{1\})$. Since $\left(P \cup(\bar{P} \times\{1\}), \oplus_{1}\right)$ is a copy of $\left(Q, \circ_{1}\right)$ and $\left(P \cup(\bar{P} \times\{1\}), \oplus_{2}\right)$ is a copy of $\left(Q, \circ_{2}\right)$ it follows that $x \oplus_{1} y=$ $x \oplus_{2} y$ if and only if both x and y are in T.
(2) $x \neq y \in P \cup(\bar{P} \times\{v\}), v \neq 1$. Since $\left(P \cup(\bar{P} \times\{v\}), \oplus_{1}\right)$ is a copy of $\left(Q, \bar{o}_{1}\right)$ and $\left(P \cup(\bar{P} \times\{v\}), \oplus_{2}\right)$ is a copy of $\left(Q, \circ_{2}\right)$ we must have $x \oplus_{1} y \neq$ $x \oplus_{2} y$.
(3) $x=(p, v), y=(q, w), v \neq w$. In this case we have

$$
(p, v) \oplus_{1}(q, w)=\left(p \otimes_{1}(v, w, v \odot w) q, v \odot w\right)
$$

and

$$
(p, v) \oplus_{2}(q, w)=\left(p \otimes_{2}(v, w, v \odot w) q, v \odot w\right) .
$$

Since $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) have the property that $x \otimes_{1} y \neq x \otimes_{2} y$ for all $x, y \in \bar{P}$ it follows that their corresponding conjugates also have this property. Hence $p \otimes_{1}(v, w, v \odot w) q \neq p \otimes_{2}(v, w, v \otimes w) q$.

Now combining cases (1), (2), and (3) shows that the singular direct products $\left(S, \oplus_{1}\right)$ and (S, \oplus_{2}) agree exactly on \bar{T} completing the proof.

Theorem 3. Let $q>3$. If there is a pair of ($q, 1$) Steiner quasi-groups, there is a pair of $(v(q-3)+3,1)$ Steiner quasigroups for all $v \equiv 1$ or $3(\bmod 6)$.

Proof. Again let (V, \odot) be any Steiner quasigroup and $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ a pair of $(q, 1)$ Steiner quasigroups agreeing exactly on the three element subset T of Q. Set $\bar{P}=Q \backslash T$ and let $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) be a pair of completely disjoint quasigroups; i.e., $x \otimes_{1} y \neq x \otimes_{2} y$ for all $x, y \in \bar{P}$. Form the singular direct products $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ defined below.
(1) $\left(S, \oplus_{1}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=\circ_{1}$, all $v \in V, P=T$, and $\left(\bar{P}, \otimes_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
(2) $\left(S, \oplus_{2}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=\circ_{2}$, all $v \in V, P=T$, and $\left(\bar{P}, \otimes_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
Clearly both of \oplus_{1} and \oplus_{2} agree on T. There are two cases to consider.
(1) $x \neq y \in P \cup(\bar{P} \times\{v\}), v \in V$. Since $\left(P \cup(\bar{P} \times\{v\}), \oplus_{1}\right)$ is a copy of
$\left(Q, \circ_{1}\right)$ and $\left(P \cup(\bar{P} \times\{v\}), \oplus_{2}\right)$ is a copy of $\left(Q, \circ_{2}\right)$ it follows that $x \oplus_{1} y=$ $x \oplus_{2} y$ if and only if $x, y \in T$.
(2) $x=(p, v), y=(q, w), v \neq w$. This is identical to case (3) in the proof of Theorem 2.

Combining cases (1) and (2) shows that $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ are a pair of $(v(q-3)+3,1)$ Steiner quasigroups.

Theorem 4. If $v \equiv 1$ or $3(\bmod 6)$ there is a pair of $(2 v+1,1)$ Steiner quasigroups.

Proof. Let (V, \odot) be a Steiner quasigroup based on $1,2, \ldots, v$ and let (Q, \circ) be the Steiner quasigroup of order 3 with $Q=\{1,2,3\}$. Take $P=\{1\}$ as a subquasigroup of order 1 . Set $\bar{P}=\{2,3\}$ and define quasigroups $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) by the following tables.

| \otimes_{1} | $\left.\begin{array}{ll}2 & 3 \\ \hline 2 & \begin{array}{ll}2 & 3 \\ 3 & 3\end{array} \\ \hline\end{array}\right)$ |
| :---: | :---: | :---: |

$\left(\bar{P}, \otimes_{1}\right)$

Note that $\left(\bar{P}, \otimes_{1}\right)$ and $\left(\bar{P}, \otimes_{2}\right)$ are both totally symmetric and therefore invariant under conjugation. Also $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) are totally disjoint; i.e., $x \otimes_{1} y \neq x \otimes_{2} y$ for all $x, y \in \bar{P}$. Now form the following singular direct products.
(1) $\left(S, \oplus_{1}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=\circ$, all $v \in V, P=\{1\}$, and $\left(\bar{P}, \otimes_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
(2) $\left(S, \oplus_{2}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=0$, all $v \in V, P=\{1\}$, and $\left(\bar{P}, \otimes_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
Let $\left(S, t_{1}\right)$ and (S, t_{2}) be the associated Steiner triple systems. It is a routine matter to show that $\left(S, t_{1}\right)$ and $\left(S, t_{2}\right)$ have exactly the triples $\{1,(2, v),(3, v)\}$, all $v \in V$, in common. Let α be the permutation on V defined by $\alpha=(23)(45)$ $\ldots(v-1 v)$ and denote by $\left(S, t_{1} \alpha\right)$ the Steiner triple system obtained from $\left(S, t_{1}\right)$ by replacing all ordered pairs $(2, v)$ by $(2, v \alpha)$. Claim: $\left(S, t_{1} \alpha\right)$ and $\left(S, t_{2}\right)$ intersect exactly in the triple $\{1,(2,1),(3,1)\}$. Since α fixes 1 , the Steiner triple systems $\left(S, t_{1} \alpha\right)$ and $\left(S, t_{2}\right)$ have the triple $\{1,(2,1),(3,1)\}$ in common. Now let t be any triple in $t_{1} \alpha$ other than $\{1,(2,1),(3,1)\}$. There are two cases to consider.
(i) $1 \in t$. Since each triple in t_{1} containing 1 is of the form $\{1,(2, v),(3, v)\}$, each triple in $t_{1} \alpha$ containing 1 is of the form $\{1,(2, v \alpha),(3, v)\}$. Since $v \neq 1$, $v \alpha \neq v$ so that t cannot belong to t_{2}.
(ii) $1 \notin t$. In t_{1} each triple not containing 1 is of the form $\{(p, v),(q, w)$, $\left.\left(p \otimes_{1} q, v \odot w\right)\right\}$. Hence in $t_{1} \alpha$ each triple not containing 1 is of the form

$$
\left\{(p, v \alpha),(q, w \alpha),\left(p \otimes_{1} q, v \alpha \odot w \alpha\right)\right\} .
$$

This triple cannot belong to t_{2} because $p \otimes_{1} q \neq p \otimes_{2} q$ for all $p, q \in \bar{P}$. Com-
bining cases (i) and (ii) shows that ($S, t_{1} \alpha$) and (S, t_{2}) intersect in exactly one triple completing the proof.

Theorem 5. If $v \equiv 1$ or $3(\bmod 6)$ there is a pair of $(40 v+9,1)$ Steiner quasigroups.

Proof. We begin by constructing a certain pair of $(49,1)$ Steiner quasigroups. Let (V, \odot) be the Steiner quasigroup of order 7 based on $1,2,3,4,5,6$, 7. We can assume that $\{1,2,3\}$ belongs to the associated triple system. Let $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ be a pair of $(7,1)$ Steiner quasigroups based on $1,2,3,4,5$, 6,7 and agreeing exactly on $T=\{1,2,3\}$. Let $\left(Q, \bar{o}_{1}\right)$ and $\left(Q, \bar{o}_{2}\right)$ be a pair of $(7,0)$ Steiner quasigroups and $\left(Q, \otimes_{1}\right)$ and $\left(Q, \otimes_{2}\right)$ a pair of totally disjoint quasigroups. Finally, let $\left(Q, \bar{\otimes}_{1}\right)$ and $\left(Q, \bar{\otimes}_{2}\right)$ be the quasigroups defined below.

\otimes_{1}							
1	1	2	3	4	5	6	7
2	1	3	2	6	7	4	5
3	2	1	5	4	7	6	
4	2	1	3	7	6	5	4
5	7	5	7	4	2	1	3
6	4	6	2	5	3	1	
7	5	7	5	1	3	6	2
	4	3	1	3	7		

\otimes_{2}	1	2	3	4	5	6	7
1	1	3	2	7	4	5	6
2	3	2	1	6	5	4	7
3	2	1	3	4	7	6	5
4	7	6	4	5	3	2	1
5	4	5	7	3	6	1	2
6	5	4	6	2	1	7	3
7	6	7	5	1	2	3	4
$\left(Q, \bar{\otimes}_{2}\right)$							

Note that both $\bar{\otimes}_{1}$ and \otimes_{2} agree on $\{1,2,3\}$ while if at least one of $x, y \notin$ $\{1,2,3\}$ then $x \otimes_{1} y \neq x \otimes_{2} y$ and this is true even if $x=y$. It also remains true for corresponding conjugates. Note also that $\left(\{1,2,3\}, \bar{\otimes}_{1}\right)=\left(\{1,2,3\}, \bar{\otimes}_{2}\right)$ is the Steiner quasigroup of order 3 so that while the quasigroups $\left(Q, \bar{\otimes}_{1}\right)$ and ($Q, \bar{\otimes}_{2}$) are not necessarily invariant under conjugation the subquasigroups ($\{1,2,3\}, \bar{\otimes}_{1}$) and ($\{1,2,3\}, \bar{\otimes}_{2}$) are. Now form the following singular direct products.
(1) $\left(S, \oplus_{1}\right)=V(\odot) \times Q(\circ(v), \emptyset, \bar{P} \otimes(u, v, w))$, where $\circ(1)=\circ(2)=$ $\circ(3)=\circ_{1}, \circ(4)=\circ(5)=\circ(6)=\circ(7)=\circ_{1}, P=\varnothing,\left(Q, \bar{\otimes}_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$ for the triple $\{1,2,3\}$, and $\left(Q, \otimes_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$ for the remaining triples.
(2) $\left(S, \oplus_{2}\right)=V(\odot) \times Q(\circ(v), \emptyset, \bar{P} \otimes(u, v, w))$, where $\circ(1)=\circ(2)=$ $\circ(3)=\circ_{2}, \circ(4)=\circ(5)=\circ(6)=\circ(7)=\circ_{2}, P=\emptyset,\left(Q, \bar{\otimes}_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$ for the triple $\{1,2,3\}$, and $\left(Q, \otimes_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$ for the remaining triples.
Clearly $|S|=49$. We show that $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ agree exactly on the 9 element subquasigroup $T=\{(i, j) \mid i, j \in\{1,2,3\}\}$. Let $x, y \in S$. There are two main cases to consider.
(1) $x=(p, v), y=(q, v), p \neq q$. If $v=1,2$, or 3 , since $\left(Q \times\{v\}, \oplus_{1}\right)$ is a copy of $\left(Q, \circ_{1}\right)$ and $\left(Q \times\{v\}, \oplus_{2}\right)$ is a copy of $\left(Q, o_{2}\right)$ it follows that $x \oplus_{1} y=$ $x \oplus_{2} y$ if and only if x and y both belong to T. If $v=4,5,6$ or 7 , since $(Q \times\{v\}$,
$\left.\oplus_{1}\right)$ is a copy of $\left(Q, \bar{o}_{1}\right)$ and $\left(Q \times\{v\}, \oplus_{2}\right)$ is a copy of $\left(Q, \bar{o}_{2}\right)$ it follows that $x \oplus_{1} y \neq x \oplus_{2} y$.
(2) $x=(p, v), y=(q, w), v \neq w$. If $v, w \in\{1,2,3\}$, since the quasigroups associated with this triple in $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ are $\left(Q, \bar{\otimes}_{1}\right)$ and $\left(Q, \bar{\otimes}_{2}\right)$ respectively, it follows that $x \oplus_{1} y=x \oplus_{2} y$ if and only if $p, q \in\{1,2,3\}$; i.e., if and only if $x, y \in T$. If at least one of v, w does not belong to $\{1,2,3\}$, then the quasigroups associated with the triple $\{v, w, v \odot w\}$ in $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ are $\left(Q, \otimes_{1}\right)$ and $\left(Q, \otimes_{2}\right)$ respectively and so $x \oplus_{1} y \neq x \oplus_{2} y$. Now combining cases (1) and (2) shows that $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ agree exactly on T. Now let $\left(T, *_{1}\right)$ and $\left(T, *_{2}\right)$ be a pair of $(9,1)$ Steiner quasigroups. Unplug the subquasigroups $\left(T, \oplus_{1}\right)$ and $\left(T, \oplus_{2}\right)$ from $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ and replace them with the quasigroups $\left(T, *_{1}\right)$ and $\left(T, *_{2}\right)$. The result is a pair of $(49,1)$ Steiner quasigroups containing a pair of $(9,1)$ Steiner quasigroups.

We are now in a position to prove the statement of the theorem. Let (V, \odot) be any Steiner quasigroup and $\left(Q, \circ_{1}\right)$ and $\left(Q, \circ_{2}\right)$ a pair of $(49,1)$ Steiner quasigroups containing a pair of $(9,1)$ Steiner quasigroups $\left(P, \circ_{1}\right)$ and $\left(P, \circ_{2}\right)$. Set $\bar{P}=Q \backslash P$ and let $\left(\bar{P}, \otimes_{1}\right)$ and (\bar{P}, \otimes_{2}) be a pair of totally disjoint quasigroups. Now form the following singular direct products.
(1) $\left(S, \oplus_{1}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=\circ_{1}$, all $v \in V$ and $\left(\bar{P}, \otimes_{1}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
(2) $\left(S, \oplus_{2}\right)=V(\odot) \times Q(\circ(v), P, \bar{P} \otimes(u, v, w))$, where $\circ(v)=o_{2}$, all $v \in V$, and $\left(\bar{P}, \otimes_{2}\right)$ is used to define $(\bar{P}, \otimes(u, v, w))$.
Clearly S has order $v(49-9)+9$. The proof that $\left(S, \oplus_{1}\right)$ and $\left(S, \oplus_{2}\right)$ are a pair of $(40 v+9,1)$ Steiner quasigroups is analogous to the proof of Theorem 3.

4. Construction of a pair of ($\mathbf{q}, 1$) Steiner quasigroups of every order.

We begin by exhibiting pairs of Steiner triple systems intersecting in exactly one triple of orders 7,9 , and 13.
(1) $n=7 . S=\{1,2,3,4,5,6,7\}$,

$$
t_{1}=\{\{1,2,3\},\{2,6,7\},\{6,4,1\},\{4,5,2\},\{5,3,6\},\{3,7,4\},\{7,1,5\}\}
$$

and

$$
\begin{aligned}
& t_{2}=\{\{1,2,3\},\{6,2,5\},\{4,3,6\},\{5,3,7\},\{4,5,1\},\{7,4,2\},\{1,7,6\}\} \\
& \quad(2) n=9 . S=\{1,2,3,4,5,6,7,8,9\}
\end{aligned}
$$

$$
t_{1}=\{\{1,2,3\},\{1,4,7\},\{1,5,9\},\{1,6,8\},\{4,5,6\},\{2,5,8\},
$$

$$
\{2,6,7,\}\{2,4,9\},\{7,8,9\},\{3,6,9\},\{3,4,8\},\{3,5,7\}\}
$$

and
$t_{2}=\{\{1,2,3\},\{1,5,8\},\{1,6,4\},\{1,7,9\},\{5,6,7\},\{2,6,9\}$,

$$
\{2,7,8\},\{2,5,4\},\{8,9,4\},\{3,7,4\},\{3,5,9\},\{3,6,8\}\}
$$

(3) $n=13 . S=\{1,2,3,4,5,6,7,8,9,10,11,12,13\}$,

$$
\begin{aligned}
t_{1}= & \{\{1,2,3\},\{2,11,12\},\{11,4,13\},\{4,5,1\},\{5,6,2\},\{6,7,11\} \\
& \{7,8,4\},\{8,9,5\},\{9,10,6\},\{10,3,7\},\{3,12,8\},\{12,13,9\} \\
& \{13,1,10\},\{1,11,8\},\{2,4,9\},\{11,5,10\},\{4,6,3\},\{5,7,12\} \\
& \{6,8,13\},\{7,9,1\},\{8,10,2\},\{9,11,3\},\{10,12,4\},\{3,13,5\}, \\
& \{12,1,6\},\{13,2,7\}\},
\end{aligned}
$$

and

$$
\begin{aligned}
t_{2}= & \{\{1,2,3\},\{11,2,6\},\{4,11,7\},\{3,4,8\},\{6,3,9\},\{7,6,10\},\{8,7,5\}, \\
& \{9,8,12\},\{10,9,13\},\{5,10,1\},\{12,5,2\},\{13,12,11\},\{1,13,4\}, \\
& \{11,1,9\},\{4,2,10\},\{5,3,11\},\{6,4,12\},\{7,3,13\},\{8,6,1\} \\
& \{9,7,2\},\{10,8,11\},\{5,9,4\},\{12,10,3\},\{13,5,6\},\{1,12,7\},
\end{aligned}
$$

$$
\{2,13,8\}\}
$$

The following equalities are due to A. J. W. Hilton [2].

$$
\begin{aligned}
& 36 t+1=3((12 t+1)-1)+1 \\
& 36 t+3=2(18 t+1)+1 \\
& 36 t+7=(6 t+1)(7-1)+1 \\
& 36 t+9=(6 t+1)(9-3)+3 \\
& 36 t+13, \text { see below, } \\
& 36 t+15=2(18 t+7)+1 \\
& 36 t+19=(6 t+3)(7-1)+1 \\
& 36 t+21=(6 t+3)(9-3)+3 \\
& 36 t+25=3((12 t+9)-1)+1 \\
& 36 t+27=2(18 t+13)+1 \\
& 36 t+31=2(18 t+15)+1 \\
& 36 t+33=3(12 t+13)-3)+3
\end{aligned}
$$

In view of these equalities, Theorems $2,3,4$ and 5 , and the examples at the beginning of this section, a pair of $(q, 1)$ Steiner quasigroups of every order can be constructed provided we can fill in the details when $n=36 t+13$. In [2], Hilton has shown that $36 t+13$ can always be expressed in one of the following forms.

$$
\begin{aligned}
& (6 n+1)(k-1)+1, k \equiv 1 \text { or } 3(\bmod 6) \\
& (18 n+15)(s-1)+1, s \equiv 1 \text { or } 3(\bmod 6) \\
& u(13-3)+3, u \equiv 1 \text { or } 3(\bmod 6), \text { or } \\
& w(49-9)+9, w \equiv 1 \text { or } 3(\bmod 6)
\end{aligned}
$$

Theorem 5 is necessary for the use of the very last equality. Combining all of the results in this section gives the following theorem.

Theorem 6. There is a pair of Steiner triple systems of order n having exactly one triple in common for every $n \geqq 3$.

References

1. Jean Doyen, Construction of disjoint Steiner triple systems, Proc. Amer. Math. Soc. 32 (1972), 409-416.
2. A. J. W. Hilton, A simplification of Moore's proof of the existence of Steiner triple systems, J. Combinatorial Theory Ser. A 13 (1972), 422-425.
3. C. C. Lindner, Construction of quasigroups using the singular direct product, Proc. Amer. Math. Soc. 29 (1971), 263-266.
4. -Identities preserved by the singular direct product, Algebra Universalis 1 (1971), 86-89.
5. -Identities preserved by the singular direct product. II, Algebra Universalis $\mathscr{2}$ (1972), 113-117.
6. C. C. Lindner and N. S. Mendelsohn, Construction of perpendicular Steiner quasigroups, Aequationes Math. 9 (1973), 150-156.
7. A. Sade, Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens, Ann. Soc. Sci. Bruxelles Sér. I 74 (1960), 91-99.
8. S. K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228-256.

Auburn University, Auburn, Alabama

