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ON RATIONAL APPROXIMATION ON THE 
POSITIVE REAL AXIS 

Q. I. RAHMAN AND G. SCHMEISSER 

1. Introduction and statement of results. In their study of the uniform 
approximation of the reciprocal of ez by reciprocals of polynomials on the 
positive real axis, Cody, Meinardus, and Varga [3] showed that if SPn denotes 
the class of all polynomials of degree at most n and 

q(x) 
(1) Xm,n(e

 z) = inf ) sup 

Q(z)i0>n 

then 

(2) i g lim (X0 ,n(O)1 / n ^ 0.43501 . . . . 
0 n->oo 

Subsequently, Schônhage [8] proved that 

(3) lim (\o,n(e-z))1/n = I . 

One of the most important problems in the theory of approximation which 
was settled by P. L. Chebyshev is the uniform approximation on the unit 
interval of a polynomial of degree w + 1 by polynomials of lower degree. 
Chebyshev also discovered the following analogous result for rational approxi
mation [1, pp. 278-280]: 

Let aVj v = 0, 1, . . . , n be prescribed real numbers with aQ ^ 0, and set 

f(pc) = X) fl,2"V 

where N > n. Then 

sup fix) P(x) 
q{x) 

l JAL 
) " 2N~l 

(4) inf 
p(z)€&N-\ 

Q(z)Ç&n 

where X is the smallest eigenvalue of the Hankel matrix 
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RATIONAL APPROXIMATION 181 

with 

cr = ZJ \ )ar-2v (r = 0, 1, . . . , n). 
p=0 \ V / 

If we take in particular 

f(x) = ((1 + x)/2d)n+1 - (l/2d)n+\ d > 0, 

and replace x by (1 — (xc/d))/ (I + (xc/d)), c > 0, we obtain 

/K\ • * / 1 />(*) 
(5) yn = mt i sup 7 .w+1 — —rr-

which gives the best uniform approximation of the reciprocal of (cz + d)n+l 

by rational functions of degree at most n on [0, oo). Due to the fact that 
Chebyshev gave yn in terms of the smallest eigenvalue of a certain matrix the 
dependence of yn on n is not easily seen. We will, however, show by an elemen
tary method that 

(6) ^y,'"ià 
which means that the quantity yn cannot go to zero faster than geometrically. 

In analogy with the above result of Cody, Meinardus and Varga we con
sider the uniform approximation of the reciprocal of the polynomial (cz + d)N, 
c > 0, d > 0, by reciprocals of polynomials of degree at most n < N. We 
prove: 

THEOREM. If the ratio r = N/(n + 1 ) ^ 1 is fixed then 

(7) lim' {\oA(cz + d)-N)V'n = [f~ ^ 
n^co (or) (r — I) a 

where lim' indicates that the integer n assumes only those values for which (n + \)r 
is an integer. 

In the special case c = d = r = 1 our result gives 

COROLLARY 1. 

l i m { X o i » ( ( a + D ^ - 1 ) } l M = ^ . 
n-»co ^ « 

Earlier it was shown by Erdôs and Reddy [4] that 

1/8 ^ {X0f„((* + I )"*- 1 )} 1* ^ 1/2. 

Besides, putting c = l/N, d — 1 the function considered becomes 
(1 + z/N)~N which tends uniformly to e~z on the interval [0, oo ) as N —• co. 
Furthermore, (rr(3r — l)3r_1)/((3f)37"(r — l) r _ 1 ) increases monotonically to 
1/3 as r tends to infinity. From this point of view our result touches the scope 
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182 Q. I. RAHMAN AND G. SCHMEISSER 

of Schônhage's result (3) and even leads to a part of it. In fact, by a limiting 
process in our proof we can conclude that limn->co(\o>n(e~z))1/n ^ 1/3 must 
hold. 

We note that (7) also implies the following fact which is rather curious: 

COROLLARY 2. Given a sufficiently large positive integer N the function 
(cz + d)~N can be approximated by reciprocals of polynomials pn{z) of degree ai 
most n < N with 

sup 
Ogz<oo 

(cx + d)~N 1 
Pn(x) 

< pn, where p < 1 

if and only if d > 4/27. 

It follows from (5) and (6) that even the quantity 

Pipe) 
inf \ sup (cx + d)~N -

q(x) 

does not go to zero faster than geometrically as n 
maintains a fixed value ^ 1. 

co, if the ratio N/(n + 1) 

Our approach to our theorem is analogous to that of Schônhage in the sense 
that the best uniform approximation by reciprocals of polynomials in &n 

turns out to be comparable to a certain weighted least square approximation 
by polynomials in SPn. 

2. Lemmas. For the proof of our theorem we need to introduce the finite 
sequence of orthonormal polynomials on [l ,oo) with respect to the weight 
function w(x) = x~R. As an important tool to obtain quantitative results we 
shall use the following well known identity. 

LEMMA 1. ([2, p. 195; 7, Chapter 7, Problem 3]). For complex numbers av, 
by (v — 1, 2, . . . , k) such that at + bj ^ 0 for all 1 ^ i, j ^ k we have 

1 1 1 
ai + bi ax + b2 

1 1 
a2 + bi a2 + b2 

ai + bk 

1 
a2 + bk 

1 1 1 
ak + bi ak + b2 

f i (&i - dj) • (bi - bj) 

n ri (*.+&,) 

LEMMA 2. Let R ^ 3, k 

a sequence of orthonormal polynomials {\pv(R, x)} 

ak + bk 

[(R — 3)/2] and w(x) = x~R. Then there exists 
,!....,& on [1> °° ) with respect 
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RATIONAL APPROXIMATION 183 

to the weight function w(x), i.e. 

(8) J w(x)fv(R, x)fa(R, x)dx = 8V, ( 0 ^ v , / i ^ J ) . 

Moreover, with 

. VR - 2v - 1 TA 
LX„ = ; H CR - ? - *), 

(9) 
R - v + 1 , ^ 

+ 2? - 2v + 2 ' (jR - 2v + 2) (i? - 2v) ' 

^P" V(R -2v - 1)(R - 2 * + 1) R-2v' 

for v = 0,1,2, ... ,k the recurrence relation 

\(/v+i{R,x) .\[/v(R,x) „ 2 \py-i(R,x) 

do) - x ^ r ~ = (x _ a*+l) — Â T ~ - * A,-! 

(11) ^o(^, #) = X0 awd ^i(i^, #) = Xi • (x — ai), 

holds. 

Proof. For the given k all the integrals 

1 

(v = 1, 2, . . . ,k - 1) 

J; w(x)xPdx = 
i? - v - 1 

(v = 0, 1, . . . , 2*) 

exist. There is, therefore (cf. [10, §§ 2.1-2.2]), a unique sequence of poly
nomials \pv{R, x) of degree v(v = 0, 1, . . . , k) satisfying (8). Furthermore, 
these polynomials are given by \po(R, x) = c0~

1/2 and 

(12) MR,x) = 
VDv-iD* 

Co C\ 

C\ C2 

Cv-\ Cv 

1 X 

Cv 

Cv+1 

C<L;-\ 
V 

X 

(1 ^ v ^ k), 

where 

(13) D, = 

Co d 

C\ C2 

Cv Cv+\ 

Cv 

Cv+l 

C^v 

(0 ^ v ^ k). 

https://doi.org/10.4153/CJM-1977-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-018-2


184 Q. I. RAHMAN AND G. SCHMEISSER 

To prove the other assertions we write \pv(R, x) as 

(14) \pv(R, x) = X„x" + X/x ' - 1 + <pv-2(x), 

where <pv-<i(x) is a polynomial of degree at most ^ — 2. It is known (see [9; 10, 
§3.2]) that the polynomials \pv(R} x) indeed satisfy the equations (10) and (11), 
if we set /30 = 0, 

(15) a, = A - ! * - ^ and 0, = ^ ( , = 1,2 k), 
Av—\ Ap A y 

It is only (9) that remains to be verified. 
We readily see from (12) that 

X , = 

and 

(16) 

"t fr-1-* *>• yf 

Co C\ . . . Cv-2 Cv 

C\ C2 . . . Cv-\ Cv+\ 

C\ 

Co 

R - 1 
R-21 

X„ Dv-\ 
(u = 2, 3, . . . , * ) . 

Cp—i Cv . . . C 2 J / - 3 C2v—1 

To calculate Dv we apply Lemma 1 with 

at= -i, bt = R - i + 1 (i = 1, 2, . . . , v + 1) 

and obtain 

n a-jf l£j<j£v+l (17) D^-rpr-^x 
n n ( i ? -« - i + i) 

(" = 0,1 *). 

i=l j=l 

Hence, 

x, = 4/ £5=1 = ^ L = _ * ^ i rï (i? _ . _ (|Fxll)2i...iJfe) 

and, therefore, 

0 = TT = V' V R-2v-l 7R-~2V - - ^ O.A 0 - 1 , 2 , . . . , * ) , (2? - 2? + 1)CR - 2J/) 

as stated in (9). To handle the determinant appearing in (16) we put 

a<i = —i (i = 1, 2, . . . , v), 

_ lR - i + 1 for i = 1, 2, . . . , v - 1, 

U? for i 
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and with the help of Lemma 1 obtain 

(18) 

Co 

Cv-\ 

Cy—2 CV 

Cv—\ Cv+\ 

Clv-Z C2v-l 

n (i-jfu (i-v){i-\-v) 

Now set 

Mi 

H fi' (R-i-J+VU (R-i+l-y)Yl (R- v-j) 
i=l j = l i=l j=l 

n a-jf 1 

n a-j?~ 
v-l 

" { ( ' - I ) ! } 

and 
M2 = n (*-")(*• - i - v ) = v\{v-i)!i2, 

n n (R-i-j + i) 

ff ff (* - * -j +1) ff (* - » +1 - ") n (̂  - " - i ) 

= n R-j-v + i = R - y 
~ 4Ji R-j-v ~ R-2v' 

Then, from (16), (17), and (18) we get 

X p -* r n /r •* /r R V 

— = -MiM2Mz = -v- — . 
Av K — LV 

valid for v = 0, 1, . . . , k. Thus, 

av = 
X„_i* X,* R-v + 1 vR 
X„_i X, R - 2v + 2 ' (R-2v + 2)(R-2v) 

{v= 1 , 2 , . . . , * ) , 
which completes the proof of Lemma 2. 

The next lemma gives some useful information about the location of the 
zeros of the orthogonal polynomials defined above. 

LEMMA 3. Let r ^ 1 and put R = 4r(n + 1), n £ N. Then k of Lemma 2 is 
greater than n and the first n polynomials \pv(R, x) (y = 1, 2, . . . , n) have all 
their zeros in the interval (1, 4r2/(2r — l)2) . 
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186 Q. I. RAHMAN AND G. SCHMEISSER 

Proof. Since the polynomials \pv(R, x) satisfy the recurrence relation (10) it 
follows from a known result (see e.g. [9]) t ha t the zeros of \pv(R, x) are the 
eigenvalues of the matr ix 

Pi a2 & 

0 

0 
ftv-2 av-i fiv-i 

Hence, by Gershgorin's theorem all the zeros of \pv{R, x) (v = 1, 2, . . . , n) 

lie in the disc 

\z\ ^ max \av\ + 2 max |/3y| = p. 

Wi th the help of the values of av and fiv given in (9) we readily obtain 

4r - 1 

Similarity, 

max \av\ = \an\ < 1 + 2 
(4r - 2)2 

max |/3„| = |j8n| < 
l£v£n 

4r - 1 
(4r - 2)* 

These est imates give p < 4r 2 / (2 r — l ) 2 . Fur thermore , the polynomials 
\f/v(R, x) being or thonormal on the interval [1, oo ) must have all their zeros 
in (1, oo ). Hence the result holds. 

Unfortunately, the upper bound for the zeros of \//v(R} x) obtained in Lemma 
3 does not have a form appropr ia te for our later applications. We therefore 
prove : 

L E M M A 4. For r > 1 the inequality 

(19) 
4rz 

(2r - 1)' 
< 

j ( 3 r ) , f ( r - l ) ^ V / f 

I r r (3r - If''1 / 

holds. 
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Proof. I t is clearly enough to show tha t the function 

0 ( f ) = (3r - 1) log (3f - 1) - 2r log (2r - 1) - (r - 1) log (r - 1) 
- r log (27/4) 

is negative for r G (1, oo ). This is readily verified for all large r and for all r 
sufficiently close to 1. So, 4>{r) cannot become positive in (1, co) unless </>'(r) 
vanishes somewhere in the interval. But <j>'(j) is always positive since 
l imr-^tf 'Cr) = Oand </>"(r) < 0 in (1, oo). 

T h e next lemma gives the development of xN in terms of the orthonormal 
polynomials ^„(4iV, x), v = 0, 1, . . . , N. 

LEMMA 5. Let N be a positive integer. Then xN can be represented as 

N 

(20) xN = X) afM*N,x), 

where 

Nl (3N - v - 2)! 
( 2 1 ) a , * = V 4 i V - 2 , - l ^ _ 1 ) ! (N_v)l > 0 (̂  = 0 , 1 , . ..,N). 

Proof. Since {^„(4iV, x)} is a sequence of orthonormal polynomials on 
[1, oo] with respect to the weight function x~iN, the coefficients a„* in (20) are 
given by 

~N ' xN\//v(4:N, x)dx (v = 0, 1, . . . , 
i x 

N). 

Using the representation (12) of \pv(R, x) with R = 4:N we obtain by termwise 
integration in the last row of the determinant 

VOT^T 

Co 

Cv-l 

1 

C\ 

02 

Cy 

1 

Cv+l 

Clv-1 

1 
3N - 1 3N - 2 *3iV 

Now, Lemma 1 with 
(v= 1,2, ...,N). 

at = | 
47V- i+ 1 fori = 1, 2, . 
SN lori = v + 1 

and 

= - i (i = 1,2, . . . ,v + 1) 
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188 Q. I. RAHMAN AND G. SCHMEISSER 

can be used to handle this determinant. An elementary straightforward cal
culation completes the proof of Lemma 5. 

3. Proof of the theorem. Let r ^ 1 be a fixed rational number and let n be 
an arbitrary positive integer subject to the condition that N = rin + 1) is 
also an integer. Set 

\n = inf \ sup 
1 _ 1 

XN 7r(x) 

Note that \n is simply an abbreviation for the quantity Xo,n((
2 + 1)"^). We 

shall compare the uniform approximation by reciprocals of polynomials with a 
certain weighted least square approximation, namely 

~ÎN (%N — Tr(x))2dx( . 
1 00 J 

If we denote by gn(x) the polynomial furnishing the minimum then as is well 
known (see e.g. [10, §3.1]) 

(23) gn(x) = £ a**v^Nyx) 
and 

/ N \ l / 2 

Mn = ( Z ) \a*\2) i 
\v=n+l I 

where a„* (y = 0, 1, . . . , N) is given in (21). Since the coefficients a„* are 
decreasing we have 

a»+i* ^ Mn ̂  (N - w)an+i*. 

Therefore, ii N = r(n + 1) then 

£ w = i(a*+l) =iW-i)!(iv-,^iyi/ • 
To calculate this limit we use Stirling's formula according to which 

K\ = KKe-KV2TrKeê/12K (0 ^ Û ^ 1) 

and obtain 

(OA\ i,w ( \^n rr(3r - l)37""1 

(24) lZifXn) = (3 r )» ' ( r - i r -
The right hand side is always less than 1 and hence the weighted least square 
approximation in question is geometrically convergent. 

Upper estimate. Set 

(25) hn(x) = (3iV - l ) x w - ' TŒgnWt. W X J T ^
g"( 
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Subtracting the two sides of the identity 

X
N = (3N- I)*4""1 r^N^dt 

J x t 

from the corresponding sides of (25) and then using Schwarz's inequality 
we obtain 

(26) i*" - hn{X)\ ^ m - i)*w-x f"41** - fo(o 
J X l 

^ (3N- Dx4»-1^ £°°p^)1/2( J f p ( ^ 

it 

gn(t)ydt 
\ 1/2 

S ^n\/3Nx2N forx G [l,oo). 

Next, putting bn : = (2/xwv/3^V)~1/iV we know from (24) that bn > 1 for 
sufficiently large n. Thus (26) yields 

(27) hn(x) ^ **(1 - MnVS^V^) > s * " forx G [1, bn]. 

This inequality enables us to write (26) as 

\xN - hn(x)\ ^ 2iXnV3NxNh(x), 

or equivalently 

(28) 1 
hn(x) 

^ 2finV3N provided x G [1, bn]. 

To settle the case x £ [&w> °° )> w e first deduce from (25) 

(29) hn'{x) = (ZN - 1)|(42V - l)x4Ar-2 f~^{P-dt - \gn{x)} • 

Now, if pw denotes the largest zero of ^w(4iV, x) then from (23) and Lemma 5 
we see that gn(x) is strictly increasing for x ^ pn. Therefore, (29) shows that 

(30) hn'(x) > 0 forx ^ Pn. 

But by (24) and the Lemmas 3 and 4 we find that pn < bn for sufficiently large 
n. Hence, according to (25) and (30), hn(x) is positive and strictly increasing 
for x ^ bn. Using (27), we obtain 

(31) 
1 1 

hn(x) 
1 1 t 2 / 

< max j z-jf , T-TTT > < — N = 4:finV3N for x € [bm co ). 
\bn nn(pn)) bn 

Together with (28) this inequality yields 

(32) Hn7 (\n)
1/n ^ lim' (»n)

1/n < 1, 

and so in particular the sequence (Xn) is geometrically convergent. 

https://doi.org/10.4153/CJM-1977-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-018-2


190 Q. L RAHMAN AND G. SCHMEISSER 

Lower estimate. It is clear that there exists a polynomial pn (x) £ &n such that 

I -1- - 1 
I xN pn(x) 

or equivalently 

(33) \pn(x) - xN\ S KxNpn(x) for x € [1, oo]. 

Next, putting cn = (2\n)~
1/N we see from (32) that cn > 1 for sufficiently 

large n. Thus (33) yields 

xN 

Pn(x) ^ -, __ , N ^ 2 X ^ f o r X Ç [ 1 , Cn], 
X A^X 

This inequality enables us to write (33) as 

(34) \pn(x) - xN\ g 2\„x2* for x 6 [1, cn]. 

Hence, we know that 

(35) inf sup \AN \XN - TT(X)| > ^ 2\n. 

Let qn(x) Ç &n be the solution of the weighted uniform approximation 
problem arising at the left hand side of (35). We shall show that 

(36) 0 ^ qn(x) S xN forx Ç (cn,oo). 

Set d(x) = xN — qn(x). Since d(w+1)(x) > 0 for x > 0, Rolle's theorem 
implies that d(x) has at most n + 1 positive zeros. On the other hand, by a 
well known theorem on uniform approximation (see e.g. [2, p. 75; 6, p. 20]) 
the function d(x)/x2N attains its maximum deviation at least n + 2 times on 
[1, cn] with alternating signs. Hence d(x) has exactly n + 1 positive zeros, say 
xv(y = 0, 1, . . . , n), all lying in [1, cw]. Since d(x) becomes positive for x —» oo 
the second inequality in (36) is certainly true. 

Next, denote by gn[#o, Xi, . . . , x j the *>th divided difference of qn(x) with 
respect to the points x0, Xi, . . . , x„. Since qn{xv) — xv

N(v = 0, 1, . . . , n) and 
since the first n derivatives of x^ are positive on (0, co ) it follows that (cf. 
[5, p. 249, (9)]) 

qn[xQ, Xi, . . . , x j > 0 (v = 0, 1, . . . , n). 

Thus, representing qn(x) by Newton's interpolation formula (see e.g. [5, p. 248, 
(7)]) we obtain the first inequality in (36). 

Now, taking into account (34), (36), and the definition of gn(x) and qn(x) 

^ A», 
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we get 

2 

Therefore, 

/ —N (XN - gn{00)fdx 
1 X 

/

'oo i Pcn /*œ I 

-IN (xN — qn(x))2dx ^ I 4\n
2dx + I - ^ d x 

1 X «/ 1 J Cn X 
^ A. \ 2 I 1 1 ^N . 2 . . . 2-1/AT 
\ ^CnAn ~T o A 7 _ 1 ' 2JV-1 ~ o A7 _ 1 4 C « A ? i ^ 4 A n 

lim' (pn)
1/n ^ lim' (Xn)

1/re. 

This completes the proof of our theorem since, clearly, 

XoMcZ + d)-") = ( l / ^ ) X o , , ( ( | + l ) ^ = ( l / ^ ) X o . n ( ( 2 + I ) - " " ) . 

4. Proof of inequality (6). Finally, as promised, we shall briefly prove the 
inequality (6). With the help of an appropriate Môbius transformation we 
see that 

. f ( | / l + x V + 1 p(x)\\ 
yn = inf \ max I — -—r-1 - -y- r ( 

Q(z)Ç&n 

It is clear that the infimum is attained and so there exist polynomials p(x) 
and q(x) in &n with 

max |g(x)| = 1 

and 

(38) |(1 + x)n+\(x) - p(x)\ S yn{2d)n+l\q{x)\ 

for all x e [ - 1 , 1]. Putting 

g(x) = (1 + x)w+1g(x) - £(x) 

we obtain from (37) and (38) that 

max \g(x)\ Syn{2d)n+\ 

Therefore, by an inequality of W. Markoff (see e.g. [1, p. 300]) 

(39) max |g<"+1>(*) | <; * ( « ) • " & ± M . 

Next, putting 

(40) h(x) = (1 + x)n+1q(x) 
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192 Q. I. RAHMAN AND G. SCHMEISSER 

we have 

# « + » ( * ) = g<«+i>(*) 

and 
A ( - l ) = fc'(-l) = . . . = A<»>(-1) = o. 

Hence 

h(X) = J J . . . J J g(n+1) (t)dtdh ...din 

from which it follows that 

i*(*)i ^ (L++*nT max |g(B+1>w| 

on the unit interval. The inequalities (39) and (40) now lead us to 

which would contradict (37) if (6) were false. 
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