SOME INEQUALITIES FOR STOP-LOSS PREMIUMS

H. BÜHLMANN, B. GAGLIARDI, H. U. GERBER, E. STRAUB Zürich and Ann Arbor

1. A certain family of premium calculation principles

In this paper any given risk S (a random variable) is assumed to have a (finite or infinite) mean. We enforce this by imposing $E[S^-] < \infty$.

Let then v(t) be a twice differentiable function with

 $v'(t) > 0, v''(t) \ge 0, -\infty < t < +\infty$

and let z be a constant with $0 \le z \le I$.

We define the premium P as follows $P = \sup \{Q \mid -\infty < Q < +\infty, E[v(S - zQ)] > v((1 - z)Q)\} \quad (1)$ or equivalently $P = \sup \{Q \mid -\infty < Q < +\infty, v^{-1}o E[v(S - zQ)] > (1 - z)Q\}. \quad (2)$

Notation: $v^{-1}(\infty) = \infty$.

The definitions (I) and (equivalently) (2) are meaningful because of the

Lemma: a) E[v(S - zQ)] exists for all $Q \in (-\infty, +\infty)$. b) The set $\{Q \mid -\infty < Q < +\infty, E[v(S - zQ)] > v((1 - z)Q)\}$ is not empty.

Proof: a)
$$E[v^{-}(S-zQ)] \le v^{-}(0) \cdot P[S \ge zQ] + v'(0) \int_{S < zQ} (zQ-S)dP(S) \le v^{-}(0) \cdot P[S \ge zQ] + v'(0)[zQ+E(S^{-})] < \infty$$

b) Because of a) E[v(S-zQ)] is always finite or equal to $+\infty$

If $v(-\infty) = -\infty$ then E[v(S - zQ)] > v((1 - z)Q) is satisfied for sufficiently small Q. The left hand side of the inequality is a nonincreasing continuous function in P (strictly decreasing if z > 0), while the right hand side is a nondecreasing continuous function in Q (strictly increasing if z < 1).

If
$$v(-\infty) = c$$
 finite then $E[v(S - zQ)] > c$

(otherwise S would need to be equal to $-\infty$ with probability I) and again E[v(S - zQ)] > v((I - z)Q) is satisfied for sufficiently small Q.

From the lemma we conclude the following useful

Corrolary: There are two cases to be distinguished

a) finite case: There exists Q^* (finite) with

$$E[v(S - zQ^*)] = v((I - z)Q^*)$$
 (I*)

or equivalently

$$v^{-1}oE[v(S - zQ^*)] = (I - z)Q^*$$
(2*)

then $P = Q^*$.

b) infinite case: Otherwise $P = +\infty$.

Proof: From the proof of the lemma it is obvious that Q* undera) coincides with the supremum defining P.

Our premium calculation principle is determined by the choice of the function v and the constant z satisfying the above conditions. It satisfies the following very desirable postulates: For any risk S, for which the premium P exists,

$$P_1: P \ge E[S]$$
$$P_2: P \le Max [S]$$

Here Max[S] denotes the right hand end point of the range of S.

Proof: For P_1 we start with equation (2) and make use of Jensen's inequality: P is the least upper bound of the set of Q's for which

$$(\mathbf{I} - z)Q < v^{-1} \circ E[v(S - zQ)].$$

By Jensen's inequality

 $v^{-1} \circ E[v(S - zQ)] \ge v^{-1} \circ v(E[S - zQ]) = E[S] - zQ.$

The set of Q's for which

Q < E[S] is hence a subset and its supremum E[S] can not exceed the supremum P of the bigger set.

For P_2 we start with equation (2*) (only the case $Max[S] < \infty$ needs to be proved) and get

$$(\mathbf{r} - z)P = v^{-1} \circ E[v(S - zP)]$$

$$\leq v^{-1} \circ \operatorname{Max} [v(S - zP)]$$

$$= v^{-1} \circ v(\operatorname{Max} [S - zP])$$

$$= \operatorname{Max} [S] - zP \qquad q.e.d.$$

Remarks:

1) If
$$z = 1$$
, we obtain the principle of zero utility,

$$P = \sup \{Q \mid E[u(Q - S)] < u(0)\}$$
here exists a $u(0) = u(0)$

by setting u(t) = -v(-t).

- 2) If z = 0, we obtain the mean value principle, $P = v^{-1} \circ E[v(S)].$
- 3) In the case where the function v is linear or exponential, the premium calculation principle does not depend on the value of z.

2. Partial Ordering among risks

Let G(x), H(x) be any distributions on the real line. Then we say that G < H, if

$$(PO)\int_{t}^{\infty} (x-t) \, dG(x) \leq \int_{t}^{\infty} (x-t) \, dH(x), -\infty < t < \infty.$$

Condition (b) simply means that for any retention limit t the *net stoploss premium* for a risk whose cdf is G is not higher than the one for a risk whose cdf is H. We do allow the case where the integrals become infinite. Integration by parts leads to the following equivalent condition:

$$(PO') \int_{t} [\mathbf{I} - G(\mathbf{x})] d\mathbf{x} \leq \int_{t} [\mathbf{I} - H(\mathbf{x})] d\mathbf{x}.$$

The equivalence of (PO) and (PO') in the case of infinite integrals is e.g. proved in Feller II, page 150.

Let us now consider two stop-loss arrangements based on risks with cdf G and H, respectively. Let P_{α}^{G} , P_{α}^{H} denote the corresponding stop-loss premiums (α = retention limit). For example, P_{α}^{H} is obtained as the least upper bound of the set of Q's for which

$$v((\mathbf{I}-z)Q) < v(-zQ) H(\alpha) + \int_{\alpha}^{\infty} v(t-\alpha-zQ) dH(t)$$
(3)

and in the finite case as the unique solution of

$$v[(\mathbf{I}-z)P_{\alpha}^{H}] = v(-zP_{\alpha}^{H}) H(\alpha) + \int_{a}^{a} v(t-\alpha-zP_{\alpha}^{H}) dH(t) \quad (3^{*})$$

The importance of the partial ordering introduced in this section becomes evident in the following theorem:

Theorem 1: Suppose
$$G < H$$

Then $P^G_{\alpha} \leq P^H_{\alpha}, -\infty < \alpha < +\infty$

Proof: If $P_{\alpha}^{H} = \infty$ nothing is to be proved. We therefore assume P_{α}^{H} finite which implies $\int_{t}^{\infty} [\mathbf{I} - H(\mathbf{x})] d\mathbf{x} < \infty$ for all $t \in (-\infty, +\infty)$.

If we integrate in equation (3^*) twice by parts, we obtain:

$$v((\mathbf{I} - z)P_{\alpha}^{H}) = v(-zP_{\alpha}^{H}) + \int_{\alpha}^{\infty} v'(t - \alpha - zP_{\alpha}^{H}) [\mathbf{I} - H(t)] dt$$
$$= v(-zP_{\alpha}^{H}) + v'(-zP_{\alpha}^{H}) \int_{\alpha}^{\infty} [\mathbf{I} - H(t)] dt$$
$$+ \int_{\alpha}^{\infty} v''(t - \alpha - zP_{\alpha}^{H}) \int_{\alpha}^{\infty} [\mathbf{I} - H(x)] dx dt.$$

Now we estimate the last two terms from below, replacing H by G and using condition (PO'). By reversing the last step (integration by parts) we arrive at

$$v[(\mathbf{I} - z)P_{\alpha}^{H}] \ge v(-zP_{\alpha}^{H}) + \int_{\alpha}^{\bullet} v'(t - \alpha - zP_{\alpha}^{H}) [\mathbf{I} - G(t)] dt$$

and therefore $P_{\alpha}^{G} \le P_{\alpha}^{H}$ q.e.d.

We postpone examples to sections 3 and 4 and conclude this section with some useful lemmas. Their content is essentially that the partial ordering is preserved under mixing and under convolution.

Lemma I: Let (G_n) , (H_n) be sequences of distributions, and let (p_n) be a discrete probability distribution. If $G_n < H_n$ for all n, then $\sum p_n G_n < \sum p_n H_n$.

Proof: Apply monotone convergence theorem

Lemma 2: If G < H, then G * F < H * F.

Proof: To establish the validity of condition (PO'), we observe that

$$\int_{a}^{b} [\mathbf{I} - G * F(x)] dx$$

$$= \int_{a}^{b} \int_{a}^{b} [\mathbf{I} - G(x - s)] dF(s) dx$$

and by Fubini's theorem

$$= \int_{a}^{b} \int_{a}^{b} [\mathbf{I} - G(y)] \, dy \, dF(s).$$

The last expression shows that we obtain an upper bound if we replace G by H. q.e.d.

Lemma 3: If $G_i < H_i$, (i = 1, 2, ..., n), then $G_1 * G_2 * ... * G_n < H_1 * H_2 * ... * H_n$.

Proof: Repeated application of Lemma 2 leads to

 $G_{1} * G_{2} * G_{3} * \dots * G_{n}$ $< H_{1} * G_{2} * G_{3} * \dots * G_{n}$ $< H_{1} * H_{2} * G_{3} * \dots * G_{n}$ $< H_{1} * H_{2} * H_{3} * \dots * G_{n} \quad \text{etc.}$ q.e.d.

3. Application 1: Dangerous Distributions

Definition: A distribution H is called more dangerous than a distribution G if (A) the first moments say μ_G , μ_H exist and $\mu_G \leq \mu_H$ and if (B) there is a constant β such that

$$G(x) \leq H(x)$$
 for $x < \beta$
 $G(x) \geq H(x)$ for $x \geq \beta$.

Example 1: Let G be unimodal with $G(a_{-}) = 0$, G(b) = 1 for $-\infty < a < b < \infty$. Let c, d be numbers such that $c \le a, b \le d$ and $(c + d)/2 \ge \mu_G$. Then the uniform distribution over the interval (c, d) is more dangerous than G.

Example 2: Let F be a distribution with F(a-) = 0, F(b) = 1 for $-\infty < a < b < \infty$. Let

$$G(x) = \begin{cases} 0 \text{ for } x < \mu_F \\ \ell \text{ r for } x \ge \mu_F \end{cases}$$

and

$$H(x) = \begin{cases} 0 \text{ for } x < a \\ \frac{b - \mu_F}{b - a} \text{ for } a \le x < b \\ 1 \text{ for } x \ge b. \end{cases}$$

Then F is more dangerous than G, and H is more dangerous than F.

Theorem 2: If H is more dangerous than G, then G < H.

Proof: Condition (PO') is obviously satisfied if $t \ge \beta$. If $t < \beta$, its validity can be seen as follows:

$$\int_{a}^{a} [\mathbf{I} - G(x)] dx - \int_{a}^{a} [\mathbf{I} - H(x)] dx$$

$$= \int_{a}^{a} [H(x) - G(x)] dx$$

$$\leq \int_{a}^{a} [H(x) - G(x)] dx = \mu_{G} - \mu_{H} \leq 0. \qquad \text{q.e.d.}$$

Illustration r: Let $S = S_1 + S_2 + \ldots + S_n$ be a sum of n independent risks. If we replace each of these risks by a more dangerous risk, the stop-loss premium for the sum of these new risks will be at least as high as the stop-loss premium for S (use Theorems I, 2 and Lemma 3).

Illustration 2: Let S be a risk with a compound Poisson distribution, say with Poisson parameter λ and amount distribution F(x). We assume that F(0) = 0 (only positive claims) and that F(M) = Ifor some M > 0 (a claim amount is at most M), and let μ denote the mean of F (i.e. the average claim amount). We compare S with the two compound Poisson risks S^{μ} , S^{M} with fixed claim amounts μ , M, respectively, and Poisson parameters $\lambda_{\mu} \Lambda = \lambda(\mu/M)$, respectively. (Observe that $E(S^{\mu}) = E(S) = E(S^{M})$.) From Example 2 (with a = 0, b = M), Lemmas I, 3, and Theorems I, 2 we obtain inequalities for the corresponding stop-loss premiums:

$$P_{\mathbf{x}}^{\prime} \leq P_{\mathbf{x}} \leq P_{\mathbf{x}}^{M}.$$

In the case of net stop-loss premiums the second inequality has been proved by Gagliardi and Straub (Mitteilungen Vereinigung schweizerischer Versicherungsmathematiker, 1974, Heft 2).

4. Application 2: Random sums of positive risks

In this section we shall compare a distribution of the form

$$G = (\mathbf{I} - q) F^{*0} - qF, \quad 0 \le q \le \mathbf{I}$$
(4)

with one of the more general form

$$H = \sum_{n=0}^{\infty} p_n F^{*n} \tag{5}$$

where

$$0 \leq p_n \leq I, \sum_{n=1}^{\infty} p_n = I.$$

Theorem 3: Suppose
$$F(0) = 0$$

If $\sum_{n=1}^{\infty} np_n = q$, then $G < H$, where G, H are given by (4), (5).

Proof: Firstly, we show that

$$F < \frac{n-1}{n} F^{*0} + \frac{1}{n} F^{*n}, n = 1, 2, \dots$$
 (6)

which is a special case of Theorem 3.

To show the validity of condition (PO) we introduce the independent random variables X_1, X_2, \ldots, X_n with common distribution F. Then condition (PO) is equivalent to

$$\sum_{i=1}^{n} E[(X_{i}-t)_{+}] \leq (n-1)(-t)_{+} + E[(\sum_{i=1}^{n} X_{i}-t)_{+}].$$

But the corresponding inequality is satisfied for any outcomes of X_1, X_2, \ldots, X_n .

Secondly, we show that G < H in the general case. Since

$$H = \sum_{n=1}^{\infty} n \, p_n \left[\frac{n-1}{n} \, F^{*0} + \frac{1}{n} \, F^{*n} \right] + (1-q) \, F^{*0}$$
$$G = \sum_{n=1}^{\infty} n \, p_n \, F + (1-q) \, F^{*0}$$

this follows from equation (6) and Lemma 1.

Illustration: Individual versus collective model: The individual model is described by n numbers q_i , $0 < q_i \le I$, and n distributions F_i with $F_i(0) = 0$. We have in mind a portfolio consisting of n components. Then q_i is the probability that a claim occurs in component i, and F_i is the distribution of its amount. Let

 $S^{\text{ind}} = S_1 + S_2 + \ldots + S_n$

denote the total claims of the portfolio, where

Prob
$$(S_i = 0) = \mathbf{I} - q_i$$

Prob $(S_i \le x) = \mathbf{I} - q_i + q_i F_i(x), x > 0$

for i = 1, 2, ..., n. We assume that $S_i, S_2, ..., S_n$ are independent and denote the stop-loss premium for S^{ind} by P_{α}^{ind} ($\alpha =$ retention limit).

A collective model is assigned to the individual model in a well known fashion: Let S^{coll} denote the compound Poisson random variable with

Poisson parameter
$$\lambda = \sum_{i=1}^{n} q_i$$

Amount distribution $F = \sum_{i=1}^{n} q_i / \lambda F_i$.

Let P_{α}^{coll} denote the stop-loss premium for S^{coll} . By applying Theorem 3 to each of the *n* components (replacing S_i by a compound Poisson random variable with Poisson parameter q_i and amount distribution F_i), we recognize from Theorem 1 and Lemma 3 that $P_{\alpha}^{ind} \leq P_{\alpha}^{coll}$. Thus a cautious reinsurer will prefer the collective model to the individual model.