A GENERALISATION OF DIRICHLET'S MULTIPLE INTEGRAL

By writing y for π/\sqrt{x} in the above relations, we obtain a corresponding set of expressions for $\sum_{n=1}^{\infty} \Phi_{2r+1}(ny)$ for $y \ge 10$. For example from (8) we have

$$\sum_{n=1}^{\infty} \Phi_{2r+1}(ny) = (-1)^{r+1} (2r) ! / \pi^{\frac{1}{2}} r !$$

which is independent of $y \ (\geq 10)$, and for r = 1 gives $\sum_{n=1}^{\infty} e^{-\frac{1}{2}n^{n}z^{2}} D_{2}(nz) = \frac{1}{2}, \text{ if } z > 14.$

n = 1

GAIRVIEW, GLENCAIRN ST., STEVENSTON, AYRSHIRE.

A Generalisation of Dirichlet's Multiple Integral

By I. J. GOOD.

The purpose of this note is to generalise the Dirichlet-Liouville formula which expresses a certain type of multiple integral in terms of a single integral.¹ In our formula the multiple integral will involve several arbitrary functions instead of only one, and it will be expressed as a product of single integrals.

Let n be a positive integer. Let $f_1(t), f_2(t), \ldots, f_n(t)$ be Lebesgue measurable functions when $0 \le t \le 1$. A finite sequence of n real numbers m_1, m_2, \ldots, m_n is given. We write $m_{n+1} = 0$ and

$$M_r = m_1 + m_2 + \ldots + m_r$$
$$X_r = x_1 + x_2 + \ldots + x_r$$

¹ See, for example, G. F. Meyer, Vorlesungen über die Theorie der bestimmten Integrale (Leipzig, 1871), 566 et seq.; or E. T. Whittaker and G. N. Watson, Modern Analysis (4th edn., Cambridge, 1935), section 12.5; or H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Cambridge, 1946), section 15.08; or L. J. Mordell, "Dirichlet's integrals," Edin. Math. Notes, No. 34 (1944), 15-17.

and so on, and we assume that all variables of integration, such as x_1, x_2, \ldots, x_n , are non-negative. Then

$$\int \dots \int_{r=1}^{n-1} \left\{ x_r^{m_r} f_r \left(\frac{X_r}{X_{r+1}} \right) \right\} x_n^{m_n} f_n \left(X_n \right) dx_1 dx_2 \dots dx_n$$
$$= \prod_{r=1}^n \int_0^1 f_r \left(x \right) \left(1 - x \right)^{m_{r+1}} x^{M_r + r - 1} dx \tag{1}$$

provided that the n single integrals on the right all exist.

Proof. We proceed in a formal spirit. The proof can easily be made rigorous by working backwards from the final result and making use of Fubini's theorem.

Denote the left-hand side of (1) by I_n (f_1, f_2, \ldots, f_n) . In this *n*-fold integral we first change the variables of integration from x_1, x_2, \ldots, x_n to $x_1, x_2, \ldots, x_{n-1}, X_n$ and second put $x_r = X_n y_r$ $(r = 1, 2, \ldots, n-1)$. We obtain I_n (f_1, f_2, \ldots, f_n)

$$= \int_{0}^{1} f_{n}(X_{n}) dX_{n} \int \dots \int (X_{n} - X_{n-1})^{m_{n}} \prod_{r=1}^{n-1} \left\{ x_{r}^{m_{r}} f_{r}\left(\frac{X_{r}}{X_{r+1}}\right) dx_{r} \right\}$$

$$= \int_{0}^{1} f_{n}(X_{n}) X_{n}^{M_{n}+n-1} dX_{n} \int \dots \int \prod_{r=1}^{n-2} \left\{ y_{r}^{m_{r}} f_{r}\left(\frac{Y_{r}}{Y_{r+1}}\right) \right\}$$

$$= \int_{n-1}^{1} (f_{1}, f_{2}, \dots, f_{n-2}, g_{n-1}) \int_{0}^{1} f_{n}(x) x^{M_{n}+n-1} dx,$$

where $g_{n-1}(t) = f_{n-1}(t) (1-t)^{m_n}$. The theorem now follows by induction.

As a special case let $f_r(t) = t \wedge_r$ where $\wedge_r = \lambda_1 + \lambda_2 + \ldots + \lambda_r$ and assume $m_r > -1$, $\lambda_r + m_r > -1$. Then

$$\int_{X_n \leq 1} \cdots \int_{r=1}^n \{x_r^{m_r} X_r^{\lambda_r} dx_r\} = \prod_{r=1}^n \frac{\Gamma(\wedge r + M_r + r) \Gamma(m_{r+1} + 1)}{\Gamma(\wedge r + M_{r+1} + r + 1)}$$

where $m_{n+1} = 0$.

131 CHEVIOT GARDENS, LONDON, N.W.2.