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Abstract. Magnetohydrodynamic turbulence has been proposed as a mechanism for the heating
of coronal active regions, and has therefore been actively investigated in recent years. According
to this scenario, a turbulent regime is driven by footpoint motions. The energy being pumped
this way into active region loops, is efficiently transferred to small scales due to a direct energy
cascade. The ensuing generation of fine scale structures, which is a natural outcome of turbulent
regimes, helps to enhance the dissipation of either waves or DC currents.

We present an updated overview of recent results on turbulent coronal heating. To illustrate
this theoretical scenario, we simulate the internal dynamics of a coronal loop within the reduced
MHD approximation. The application of a stationary velocity field at the photospheric boundary
leads to a turbulent stationary regime after several photospheric turnover times. This regime
is characterized by a broadband power spectrum and energy dissipation rate levels compatible
with the heating requirements of active region loops. Also, the energy dissipation rate displays
a complex superposition of impulsive events, which we associate to the so-called nanoflares.
A statistical analysis yields a power law distribution as a function of their energies, which
is consistent with those obtained from observations. We also study the distributions of peak
dissipation rate and duration of these events.
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1. Introduction
Models of coronal heating in loops have been traditionally classified into two broad

categories, according to the time scales involved in the driving at the loop bases: (a) AC
or wave models, for which the energy is provided by waves at the Sun’s photosphere, with
timescales much faster than the time it takes an Alfven wave to cross the loop; (b) DC
or stress models, which assume that energy dissipation takes place by magnetic stresses
driven by slow footpoint motions (compared to the Alfven wave crossing time) at the
Sun’s photosphere.

These scenarios seem mutually exclusive. Nevertheless two common factors prevail: (i)
the source for the heating is the kinetic energy of the photospheric velocity field, (ii)
the existence of fine scale structure is essential to speed up the dissipation mechanisms
invoked.

Review articles on coronal heating (Narain & Ulmschneider (1990), Narain & Ulm-
schneider (1996), Gómez (1990), Zirker (1993)) explore the theoretical models in further
detail. More recent reviews can be found in Mandrini et al. (2000), Demoulin et al.
(2003), Aschwanden (2004), where observational tests of the models are also described.

A natural candidate for the dissipation of the energy provided by the photospheric
motions is Joule heating, but the typical time scale to dissipate coronal magnetic stresses
at the length scale of the driving motions is exceedingly long. This time scale can be
estimated as l2/η ≈ 106 years (l is a typical length scale an η is the plasma resistivity).
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Most of the theories of coronal heating invoke different mechanisms to speed up the energy
dissipation (Parker (1972), Parker (1988), Heyvaerts & Priest (1983), van Ballegooijen
(1996), Mikić et al. (1989), Longcope & Sudan (1994), Hendrix & van Hoven (1996),
Galsgaard & Nordlund (1996), Gudiksen & Nordlund (2002)).

2. The case for turbulent heating
One of the proposed scenarios to speed up dissipation is the assumption that the

magnetic and velocity fields of the coronal plasma are in a turbulent state (Gómez &
Ferro Fontán (1988), Gómez & Ferro Fontán (1992), Heyvaerts & Priest (1992)). On
these models, turbulent fluctuations of both the velocity and the magnetic fields are
predominantly in the direction perpendicular to the main magnetic field. In a turbulent
regime, energy is transferred from photospheric motions to the magnetic field and then
cascades toward small scales due to nonlinear interactions, until highly structured electric
currents are formed. The development of fine scales to enhance the dissipation of either
waves or DC currents is a natural outcome of turbulence models.

Direct numerical simulations of the turbulent regime of magnetic and velocity fields
in a coronal loop has been performed in Einaudi et al. (1996), Dmitruk & Gómez
(1997), Dmitruk et al. (1998), Georgoulis et al. (1998) where a two-dimensional MHD
model is used to imitate the dynamics of transverse slices of a loop. A distinguishing
characteristic of these studies is the bursty nature of the energy dissipation. The peaks
of the energy dissipation time series of the numerical simulations results have been as-
sociated with energy dissipation events in the corona. The relatively low energy content
of these individual events suggests an association with the so-called nanoflare heating
scenario (see Parker (1972), Parker (1988)), as opposed to larger energy events, such as
flares and microflares. The distribution of energy events (histograms) obtained from the
numerical simulations is of a power-law type for a broad range of energies in the nanoflare
energy region, from 1023 erg to 1027 erg. There are recent observations Aschwanden &
Parnell (2002), Benz & Krucker (2002) that seem to confirm the power-law behavior of
the energy distributions, although the indirect nature of the observational data at this
range and the differences in statistical methods can not provide a definite value of the
power-law index at this point. At larger energies (microflare and flare regions) there is
compelling observational evidence indicating power laws with indices of about 1.5-1.8
(Hudson (1991), Crosby et al. (1993), Shimizu (1995)).

More recent numerical studies of turbulent regimes in coronal loops have been per-
formed using a three-dimensional reduced MHD (RMHD) approximation, such as those
in Dmitruk & Gómez (1999), Watkins et al. (2001), Dmitruk et al. (2003), Rappazzo
et al. (2007). In some of these studies the focus is on aspects such as the dissipation
rate and the energy spectra, as well as on their dependence on an important parameter
of the dynamics of the loop, namely, the ratio between the photospheric turnover time
tp and the Alfven crossing time of the loop tA . Different turbulent regimes can be ob-
tained as this time ratio is varied. The bursty nature of the energy dissipation series is
also observed in these numerical studies, although the larger computational demand for
three-dimensional studies poses a limitation to statistical studies of dissipative events.

An alternative and complementary line of research is to consider the so-called shell-
model approximation. These theoretical models drastically reduce the computational
demand by replacing the spatial degrees of freedom with shells in wavevector space (see
for instance Boffetta et al. (1999)). More recently, shell models have been developed for
RMHD by by Nigro et al. (2004) and also by Buchlin & Velli (2007). An alternative one-
dimensional MHD model is also presented in Galtier (1999). Because of this reduction in
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Figure 1. Cartoon model of a coronal loop. The planes z = 0 and z = L correspond to the
photosphere.

computational load, shell-models allow much larger Reynolds numbers and longer time
series, in comparison with the direct numerical simulations mentioned above. Of course,
one important aspect that is missing in these models is the fine spatial structure, but in
principle they seem to be reasonable anzats for the statistical study of dissipative events
(provided the assumptions made in deriving the shell equations are akin to the fully
developed turbulence regimes).

3. Reduced MHD
In what follows we focus on the theoretical description of a relatively homogeneous bun-

dle of fieldlines. The loop footpoints are deeply rooted into the photosphere, which moves
individual fieldlines around, thus generating magnetic stresses in the coronal portion of
the loop. Under the assumption that a coronal loop reaches a stationary turbulent state,
Milano et al. (1997) found that its response to a broad range of photospheric driving
frequencies can be modeled by a closure model. At least for photospheric power spectra
decreasing as power laws of both the wavenumber and the time frequency, the heating
of the loop is dominated by DC heating.

We therefore consider a simplified model of a coronal magnetic loop with length L and
cross section 2πlp ×2πlp , where lp is the lengthscale of typical photospheric motions. For
elongated loops, i.e. such that 2πlp << L, it is reasonable to neglect toroidal effects. The
main magnetic field B0 is assumed to be uniform and parallel to the axis of the loop
(the z axis). The planes at z = 0 and z = L correspond to the loop footpoints at the
photosphere, as shown in Figure 1.

Under these assumptions, we are able to use the reduced MHD approximation Strauss
(1976), in which the plasma moves incompressibly in planes perpendicular to the axial
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field B0 , and the transverse component of the magnetic field is small compared to B0 .
The very high electric conductivity (frozen field) allows photospheric motions to easily
drive magnetic stresses in the corona Parker (1972), the field lines twist and bend due to
these motions and this generates tranverse components of velocity u and magnetic field
b. Therefore:

B = B0z + b(x, y, z, t) , b · z = 0 (3.1)

u = u(x, y, z, t), u · z = 0 (3.2)
Since both b and u are two-dimensional and divergence-free fields, they can be repre-

sented by scalar potentials:

b = ∇× (az) = ∇a(x, y, z, t) × z (3.3)

u = ∇× (ψz) = ∇ψ(x, y, z, t) × z (3.4)
where ∇ indicates derivatives in the x, y plane.
The reduced MHD equations for the potentials ψ and a are Strauss (1976):

∂ta = vA∂zψ + [ψ, a] + η∇2a (3.5)

∂tw = vA∂z j + [ψ,w] − [a, j] + ν∇2w (3.6)
where vorticity w and current density j relates to the potentials as:

w = −∇2ψ , j = −∇2a (3.7)
The brackets [A,B] = ∂xA∂yB − ∂yA∂xB are the standard Poisson brackets and

vA = B0/
√

4πρ is the Alfvén velocity (ρ is the plasma density).
Eqn (3.5) describes the advection of the potential a and Eqn (3.6) corresponds to the

evolution of vorticity w. The terms vA∂z represent the coupling between neighboring
z =constant planes. The ∇2 terms represent dissipative effects, the constants η and ν
being the resistivity and viscosity coefficients. The nonlinear terms are those represented
by the Poisson brackets. Their role is to couple normal modes in such a way that energy,
and other ideal invariants, can be transferred between them.

4. RMHD turbulence
We numerically explore the feasibility of a turbulent scenario for coronal loops, de-

scribing the internal dynamics of loops through the RMHD approximation. We assume
periodicity for the lateral boundary conditions, and specify the velocity fields at the z = 0
and z = L photospheric boundaries. In particular, we assume

ψ(z = 0) = 0, ψ(z = L) = Ψ(x, y) (4.1)
where Ψ(x, y) is the stream function which describes stationary and incompressible

footpoint motions on the photospheric plane. The strength of this external velocity field
is therefore proportional to a typical photospheric velocity Vp ≈ 1 km.s−1 . We model
the photospheric boundary motion in Eqn (4.1) as Ψk = Ψ0 = constant inside the ring
3 < lp |k| < 4, and Ψk = 0 elsewhere, to simulate a stationary and isotropic pattern
of photospheric granular motions of diameters between 2πlp/4 and 2πlp/3. The typical
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Figure 2. Energy dissipation rate vs. time. The upper panel shows the complete time series
([0 − 4000]tA ), the central panel blows up the central portion ([1500 − 3500]tA ), and the lower
panel shows the range ([1875 − 2125]tA ).

timescale associated to these driving motions, is the eddy turnover time, which is defined
as tp = lp/Vp ≈ 103 sec. We chose a narrowband and non-random forcing to make sure
that the broadband energy spectra and the signatures of intermittency that we obtained
(see below) are exclusively determined by the nonlinear nature of the MHD equations.

To transform Eqs (3.5)-(3.6) into their dimensionless form, we choose lp and L as the
units for transverse and longitudinal distances (lp ≈ 103 km and L ≈ 104 −105 km) and
tA ≡ L/vA as the time unit (tA ≈ 10 − 100 sec).

In Figure 2 we show the energy dissipation rate obtained for a rather long (4000tA )
RMHD simulation. The upper panel shows the complete time series ([0−4000]tA ), while
the panels below subsequently enlarge the central portion of the series to show its fine
temporal structure. The spiky nature of this time series is caused by the ubiquitous
presence of intermittency in turbulent regimes. As a working hypothesis, we tentatively
associate each of this spikes of energy dissipation with Parker’s nanoflares (see Parker
(1988)). In the next section we study the statistical properties of these dissipation events.

Besides the intermittent features of the time series displayed in Fig. 2, a robust station-
ary regime can be observed, which is attained after a few photospheric turnover times.
The dependence of this mean dissipation rate ε with the physical parameters of the loop
is

ε ∝
ρl2p
t3A

(
tA
tp

)
3
2 (4.2)

(see Dmitruk & Gómez (1999), and also Dmitruk & Gómez (1997) for a similar two-
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Figure 3. Energy power spectra for ten different times (separated by ∆t = 100tA ) within the
stationary regime. The thick trace is the time-averaged spectrum. The Kolmogorov slope is also
displayed for reference.

dimensional study). The turbulent nature of this statistically stationary regime can be
seen in Fig. 3, which shows energy power spectra taken at ten different times (separated
by ∆t = 100tA ). We also overlaid the time-averaged spectrum (thick trace) as a reference,
as well as the Ek ∝ k−5/3 Kolmogorov slope. The numerical resolution of the RMHD
simulations is 256×256×64. This moderate resolution allows very long integration times,
as needed for the statistical analysis described in Section 5. The kinetic and magnetic

Reynolds numbers of our simulation ( Re = l2p
η tA

= Rm) were carefully chosen to guaran-
tee a proper resolution of the smallest spatial structures (i.e. the largest wavenumbers),
where dissipation becomes dominant.

The spatial structures where most of the energy dissipation takes place are shown in
Fig. 4, which displays the electric current density distribution in a transverse cut at half
length of the loop. White (black) structures show concentrations of positive (negative)
current density, which clearly resemble the transverse cut of a complex distribution of
current sheets. This is precisely the case, as shown by the three-dimensional spatial
distribution of Joule dissipation (i.e. ηj2)in Fig. fig:cube.

5. Statistics of events
Parker (1988) conjectured that the energy dissipation of the stressed magnetic struc-

tures takes place in a large number of small events, which he termed nanoflares. The
superposition of a large number of such events would give the global appearance of a
spatially homogeneous and stationary heating process.

From a turbulent scenario, it is straightforward to associate the spikes of energy dissi-
pation discussed in § 4 (and shown in Fig. 2), to Parker’s nanoflares (Dmitruk & Gómez
(1997), Dmitruk et al. (1998)). We draw a horizontal line in the time series of energy
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Figure 4. A transverse cut at half length of the loop shows the spatial distribution of current
density. Upflowing current is indicate in white, and downflowing current is shown in black.

dissipation rate (Fig. 2) somewhere above its mean value, and define every structure above
this threshold as a dissipation event. The influence of the definition of an event on the
statistics is discussed in Buchlin et al. (2005). We accumulate these events, and perform
a statistics of properties such as their total dissipated energies E, their peak dissipation
rates P , and their durations T . The corresponding histograms, i.e. number of events
with energies (peak dissipation rates, durations) in the range [E,E + dE] ([P, P + dP ],
[T, T + dT ]), are shown in Fig. 6.

The physically meaningful slope is the one displayed toward large values, i.e. toward
the right side of each panel. The distribution of energies displays a power law

N(E) dE ∝ E−1.5 dE (5.1)

We estimate a 10% error in the determination of this slope. Power laws with indices
close to −2 are obtained both for the distribution of peak dissipation rate and duration.
We also performed correlation analysis of these quantities, and obtain that T ∝ P ∝ E1/2 .

The distribution toward small values, i.e. toward the left side of each panel, are con-
taminated by the arbitrary choice of the threshold defining our dissipation events. For the
histograms shown in Fig. 6, the threshold was set 1σ above the mean value of the time
series. It is straightforward to show that for the smallest events, the energy distribution
should display a power law E−1/2 , while for the peak dissipation rate and duration, the
slope should be close to zero.
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Figure 5. The spatial distribution of the energy dissipation rate at t = 16tp , well within the
stationary turbulent regime.

The events reported here span the energy range from Emin � 1025 erg to Emax �
3 × 1026 erg, for typical values of the loop parameters. These slopes are consistent with
those derived from various observational studies and reported by Aschwanden (2004).

6. Conclusions
The magnetohydrodynamic turbulence scenario as a promising mechanism for coronal

heating in loops is briefly reviewed. In particular, we discuss the role of MHD turbulence
in developing small scales and in speeding up energy dissipation by the ensuing direct
energy cascade. MHD turbulence, once developed, enhances dissipation of both AC and
DC structures.

Recent results of RMHD numerical simulations of the internal dynamics of a coronal
loop are also shown. A turbulent stationary regime is achieved after several photospheric
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Figure 6. Shows the histograms for energy, peak dissipation rate and duration of the recorded
events. The threshold was chosen 1σ above the mean value. Aproximate slopes are also displayed
for reference.

turnover times, as a result of the action of a stationary velocity field pattern at the
photospheric boundary. A Kolmogorov-like broadband energy spectrum is obtained. The
spatial distribution of energy dissipation shows the concentration of the electric currents
in structures that resemble a complex distribution of current sheets. The obtained heating
rate levels are compatible with the requirements for coronal active regions.

The energy dissipation time series are of a bursty nature and therefore we associate
individual energy dissipation events to the so-called nanoflares, widely discussed in the
literature. A statistical analysis of these events shows power law distributions for their
energies, peak dissipation rates and durations. The slopes derived for these power laws
are fully consistent with previous studies performed within a two-dimensional MHD
approximation. They are also consistent with the various recent observational studies
reported in the literature.
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Gómez, D.O. 1990, Fund. Cosmic Phys., 14, 361.
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