ON RATIONAL APPROXIMATION ON THE POSITIVE REAL AXIS

Q. I. RAHMAN AND G. SCHMEISSER

1. Introduction and statement of results. In their study of the uniform approximation of the reciprocal of e^{z} by reciprocals of polynomials on the positive real axis, Cody, Meinardus, and Varga [3] showed that if \mathscr{P}_{n} denotes the class of all polynomials of degree at most n and

$$
\begin{equation*}
\lambda_{m, n}\left(e^{-z}\right)=\inf _{\substack{p(z) \in \mathscr{F}_{m_{n}} \\ q(z) \in \mathscr{P}_{n}}}\left\{\sup _{\substack{0 \leq x<\infty}}\left|e^{-x}-\frac{p(x)}{q(x)}\right|\right\} \tag{1}
\end{equation*}
$$

then
(2) $\frac{1}{6} \leqq \lim _{n \rightarrow \infty}\left(\lambda_{0, n}\left(e^{-2}\right)\right)^{1 / n} \leqq 0.43501 \ldots$

Subsequently, Schönhage [8] proved that
(3) $\lim _{n \rightarrow \infty}\left(\lambda_{0, n}\left(e^{-z}\right)\right)^{1 / n}=\frac{1}{3}$.

One of the most important problems in the theory of approximation which was settled by P. L. Chebyshev is the uniform approximation on the unit interval of a polynomial of degree $n+1$ by polynomials of lower degree. Chebyshev also discovered the following analogous result for rational approximation [1, pp. 278-280]:

Let $a_{\nu}, \nu=0,1, \ldots, n$ be prescribed real numbers with $a_{0} \neq 0$, and set

$$
f(x)=\sum_{\nu=0}^{n} a_{\nu} 2^{-\nu} x^{N-\nu}
$$

where $N>n$. Then

$$
\begin{equation*}
\inf _{\substack{p(z) \in \mathscr{P} N-1 \\ q(2) \in \mathscr{P}_{n}}}\left\{\sup _{-1 \leq x \leq 1}\left|f(x)-\frac{p(x)}{q(x)}\right|\right\}=\frac{|\lambda|}{2^{N-1}} \tag{4}
\end{equation*}
$$

where λ is the smallest eigenvalue of the Hankel matrix

$$
\left[\begin{array}{lllll}
c_{n} & c_{n-1} & \ldots & c_{1} & c_{0} \\
c_{n-1} & c_{n-2} & \ldots & c_{0} & 0 \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
c_{1} & c_{0} & \ldots & 0 & 0 \\
c_{0} & 0 & \ldots & 0 & 0
\end{array}\right]
$$

[^0]with
$$
c_{r}=\sum_{\nu=0}^{[r / 2]}\binom{N-r+2 \nu}{\nu} a_{r-2 \nu} \quad(r=0,1, \ldots, n)
$$

If we take in particular

$$
f(x)=((1+x) / 2 d)^{n+1}-(1 / 2 d)^{n+1}, d>0
$$

and replace x by $(1-(x c / d)) /(1+(x c / d)), c>0$, we obtain

$$
\begin{equation*}
\gamma_{n}=\inf _{\substack{p(z) \in \mathscr{P}_{n} \\(z) \in \mathscr{P}_{n}}}\left\{\sup _{\substack{ \\\leqq x<\infty}}\left|\frac{1}{(c x+d)^{n+1}}-\frac{p(x)}{q(x)}\right|\right\} \tag{5}
\end{equation*}
$$

which gives the best uniform approximation of the reciprocal of $(c z+d)^{n+1}$ by rational functions of degree at most n on $[0, \infty)$. Due to the fact that Chebyshev gave γ_{n} in terms of the smallest eigenvalue of a certain matrix the dependence of γ_{n} on n is not easily seen. We will, however, show by an elementary method that
(6) $\varlimsup_{n \rightarrow \infty} \gamma_{n}^{1 / n} \geqq \frac{1}{27 d}$
which means that the quantity γ_{n} cannot go to zero faster than geometrically.
In analogy with the above result of Cody, Meinardus and Varga we consider the uniform approximation of the reciprocal of the polynomial $(c z+d)^{N}$, $c>0, d>0$, by reciprocals of polynomials of degree at most $n<N$. We prove:

Theorem. If the ratio $r=N /(n+1) \geqq 1$ is fixed then
(7) $\lim _{n \rightarrow \infty}\left\{\lambda_{0, n}\left((c z+d)^{-N}\right)\right\}^{1 / n}=\frac{r^{r}(3 r-1)^{3 r-1}}{(3 r)^{3 r}(r-1)^{r-1} d^{r}}$
where $\lim ^{\prime}$ indicates that the integer n assumes only those values for which $(n+1) r$ is an integer.

In the special case $c=d=r=1$ our result gives
Corollary 1.

$$
\lim _{n \rightarrow \infty}\left\{\lambda_{0, n}\left((z+1)^{-n-1}\right)\right\}^{1 / n}=\frac{4}{27} .
$$

Earlier it was shown by Erdös and Reddy [4] that

$$
1 / 8 \leqq\left\{\lambda_{0, n}\left((z+1)^{-n-1}\right)\right\}^{1 / n} \leqq 1 / 2
$$

Besides, putting $c=1 / N, d=1$ the function considered becomes $(1+z / N)^{-N}$ which tends uniformly to e^{-z} on the interval $[0, \infty)$ as $N \rightarrow \infty$. Furthermore, $\left(r^{r}(3 r-1)^{3 r-1}\right) /\left((3 r)^{3 r}(r-1)^{r-1}\right)$ increases monotonically to $1 / 3$ as r tends to infinity. From this point of view our result touches the scope
of Schönhage's result (3) and even leads to a part of it. In fact, by a limiting process in our proof we can conclude that $\lim _{n \rightarrow \infty}\left(\lambda_{0, n}\left(e^{-z}\right)\right)^{1 / n} \geqq 1 / 3$ must hold.

We note that (7) also implies the following fact which is rather curious:
Corollary 2. Given a sufficiently large positive integer N the function $(c z+d)^{-N}$ can be approximated by reciprocals of polynomials $p_{n}(z)$ of degree ai most $n<N$ with

$$
\sup _{0 \leq x<\infty}\left|(c x+d)^{-N}-\frac{1}{p_{n}(x)}\right|<\rho^{n}, \quad \text { where } \rho<1
$$

if and only if $d>4 / 27$.
It follows from (5) and (6) that even the quantity

$$
\inf _{\substack{p(2) \in \mathscr{P}_{n} \\ q(z) \in \mathscr{P}_{n}}}\left\{\sup _{\substack{0 \leq x<\infty}}\left|(c x+d)^{-N}-\frac{p(x)}{q(x)}\right|\right\}
$$

does not go to zero faster than geometrically as $n \rightarrow \infty$, if the ratio $N /(n+1)$ maintains a fixed value $\geqq 1$.

Our approach to our theorem is analogous to that of Schönhage in the sense that the best uniform approximation by reciprocals of polynomials in \mathscr{P}_{n} turns out to be comparable to a certain weighted least square approximation by polynomials in \mathscr{P}_{n}.
2. Lemmas. For the proof of our theorem we need to introduce the finite sequence of orthonormal polynomials on $[1, \infty)$ with respect to the weight function $w(x)=x^{-R}$. As an important tool to obtain quantitative results we shall use the following well known identity.

Lemma 1. ([2, p. 195; 7, Chapter 7, Problem 3]). For complex numbers a_{ν}, $b_{\nu}(\nu=1,2, \ldots, k)$ such that $a_{i}+b_{j} \neq 0$ for all $1 \leqq i, j \leqq k$ we have

$$
\left|\begin{array}{cccc}
\frac{1}{a_{1}+b_{1}} & \frac{1}{a_{1}+b_{2}} & \cdots & \frac{1}{a_{1}+b_{k}} \\
\frac{1}{a_{2}+b_{1}} & \frac{1}{a_{2}+b_{2}} & \cdots & \frac{1}{a_{2}+b_{k}} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\frac{1}{a_{k}+b_{1}} & \frac{1}{a_{k}+b_{2}} & \cdots & \frac{1}{a_{k}+b_{k}}
\end{array}\right|=\frac{\prod_{1 \leq i<j \leq k}\left(a_{i}-a_{j}\right) \cdot\left(b_{i}-b_{j}\right)}{\prod_{i=1}^{k} \prod_{j=1}^{k}\left(a_{i}+b_{j}\right)} .
$$

Lemma 2. Let $R \geqq 3, k=[(R-3) / 2]$ and $w(x)=x^{-R}$. Then there exists a sequence of orthonormal polynomials $\left\{\psi_{\nu}(R, x)\right\}_{\nu=0,1, \ldots, k}$ on $[1, \infty)$ with respect
to the weight function $w(x)$, i.e.

$$
\begin{equation*}
\int_{1}^{\infty} w(x) \psi_{\nu}(R, x) \psi_{\mu}(R, x) d x=\delta_{\nu \mu} \quad(0 \leqq \nu, \mu \leqq k) \tag{8}
\end{equation*}
$$

Moreover, with
(9) $\left\{\begin{array}{l}\lambda_{\nu}=\frac{\sqrt{R-2 \nu-1}}{\nu!} \prod_{i=1}^{\nu}(R-\nu-i), \\ \alpha_{\nu}=\frac{R-\nu+1}{R-2 \nu+2}+\frac{\nu R}{(R-2 \nu+2)(R-2 \nu)}, \\ \beta_{\nu}=\frac{R-\nu}{\sqrt{(R-2 \nu-1)(R-2 \nu+1)} R-2 \nu},\end{array}\right.$
for $\nu=0,1,2, \ldots, k$ the recurrence relation

$$
\begin{equation*}
\frac{\psi_{\nu+1}(R, x)}{\lambda_{\nu+1}}=\left(x-\alpha_{\nu+1}\right) \frac{\psi_{\nu}(R, x)}{\lambda_{\nu}}-\beta_{\nu}{ }^{2} \frac{\psi_{\nu-1}(R, x)}{\lambda_{\nu-1}} \tag{10}
\end{equation*}
$$

where

$$
(\nu=1,2, \ldots, k-1)
$$

(11) $\quad \psi_{0}(R, x)=\lambda_{0} \quad$ and $\quad \psi_{1}(R, x)=\lambda_{1} \cdot\left(x-\alpha_{1}\right)$,
holds.
Proof. For the given k all the integrals

$$
c_{\nu}=\int_{1}^{\infty} w(x) x^{\nu} d x=\frac{1}{R-\nu-1} \quad(\nu=0,1, \ldots, 2 k)
$$

exist. There is, therefore (cf. [10, §§ 2.1-2.2]), a unique sequence of polynomials $\psi_{\nu}(R, x)$ of degree $\nu(\nu=0,1, \ldots, k)$ satisfying (8). Furthermore, these polynomials are given by $\psi_{0}(R, x)=c_{0}{ }^{-1 / 2}$ and

$$
\psi_{\nu}(R, x)=\frac{1}{\sqrt{D_{\nu-1} D_{\nu}}}\left|\begin{array}{llll}
c_{0} & c_{1} & \ldots & c_{\nu} \tag{12}\\
c_{1} & c_{2} & \ldots & c_{\nu+1} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
c_{\nu-1} & c_{\nu} & \ldots & c_{2,-1} \\
1 & x & \ldots & x^{\nu}
\end{array}\right| \quad(1 \leqq \nu \leqq k),
$$

where
(13) $\quad D_{\nu}=\left|\begin{array}{llll}c_{0} & c_{1} & \ldots & c_{\nu} \\ c_{1} & c_{2} & \ldots & c_{\nu+1} \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ \cdot & \cdot & & \cdot \\ c_{\nu} & c_{\nu+1} & \ldots & c_{2 \nu}\end{array}\right| \quad(0 \leqq \nu \leqq k)$.

To prove the other assertions we write $\psi_{\nu}(R, x)$ as

$$
\begin{equation*}
\psi_{\nu}(R, x)=\lambda_{\nu} x^{\nu}+\lambda_{\nu}^{*} x^{\nu-1}+\varphi_{\nu-2}(x) \tag{14}
\end{equation*}
$$

where $\varphi_{\nu-2}(x)$ is a polynomial of degree at most $\nu-2$. It is known (see $[\mathbf{9} ; \mathbf{1 0}$, §3.2]) that the polynomials $\psi_{\nu}(R, x)$ indeed satisfy the equations (10) and (11), if we set $\beta_{0}=0$,

$$
\begin{equation*}
\alpha_{\nu}=\frac{\lambda_{\nu-1}{ }^{*}}{\lambda_{\nu-1}}-\frac{\lambda_{\nu}{ }^{*}}{\lambda_{\nu}} \quad \text { and } \quad \beta_{\nu}=\frac{\lambda_{\nu-1}}{\lambda_{\nu}} \quad(\nu=1,2, \ldots, k) . \tag{15}
\end{equation*}
$$

It is only (9) that remains to be verified.
We readily see from (12) that

$$
\lambda_{\nu}=\sqrt{\frac{D_{\nu-1}}{D_{\nu}}}(\nu=1,2, \ldots, k), \quad \frac{\lambda_{1}^{*}}{\lambda_{1}}=-\frac{c_{1}}{c_{0}}=-\frac{R-1}{R-2},
$$

and
(16) $\frac{\lambda_{\nu}{ }^{*}}{\lambda_{\nu}}=\frac{-1}{D_{\nu-1}}\left|\begin{array}{lllll}c_{1} & c_{2} & \ldots & c_{\nu-1} & c_{\nu+1} \\ \cdot & \cdot & & \cdot & \cdot \\ \cdot & \cdot & & \cdot & \cdot \\ \cdot & \cdot & & \cdot & \cdot \\ c_{\nu-1} & c_{\nu} & \ldots & c_{2 \nu-3} & c_{2 \nu-1}\end{array}\right|$ $(\nu=2,3, \ldots, k)$.

To calculate D_{ν} we apply Lemma 1 with

$$
a_{i}=-i, \quad b_{i}=R-i+1 \quad(i=1,2, \ldots, \nu+1)
$$

and obtain

$$
\begin{equation*}
D_{\nu}=\frac{\prod_{1 \leq j \leq j \leq \nu+1}(i-j)^{2}}{\prod_{i=1}^{v+1} \prod_{j=1}^{v+1}(R-i-j+1)} \quad(\nu=0,1, \ldots, k) . \tag{17}
\end{equation*}
$$

Hence,

$$
\lambda_{\nu}=\sqrt{\frac{D_{\nu-1}}{D_{\nu}}}=\frac{\sqrt{R-2 \nu-1}}{\nu!} \prod_{i=1}^{\nu}(R-i-\nu) \quad(\nu=1,2, \ldots, k)
$$

and, therefore,

$$
\beta_{\nu}=\frac{\lambda_{\nu-1}}{\lambda_{\nu}}=\nu . \sqrt{\frac{R-2 \nu+1}{R-2 \nu-1}} \frac{R-\nu}{(R-2 \nu+1)(R-2 \nu)}(\nu=1,2, \ldots, k),
$$

as stated in (9). To handle the determinant appearing in (16) we put

$$
\begin{aligned}
& a_{i}=-i \quad(i=1,2, \ldots, \nu), \\
& b_{i}= \begin{cases}R-i+1 & \text { for } i=1,2, \ldots, \nu-1, \\
R-\nu & \text { for } i=\nu\end{cases}
\end{aligned}
$$

and with the help of Lemma 1 obtain

$$
\begin{align*}
& \left|\begin{array}{llll}
c_{0} & \cdots & c_{\nu-2} & c_{\nu} \\
c_{1} & \cdots & c_{\nu-1} & c_{\nu+1} \\
\cdot & & \cdot & \cdot \\
\cdot & & \cdot & \cdot \\
\cdot & & \cdot & \cdot \\
c_{\nu-1} & & c_{2 \nu-3} & c_{2 \nu-1}
\end{array}\right|= \tag{18}\\
& \quad=\frac{\prod_{1 \leq j \leq \nu}(i-j)^{2} \prod_{i=1}^{\nu-1}(i-\nu)(i-1-\nu)}{\prod_{i=1}^{\nu-1}} \prod_{j=1}^{\nu-1}(R-i-j+1) \prod_{i=1}^{\nu-1}(R-i+1-\nu) \prod_{j=1}^{\nu}(R-\nu-j)
\end{align*}
$$

Now set

$$
\begin{aligned}
& M_{1}=\frac{\prod_{1 \leq i<j \leq \nu-1}(i-j)^{2}}{\prod_{1 \leq i<j \leqq \nu}(i-j)^{2}}=\frac{1}{\{(\nu-1)!\}^{2}}, \\
& M_{2}=\prod_{i=1}^{\nu-1}(i-\nu)(i-1-\nu)=\nu\{(\nu-1)!\}^{2},
\end{aligned}
$$

and

$$
\begin{array}{r}
M_{3}=\frac{\prod_{i=1}^{\nu} \prod_{j=1}^{\nu}(R-i-j+1)}{\prod_{i=1}^{\nu-1} \prod_{j=1}^{\nu-1}(R-i-j+1) \prod_{i=1}^{\nu-1}(R-i+1-\nu) \prod_{j=1}^{\nu}(R-\nu-j)} \\
\quad=\prod_{j=1}^{\nu} \frac{R-j-\nu+1}{R-j-\nu}=\frac{R-\nu}{R-2 \nu} .
\end{array}
$$

Then, from (16), (17), and (18) we get

$$
\frac{\lambda_{\nu}{ }^{*}}{\lambda_{\nu}}=-M_{1} M_{2} M_{3}=-\nu \frac{R-\nu}{R-2 \nu}
$$

valid for $\nu=0,1, \ldots, k$. Thus,

$$
\alpha_{\nu}=\frac{\lambda_{\nu-1}^{*}}{\lambda_{\nu-1}}-\frac{\lambda_{\nu}{ }^{*}}{\lambda_{\nu}}=\frac{R-\nu+1}{R-2 \nu+2}+\frac{\nu R}{(R-2 \nu+2)(R-2 \nu)}
$$

$$
(\nu=1,2, \ldots, k)
$$

which completes the proof of Lemma 2.
The next lemma gives some useful information about the location of the zeros of the orthogonal polynomials defined above.

Lemma 3. Let $r \geqq 1$ and put $R=4 r(n+1), n \in \mathbf{N}$. Then k of Lemma 2 is greater than n and the first n polynomials $\psi_{\nu}(R, x)(\nu=1,2, \ldots, n)$ have all their zeros in the interval $\left(1,4 r^{2} /(2 r-1)^{2}\right)$.

Proof. Since the polynomials $\psi_{\nu}(R, x)$ satisfy the recurrence relation (10) it follows from a known result (see e.g. [9]) that the zeros of $\psi_{\nu}(R, x)$ are the eigenvalues of the matrix

$$
\left[\begin{array}{cccccccc}
\alpha_{1} & \beta_{1} & & & & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & & & \\
& & & \cdot & & & & 0 \\
& \cdot & \cdot & & & & & \\
& & & \cdot & & & & \\
& & & \cdot & \cdot & & \\
& & \cdot & & & \cdot & & \\
& & & \cdot & & & \cdot & \cdot \\
& 0 & & & \cdot & & & \\
& & & & & \beta_{\nu-2} & & \\
& & & & & & \alpha_{\nu-1} & \beta_{\nu-1} \\
\hline
\end{array}\right]
$$

Hence, by Gershgorin's theorem all the zeros of $\psi_{\nu}(R, x)(\nu=1,2, \ldots, n)$ lie in the disc

$$
|z| \leqq \max _{1 \leqq \supseteq \leqq n}\left|\alpha_{\nu}\right|+2 \max _{1 \leqq \nu \leqq n}\left|\beta_{\nu}\right|=\rho
$$

With the help of the values of α_{ν} and β_{ν} given in (9) we readily obtain

$$
\max _{1 \leq \nu \leqq n}\left|\alpha_{\nu}\right|=\left|\alpha_{n}\right|<1+2 \frac{4 r-1}{(4 r-2)^{2}} .
$$

Similarily,

$$
\max _{1 \leqq \nu \leqq n}\left|\beta_{\nu}\right|=\left|\beta_{n}\right|<\frac{4 r-1}{(4 r-2)^{2}} .
$$

These estimates give $\rho<4 r^{2} /(2 r-1)^{2}$. Furthermore, the polynomials $\psi_{\nu}(R, x)$ being orthonormal on the interval $[1, \infty)$ must have all their zeros in $(1, \infty)$. Hence the result holds.

Unfortunately, the upper bound for the zeros of $\psi_{\nu}(R, x)$ obtained in Lemma 3 does not have a form appropriate for our later applications. We therefore prove:

Lemma 4. For $r>1$ the inequality
(19) $\frac{4 r^{2}}{(2 r-1)^{2}}<\left\{\frac{(3 r)^{3 r}(r-1)^{r-1}}{r^{r}(3 r-1)^{3 r-1}}\right\}^{1 / r}$
holds.

Proof. It is clearly enough to show that the function

$$
\begin{array}{r}
\phi(r)=(3 r-1) \log (3 r-1)-2 r \log (2 r-1)-(r-1) \log (\mathrm{r}-1) \\
-r \log (27 / 4)
\end{array}
$$

is negative for $r \in(1, \infty)$. This is readily verified for all large r and for all r sufficiently close to 1 . So, $\phi(r)$ cannot become positive in ($1, \infty$) unless $\phi^{\prime}(r)$ vanishes somewhere in the interval. But $\phi^{\prime}(r)$ is always positive since $\lim _{r \rightarrow \infty} \phi^{\prime}(r)=0$ and $\phi^{\prime \prime}(r)<0$ in $(1, \infty)$.

The next lemma gives the development of x^{N} in terms of the orthonormal polynomials $\psi_{\nu}(4 N, x), \nu=0,1, \ldots, N$.

Lemma 5. Let N be a positive integer. Then x^{N} can be represented as

$$
\begin{equation*}
x^{N}=\sum_{\nu=0}^{N} a_{\nu}^{*} \psi_{\nu}(4 N, x) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{\nu}{ }^{*}=\sqrt{4 N-2 \nu-1} \frac{N!}{(3 N-1)!} \frac{(3 N-\nu-2)!}{(N-\nu)!}>0 \quad(\nu=0,1, \ldots, N) . \tag{21}
\end{equation*}
$$

Proof. Since $\left\{\psi_{\nu}(4 N, x)\right\}$ is a sequence of orthonormal polynomials on $[1, \infty]$ with respect to the weight function $x^{-4 N}$, the coefficients $a_{\nu}{ }^{*}$ in (20) are given by

$$
a_{\nu}^{*}=\int_{1}^{\infty} \frac{1}{x^{4 \bar{N}}} \cdot x^{N} \psi_{\nu}(4 N, x) d x \quad(\nu=0,1, \ldots, N) .
$$

Using the representation (12) of $\psi_{\nu}(R, x)$ with $R=4 N$ we obtain by termwise integration in the last row of the determinant

$$
a_{\nu}^{*}=\frac{1}{\sqrt{D_{\nu} D_{\nu-1}}}\left|\begin{array}{llll}
c_{0} & c_{1} & \cdots & c_{\nu} \\
c_{1} & c_{2} & \cdots & c_{\nu+1} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
c_{\nu-1} & c_{\nu} & \cdots & c_{2 \nu-1} \\
\frac{1}{3 N-1} & \frac{1}{3 N-2} & \cdots & \frac{1}{3 N-\nu-1}
\end{array}\right|
$$

$$
(\nu=1,2, \ldots, N)
$$

Now, Lemma 1 with

$$
a_{i}= \begin{cases}4 N-i+1 & \text { for } i=1,2, \ldots, \nu \\ 3 N & \text { for } i=\nu+1\end{cases}
$$

and

$$
b_{i}=-i \quad(i=1,2, \ldots, \nu+1)
$$

can be used to handle this determinant. An elementary straightforward calculation completes the proof of Lemma 5.
3. Proof of the theorem. Let $r \geqq 1$ be a fixed rational number and let n be an arbitrary positive integer subject to the condition that $N=r(n+1)$ is also an integer. Set

$$
\lambda_{n}=\inf _{\pi(z) \in \mathscr{P}_{n}}\left\{\sup _{1 \leqq x<\infty}\left|\frac{1}{x^{N}}-\frac{1}{\pi(x)}\right|\right\} .
$$

Note that λ_{n} is simply an abbreviation for the quantity $\lambda_{0, n}\left((z+1)^{-N}\right)$. We shall compare the uniform approximation by reciprocals of polynomials with a certain weighted least square approximation, namely

$$
\begin{equation*}
\mu_{n}=\min _{\pi(z) \in \mathscr{P}_{n}}\left\{\int_{1}^{\infty} \frac{1}{x^{4 \bar{N}}}\left(x^{N}-\pi(x)\right)^{2} d x\right\}^{1 / 2} \tag{22}
\end{equation*}
$$

If we denote by $g_{n}(x)$ the polynomial furnishing the minimum then as is well known (see e.g. [10, §3.1])

$$
\begin{equation*}
g_{n}(x)=\sum_{\nu=0}^{n} a_{\nu}^{*} \psi_{\nu}(4 N, x) \tag{23}
\end{equation*}
$$

and

$$
\mu_{n}=\left(\left.\sum_{\nu=n+1}^{N}\left|a_{\nu}\right|^{2}\right|^{2 / 2}\right.
$$

where $a_{\nu}{ }^{*}(\nu=0,1, \ldots, N)$ is given in (21). Since the coefficients $a_{\nu}{ }^{*}$ are decreasing we have

$$
a_{n+1}{ }^{*} \leqq \mu_{n} \leqq(N-n) a_{n+1}{ }^{*} .
$$

Therefore, if $N=r(n+1)$ then

$$
\lim _{n \rightarrow \infty}^{\prime}\left(\mu_{n}\right)^{1 / n}=\lim _{n \rightarrow \infty}^{\prime}\left(a_{n+1}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left\{\frac{N!(3 N-n-3)!}{(3 N-1)!(N-n-1)!}\right\}^{1 / n}
$$

To calculate this limit we use Stirling's formula according to which

$$
K!=K^{K} e^{-K} \sqrt{2 \pi K} e^{\vartheta / 12 K} \quad(0 \leqq \vartheta \leqq 1)
$$

and obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}^{\prime}\left(\mu_{n}\right)^{1 / n}=\frac{r^{r}(3 r-1)^{3 r-1}}{(3 r)^{3 r}(r-1)^{r-1}} \tag{24}
\end{equation*}
$$

The right hand side is always less than 1 and hence the weighted least square approximation in question is geometrically convergent.

Upper estimate. Set
(25) $\quad h_{n}(x)=(3 N-1) x^{4 N-1} \int_{x}^{\infty} \frac{1}{t^{4 N}} g_{n}(t) d t$.

Subtracting the two sides of the identity

$$
x^{N}=(3 N-1) x^{4 N-1} \int_{x}^{\infty} \frac{1}{t^{4 N}} t^{N} d t
$$

from the corresponding sides of (25) and then using Schwarz's inequality we obtain

$$
\begin{align*}
& \left|x^{N}-h_{n}(x)\right| \leqq(3 N-1) x^{4 N-1} \int_{x}^{\infty} \frac{1}{t^{4 N}}\left|t^{N}-g_{n}(t)\right| d t \tag{26}\\
& \leqq(3 N-1) x^{4 N-1}\left(\int_{x}^{\infty} \frac{1}{t^{4 \bar{N}}} d t\right)^{1 / 2}\left(\int_{1}^{\infty} \frac{1}{t^{\bar{N}}}\left(t^{N}-g_{n}(t)\right)^{2} d t\right)^{1 / 2} \\
& \\
& \quad \leqq \mu_{n} \sqrt{3 N} x^{2 N} \text { for } x \in[1, \infty)
\end{align*}
$$

Next, putting $b_{n}:=\left(2 \mu_{n} \sqrt{3 N}\right)^{-1 / N}$ we know from (24) that $b_{n}>1$ for sufficiently large n. Thus (26) yields
(27) $\quad h_{n}(x) \geqq x^{N}\left(1-\mu_{n} \sqrt{3 N} x^{N}\right)>\frac{1}{2} x^{N} \quad$ for $x \in\left[1, b_{n}\right]$.

This inequality enables us to write (26) as

$$
\left|x^{N}-h_{n}(x)\right| \leqq 2 \mu_{n} \sqrt{3 N} x^{N} h_{n}(x)
$$

or equivalently
(28) $\left|\frac{1}{x^{N}}-\frac{1}{h_{n}(x)}\right| \leqq 2 \mu_{n} \sqrt{3 N}$ provided $x \in\left[1, b_{n}\right]$.

To settle the case $x \in\left[b_{n}, \infty\right.$), we first deduce from (25)

$$
\begin{equation*}
h_{n}{ }^{\prime}(x)=(3 N-1)\left\{(4 N-1) x^{4 N-2} \int_{x}^{\infty} \frac{g_{n}(t)}{t^{4 N}} d t-\frac{1}{x} g_{n}(x)\right\} . \tag{29}
\end{equation*}
$$

Now, if ρ_{n} denotes the largest zero of $\psi_{n}(4 N, x)$ then from (23) and Lemma 5 we see that $g_{n}(x)$ is strictly increasing for $x \geqq \rho_{n}$. Therefore, (29) shows that (30) $h_{n}{ }^{\prime}(x)>0 \quad$ for $x \geqq \rho_{n}$.

But by (24) and the Lemmas 3 and 4 we find that $\rho_{n}<b_{n}$ for sufficiently large n. Hence, according to (25) and (30), $h_{n}(x)$ is positive and strictly increasing for $x \geqq b_{n}$. Using (27), we obtain

$$
\begin{equation*}
\left|\frac{1}{x^{N}}-\frac{1}{h_{n}(x)}\right|<\max \left\{\frac{1}{\bar{b}_{n}{ }^{N}}, \frac{1}{h_{n}\left(b_{n}\right)}\right\}<\frac{2}{b_{n}^{N}}=4 \mu_{n} \sqrt{3 N} \quad \text { for } x \in\left[b_{n}, \infty\right) . \tag{31}
\end{equation*}
$$

Together with (28) this inequality yields

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left(\lambda_{n}\right)^{1 / n} \leqq \lim _{n \rightarrow \infty}^{\prime}\left(\mu_{n}\right)^{1 / n}<1, \tag{32}
\end{equation*}
$$

and so in particular the sequence $\left(\lambda_{n}\right)$ is geometrically convergent.

Lower estimate. It is clear that there exists a polynomial $p_{n}(x) \in \mathscr{P}_{n}$ such that

$$
\left|\frac{1}{x^{N}}-\frac{1}{p_{n}(x)}\right| \leqq \lambda_{n}
$$

or equivalently

$$
\begin{equation*}
\left|p_{n}(x)-x^{N}\right| \leqq \lambda_{n} x^{N} p_{n}(x) \quad \text { for } x \in[1, \infty] \tag{33}
\end{equation*}
$$

Next, putting $c_{n}=\left(2 \lambda_{n}\right)^{-1 / N}$ we see from (32) that $c_{n}>1$ for sufficiently large n. Thus (33) yields

$$
p_{n}(x) \leqq \frac{x^{N}}{1-\lambda_{n} x^{N}} \leqq 2 x^{N} \quad \text { for } x \in\left[1, c_{n}\right] .
$$

This inequality enables us to write (33) as

$$
\begin{equation*}
\left|p_{n}(x)-x^{N}\right| \leqq 2 \lambda_{n} x^{2 N} \quad \text { for } x \in\left[1, c_{n}\right] . \tag{34}
\end{equation*}
$$

Hence, we know that

$$
\begin{equation*}
\inf _{\pi(z) \in \mathscr{P}_{n}} \sup _{1 \leqq x \leqq c_{n}}\left\{\frac{1}{x^{2 \bar{N}}}\left|x^{N}-\pi(x)\right|\right\} \leqq 2 \lambda_{n} . \tag{35}
\end{equation*}
$$

Let $q_{n}(x) \in \mathscr{P}_{n}$ be the solution of the weighted uniform approximation problem arising at the left hand side of (35). We shall show that

$$
\begin{equation*}
0 \leqq q_{n}(x) \leqq x^{N} \quad \text { for } x \in\left(c_{n}, \infty\right) \tag{36}
\end{equation*}
$$

Set $d(x)=x^{N}-q_{n}(x)$. Since $d^{(n+1)}(x)>0$ for $x>0$, Rolle's theorem implies that $d(x)$ has at most $n+1$ positive zeros. On the other hand, by a well known theorem on uniform approximation (see e.g. [2, p. 75; 6, p. 20]) the function $d(x) / x^{2 N}$ attains its maximum deviation at least $n+2$ times on [$1, c_{n}$] with alternating signs. Hence $d(x)$ has exactly $n+1$ positive zeros, say $x_{\nu}(\nu=0,1, \ldots, n)$, all lying in $\left[1, c_{n}\right]$. Since $d(x)$ becomes positive for $x \rightarrow \infty$ the second inequality in (36) is certainly true.

Next, denote by $q_{n}\left[x_{0}, x_{1}, \ldots, x_{\nu}\right]$ the ν th divided difference of $q_{n}(x)$ with respect to the points $x_{0}, x_{1}, \ldots, x_{\nu}$. Since $q_{n}\left(x_{\nu}\right)=x_{\nu}{ }^{N}(\nu=0,1, \ldots, n)$ and since the first n derivatives of x^{N} are positive on ($0, \infty$) it follows that (cf. [5, p. 249, (9)])

$$
q_{n}\left[x_{0}, x_{1}, \ldots, x_{\nu}\right]>0 \quad(\nu=0,1, \ldots, n) .
$$

Thus, representing $q_{n}(x)$ by Newton's interpolation formula (see e.g. [5, p. 248, (7)]) we obtain the first inequality in (36).

Now, taking into account (34), (36), and the definition of $g_{n}(x)$ and $q_{n}(x)$
we get

$$
\begin{aligned}
\mu_{n}^{2}= & \int_{1}^{\infty} \frac{1}{x^{4 N}}\left(x^{N}-g_{n}(x)\right)^{2} d x \\
\leqq & \int_{1}^{\infty} \frac{1}{x^{4 N}}\left(x^{N}-q_{n}(x)\right)^{2} d x \leqq \int_{1}^{c_{n}} 4 \lambda_{n}{ }^{2} d x+\int_{c_{n}}^{\infty} \frac{1}{x^{2}} d x \\
& \quad<4 c_{n} \lambda_{n}{ }^{2}+\frac{1}{2 N-1} \cdot \frac{1}{c_{n}^{2 N-1}}=\frac{2 N}{2 N-1} 4 c_{n} \lambda_{n}{ }^{2}<4 \lambda_{n}{ }^{2-1 / N} .
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty}^{\prime}\left(\mu_{n}\right)^{1 / n} \leqq \lim _{n \rightarrow \infty}\left(\lambda_{n}\right)^{1 / n} .
$$

This completes the proof of our theorem since, clearly,

$$
\lambda_{0, n}\left((c z+d)^{-N}\right)=\left(1 / d^{N}\right) \lambda_{0, n}\left(\left(\frac{c z}{d}+1\right)^{-N}\right)=\left(1 / d^{N}\right) \lambda_{0, n}\left((z+1)^{-N}\right)
$$

4. Proof of inequality (6). Finally, as promised, we shall briefly prove the inequality (6). With the help of an appropriate Möbius transformation we see that

$$
\gamma_{n}=\inf _{\substack{p(z) \in \mathscr{F}_{n} \\ \ell(z) \in \mathscr{P}_{n}}}\left\{\max _{-1 \leq x \leq 1}\left|\left(\frac{1+x}{2 d}\right)^{n+1}-\frac{p(x)}{q(x)}\right|\right\} .
$$

It is clear that the infimum is attained and so there exist polynomials $p(x)$ and $q(x)$ in \mathscr{P}_{n} with

$$
\max _{-1 \leqq x \leqq 1}|q(x)|=1
$$

and
(38) $\left|(1+x)^{n+1} q(x)-p(x)\right| \leqq \gamma_{n}(2 d)^{n+1}|q(x)|$
for all $x \in[-1,1]$. Putting

$$
g(x)=(1+x)^{n+1} q(x)-p(x)
$$

we obtain from (37) and (38) that

$$
\max _{-1 \leqq x \leqq 1}|g(x)| \leqq \gamma_{n}(2 d)^{n+1}
$$

Therefore, by an inequality of W. Markoff (see e.g. [1, p. 300])
(39) $\max _{-1 \leqq x \leqq 1}\left|g^{(n+1)}(x)\right| \leqq \frac{\gamma_{n}}{2}(4 d)^{n+1} \frac{(3 n+1)!}{(2 n)!}$.

Next, putting
(40) $\quad h(x)=(1+x)^{n+1} q(x)$
we have

$$
h^{(n+1)}(x) \equiv g^{(n+1)}(x)
$$

and

$$
h(-1)=h^{\prime}(-1)=\ldots=h^{(n)}(-1)=0 .
$$

Hence

$$
h(x)=\int_{-1}^{x} \int_{-1}^{t_{n}} \ldots \int_{-1}^{t_{2}} \int_{-1}^{t_{1}} g^{(n+1)}(t) d t d t_{1} \ldots d t_{n}
$$

from which it follows that

$$
|h(x)| \leqq \frac{(1+x)^{n+1}}{(n+1)!} \max _{-1 \leqq!\leqq 1}\left|g^{(n+1)}(t)\right|
$$

on the unit interval. The inequalities (39) and (40) now lead us to

$$
|q(x)| \leqq \frac{\gamma_{n}}{2}(4 d)^{n+1}\binom{3 n+1}{2 n}
$$

which would contradict (37) if (6) were false.

References

1. N. I. Achieser, Theory of approximation (Frederick Ungar Publishing Co., New York, 1956).
2. E. W. Cheney, Introduction to approximation theory (McGraw-Hill Book Comp., New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966).
3. W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximation to e^{-x} in $[0,+\infty)$ and applications to heat-conduction problems, J. Approximation Theory 2 (1969), 50-56.
4. P. Erdös and A. R. Reddy, Problems and results in rational approximation on the positive real axis, to appear, Periodica Math. Hung.
5. E. Isaacson and H. B. Keller, Analysis of numerical methods (John Wiley \& Sons, Inc., New York, London, Sydney, 1966).
6. G. Meinardus, Approximation of functions: Theory and numerical methods, Springer Tracts in Natural Philosophy Vol. 13 (Springer Verlag, Berlin, Göttingen, New York, 1967).
7. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis II (Springer Verlag, Berlin, Göttingen, Heidelberg, 1954).
8. A. Schönhage, Zur rationalen Approximierbarkeit von e^{-x} über $[0, \infty)$, J. Approximation Theory 7 (1973), 395-398.
9. W. Specht, Die Lage der Nullstellen eines Polynoms IV, Math. Nachrichten 21 (1960), 201-222.
10. G. Szegö, Orthogonal polynomials, AMS Colloqu. Publ. Vol. XXIII (Amer. Math. Soc., New York, 1959).

Université de Montréal,
Montréal, Québec;
Universität Erlangen-Nürnberg,
Erlangen, Germany

[^0]: Received May 6, 1976 and in revised form, July 24, 1976.

