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Abstract. Thurston and Kerckhoff have shown that the space of measured geodesic
laminations on a hyperbolic Riemann surface serves as a non-linear model of the
tangent space to Teichmiiller space at the surface. In this paper we show that the
natural map between these manifolds has stronger than Holder continuous regularity.

0. Introduction
Thurston discovered that train tracks can be used to obtain a PL manifold structure
on his space of measured geodesic laminations (MGLs) on a hyperbolic Riemann
surface. Required are two fundamental constructions: the first is a method of
constructing train track approximations of a MGL and the second is the construction
of a MGL from a measured train track (MTT).

In this paper we study the geometry of the latter construction. We examine how
the leaves of MGLs move about on a surface as one changes the weights on a train
track, and in particular, we show that if two weights on a train track are e close,
then the angle of leaves in the corresponding MGLs are Ce logfc (1/e) close on the
surface. Along the way, we study the growth rate of the number of train paths in a
MTT with n edges that correspond to (non empty) leaf packets in the MGL and
show this function has polynomial growth. We also find a Train Path Uncertainty
Principle which states if two weights on a MTT are e close, then the measures of
any train path with n edges can be no more than ne apart.

Kerchkoff has shown that the natural map between the space of MGLs on a
Riemann surface and the tangent space of Teichmiiller space at the surface is a
homeomorphism. An immediate consequence of our main theorem is that this map,
between the manifolds, has stronger than Holder continuous regularity.

Since very little about MGLs and MTTs has appeared in print, we begin with
several short sections containing background material, along with a sketch of
Thurston's two fundamental constructions.

1. Preliminaries on hyperbolic geometry
Definition. A hyperbolic Riemann surface is a smooth oriented surface of genus g s 2
equipped with a metric of constant curvature - 1 .

By the uniformization theorem, every hyperbolic Riemann surface R is isometric
to a surface of the form H2/T where H2 is the hyperbolic plane and F is a Fuchsian
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group (a discrete subgroup of PSL (2, /?)) acting by isometries, and isomorphic to
ITI{R). Let Sg denote a fixed smooth, closed, oriented surface of genus g.

Definition. The Teichmiiller space of genus g, 3~g, is the space of discrete and faithful
representations from 7r1(2g)-»PSL(2, R) modulo conjugacy. Equivalently, 3~g may
be defined as the space of hyperbolic metrics on 1g with two metrics identified if
there is an isometry between them which is isotopic to the identity.

Every Mobius transformation A acting on H2 has a continuous extension to its
boundary, denoted Sl

x, and called the 'circle at oo'. Pairs of distinct points on S^
are in 1-1 correspondence with (oriented) geodesies in H2. Every hyperbolic Mobius
transformation A (|tr A\ > 2) has exactly two fixed points both on S^. The geodesic
corresponding to the fixed points of A e F projects to the unique closed geodesic
in R contained in the free homotopy class of i(A)e 77,(2) under the isomorphism
i:r->7r(2).

Let / be a homeomorphism between two Riemann surfaces Rt and R2, and let
/„. be the induced isomorphism between their uniformizing groups F, and F2. This
isomorphism gives a canonical 1-1 correspondence between elements of F, and F2,
and hence between closed geodesies on J?, and R2. Consequently, this isomorphism
also induces a mapping between the sets of fixed points of elements of F, and F2,
which are dense in 5^,.

The following theorem of Nielsen states that this mapping has a unique extension
to a homeomorphism between the circles at infinity. This homeomorphism enables
us to identify geodesies on the two surfaces.

THEOREM. (Nielsen, [T].) Let f:R1^>R2 be a homeomorphism between two closed
hyperbolic Riemann surfaces. Then any lift offto a homeomorphism f :U2 ̂ U2 has a
unique continuous extension f to a homeomorphism of H2 U Sic, and the extension is
invariant under isotopy, depending only on the lift and on Rt and R2. The extension
is also equivariant so that the fixed points of any element A, € F, are taken to the fixed
points of A2 e F2 where /•(/!,) = A2 (/„.: F, -* F2 induced by / ) .

2. Measured geodesic laminations
Let R be a closed hyperbolic Riemann surface of genus g.

Definition. A geodesic lamination ^ on R is a foliation of a closed subset of R by
complete, simple geodesies.

Let si denote the set of simple, smooth open arcs contained in R which are
transverse to % and have endpoint in R — ^.

Definition. A Measured geodesic lamination (MGL) is a pair {% n), where $ is a
geodesic lamination and /x is a transverse measure satisfying:
(1) support (M) = (^
(2) If tt is homotopic to t2 in si, then ti(t}) = (i(t2).

'Trivial' Example of a MGL. Let {% /i) be a finite disjoint union of simple closed
geodesies 4>lt...,tf>n on R with counting measure n =£k=i akS^,k, ak > 0.
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We will follow custom and denote the MGL (% /J. ) by /J.. The following three
theorems about MGL's are due to Thurston [T]:

THEOREM. If fi is a MGL on R and tesi, then tnfi is either a discrete set or the
union of a Cantor set and a discrete set. Moreover, the isolated points of tn /A are
exactly the intersections oft with simple closed leaves of fi.

THEOREM. If H is a MGL on R, then Hyperbolic Area (/A) = 0.

THEOREM. If ti is a MGL on R, then R-fi is a finite union of ideal polygons and
Riemann surfaces with geodesic boundary.

The transverse measure on an MGL /A induces a Lebesgue-Stiltjes measure on
arcs contained in si. This allows us to integrate functions along transverse arcs. For
a transverse arc tesi, let 8 be the angle that the leaves of ti make with t measured
counterclockwise from f to /A. It is easy to see that 0 is a Lipschitz function along
t, and therefore may be integrated with respect to /x. We define the total angle and
total cosine of an arc t e si by:

s ddfi, cos(t,fi)=\ cos 0dfi.

Similarly, we define the total angle and total cosine of a simple closed geodesic
* by:

6(t,<j>)=\ ddfi, cos(<£, fi)= I cos Odfi.

Let ML(=ML(/?)) denote the set of MGL's on R. Thurston defined the following
topology on ML: given a finite set of arcs {fjj£=ic si, e > 0, and fi e ML, a neighbor-
hood basis of ti is given by:

The following theorem of Thurston may be thought of as a strong existence
statement for MGL's:

THEOREM. (Thurston, [T].) ML is homeomorphic to M6g~6.

Let $f denote the set of simple closed geodisics on R. We can embed Sf x R+ in
ML by sending (0, r) to the MGL consisting of <f> with fi = r • 8$.

THEOREM. (Thurston, [T].) 5^xR+ is dense in ML.

This theorem allows one to extend notions defined for simple closed geodesies
such as length and Dehn twist to MGL's.

Given two Riemann surfaces R, and R2 of genus g, along with an isomorphism
between their uniformizing groups, we have seen that the mapping between their
circles at infinity may be used to identify MGL's on the two Riemann surfaces.

THEOREM. (Thurston, [T].) Suppose Rt amd R2e &~g, thought of as hyperbolic struc-
tures on a fixed surface 1g. Let /*Rl be a MGL on R, and let ttR2 be the 'corresponding'
MGL on R2. Then the leaves of /JLRI are isotopic to the leaves of/j.R2 on 2 g .
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3. Train tracks
Train tracks serve as 'finite approximations' to MGL's and also allow us to define
a PL (Piecewise linear) manifold structure on ML. The reader is referred to [HP]
for an exhaustive treatment of train tracks.

A train track on 2 g is a branched 1-dimensional submanifold with several added
technical conditions to assure compatibility with MGLs.

FIGURE 1. Train track.

Definition. A curve c is carried by r if there exists a C1 map $ : 2 g - » 2 g such that
<f>(c)a T, <f> is homotopic to the identity, and ttylungentspacetoc^O.

Definition. An (infinite) train path is a map p:U-*r which is a C1 immersion and
p(k, fc + l) = edge and p(k) = switch for all keZ.

Definition. A measure A for T is an assignment of a non-negative number n(e) to
each edge e c r satisfying at each switch V the 'switch condition':

where e , , . . . , es are the incoming edges at v and es+l,... ,e, are the outgoing ones.

FIGURE 2. Switch condition.

The set of measures on T is a convex Euclidean cell and is denoted V(T) .

Definition, r is recurrent if for each edge e <= T, there exists non-trivial closed curves
Ce carried by T with supporting map </> and <t>(Ce) ^ e, or equivalently, T supports
a measure with all edge weights positive.

Definition. A simple closed curve c hits r efficiently if there does not exist a (not
necessarily embedded) bigon B^~L = T-C with dB a union of two C1 segments
StczC and S 2 c T .

Definition, r is transversely recurrent if for each edge e c T, there exists a non-trivial

simple closed curve Ce hitting T efficiently and Ce n e ^ <(>.

Definition, T is birecurrent if it is both recurrent and transversely recurrent.

We will assume that all edges are open and all switches are trivalent.
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4. Fundamental construction # 1
We will now outline two fundamental constructions of Thurston: The first will be
a method of constructing train track approximations of an MGL and the latter will
be the construction of an MGL from a transversely recurrent train track.

Construction #1. e-train track approximation of an MGL /x. Before beginning the
construction, we need the following preliminary result for a Riemann surface R
with finite area.

Definition. R(0 e^ = {pe R: there exists non-trivial closed loop through p with length

PROPOSITION. (Margulis [BE].) There exists a universal constant C such that R(0,e],
e^Cis the disjoint union of cusps and tubular neighborhoods of simple closed geodesies
with length <e.

Step 1. Since R- fi = £, u R2u- • • u RN, N<oo, where each Rk is either an ideal
polygon (generically a triangle) or a Riemann surface with geodesic boundary, the
double of Rk, dRk, is a Riemann surface with finite area. Consider (dRk)(oae].
(dRk)(02c] has a canonical foliation by curves of constant curvature, i.e., equidistant
curves about a short geodesic and horocycles about cusps.

Step 2. Transfer the partial foliations on dRk to Rk and then back to R.

FIGURE 3. Partial foliation on R.

LEMMA. (Thurston, [Wt].) The partial foliations on the Rk transferred to R extend to
a unique Lipschitz foliation 9> on the closure of UltLi (Rk)(o,*i-
Step 3. Now collapse each leaf of & down to a point. A well-known theorem
of Moore [MOO] insures that the quotient 'object' R is a (topological) surface.
The image of 9 under the quotient map is the e-train track approximation to /A
denoted T£.

Remark. It is clear that the switches of TE come from collapsing leaves of 9 near
configurations such as:

FIGURE 4
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Since the number of switches cannot be greater than the total number of cusps in
the Rk, it follows from simple Euler characteristic considerations that there are at
most 4 g - 4 complimentary regions Rk and # switches of re<3(4g-4) = 12g-12.

Step 4. (optional) (Thurston, [T, MOR].) Given S>0, there exists eo>0 such that
if e < e0, TC (living on the quotient surface R) can be pulled back to a train track
on R with geodesic curvature <8.

Our train track approximation Te comes equipped with a natural measure. Each
branch is assigned the weight corresponding to the total mass of the leaves in /x
which collapse onto it. It is clear this defines a measure on TE.

It is important to keep in mind that train tracks are topological objects having
finite combinatorics. Thurston advocates not studying MGL's on a microscopic
level, i.e., thinking about individual leaves, but to study them on a macroscopic
level using e-train track approximation.

5. Fundamental construction #2
Construction #2. Construction of an MGL from a measured transversely recurrent
train track.

Let us start with a transversely recurrent train track T on R with measure A.

Step. 1. [Construction of a Euclidean model for (A, A).] For each edge e c f take a
Euclidean strip of width k • A (e), where k is a scaling factor, k > 0, and splice these
strips together obeying the switch condition at each vertex. The resulting object has
a natural horizontal (singular) foliation obtained from the natural foliation on the
Euclidean strips.

FIGURE 5. Euclidean model.

Step 2. Choose k small enough such that the foliated model <= R3 embeds into R
with T as a spine. The model is not, and will not be isometrically embedded. All
singular leaves of the foliation should be regarded as a pair of leaves, an 'upper'
and a 'lower', making a consistent choice at each switch.

Step 3. Lift i? to a partial foliation £ in H2. The transverse recurrence of T, insures
that each le it has well defined endpoints on S& [HP]. Now replace each leaf I e S£
with the geodesic having the same endpoints on S». Denote the new collection of
geodesic leaves 'S.

Remarks.
(1) Many leaves of ££ may amalgamate to create one leaf in &
(2) The assumption of transverse recurrence on T is only needed to insure that the
leaves of 9 have well defined endpoints on Sic,. If it is known that r has geodesic
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curvature strictly less than one, then it follows from elementary hyperbolic geometry
that the lifts have well defined endpoints on Si,.

^ is a geodesic lamination on H2, i.e., & is a closed disjoint union of simple
geodesies. Now project ^ down to a geodesic lamination 'S on R.

Step 4. [Construction of the transverse measure on &] We now construct a measure
on arcs in si (open smooth arcs contained in R which are transverse to CS). Let
si* <= sd consists of those arcs tesi such that f intersects precisely those leaves of
$ which collapse onto some edge e, c r.

FIGURE 6

For tesi* define n(t) = A(e,).

Claim. The transverse measure /J. on si is completely determined by /J. on si*.

Since the leaves of ^ are geodesies, they diverge from each other 'exponentially
fast', hence the endpoints of arcs t e si are only 'finitely buried' in *&. The mass of
an arc t e si is computed by 'dragging' the arc along 'S until it splits into a union
of arcs all of which are contained in si*.

FIGURE 7. 'Dragging' a transverse arc.

T H E O R E M . (Thurston, [HP].) If T is a birecurrent train track and A,, A2£ V ( T ) , then

the MGL's fix and fi2 constructed from (T, A,) and (T, A2) coincide iff\i = \2-

6. Measured train tracks and train track coordinates on ML
There is a natural equivalence relation on measured train tracks such that if (T, , A,)
and (T2, A2) are two equivalent transversely recurrent train tracks, then the MGL's
constructed from them coincide.
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Definition. MT is the space of equivalence classes of all measured tn
equipped with the quotient topology

V(r) -

MT

The following three theorems of Thurston are proved in [HP].

THEOREM A. MT is homeomorphic to U6g~6.

THEOREM B. Let ifi denote the mapping which constructs the MGLfrom a ti
recurrent measured train track.
(a) i/» is a continuous injection and IT is a continuous

mapping.
(b) TJ is a bijection.
(c) Since MT, ML are homeomorphic to R6g"6, it follows

from 'invariance of domain' that 17 is a homeo-
morphism.

THEOREM C. ML is a PL (Piecewise Linear) manifold with PL coordinat
t]/T: V(T)-*ML, where r is a transversely recurrent maximal (there does
proper subtrack) train track.

Let ML denote the PL manifold structure on ML given by train track
manifold structure on ML may alternately be described as follows: Let
ML be a local parametrization for ML, and let ex,..., eN be the edges ol
N arcs a , , . . . , a N transverse to all leaves in Im (i^T) such that ak interseo
those leaves in Im (i/fT) which collapse onto ek, k = l,2,...,N. Coordii
are given by (Im (ipT),fT), where:

fT:lm(il>T)cML^UN

We see that train track coordinates are equivalent to intersection numb
'strategically placed' transverse arcs.

7. Packet uncertainty principle
Let T be a train track on R.

Definition. A finite train path in T is a mapping p: [0, N] -* T, N e Z+

C'-immersion, p(k, fc + l)) = edge and p(fe) = switch for 0 s fc:< iV.

We will usually denote a finite train path by listing its edges.
A measure A on T induces a measure on finite train paths in T. The r.

inductive, and is illustrated below:
Let (T, A) be a MTT and let {e,, e2,. • •, en} be a finite train path wi

We first define a subinterval of [0, A(en)], / { e , , . . . , en}, by inductioi
define A{e , , . . . . en} = length (I{ex,... ,en}). If n = l, /{«,} = [0, A(e,
/ { e , , . . . , cn_,} has been defined. There are four possible configi
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en

Case 1 Case 3

,e Case 2 Case 4 ey

Cases 1 and 2 are trivial, / { e , , . . . , en} = 7 { e , , . . . , en_,}, hence A{e1 ? . . . , en} =
A{e , , . . . , «?„_,}.

Case 3 has 3 subcases:

subcase 1: max I{eu ..., en_,}=£/n

hence A{e , , . . . , en} = A{e , , . . . , en_,}

subcase 2: min 7{e , , . . . , en_J &/„

7 { e , , . . . , <?„} = [min 7 { e , , . . . , en_,} - / „ , max 7 { e , , . . . , en_J - / „ ] ,

hence A{e,,...,<?„} = A{e , , . . . , en_,}

subcase 3: min / { e , , . . . , en- i}</n and max 7 { e , , . . . , en_,}>/n

7 { e , , . . . . , en) = [0, max 7 { e , , . . . , en_,} - / „ ] ,

hence A{e , , . . . , en} = max 7 { e , , . . . , <>„_,} - / „

Case 4 is identical to Case 3 and is omitted.

Definition. Given two measures A! and A2 on T,

|A,(c)-A2(e)|,

where the maximum is over all edges e <= r.

https://doi.org/10.1017/S0143385700005204 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005204


596 H. Weiss

Example. A,

A
B
C
D
E

a
b
c
d
e

A,

a + S
b-S

c

d-S
e + S

FIGURE 9

It is clear that |A, - A2|«, = 5. Consider the train path P - {ACE}.

6>0 small

Hence, |A,(P)-A2(P)| = 25 = 2|A1-A2|0O. This trivial example illustrates the
phenomenon of 'train path uncertainty'.

L E M M A 1.1. [Train Path Uncertainty.] Let T be a train track on R, \ l t A2e V ( T ) , and

let P be a train path with n edges. Then

|A 1 (P) -A 2 (P) |<» |A 1 -A 2 U.

Proof. Let P = {el,..., en] be a train path with n edges. There are at most n edges
of T incident upon P. Let / , , . . . , / „ denote those edges of T that are incident to P,
where ek and ft are incident upon the same switch. It follows from the previous
discussion on weights on finite train paths, that

A1(P) = A1(e,)±A1(/2)±A1(/3)±- • -±A,(/B).
Then,

A2(P) = [A,(eI)±S1]±[A1(/2)±«2]±- • -±Mfn)±8n],

where the pattern of + or - between the bracketed terms in A2(P) is the same as
in A,(P), and 0<5 , , 5 2 , . . . , ^n<|A1-A2|<x>. There is no bound on the sign com-
binatorics, and the worst case of the sign pattern could occur, hence |A,(P) - A2(P)| <
n|Ai-A2|co. •

We will now translate the uncertainty principle into MGL language. Given an
MGL fi on R, let (T, A) be a train track approximation to p.

Definition. Let P = {e , , . . . , en} be a train path in T. The leaf packet in fi corresponding
to P, 9, consists of all those segments of leaves in fi which collapse exactly onto P.

FIGURE 10

Note the leaf packet corresponding to P = {e2e3e4} is empty.
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COROLLARY 1.2 [Leaf Packet Uncertainty Principle.] Let T be a birecurrent train track
on R, A|, A2€ V(T) , and P a train path in r with n-edges. Let ft1, fi2 be the MGUs
constructed from (T, A,), (T, A2) respectively, and let <?>,, $P2 be the packets contained
in fj,i and fi2 respectively, corresponding to P. Then:

Proof.

8. Polynomial growth estimate
Let (T, A) be a transversely recurrent train track on R and y. its associated MGL.
Let R(n) denote the number of train paths in T with n edges that have geometric
realizations as (non-empty) packets of leaves in /x. A priori, R(n) grows exponentially
in n, since you can turn left or right at each switch.

Birman and Series [BS] have devised a clever coding scheme for simple geodesic
arcs on a Riemann surface. Although their coding scheme was devised expressly to
encode simple geodesic arcs on a Riemann surface, we use it to encode train paths
(leaf packets) and prove that R(n) grows as a polynomial in n. This distinction
between subexponential/polynomial is essential to our later analysis.

THEOREM 1.3. Let ( T, A) be a transversely recurrent train track on R and fi its associated
MGL. Let R(n) denote the number of train paths in r with n edges that have geometric
realizations as (non-empty) packets of leaves in /x. Then:

/12g-6x+2

R(n)< Cn 2 , and C = C(g, T, fixed fundamental polygon for R).

Our strategy is to show a bounded correspondence between train track coding
and Birman-Series coding of train paths. The proposition then readily follows since
the Birman-Series coding has the polynomial growth built in. Most of the following
is taken verbatim from [BS].

Choose and fix a convex fundamental polygon 2 i c H 2 for ir^R).
In [BS], the authors show that the set of simple geodesies on R is a nowhere

dense subset of R (and has measure 0). Using their result, we can choose 3 such
that no simple geodesic intersects any vertex of 3 and d3 does not contain any
simple geodesic arcs. This simplification is not essential, but it gives cleaner state-
ments of results.

Let A denote the set of sides of 3), ordered in any fixed manner.
Let /M denote the set of oriented simple geodesic arcs y <=• fi such that dy £ ir(d3>)

and no subarc of y coincides with a side of ir{d3>), where n e H2-* R is the universal
covering map.

We refer to the components of y n TT(3>) as the segments of y and the points of
y n TT(83)) as the partition points of y. We label the partition points t0, t^,..., tn
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in the order in which they occur along y and we set ||-y|| = n. It is clear that any lift
of y enters n translates of 3>.

Let B = A x A - {diagonal} and define /i,:/M-»ZB, /i,(y) = {n(a, a')}(aa)eB, where
n(a,a') is the number of segments joining a to a' in (the lift of y to) 3). Clearly,

IMI= I n{a,a').
(a,a')eB

When no confusion will occur, we will henceforth not distinguish between an arc
y on R and its lift to a broken arc on 3>.

We shall need to record information about the position of the initial and final
points t0, tn of y. For i" = 0, n let a(ff) be the element of A containing ff and let
j(tj) 6 N be the position of t, among the partition points of y which lie along a(f,)
counting in the anticlockwise direction around d3s. Now define:

h2:J^(AxZ)2

h2(y) = (a(to),j(to),a(tn),j(tn))

and let

h = (hl,h2):Jli^ZBx(AxZ)2 = n.

For

weft, let \w\= £ \w^a-\,
(a.a')efl

where waa. is the projection of w on the (a, a') factor of ZB. For yeJ^, define
HIBS = \'h(y)\. For me N, let ftm = {wGft:|w|<m}.

LEMMA BS1. [BS, Lemma 2.1.] Suppose that y, y'eJ^ and that h(y) = h(y'). Let
t0,..., tn and t'o,..., t'n be the partition points of y, y'. Then f, and t\ lie in the same
element of A for each i = 0 , 1 , . . . , n, hence y and y' are homotopic rel open edges in

LEMMA BS2. [BS, Lemma 2.2.]

(*A)+2

#(ftn n Image (/.))< Cn ,

where C depends on 3).

THEOREM. [BE]. Let G be a finitely generated Fuchsian group of the first kind and
let P be any convex fundamental polygon for G. Suppose that P has N sides. Then
4g<JV<12g-6 .

Applying this theorem to Lemma BS2 yields:

#(ftnnImage(/i))<C«v 2 ; .

Remark 1. The mapping / i :{y c / M : | |T| |BSsn}->(ftnn Image h) is a many-to-one
mapping, however, by Lemma BS1, the mapping:

, f Homotopy classes UTIIBS—« and the homotopyl ,„
"'•1 ~ '• • . , f-»(ftnn Image n)

I ofycJ^ is rel open edges in ir(d3>) J 5

is a one-to-one mapping.
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Remark 2. Using the coding scheme, we may formally code any simple arc y as
long as <9y<= 7r(d2i\vertices of 3)), ir(d3)) does not contain any subarc of y, and y
has no inessential intersections with 3>. A moment's thought will show that Lemma
BS1 is valid if y and y' are just simple arcs on R and not necessarily geodesic arcs.

Remark 3. Let P be a train path in T. Since dP need not lie on ir{d3>), P may not
have a unique coding, but could have as many as (#A)2 different codings correspond-
ing to all possible extensions of the first and the last edge to v(d3>).

For the next proposition, we need a slightly more general notion of train path:
we will drop the requirement that a train path must begin and end at a switch.

The following proposition shows that the correspondence between train paths in
T with geometric realizations and Birman-Series codes is at most N to 1.

LEMMA 1.4. Let (T, A) be a transversely recurrent train track such that T does not
intersect any vertex of TT(3>), v(d2l) does not contain any subarc of T, and no train
path in T has an inessential intersection with 2, and let fi be its associated MGL. There
exists N — N(3), r) such that ifPt,..., Pr are distinct train paths in r which correspond
to leaf packets in /*, dPk <= ir(d2), and h(Pt) = • • • = h(Pr), then r s M

Proof. Suppose Pit..., Pr are distinct train paths in T which correspond to leaf
packets in /x, dPk <= tr{d3>), and h(Pt) = • • • = h(Pr). Studying fundamental construc-
tions 1 and 2 carefully, one can show that /u, can be collapsed onto r in the following
strong way: there exists a C homotopy F:IxR->R and e > 0 such that:
(a) F(0, p) = p for all p e R.
(b) F(M)c,
(c) F(*, fi) c: NE(/M), where Ne(fi) is the e-neighborhood of p.
(d) F(*, leaf) is transverse to the foliation 2F obtained in Fundamental Construction

# 1 .

Choose geodesic arcs au...,arcJIIL which collapse onto P , , . . . , P r via the
homotopy described above.

Unfortunately h(ak) might not be equal to h{Pk), since when we lift these curves
to 3), 'glancing' may occur near a vertex. However, using property (d) of the
homotopy described above, we can find simple arcs px,...,fir, dfik<= 7r(d2>), such
that pk collapses onto Pk and h(pk) = h(Pk). By hypothesis ft()31) = - • - = h(pr).
Lemma BS1 implies that £ i , . . . , j 3 r are all homotopic rel open edges of ir(d3)),
hence P , , . . . , Pr are all homotopic rel open edges of ir(d3)). If P t , . . . , Pr were
infinite train paths we could conclude that P, = • • • = Pr [HP]. Since P i , . . . , Pr are

FIGURE 11. 'Last fundamental domain'.
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finite train paths, we can only conclude that (the lifts of) Pt = • • • = Pr outside of
the first / and last m fundamental domains, where / and m are determined by 3>
and T and independent of the number of edges of the train paths. We choose N to
be the total number of train paths in the lift of r contained in 3) with first and last
edges of d2)l+m. D

Proof of Theorem 1.3. We will assume that T does not intersect any vertex of ir(3>),
v(d3>) does not contain any subarc of r, and no train path in r has an inessential
intersection with ir(d3i). This is no restriction, since we can always find a funda-
mental polygon for R which satisfies the above conditions with respect to the fixed
train track T [N].

P: P is a train path in T, P corresponds to a leaf packet
in fi, the first and last edges (or switches) intersect
ir(d2>), and if P is the retraction of P such that

By Lemma 1.4,

R(n) < N#(Q.n n Image (h)),

and by Lemma BS2,

9. The geometry of fundamental construction #2
In the proof of the next theorem, we will need the following easy lemmas:

LEMMA 1.6. For large b, cos 6 = 2 tanh (a/2)e~b/2.

•

FIGURE 12

Proof. Since the shaded triangle is a right triangle, [BE]
tanh(a/2)

tan \2 / si

cos 8 = —
cotfl 1

sinh(b/2)
fc«itanh(a/2)

sinh(fe/2)'
= 2tanh(a/2)e-fc/2 •

tanh2(a/2)

LEMMA 1.7. Let (x, A) be a transversely recurrent train track and let ft be its associated
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MGL. The hyperbolic length of a subleaf in fi is commensurable with the number of
edges in r it collapses onto, counted with multiplicity.

Proof. For each edge e c: T, let
c€t = {a subleaf of fi: a collapses onto e under the homotopy

described in Lemma 1.4}.

Let Z* c fit and suppose /* collapses onto n edges of T (counted with multiplicity),
then

n[min inf lHYp(a)]^lHyP(l*)£ n[max sup

THEOREM 1.8. Let T be a transversely recurrent train track on R, \lf A2e V(T), ^I,

and fi2 the associated MGL's, and t be any simple geodesic arc transverse to /t, and
fi2 which collapses onto one edge of T. Then:

cosOdfi.-l cosddn2 < C | A i - A 2 U l o g r ( , \

where r= (12!~6) + 3, and C depends on r, f, Hi(t) and / A 2 ( 0 -

Proof. Let c, and c2 be the collapsing maps for \LX and /*2 onto r. We may assume
that c, and c2 collapse t onto the same edge e <= T. Let Pn be a train path in T,
consisting of 2M +1 edges, having e as its middle edge, and let Sf"k denote the packets
of leaves in fik which collapse onto P". Lift ^ , fi2 and T to H2 along with a fixed
lift of t which we denote t*. Then:

cosfld/*,- ( cos

I
P": a-

P": (I, cos

I - cos

cos

•»)!

2)J

cos 6d(fi2n 0*1

We will refer to those leaf packets which occur in the first sum as type 1 packets
and those appearing in the second sum as type 2 packets. We being by estimating
the first sum. By the triangle inequality, it follows that:

d ) s

type I

cos0-

• i f .
p

typel

cos e -

+ I
p

typel
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Suppose P" = (e0,..., <?„_,, e, en+1,..., e2n+1) is a type 1 train path. Let v0 and
v2n+i be its initial and terminal switches. 0>£ connects Ck\v0) to t* to Ck\v2n+l).
Since the collection {Ck\v)}k=l2, where v is a switch in T, is finite, Lemmas 1.6
and 1.7 imply there exists constants cy and c2 such that:

fmax cos\ /min

Hence:

(1)

f d(Mln^n-f
- \Jt* J r*

typel

+ ]
/

typel

type 1

< c, e-V/i.C ?*) + c, e"^V2( f*) + I
p"

typel
J 7*

The packet uncertainty principle (Corollary 1.2) implies that:

— \^n • l ) |Ai — A2|co.

The number of type 1 packets is bounded by the total number of packets, R(2n +1),
which by Theorem 1.3 is bounded by c3n

r, where r = (2
2g"6) + 2. Thus, we may

estimate the first sum by:

We will assume that /Ai(r*) and fi2(t*) are bounded by some constant, hence,

The second sum may be crudely estimated by:

P«
type 2

where the choice of / depends on the particular packet, / = 1 or 2.
It is an immediate consequence of the packet uncertainty principle (Corollary

1.2) that for type 2 packets,

" A 2 | o o -

Unfortunately, we have no control over the number of type 2 packets. Again, all
we know is the number of type 2 packets is bounded by the total number of packets
R(2n + 1), which by Theorem 1.3 is bounded by c3n

r, where r = (2
2g~6) + 2. Thus,

we may estimate the second sum by:
(2)<(2« + l)|A,-A2|0Oc3M

r.

It follows that the entire sum may be estimated by:
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Equating the two terms, we choose

and after absorbing constants, we obtain:

(l) + (2)<c5 |A1-A2U+c6 |Ai-A2l c o logr + 1(c7 | \ , )
\ |Aj —A2|oo/

+ C8|A, - A ^ logr I c7 r- —r- ) .

For |A,-A2|0D« 1,

(l) + (2)<c9lA1-A2l0Ologr+1( 1 ) . D
\|A1 ~A2|oo/

Remark. This theorem may be interpreted as saying that if two MGL's have intersec-
tion numbers which are e close with respect to suitably chosen transverse arcs, then
their total cosines with respect to closed geodesies are Ce Iogr + 1(l/e) close.

10. Earthquakes
Thurston has generalized the Dehn twist or Fenchel-Nielsen deformation about a
simple closed geodesic to a 'twisting' or 'shearing' about a MGL, called an earthquake
deformation.

Recall that for R, the set $fxU+ consisting of weighted simple closed geodesies
in R is dense in ML. The Earthquake deformation about a MGL fi is defined by
the limit in 5~g of any sequence of Dehn twists along weighted simple closed geodesies
which converge to fi in ML. Formally:

Definition. (Thurston.) The left Earthquake deformation of R at time t determined
by fi. € ML is the limit in 2Tg of the time t (Dehn) twist deformations of R for any
sequence (a,, %) e 5^xR+ converging to fi in ML. It will be denoted E(R, /x, t).

In [Ki], Kerckhoff shows that this definition is valid, i.e., that the limits exist and
are independent of the approximating sequence, and hence unique.

We will think of earthquake deformations as defining paths in 2Tg as t varies.

THEOREM. (Kerckhoff, [K3].) Every tangent vector in 2Tg is tangent to a unique
earthquake path in STg. In fact:

£ E(R,n,t)
dt ,«,0

+

is a homeomorphism.

Choose 6 g - 6 simple closed geodesies alf. ..,a6g-6 whose lengths / „ , , . . . , latl.t
serve as local coordinates in Re t/<= STg. In these coordinates,

d

dt ,=0*

6*-« [ d Id
= I \ - lakWR,fi.t))\ — .

* = 1 L«« r = 0+ J °'ak
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lak(E{R,n,t)) =

In [K2], Kerckhoff shows:
d_
dt

hence,

A
dt

Definition. f:Um^U" is 'k Log Holder' iff there exists C, K such that

6g-6 / f \ d

E(R,fi,t)= I ( cosddn) —.
k = \ \Jak I dlak

\f(x) -f(y)\ < C\x-y\ log*

Remark. It is easy to show that k Log Holder implies a-Holder continuous for all
a < 1, but it does not imply Lipshitz.

Theorem 1.8 applied to at, a2 «6g-6 readily implies:

COROLLARY 1.9. I/> : ML(R) -»(3~g)R is k Log Holder.
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