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Evaporation of multi-component liquid mixtures in confined geometries, such as
capillaries, is crucial in applications such as microfluidics, two-phase cooling devices and
inkjet printing. Predicting the behaviour of such systems becomes challenging because
evaporation triggers complex spatio-temporal changes in the composition of the mixture.
These changes in composition, in turn, affect evaporation. In the present work, we study
the evaporation of aqueous glycerol solutions contained as a liquid column in a capillary
tube. Experiments and direct numerical simulations show three evaporation regimes
characterised by different temporal evolutions of the normalised mass transfer rate (or
Sherwood number Sh), namely Sh(t̃) = 1, Sh ∼ 1/

√
t̃ and Sh ∼ exp(−t̃), where t̃ is a

normalised time. We present a simplistic analytical model that shows that the evaporation
dynamics can be expressed by the classical relation Sh = exp(t̃) erfc(

√
t̃). For small and

medium t̃, this expression results in the first and second of the three observed scaling
regimes, respectively. This analytical model is formulated in the limit of pure diffusion
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and when the penetration depth δ(t) of the diffusion front is much smaller than the length
L(t) of the liquid column. When δ ≈ L, finite-length effects lead to Sh ∼ exp(−t̃), i.e. the
third regime. Finally, we extend our analytical model to incorporate the effect of advection
and determine the conditions under which this effect is important. Our results provide
fundamental insights into the physics of selective evaporation from a multi-component
liquid column.

Key words: coupled diffusion and flow, microscale transport, condensation/evaporation

1. Introduction

Evaporation of multi-component volatile liquids into a gaseous phase is ubiquitous in
both biological and industrial processes (Erbil 2012; Lohse & Zhang 2020; Bourouiba
2021; Morris et al. 2021; Lohse 2022). A multi-component liquid can consist of
multiple solvents, surfactants, polymers, colloids and salts. Evaporation from such
systems leads to a plethora of phenomena, such as instabilities (Li et al. 2020), phase
separation (Tan et al. 2016), altering of deposition patterns (Palacios et al. 2012),
crystallisation (Shahidzadeh-Bonn et al. 2008), stratification (Hooiveld et al. 2023) and
evaporation-driven flows (Deegan et al. 1997; Hu & Larson 2006). In addition to the
composition of the liquid, geometrical confinement also affects evaporation significantly.
The geometrical confinement can be in the form of a droplet (Picknett & Bexon 1977;
Lohse & Zhang 2020), a liquid film (Okazaki et al. 1974), a porous membrane (Prat 2002),
a shallow pit (D’Ambrosio et al. 2021) or a capillary (Chauvet et al. 2009).

Understanding the evaporation of liquids from capillaries is crucial for applications such
as microfluidics (Zimmermann et al. 2005; Bacchin, Leng & Salmon 2022), inkjet printing
(Lohse 2022; Rump et al. 2023), heat pipes (Chen et al. 2016), chromatography (Kamp
et al. 2005) and the measurement of material properties (Roger, Sparr & Wennerström
2018; Merhi et al. 2022; Nguyen, Bouchaudy & Salmon 2022). Capillaries are also
considered to be idealised systems for modelling porous structures (Yiotis et al. 2007;
Chauvet et al. 2009; Chen et al. 2022; Le Dizès Castell et al. 2023), the transport of water
across skin (Sparr & Wennerström 2000; Roger et al. 2016) and film drying (Guerrier et al.
1998; Salmon, Doumenc & Guerrier 2017).

Capillary evaporation is determined mainly by the behaviour of the volatile liquid
meniscus. There have been several experimental and numerical studies to determine the
evaporation from a liquid meniscus. These studies describe the evaporation rate (Wayner &
Coccio 1971), heat transfer coefficients (Wayner, Kao & LaCroix 1976; Park & Lee 2003;
Dhavaleswarapu, Murthy & Garimella 2012; Zhou et al. 2018), shape of the meniscus
(Potash & Wayner 1972; Swanson & Herdt 1992), capillary flows that replenish the
evaporated liquid (Potash & Wayner 1972; Ransohoff & Radke 1988; Park & Lee 2003)
and additional flows that might be driven by evaporation-induced surface tension gradients
(Schmidt & Chung 1992; Buffone & Sefiane 2003; Dhavaleswarapu et al. 2007; Cecere,
Buffone & Savino 2014) or buoyancy (Dhavaleswarapu et al. 2007; Buffone 2019).

Broadly speaking, the evaporation of a single-component liquid from a capillary can
be divided into two main classes depending on the location of the liquid–air meniscus
with respect to the open end of the capillary (henceforth referred to as its ‘mouth’; see
figure 1a). In the first class of problems, the liquid–air interface is far away from the mouth
of the capillary. In such a configuration, the evaporation rate is limited by the transport
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Evaporation of binary liquids from a capillary tube
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Figure 1. Schematic of the different configurations of evaporation from a capillary: (a) first class of problems,
where the liquid meniscus is away from the mouth of the capillary (l � 0); (b,c) second class of problems,
where the liquid meniscus is close to the mouth of the capillary (l ≈ 0), with (b) θ > 90◦ and (c) θ < 90◦. Red
arrows represent the evaporative flux.

of vapour from the liquid–air interface to the mouth of the capillary tube, and it varies
approximately as the inverse square root of time (Stefan 1873, 1889).

In the second class of problems, the liquid meniscus is at (or relatively close to) the
mouth of the capillary (Chauvet et al. 2009; Gazzola, Franchi Scarselli & Guerrieri 2009).
Within this second class of problems, if the contact angle inside the liquid between the
liquid–gas interface and the capillary wall is θ ≥ 90◦, then one can realise immediately
the resemblance to a sessile droplet (figure 1b). In such a case, one can use the Popov
model (Popov 2005; Li et al. 2019) to predict the evaporation rate. For 130◦ > θ ≥ 90◦
(which is equivalent to a contact angle of 40◦ > θdrop ≥ 0◦ in the case of a sessile droplet),
the evaporation rates will be practically independent of the contact angle (Sobac & Brutin
2011) and depend mainly on the base radius, ambient humidity and properties of the liquid.

However, when θ ≤ 90◦, the droplet model for evaporation is no longer applicable
(figure 1c). The evaporation under such conditions shows two distinct regimes – a ‘constant
rate period’ and a ‘falling rate period’ (Chauvet et al. 2009; Keita et al. 2014, 2016) –
similar to that observed during the drying of a porous medium (Coussot 2000). During the
constant rate period, evaporation is still determined mainly by the ambient conditions. To
replenish the liquid lost by evaporation, upstream liquid is driven by capillary pressure
to the mouth of the capillary through thin liquid films (Ransohoff & Radke 1988;
Chauvet, Duru & Prat 2010). However, even during the so-called constant rate period,
the evaporation rate decreases slightly (Coussot 2000; Chauvet et al. 2009). For square
capillaries, this slight decrease is due to the thinning of liquid films at the mouth of the
capillary (Chauvet et al. 2009). As evaporation proceeds further, the depinning of the
liquid films from the mouth of the capillary leads to the falling rate period (Chauvet et al.
2009). When the liquid meniscus is sufficiently far away from the mouth of the capillary,
the situation reverts to the first class of problems (figure 1a).

In addition to the studies on evaporation of single-component liquids from capillaries,
there have also been several studies on evaporation in multi-component systems, such
as evaporation of binary liquid mixtures (Duursma, Sefiane & Clarke 2008; Cecere
et al. 2014; Salmon et al. 2017; Zhou et al. 2018), surfactant solutions (He et al. 2015;
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Roger et al. 2016, 2018), salt solutions (Camassel et al. 2005; Naillon et al. 2015) and
colloidal dispersions (Abkarian, Nunes & Stone 2004; Kamp et al. 2005; Sarkar &
Tirumkudulu 2009; Wang et al. 2020; Roger & Crassous 2021) in capillaries. In all
these scenarios, evaporation leads to spatio-temporal variations in the composition of
the mixture. Nevertheless, it is generally possible to model the capillary evaporation of
a multi-component system as a one-dimensional transport problem. It is unsurprising,
but perhaps interesting to note, that in the absence of instabilities (de Gennes 2001), the
one-dimensional model of evaporation of polymeric liquid films (Okazaki et al. 1974;
Guerrier et al. 1998; Saure, Wagner & Schlünder 1998; Okuzono, Ozawa & Doi 2006) is
mathematically equivalent to the evaporation of binary solutions from capillaries (Salmon
et al. 2017).

In multi-component systems, especially binary systems, the evaporation rate can also
show a constant rate period followed by a falling rate period (Okazaki et al. 1974; Salmon
et al. 2017; Huisman et al. 2023), similar to pure liquids. However, in multi-component
systems, the different evaporation regimes are determined additionally by changes in
the composition of the mixture. Hence a complete evaporation model must include the
spatio-temporal variations in the composition and properties of the mixture. Recently,
Salmon et al. (2017) showed how a steep decrease in thermodynamic activity and the
diffusion coefficient of water at high solute concentrations can lead to evaporation being
almost independent of ambient humidity for certain molecularly complex fluids. These
authors modelled the variable diffusion coefficient as a piecewise-constant function, but
bypassed the necessity of using an analytical expression for the thermodynamic activity of
water. Moreover, Salmon et al. (2017) considered the parameter range where the medium
can be approximated as semi-infinite.

In this work, we study the evaporation of binary liquids in capillaries with experiments,
direct numerical simulations and analytical modelling. We perform experiments for the
evaporation of water–glycerol mixtures in a cylindrical capillary tube under controlled
humidity conditions. Our direct numerical simulations show excellent agreement with
the experiments. Further, to unravel the physics of the evaporation dynamics, we
develop a one-dimensional analytical model. We introduce a linear approximation for the
thermodynamic activity of water as a function of its weight fraction. We also identify the
condition under which the semi-infinite assumption breaks down and accordingly take it
into account in our modelling. Finally, we discuss the explicit role of the advective mass
transport compared with the diffusive mass transfer for our particular system. We show
that our model predicts accurately the relevant scaling laws observed in the experiments
and the numerical simulations.

The paper is organised as follows. In § 2, we describe the experimental set-up and
observations. The governing equations of our system and the numerical method are
described in § 3. In § 4, we provide three simplified analytical models of the problem,
each with an added level of complexity over its predecessor, and compare their predictions
with the results obtained from the experiments and the simulations. The paper culminates
in a summary of the results and an outlook in § 5.

2. Experiments

2.1. Experimental set-up
Aqueous solutions of different mass fractions of glycerol (Sigma-Aldrich) were used as the
probe liquids in the present experiments. The use of glycerol has the following advantages.
First, since glycerol has a very low vapour pressure, it is practically non-volatile under
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Evaporation of binary liquids from a capillary tube

the current experimental conditions. Thus we need only account for the evaporation
of water. Further, since the more volatile liquid (water) has higher surface tension, its
evaporation should not lead to any flow instabilities close to the interface (Diddens 2017).
Such instabilities occur whenever the mass transfer (evaporation or condensation) leads to
an increase in surface tension, such as for evaporating water–ethanol mixtures (Christy,
Hamamoto & Sefiane 2011; Bennacer & Sefiane 2014; Diddens et al. 2017; Lopez de la
Cruz et al. 2021) or condensation of water onto a water–glycerol droplet (Shin, Jacobi &
Stone 2016; Diddens 2017). A more detailed explanation of such instabilities can be found
in Diddens (2017).

In the present experiments, we study the evaporation dynamics of aqueous solutions of
glycerol in a thin cylindrical capillary tube (figure 2; inner diameter 1 mm, outer diameter
1.2 mm, length 100 mm; Round Boro Tubing, CM Scientific). The liquid column inside the
capillary had an initial height of 19 ± 2 mm. The initial weight fraction of water, wi, in the
water–glycerol mixture was varied as 0.2, 0.6, 0.9 and 1.0, to cover a wide range of initial
compositions. The lower end of the capillary was placed inside an in-house-developed,
optically transparent, humidity-controlled chamber at room temperature. The humidity
and temperature inside the chamber were monitored using a temperature–humidity sensor
(HIH6121, Honeywell). The relative humidity (Hr) in the chamber was maintained at Hr =
10 ± 5 %. The upper end of the capillary tube was exposed to room humidity (>50 %). The
evaporation or condensation of water at the upper meniscus was negligible compared to
the evaporation from the bottom. This is because of the relatively large distance between
the liquid’s upper meniscus and the capillary’s upper end (see Appendix A for a detailed
discussion).

The contact line of the lower meniscus remained pinned at the lower mouth of the
capillary. Thus the loss of water by evaporation from the lower mouth of the capillary
leads to a decrease in the length L of the liquid column (figure 2c). To study this
evaporation process quantitatively, time-lapsed images of the liquid column were captured
using a DSLR camera (D750, Nikon) equipped with either a long-distance microscope
(Navitar 12×) or a macro lens (50 mm DG Macro D, Sigma), while the capillary tube was
back-illuminated with a cold LED light source (Thorlabs). For pure water, the velocity vy
of the upper interface,

vy = dy
dt

= 1
ρw

dM′′

dt
, (2.1)

is a direct measure of the evaporation rate dM′′/dt of water, where y is the displacement
of the top interface, M′′ is the mass per unit area and ρw is the density of water.

At a later time, the contact line of the lower liquid meniscus eventually depins. At this
point, we stop the measurements because vy is thereafter no longer a correct measure of the
evaporation rate. Additionally, as the lower interface moves inwards into the capillary tube
after depinning, the evaporation boundary condition at the lower interface also changes
(see § 3.1 for details of the boundary conditions).

2.2. Experimental results
The discrete data points in figure 3(a) denote the experimentally obtained vertical
displacement y of the upper interface with time t for different initial weight fractions
of water, wi. Only every fifth data point is plotted in figure 3(a) to avoid overcrowding
of the plot. The markers represent the mean of at least three independent experimental
realisations, while the error bars (denoting ± one standard deviation) reflect the
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Figure 2. (a) Schematic of the experimental set-up. (b) Geometry used for numerical simulation and analytical
modelling. (c) Left: schematic of the relative length of the liquid column with respect to the length of the
capillary. Right: time-lapsed experimental snapshots of water–glycerol mixtures in the capillaries for an initial
weight fraction of water wi = 0.9. The top interface of the liquid mixture keeps moving downwards due to the
evaporation of water from the bottom of the capillary. Red arrows in (a,b) represent the evaporative flux.

uncertainty due to experimental variabilities and the resolution of the imaging. The
velocity vy = dy/dt of the top interface, calculated from y, is plotted as discrete data points
in figure 3(b).

Obviously, the motion of the top interface depends on the initial composition of the
liquid mixture (see figure 3 and supplementary movie 1 available at https://doi.org/10.
1017/jfm.2024.122). For pure water (wi = 1), the interface moves at an almost constant
velocity (y = vyt and vy(t) ≈ 10−3 mm s−1; see figure 3). For wi = 0.2 and 0.6, the
experiments suggest y ∼ t1/2 and vy ∼ t−1/2 scaling relations. However, for wi = 0.9, the
experiments show three different regimes: vy(t) ≈ 0.8 × 10−3 mm s−1, similar to wi = 1,
in approximately the first 800 s; vy ∼ t−1/2, similar to wi = 0.2 and 0.6, at intermediate
times (t � 5 × 104 s); and a decrease in velocity (which is steeper than vy ∼ t−1/2) at long
times.

The addition of glycerol reduces primarily the local concentration of water at the lower
interface, which in turn leads to a reduced evaporation rate and a decrease in the velocity
of the upper interface. Thus we get the so-called constant rate period and the so-called
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Figure 3. (a) Displacement y and (b) velocity vy of the top interface of the aqueous solutions of glycerol
observed in experiments (discrete data points) and numerical simulations (continuous lines), for initial weight
fractions of water wi = 0.2, 0.6, 0.9 and 1.0.

falling rate period as described in the literature (Salmon et al. 2017). Our experimental
results, however, raise two important questions. First, why does the constant rate period
not appear for wi = 0.2 and 0.6 in the experiments? Second, why does the falling rate
period show two sub-regimes for wi = 0.9? To answer these questions, and to understand
how the evaporation dynamics of a water–glycerol mixture in a capillary changes with
time and the initial composition of the mixture, we develop a theoretical model in the next
section.

3. Problem formulation

3.1. Theoretical model
We model the column of water–glycerol mixture as a one-dimensional isothermal system
with length L(t) (figure 2b). The lower end of the capillary is located at z = 0. We
can express the liquid composition using the weight fraction of water w(z, t); the
weight fraction of glycerol then is simply 1 − w(z, t). The spatio-temporal variations
in the concentration of water in the liquid column can be determined by solving the
one-dimensional continuity and advection–diffusion equations:

∂ρ

∂t
+ ∂

∂z
(ρu) = 0 (3.1)

and
∂

∂t
(ρw)+ u

∂

∂z
(ρw) = ∂

∂z

(
ρD

∂w
∂z

)
, (3.2)

where ρ(w) is the local density of the mixture, D(w) is the diffusion coefficient of the
water–glycerol mixture and u is the fluid velocity along the z-direction.
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Initially (at t = 0), the composition in the liquid column is uniform and equal to wi.
Since the evaporation of water from the upper interface is negligible (see Appendix A),
we model the upper interface as non-evaporative. The lower interface of the liquid column
is exposed to the ambient constant relative humidity Hr and loses water by evaporation
(per unit area) at rate dM′′/dt. The water lost due to evaporation is replenished by the
diffusive and advective transport of water from the bulk liquid inside the capillary. These
considerations lead to one initial and two boundary conditions, as follows:

w = wi at t = 0,

∂w
∂z

= 0 at z = L(t),

−ρuw + ρD
∂w
∂z

= dM′′

dt
at z = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)

The evaporation of water from the bottom interface can be approximated using a
quasi-steady diffusion-limited model of evaporation of a pinned sessile droplet having
zero contact angle (Popov 2005; Stauber et al. 2014):

dM′′

dt
= πDv,a R(cw,s − cw,∞) f (θdrop)

1
πR2 , (3.4)

where Dv,a is the diffusion coefficient of water vapour in air, R is the inner radius of the
capillary tube, cw,s is the concentration (vapour mass per volume) of water vapour in the air
at the lower interface, cw,∞ = Hrco

w,s is the concentration of water vapour in the ambient
air (far away from the capillary), co

w,s is the saturation concentration of water vapour at the
surface of pure water, θdrop is the angle between the horizontal plane and the liquid–air
interface at the contact line, and f (θdrop) is a known function of θdrop. For θdrop = 0 as in
our model here, f (θdrop) = 4/π (Popov 2005; Stauber et al. 2014). Thus

dM′′

dt
= 4Dv,a

πR
(cw,s − cw,∞). (3.5)

Here, cw,s depends on the composition of the liquid mixture close to the interface (at
z = 0+) and is given by Raoult’s law as

cw,s = aco
w,s = xoψoco

w,s, (3.6)

where a(w) is the thermodynamic activity of water, xo is the mole fraction of water in the
liquid at z = 0+ and ψo(xo) is the activity coefficient of water corresponding to xo. As
long as cw,s > cw,∞, water will evaporate from the lower interface.

3.2. Numerical solution
We solve numerically the equations pertaining to the aforementioned one-dimensional
theoretical model using finite element method simulations with initial length L = 20 mm
to obtain the evaporation rates and the spatio-temporal distribution of the concentration of
water, w, in the capillary. To that end, a line mesh initially consisting of 100 second-order
Lagrangian elements is created to cover the initial length L. The motion of the top
interface is realised by moving the mesh nodes along with the top interface, i.e. by an
arbitrary Lagrangian–Eulerian (ALE) method with a Laplace-smoothed mesh. The mesh
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displacement at the top interface z = L(t), i.e. L̇(t) = u(L, t), is enforced by a Lagrange
multiplier acting on the node position at the top. Likewise, the evaporation at the bottom is
considered, but here the Lagrange multiplier is acting on the velocity u at z = 0, whereas
the bottom node remains fixed at z = 0.

The implementation of (3.2) and (3.1) along with the boundary conditions (3.3) and
(3.5) is achieved by the conventional weak formulations of advection–diffusion equations,
including the ALE corrections for the time derivatives. A posteriori spatial adaptivity
based on the jumps in the slopes of w across the elements is considered. Also, a
posteriori temporal adaptivity is considered by calculating the difference between the
freshly calculated value of each field at each point and its prediction. For the prediction,
values from the previous time steps are extrapolated to the current time. If the difference
is large, then this means that the system changes excessively during a time step. In that
case, the current time step is rejected and calculations are done again with a smaller time
step. The implementation has been done with the finite element library OOMPH-LIB by
Heil & Hazel (2006), which solves monolithically the coupled equations with a backward
differentiation formula of second order for the temporal integration.

The variation of the diffusion coefficient D as a function of the local composition w is
considered in the simulations based on the experimental data of D’Errico et al. (2004),
while the mass density ρ was fitted according to the data of Takamura, Fischer & Morrow
(2012). The activity coefficient of water was calculated by AIOMFAC (Zuend et al. 2011).

The results of the direct numerical simulations are shown by the continuous lines in
figure 3. Excellent agreement between the experiments and the numerical simulations
is observed. In particular, figure 3(b) shows that the simulations can reproduce the
experimentally observed vy ∼ t−1/2 scaling for wi = 0.2 and 0.6, and all three velocity
scalings for wi = 0.9. Interestingly, the simulations also show that for very early times,
vy is almost constant for wi = 0.2 and 0.6 as well. However, we cannot access these
time scales in experiments because of limitations arising from the lack of spatio-temporal
resolution. Overall, the quantitative match between experiments and numerical simulations
shows that our theoretical model incorporates all the relevant physics of the problem. In
figure 10 of Appendix B, we also show the spatial variation in the axial concentration
profiles for the different initial concentrations wi. In the next section, we will use additional
simplifying assumptions to formulate a simplistic model that captures the essential physics
of the system and recovers the various evaporation regimes.

4. Analytical model

We present here a simplified description of the problem with the purpose of elucidating
the physical mechanisms behind the different regimes observed in the experiments
and the direct numerical simulations. We introduce some assumptions that will allow
us to treat the resulting problem analytically. As we will show below, despite these
simplifications, the quantitative comparison between the model and the experiments
and simulations is reasonably good. Our one-dimensional analytical model relies on the
following assumptions.

(i) Constant properties: we assume that the properties of the water–glycerol mixture,
namely the density ρ and diffusion coefficient D, are constant and equal to the
values corresponding to the initial composition. These properties can be obtained
from figure 12 in Appendix D by setting w = wi. Setting the density to a constant in
the continuity equation (3.1) yields that u is independent of z and depends only on t.
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Hence

u(z, t) = −vy(t). (4.1)

(ii) Linearisation of the water vapour concentration difference: the concentration of
water vapour at the liquid–gas interface depends on the concentration of water at
z = 0+ in (3.6). To solve the model analytically, we linearise the expression in
(3.5) for the difference in concentration of the water vapour between cw,s(wi) and
cw,s(weq) in terms of w:

cw,s − cw,∞ = c0
w,s

xiψi − Hr

wi − weq
(w|z=0 − weq), (4.2)

where xi, ψi and wi are the initial mole fraction, activity coefficient and weight
fraction of water in the liquid mixture, respectively, and weq is the weight fraction of
water at equilibrium, i.e. when cw,s becomes equal to cw,∞ and evaporation stops. In
(4.2), we have effectively linearised cw,s − cw,∞ in terms of w, between the initial
(w = wi) and final (w = weq) concentrations of water (see detailed derivation in
Appendix C). Combining (3.5) and (4.2), we get

dM′′

dt
= h∗(w|z=0 − weq), (4.3)

where h∗, defined as

h∗ = 4Dv,ac0
w,s

πR�wi
(xiψi − Hr), (4.4)

is a modified mass transfer coefficient, with �wi = wi − weq. We put an asterisk in
h∗ to indicate that its units (kg m−2 s) are different from those of the conventional
mass transfer coefficient h (Incropera et al. 2007), which is related to h∗ through
h = h∗/ρ (unit m s−1).

(iii) Velocity of meniscus: assuming that the volume of the water–glycerol mixture is the
sum of the glycerol and water volumes, the velocity at which the length of the liquid
column recedes is given by

vy = − d
dt

∫ L

0

ρw
ρw

dz, (4.5)

i.e. the negative of the time derivative of the volume occupied by the water, since the
glycerol volume is constant. Since dM′′/dt denotes the rate at which the water mass
per unit cross-section of capillary is lost, we get

vy = 1
ρw

dM′′

dt
. (4.6)

Note that this equation is identical to the exact expression (2.1) obtained for the case
where the liquid contains just water. This is a direct consequence of the nearly ideal
character of the water–glycerol mixtures.

We define a diffusive length scale lD (as also done by Salmon et al. 2017) based on the
mass transfer coefficient by considering a balance between evaporation and diffusion at
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the lower interface (D�w/lD ∼ h�w; (3.3) and (4.3)), yielding

lD = D
h
. (4.7)

Based on the aforementioned considerations, we non-dimensionalise the variables as
follows:

w̃ = wi − w
wi − weq

= wi − w
�wi

, t̃ = t

l2D/D
= h2 t

D
, z̃ = z

lD
= h z

D
, L̃ = L

lD
= h L

D
.

(4.8a–d)

Further, since the velocity of the interface is in fact a proxy for the mass transfer
(evaporation) rate of water, as follows from mass conservation, we can describe the
system in terms of the Sherwood number, Sh. This parameter denotes the non-dimensional
velocity or non-dimensional mass transfer rate:

Sh = ρwvy

h∗�wi
. (4.9)

Substituting (4.1)–(4.9) into the governing differential equations (3.1) and (3.2) of mass
transport in the capillary, the initial and boundary conditions (3.3), and the equation
governing evaporation of water into air (3.5), we get the following system of equations
and initial and boundary conditions:

∂w̃
∂ t̃

− ρ �wi Sh
ρw

∂w̃
∂ z̃

= ∂2w̃
∂ z̃2 , (4.10)

w̃ = 0 at t̃ = 0,

∂w̃
∂ z̃

= 0 at z̃ = L̃,

∂w̃
∂ z̃

−
(

1 − ρ �wi Sh
ρw

)
w̃ +

(
1 − ρwi Sh

ρw

)
= 0 at z̃ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.11)

Sh = 1 − w̃(z̃ = 0, t̃). (4.12)

Finally, for the case of pure water, we do not need to solve the model for the binary
mixture, since there is no change in the concentration. The velocity of the interface can
then be obtained directly by substituting wi = 1 in (4.3):

vy = 4Dv,a
πRρw

c0
w,s(1 − Hr), (4.13)

which corresponds to Sh = 1.

4.1. Semi-infinite transient diffusion model
As the zeroth-order simplification, we assume that advection is negligibly small. Further,
we approximate the liquid column as a semi-infinite medium. Thus the governing equation
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and the initial and boundary conditions ((4.10) and (4.11)) can be reduced to

∂w̃
∂ t̃

= ∂2w̃
∂ z̃2 , (4.14)

with
w̃ = 0 at t̃ = 0,

∂w̃
∂ z̃

= 0 at z̃ → ∞,

∂w̃
∂ z̃

= w̃ − 1 at z̃ = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.15)

This is a classical transient diffusion problem with mixed boundary conditions, whose
solution is given by (Incropera et al. 2007)

w̃
(
z̃, t̃
) = erfc

(
z̃

2
√

t̃

)
− exp

(
t̃ + z̃

)
erfc

(
z̃

2
√

t̃
+
√

t̃
)
. (4.16)

The velocity of the top interface can now be evaluated from the evaporation rate of water
using (4.9), (4.12) and (4.16) to yield

vy = h∗�wi

ρw
exp(t̃) erfc

(√
t̃
)
, (4.17)

or

Sh = exp(t̃) erfc
(√

t̃
)
. (4.18)

For t̃ → 0, Sh → 1, whereas for t̃ � 1, Sh ≈ 1/
√

πt̃.
The predictions of the semi-infinite transient diffusion model (4.18) are compared in

figure 4 with the experimental measurements (discrete data points) and the numerical
simulations (continuous lines). It can be observed that (4.18) predicts correctly the
early-time limit Sh = 1 for all cases, and Sh ∼ 1/

√
t̃ at intermediate times for wi = 0.2

and 0.6. Moreover, figure 4 also shows that the predicted value of Sh from the model
agrees reasonably well with the experiments and the simulations for wi = 0.2 and 0.6.
However, (4.18) severely underpredicts Sh for wi = 0.9 until t̃ ≈ 80. Furthermore, (4.18)
also fails to capture the steep decay in Sh seen in the simulations for wi = 0.6 and 0.9 at
long times (figures 4b,c). This calls for a careful re-examination of the assumptions made
in the model.

4.2. Semi-infinite transient diffusion model with advection – asymptotic solution for
t̃ � 1 and approximate solution for all times

In order to improve the agreement of our model with the experiments and full numerical
simulations, we turn our attention to the effect of advection. Indeed, advection is expected
to become important at short times and for values of wi close to unity. To make this clear,
we define the Péclet number of the problem as the coefficient of the advection term in
(4.10), namely�wi Sh ρ/ρw = ρvy/h∗ = (w|z=0 − weq)ρ/ρw. Notice that in our problem,
the Péclet number is nothing more than the Sherwood number with a coefficient that
modulates the importance of the initial water concentration. However, we find it useful
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(b)(a)

(d)(c)

Figure 4. (a–d) Comparisons of the normalised evaporation rates (Sherwood number Sh) against normalised
time (t̃) obtained from the experiments (discrete data points) and the numerical simulations (continuous lines)
with theoretical values (dashed lines) obtained using the semi-infinite transient diffusion model (4.18), for
different initial weight fractions of water wi = 0.2, 0.6, 0.9, 1.0, respectively. Notice that in the wi = 1.0 case
in (d), the theoretical curve corresponds to Sh = 1, not that given by (4.18). Note also that all the theoretical
curves for wi < 1.0 are the same, as (4.18) does not take into account wi. Insets highlight the comparisons
between the experiments, the numerical simulations and the simplified analytical modelling.

to work with this quantity in order to evaluate the effect of advection. This Péclet number
is plotted in figure 5, where we can see that it becomes of order unity during the first stage
of the evaporation process for wi � 0.6.

To predict quantitatively the evaporation dynamics including the effect of advection,
we propose an improvement over our simplistic analytical model. We will first develop an
asymptotic solution, valid formally in the limit t̃ � 1, and then present an approximate
expression for Sh that converges uniformly to the asymptotic solution for t̃ � 1 and to
Sh ≈ 1 for t̃  1.

We start from the problem formulated in (4.10) and (4.11), with L̃ → ∞. In order
to make the problem tractable, we assume that the mixture’s density is constant
and equal to the initial one, ρ = ρ(wi). The transport problem (4.10) with advection
becomes

∂w̃
∂ t̃

−�wi Sh
ρ

ρw

∂w̃
∂ z̃

= ∂2w̃
∂ z̃2 , (4.19)
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100
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t̃

Figure 5. Plots showing the variation of the Péclet number ρ �wi Sh/ρw with the normalised time t̃ for three
different initial water concentrations, wi = 0.2, 0.6 and 0.9.

with one initial and two boundary conditions (4.11), namely

w̃ = 0 at t̃ = 0,

∂w̃
∂ z̃

= 0 at z̃ → ∞,

∂w̃
∂ z̃

−
(

1 −�wi
ρ

ρw
Sh
)

w̃ + 1 − ρ

ρw
wi Sh = 0 at z̃ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.20)

and with the Sherwood number Sh (the water evaporation rate at the interface) given by
(4.12),

Sh = 1 − w̃(z̃ = 0, t̃). (4.21)

4.2.1. Asymptotic solution
We will now look for solutions at long times. Inspired by both experiments and numerical
simulations, we investigate solutions where

Sh = At̃−λ, (4.22)

with λ > 0. Further, since at long times we expect w̃ to approach unity everywhere, we
propose the following change of variables:

W = 1 − w̃ − Sh. (4.23)

Thus W → 0 as w̃ → 1 and Sh → 0, i.e. at long times. Reformulating the problem in
terms of the new variable and neglecting terms of O(Sh2), (4.19)–(4.21) can be rewritten
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as

d Sh
dt̃

+ ∂W
∂ t̃

−�wi
ρ

ρw
Sh
∂W
∂ z̃

= ∂2W
∂ z̃2 , (4.24)

W = 1 − Sh at t̃ = 0, (4.25)

∂W
∂ z̃

= 0 at z̃ → ∞, (4.26)

−∂W
∂ z̃

+ Sh
(

1 + weq
ρ

ρw

)
= 0 at z̃ = 0, (4.27)

W(z̃ = 0, t) = 0. (4.28)

We seek self-similar solutions of the type W(z̃, t̃) = F(η), with η = z̃/t̃λ, in the limit t̃ �
1. For such a self-similar solution to exist, the exponent λ of t̃ in the self-similar variable
η must be the same as that in the definition of Sh by virtue of (4.27). Indeed, ∂W/∂ z̃ =
F′ t̃−λ. So if the time exponent in Sh and η were different, then (4.27) could not be made
self-similar.

Substituting the proposed ansatz into (4.24), we get

−λAt̃−λ−1 − ληt̃−1F′ −�wi
ρ

ρw
At̃−2λF′ = t̃−2λF′′. (4.29)

For t̃ � 1, the first term is always negligible compared to the second one, since λ > 0.
Then, balancing the second term with the last two terms, we obtain that the equation
becomes self-similar if λ = 1/2, as expected from the experiments and the simulations,
resulting in

−
(

1
2
η + A�wi

ρ

ρw

)
F′ = F′′. (4.30)

This differential equation can be solved with the boundary conditions F(0) = 0 (from
(4.28)) and F′(0) = A (from (4.27)) to yield

F(η) = −√
πA

(
1 + weq

ρ

ρw

)
exp

(
A2�w2

i

(
ρ

ρw

)2
)

×
(

erf
(

A�wi
ρ

ρw

)
− erf

(
A�wi

ρ

ρw
+ η

2

))
. (4.31)

Finally, an additional condition is needed to determine the value of A. This condition stems
from the behaviour of W far away from the evaporation boundary z̃ = 0, where W → 1
(from (4.25) while neglecting Sh  1 against unity). Introducing this condition into (4.31),
we finally get

√
πA

(
1 + weq

ρ

ρw

)
exp

(
A2�w2

i

(
ρ

ρw

)2
)

erfc
(

A�wi
ρ

ρw

)
− 1 = 0. (4.32)

The value of A can be evaluated numerically. Plotting A against wi, we see that A
grows monotonically with the initial water concentration, recovering the diffusion-driven
asymptotic solution A = 1/

√
π for wi  1 (if the additional assumption that weq = 0 is

made; figure 6). This means that the higher the initial concentration of water wi, the greater
the advective enhancement of mass transfer compared to pure diffusion.
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0
10–1

wi
100

1/�π

Figure 6. Coefficient A in Sh = At̃−1/2, obtained by solving (4.32) numerically, as a function of the initial
water concentration. At low initial water concentrations, and under the assumption that weq ≈ 0, we recover
the pure diffusion regime, A = 1/

√
π (blue dashed line). For large water concentrations, A grows unbounded,

indicating that the regime Sh ∼ t̃−1/2 is never reached, as Sh = 1 in this limit.

4.2.2. Uniform approximation
For practical applications, it is desirable to have an approximate expression that converges
to the asymptotic solutions in the limits t  1 (Sh ≈ 1) and t � 1 (Sh ≈ At̃−1/2). To this
end, we notice that the exact solution for the problem without advection,

Sh = exp
(
t̃
)

erfc
(√

t̃
)
, (4.33)

captures the behaviour of the numerical solution with advection, except that the prefactor
of the equation Sh ∼ t̃−1/2 in (4.33) at t̃ � 1 is 1/

√
π, instead of A (as in (4.22)). Thus we

propose the following expression to approximate the full numerical solution uniformly at
all times:

Sh = exp
(

t̃
πA2

)
erfc

⎛
⎝
√

t̃
πA2

⎞
⎠ . (4.34)

We observe that this approximation reproduces much more successfully the numerical
simulations than the solution without advection, as shown in figure 7.

To conclude this subsection, we point out that another uniform approximation
for computing the Sherwood number Sh, similar to (4.34), can be obtained by
solving the simplified problem (4.19)–(4.20) analytically considering advection as being
quasi-constant. For completeness, this solution is described in Appendix E. The fact
that treating advection as quasi-constant yields an expression that works fairly well is
interesting, as it points out that advection is important mostly when it is nearly constant,
that is, at short times (see figure 5). This makes sense, since it is at this stage when the
Péclet number reaches the largest value. This idea could be useful in pursuing further
analytical approaches for similar problems.

4.3. Transient diffusion model with finite-length effects
The models described in §§ 4.1 and 4.2 can explain faithfully both Sh = 1 and Sh ∼ t̃−1/2

behaviours seen in the experiments and the simulations. However, we are yet to explain
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Asymptotic solution
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10–4 10–2 100 102 104 10–4 10–2 100 102 104
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Experiment

Figure 7. Variation of the normalised evaporation rates (Sherwood number Sh) with normalised time (t̃)
obtained from the experiments (discrete data points), the numerical simulations (continuous lines), the
asymptotic solution for long times (dash–dotted lines) and the approximate expression ((4.34), dashed lines), for
different initial weight fractions of water wi: (a) wi = 0.2, (b) wi = 0.6, (c) wi = 0.9 and (d) wi = 1.0. Insets
highlight the comparisons between the experiments, the numerical simulations and the simplified analytical
modelling.

the sharp deviation from Sh ∼ t̃−1/2 seen for very late times in the simulations at wi = 0.6
and 0.9 (figures 7b,c). To this end, we turn our attention to the semi-infinite assumption.

For the semi-infinite assumption to hold, the penetration depth of the diffusion front
δ(t) = √

Dt should be much smaller than the length of the liquid column L(t). We plot the
variation of δ/L (= √

Dt/L) with t̃ as obtained from the experiments and the numerical
simulations in figure 8 for different wi. It can be observed that for wi = 0.9, δ/L = 1 at t̃ ≈
60, which agrees approximately with the time when the slope of Sh(t̃) starts to deviate from
Sh ∼ t̃−1/2 in figure 7(c). The same holds true for wi = 0.6 at t̃ ≈ 103 (figure 7b). Thus
we conclude that although the semi-infinite assumption holds at early times, finite-length
effects should be included at later times for wi = 0.6 and 0.9 in order to capture accurately
the physics of the problem.

We show in this subsection that this is an effect of the finite length of the capillary,
which becomes relevant at long times. To include the effects of the finite length, we use
the original boundary conditions of (3.3).

We will first check how the three terms in the governing equation (4.10), reproduced
here for convenience, compare with each other for the late times when the finite-length
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t̃
10–4

100 δ = L

δ/L 10–2

10–4

10–2 100 102 104

wi

Experiment

Numerical simulation

0.2 0.6 0.9 1.0

Figure 8. Variation of the penetration depth δ (normalised by the length L of the liquid column) with the
normalised time t̃. Discrete data points are based on the experiments, and continuous lines are based on the
numerical simulations. The dotted line at δ/L = 1 indicates when the penetration depth is equal to the size of
the liquid column. The penetration depth is defined as δ(t) = √

Dt.

effects start playing a role:

∂w̃
∂ t̃

− ρ �wi

ρw
Sh
∂w̃
∂ z̃

= ∂2w̃
∂ z̃2 . (4.35)

When the boundary layer becomes of the order of the length of the domain, δ ∼ L, the
first and second spatial derivatives in (4.35) scale as �w̃/L̃ and �w̃/L̃2, respectively. For
wi < 1, the volume occupied by water at long times is small compared to that occupied by
glycerol, so L̃ tends asymptotically to a constant as the total liquid volume changes very
slowly. This means that the orders of magnitude of the first and second spatial derivatives
differ by a constant factor L̃. In this situation, since the prefactor of the advective term
goes to zero as Sh → 0, the advective term is going to be a factor of Sh smaller than the
diffusive one and can be neglected. Thus we formulate a quasi-constant-length transient
diffusion model valid for Sh  1.

The governing equations and the initial and boundary conditions ((4.10)–(4.12)) can now
be written as

∂w̃
∂ t̃

= ∂2w̃
∂ z̃2 , (4.36)

w̃ = 0 at t̃ = 0,

∂w̃
∂ z̃

= 0 at z̃ = L̃,

∂w̃
∂ z̃

= w̃ − 1 at z̃ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.37)

Sh = 1 − w̃(z̃ = 0, t̃). (4.38)
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Evaporation of binary liquids from a capillary tube

The solution of this system of equations is given by (Crank 1975)

w̃(z̃, t̃, L̃) = 1 −
∞∑

n=1

2L̃ cos
(
λn

(
1 − z̃/L̃

))
exp

(
−λ2

nt̃/L̃2
)

(
λ2

n + L̃2 + L̃
)

cos(λn)
, (4.39)

Sh = 1 − w̃(z̃ = 0, t̃) =
∞∑

n=1

2L̃ exp
(
−λ2

nt̃/L̃2
)

λ2
n + L̃2 + L̃

, (4.40)

where λn is the nth root of the equation λ tan(λ) = L̃. Combining (4.9) and (4.40), the
velocity of the top interface can now be written as

dL
dt

= vy = h∗�wi

ρw

∞∑
n=1

2L̃ exp
(
−λ2

nt̃/L̃2
)

λ2
n + L̃2 + L̃

. (4.41)

Equation (4.41) is integrated in time using the built-in Matlab function ode45 (which
implements an adaptive-time-step Runge–Kutta algorithm of fourth order) to obtain L(t)
and subsequently the variation of Sh with t̃ (figure 9c). For t̃ � 1, vy can be approximated
by the first term in the series:

vy = h∗�wi

ρw

2L̃ exp
(
−β2

1 t̃/L̃2
)

β2
1 + L̃2 + L̃

. (4.42)

When the changes in the length L of the liquid column are slow, the velocity decreases
exponentially with time (as per (4.42)), thus correctly predicting the late-time Sh(t̃)
behaviour of wi = 0.9 in the simulations (figure 9c). Note that observing this regime
experimentally is complicated from the practical point of view, due to the very small
velocities associated with it. Although we can observe it easily in the numerical
simulations, we are able to see the beginning of this regime in the experiments only
for the most favourable case, wi = 0.9, for which this regime appears at velocities of the
order of less than a micron per second (see figure 3). In conclusion, this model captures
successfully the deviation from Sh ∼ t̃1/2 due to the finite-length effects.

5. Conclusions and outlook

In this work, we have studied the evaporation of aqueous glycerol solutions in cylindrical
capillaries having a circular cross-section. We characterised the drying behaviour in
terms of a normalised mass transfer rate (Sherwood number Sh) and a normalised time
t̃. Our experiments demonstrate quantitatively how the addition of glycerol reduces the
evaporation rate of water. The corresponding direct numerical simulations indicate that
modelling the system as a one-dimensional advection–diffusion mass transfer problem
with composition-dependent properties can reproduce quantitatively the evaporation
behaviour observed in the experiments. The evaporation of water shows three main
regimes: (i) Sh = 1, (ii) Sh ∼ 1/

√
t̃ and (iii) Sh ∼ exp(−t̃). We describe the physical

origins of these regimes using a one-dimensional simplistic analytical model with constant
material properties and a linearised composition-dependent activity of water.

Modelling the system as a problem of pure diffusion in a semi-infinite medium
reproduces Sh = 1 and Sh ∼ 1/

√
t̃ as the early-time and late-time behaviours, respectively.
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diffusion model
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Figure 9. Plots comparing the normalised evaporation rates (Sherwood number Sh) versus normalised time
(t̃) obtained from the experiments (discrete data points) and the numerical simulations (continuous lines)
with the theoretical values obtained using (a) the semi-infinite transient diffusion model (dashed line), (b) the
semi-infinite uniform approximation model (dotted line) and (c) the transient diffusion model with finite-length
effects (dash–dotted line) for an initial weight fraction of water wi = 0.9.

In the early time limit, Sh = 1 corresponds to a rapid replenishment of water at the
evaporating interface, leading to a constant evaporation rate and constant interfacial
concentration of water. In the late-time regime, replenishment of the interfacial
concentration of water is limited by diffusion, leading to the classical diffusion-like
Sh ∼ 1/

√
t̃ behaviour.

However, we also show that even if the pure diffusion model captures the scaling
relations of Sh(t̃) correctly, advective replenishment of water needs to be considered
for more precise prediction of the evaporation rates. A Péclet number defined as
�wi Sh ρ/ρw = ρvy/h∗ = (w|z=0 − weq)ρ/ρw (the coefficient of the advective term in
(4.10)) is the relevant parameter dictating the importance of advection. Thus advection
is small when the interfacial concentration of water w|z=0 is close to the equilibrium
concentration weq, and high otherwise.

Finally, we show that as the diffusive penetration depth δ = √
Dt increases and the

length L(t) of the system decreases, they can become comparable in magnitude. In such a
scenario, the semi-infinite approximations hold only as long as the late-time behaviour is
modified to Sh ∼ exp(−t̃). This change in the evaporation regime essentially reflects the
effect of the finite size of the liquid column.

Even though a model with constant material properties was used to describe the
evaporation of a binary mixture, the spatio-temporal changes in properties such as
the density and the diffusion coefficient affect the precise quantitative prediction of
evaporation rates. The direct numerical simulations are devoid of these deficiencies.
However, the simplified analytical models provide valuable insight into the essential
physics of the system and can provide predictions for more complex liquid mixtures.

We also note that for predicting the evaporation rate, we have used the expression
corresponding to that of a thin droplet on a substrate (θdrop = 0◦), giving excellent
predictions that match the experimental observations. However, one can include
corrections to the mass transfer coefficient h∗ to account for the difference between the
air–liquid interface of a droplet and the air–liquid interface at the mouth of a capillary tube
(Li et al. 2019). Moreover, during evaporation, the shape of the lower interface changes
(θ < 90◦) until the meniscus depins. This change in the shape of the interface may also
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Evaporation of binary liquids from a capillary tube

require a small correction to h∗, and might explain the very small decrease in Sh seen
in the experiments on pure water (figure 3b). However, further studies along the lines of
D’Ambrosio et al. (2021) are required to confirm this hypothesis.

Finally, all measurements were limited to times during which the lower meniscus was
pinned at the mouth of the capillary. When the lower meniscus depins and propagates into
the capillary, the rate-limiting step of evaporation would change from three-dimensional
vapour diffusion to one-dimensional vapour diffusion. In the case of a single-component
liquid evaporating from a square capillary, there have been efforts to predict the time when
the lower meniscus depins (Chauvet et al. 2010). Further studies are required to predict the
same for multi-component liquids and capillaries of various geometries and configurations
(e.g. inclination with respect to gravity). Nonetheless, in this study, we have shown that
these kinds of phenomena may not be essential to predict, with a reasonable degree of
accuracy, the mass transfer rate in a relatively complex system such as the one that we
consider here.

The aforementioned results can also be applied directly to predict the evaporation of
multi-component liquids from porous structures, which can be modelled as bundles of thin
capillaries. Evaporation from capillaries can also help us to understand the evaporative
behaviour of biological fluids (such as blood, saliva or liquids in respiratory droplets;
Merhi et al. 2022; Seyfert et al. 2022) or novel liquid mixtures (for applications such as
evaporative cooling and spray drying). Finally, studying evaporation from capillaries can
also be useful in the case of inkjet printing, where the evaporation from the tip of the
printing nozzle can lead to changes in the composition of the ink (Rump et al. 2023). Our
model can provide insight into the changes in the composition at the nozzle tip for a given
time scale and assist in choosing carefully the properties of the ink.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.122.
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Appendix A. Evaporation from the upper interface

The evaporative flux from the top interface is given by (Stefan 1873)

dM′′

dt
= Dv,a

L
p

RT
ln
(

p − pw,L

p − pw,s

)
, (A1)
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Figure 10. Axial distribution of the concentration field for three different initial concentrations: (a) wi = 0.2,
(b) wi = 0.6 and (c) wi = 0.9. The colours represent different time stamps: 1 × 100 s, 1 × 103 s, 1 × 104 s,
3 × 104 s, 5 × 104 s, 7 × 104 s, 1 × 105 s, 3 × 105 s, 5 × 105 s, 1 × 106 s and 3 × 106 s.

where p is the atmospheric pressure, pw,s is the partial pressure of water vapour at the
surface of the upper meniscus, pw,L is the partial pressure of water vapour at the upper end
of the capillary tube and L is the length of the capillary tube above the upper meniscus.
Since pw,s is much smaller than p, the above expression can be simplified to

dM′′

dt
= Dv,a

L

(pw,s

RT
− pw,L

RT

)
= Dv,a

L

(
cw,s − cw,L

)
. (A2)

Thus the ratio of evaporative flux from the top interface to the bottom interface can be
estimated as

dM′′
top

dt
dM′′

bottom
dt

=
Dv,a

L

(
cw,s − cw,L

)
top

4Dv,a
πR

(
cw,s − cw,L

)
bottom

. (A3)

Thus even if the top of the capillary is subjected to the same humidity as the bottom, the
evaporation from the top is lower by a factor of πR/4L = 0.005. Hence the evaporation
from the upper interface can be neglected.

Appendix B. Spatio-temporal changes in the concentration distribution within the
capillary

We show in figure 10 snapshots of the concentration field inside the capillary for different
initial water concentrations computed using the full numerical simulations described in
§ 3.2.

Appendix C. Linearisation of the water vapour concentration difference

The difference in concentration, cw,s − cw,∞, of water vapour is a nonlinear function
of the weight fraction of water w (figure 11, based on (3.6)). For our analytical
model, we linearise cw,s − cw,∞ between the initial concentration wi and the equilibrium
concentration weq. In figure 11, the corresponding coordinates are (wi,�cw,i) and (weq, 0),
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w
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Calculated based on AIOMFAC and (3.6)

Linearised approximation 
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,s

 –
 c

w
,∞

 (
k
g
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–
3
)

0.010

0.015
�cw,i
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0.020

0.5 1.0

Figure 11. Difference in concentration of water vapour at the air–liquid interface and far away from the
interface, at temperature 21 ◦C and relative humidity Hr = 10 %. The solid black line is calculated using
AIOMFAC (Zuend et al. 2011) and (3.6). The dashed red line shows the linearised approximation used in
(4.2) in the analytical model for wi = 0.6. For our case, weq = 0.028.

where

�cw,i = cw,s − cw,∞ (C1)

is the initial difference in the concentration of water vapour. From (3.6) and the definition
cw,∞ = Hrco

w,s, we get

�cw,i = aco
w,s − Hrco

w,s = xiψico
w,s − Hrco

w,s. (C2)

The equation for the line passing through these two points is given by(
cw,s − cw,∞

)− 0(
xiψico

w,s − Hrco
w,s
)− 0

= w − weq

wi − weq
, (C3)

which can be rewritten as

cw,s − cw,∞ = c0
w,s

xiψi − Hr

�wi
(w − weq). (C4)

Since (C4) applies at the boundary z = 0, we replace w in the right-hand side of (C4)
with w|z=0 to get (4.2).

Appendix D. Properties of water–glycerol mixtures

We include in this appendix plots showing the dependencies of the density and diffusivity
of water–glycerol mixtures as functions of the mass fraction of water. These curves are
the ones used in the numerical simulations described in § 3.2. For the analytical models
described in § 4, we used constant values corresponding to the initial water concentration,
which can also be read from figure 12.
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Figure 12. Material properties of the water–glycerol mixtures used in our direct numerical simulations:
(a) density; (b) diffusivity. Data taken from D’Errico et al. (2004) and Takamura et al. (2012).

Appendix E. Simplified model with quasi-constant advection

In this appendix, we elaborate on the quasi-constant advection model referred to at the end
of § 4.2. In addition to the approximations made at the beginning of § 4, we assume that the
changes in velocity (and thus in Sh) are slow compared to the response of the concentration
field, such that the velocity (and thus Sh) can be considered quasi-constant for the purpose
of determining the concentration field. Thus we develop a transient diffusion model with
quasi-constant advection.

We use the full form of (4.10) with the initial and boundary conditions given in (3.3),
except that we modify the boundary condition at z̃ = L̃:

∂w̃
∂ t̃

− ρ �wi Sh
ρw

∂w̃
∂ z̃

= ∂2w̃
∂ z̃2 , (E1)

w̃ = 0 at t̃ = 0,

∂w̃
∂ z̃

= 0 at z̃ → ∞,

∂w̃
∂ z̃

−
(

1 − ρ �wi Sh
ρw

)
w̃ +

(
1 − ρwi Sh

ρw

)
= 0 at z̃ = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(E2)

We start with the Laplace transform of (E1) and (E2), to obtain

sŵ − w̃(t̃ = 0)− α
∂ŵ
∂ z̃

= ∂2ŵ
∂ z̃2 , (E3)

∂ŵ
∂ z̃

= 0 at z̃ → ∞,

∂ŵ
∂ z̃

− (1 − α)ŵ + β

s
= 0 at z̃ = 0,

⎫⎪⎪⎬
⎪⎪⎭ (E4)

where ŵ is the Laplace transform of w̃ and s is the variable in the Laplace domain. For the
sake of brevity, we define

α = ρw�w Sh
ρ

(E5)
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and

β = 1 − ρwwi Sh
ρ

. (E6)

Solving this system of equations, we get

ŵ = −β
s

1

α

2
− 1 −

√
s + α2

4

exp

⎛
⎝−αz̃

2
− z̃

√
α2

4
+ s

⎞
⎠ . (E7)

Taking the inverse Laplace transform, we arrive at

L−1 (ŵ) = w̃ = β exp
(−αz̃

2

)
L−1

⎛
⎜⎜⎝1

s
1

α

2
− 1 −

√
s + α2

4

exp

⎛
⎝−z̃

√
α2

4
+ s

⎞
⎠
⎞
⎟⎟⎠ . (E8)

Using the identity
L−1[F(s − ζ )] = exp(ζ )L−1 F(s) (E9)

with ζ = −α2/4, we obtain

w̃ = β exp
(−αz̃

2

)
exp

(−α2 t̃
4

)
L−1

⎛
⎜⎜⎝ 1

s − α2

4

1

1 − α

2
+ √

s
exp

(−z̃
√

s
)
⎞
⎟⎟⎠ . (E10)

Further, we can write (van Genuchten & Alves 1982)

L−1
(

exp
( −x

√
s

(s − μ2)(ξ + s)

))
= C

2(μ+ ξ)
− D

2(μ− ξ)
+ E, (E11)

where

C = exp(μ2t − μx) erfc
(

x
2
√

t
− μ

√
t
)
, (E12)

D = exp(μ2t + μx) erfc
(

x
2
√

t
+ μ

√
t
)

(E13)

and

E = ξ

μ2 − ξ2 exp(ξ2t + ξx) erfc
(

x
2
√

t
+ ξ

√
t
)
. (E14)

With μ = α/2 and ξ = 1 − α/2, we get

w̃ = F + G + H, (E15)

where

F = β

2
exp(−αz̃) erfc

(
z̃

2
√

t̃
− α

√
t̃

2

)
, (E16)

G = − β

2(α − 1)
erfc

(
z̃

2
√

t̃
+ α

√
t̃

2

)
(E17)
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Figure 13. Variation of the normalised evaporation rates (Sherwood number Sh) with normalised time (t̃)
obtained from the experiments (discrete data points) and the numerical simulations (continuous lines) with the
theoretical values (dashed lines) obtained from the semi-infinite transient diffusion model with quasi-constant
advection, for different initial weight fractions of water wi: (a) wi = 0.2, (b) wi = 0.6, (c) wi = 0.9 and (d) wi =
1.0. Insets highlight the comparisons between the experiments, the numerical simulations and the simplified
analytical modelling.

and

H = β

2
2 − α

α − 1
exp

(
(1 − α)t̃

)
exp ((1 − α)z̃) erfc

(
z̃

2
√

t̃
+
(

1 − α

2

)√
t̃
)
. (E18)

Finally, we use (4.12) along with (E15) to obtain an implicit equation for the Sherwood
number:

Sh = 1 − w̃(z̃ = 0, t̃)

= 1 − β

(
1 + α

2(1 − α)
erfc

(
α
√

t̃
2

)
− 2 − α

2(1 − α)
exp((1 − α)t̃) erfc

((
1 − α

2

)√
t̃
))
, (E19)

with

α = ρw�w Sh
ρ

(E20)

and

β = 1 − ρwwi Sh
ρ

. (E21)
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Evaporation of binary liquids from a capillary tube

Equation (E19) must be interpreted as an implicit algebraic equation to obtain Sh. The
results of the quasi-constant advection with transient diffusion model (E19) are shown in
figure 13, which indeed demonstrates a reasonably good quantitative agreement with the
experiments and the direct numerical simulations. A close examination of (E19) reveals
that in the early-time limit (t̃ → 0), we get Sh → 1. Conversely, in the late-time limit
(t̃ � 1), we recover the diffusion-driven law Sh ∼ At̃−1/2.
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