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i. A certain family of premium calculation principles

In this paper any given risk S (a random variable) is assumed to
have a' (finite or infinite) mean. We enforce this by imposing
E[S-] < oo.

Let then v(t) be a twice differentiate function with

v'(t) > o, v"(t) >o, — oa<t< + <x>

and let z be a constant with o < z < i.

We define the premium P as follows

P = sup{(?| — oo <Q < + oo, E[v(S — zQ)] >v{{i—z)Q)} (i)

or equivalently

P = sup{<?| — oo <Q< + 00,1;-ioE[v(S — zQ)] >{i — z)Q}. (2)

Notation: v^co) = 00.

The definitions (1) and (equivalently) (2) are meaningful because
of the

Lemma: a) E[v(S — zQ)] exists for all Qe(— 00, + 00).

b) Theset{<2| — oo<Q< + oo,E[v(S—zQ)]>v{(i—z)Q)}

is not empty.

Proof: a) E[v' {S—zQ)] <V{o)- P[S > zQ]+v'(o) J {zQ—S)dP{S)

<V(o)-P[S>zQ]+v'(o)[zQ+E(S-)]<n

b) Because of a) E[v(S—zQ)] is al waysfinite or equal to + 00

If v(— 00) = — 00 then E[v(S — zQ)] > w((i — z)Q) is
satisfied for sufficiently small Q. The left hand side of
the inequality is a nonincreasing continuous function
in P (strictly decreasing if 2 > 0), while the right hand
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side is a nondecreasing continuous function in Q (strictly
increasing if z < i).

If v(— oo) = c finite then E[v(S — zQ)] > c

(otherwise S would need to be equal to — oo with
probability i) and again E[v(S — zQ)] > v((i — z)Q)
is satisfied for sufficiently small Q.

From the lemma we conclude the following useful

Corrolary: There are two cases to be distinguished

a) finite case: There exists Q* (finite) with

E[v(S-zQ*)] = v({i-z)Q*) (i*)

or equivalently

v-ioE[v(S — zQ*)] = (i — z)Q* (2*)

then P = Q*.

b) infinite case: Otherwise P = + oo.

Proof: From the proof of the lemma it is obvious that Q* under
a) coincides with the supremum defining P.

Our premium calculation principle is determined by the choice
of the function v and the .constant z satisfying the above conditions.
It satisfies the following very desirable postulates: For any risk S,
for which the premium P exists,

Px: P > E[S]
Pz:P< Max [S]

Here Max [S] denotes the right hand end point of the range of S.

Proof: For Pi we start with equation (2) and make use of Jensen's
inequality: P is the least upper boundT»f the set of @'s for
which

( 1 — z)Q < v-ioE[v{S — zQ)].

By Jensen's inequality

v - loE[v{S — zQ)] > v - iov{E[S — zQ]) = E[S] — zQ.
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The set of Q's for which

Q < E[S] is hence a subset and its supremum

E[S] can not exceed the supremum P of the bigger set.

For P2 we start with equation (2*) (only the case Max [S] < 00
needs to be proved) and get

( 1 — z)P = v-ioE[v(S — zP)]

= v-iov(Max[S — zP])

= Max [S] — zP q.e.d.

Remarks:

1) If z — 1, we obtain the principle of zero utility,

P = sup {Q I E[u(Q - S)} < «(o)}

by setting u(t) = — i;(— t).

2) If z = 0, we obtain the mean value principle,

P = V-oE[v(S)].

3) In the case where the function v is linear or exponential, the
premium calculation principle does not depend on the value of z.

2. Partial Ordering among risks

Let G(x), H(x) be any distributions on the real line. Then we say
that G < H, if

{PO) J {x — 0 dG{x) <j(x — t) dH{x), — 00 < t < 00.

Condition (b) simply means that for any retention limit t the
net stoploss premium for a risk whose cdf is G is not higher than the
one for a risk whose cdf is H. We do allow the case where the
integrals become infinite. Integration by parts leads to the fol-
lowing equivalent condition:

(PO'} J [1 — G{x)} dx < J [1 — H(x)} dx.

The equivalence of {PO) and(PO') in the case of infinite integrals
is e.g. proved in Feller II, page 150.
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Let us now consider two stop-loss arrangements based on risks
with cdf G and H, respectively. Let P®, P£ denote the corresponding
stop-loss premiums (a = retention limit). For example, P% is
obtained as the least upper bound of the set of Q's for which

v((i - z)Q) < v(- zQ) H(a) + / „ ( * _ « _ zQ) dH(t) (3)
a

and in the finite case as the unique solution of

v[(i - z)Pf] = v{— zP?) H(a) + fv(t - « - zP») dH(t) (3*)

The importance of the partial ordering introduced in this section
becomes evident in the following theorem:

Theorem 1: Suppose G < H
Then P° < Pf, — 00 < a < + 00

Proof: If pR = co nothing is to be proved. We therefore assume P£ fi-

nite which implies J [1—H(x)] dx < 00 for all t e(— 00, + 00).

If we integrate in equation (3*) twice by parts, we obtain:

= v{—zP») + ]v'(t-*-zP?) [i —ff(Q] dt

= v{— zP«) + v'(- zP«) } [1 - H(t)} dt
a

+ J V"(t — « - zP«) ] [1 - H(x)] dx dt.
a f

Now we estimate the last two terms from below, replacing H by
G and using condition {PO'). By reversing the last step (integration
by parts) we arrive at

»[(i — z)Pf] > v(— zP») + jv'(t — * — zPf) [1 — G(t)] dt
a

and therefore Pf < P% q.e.d.

We postpone examples to sections 3 and 4 and conclude this
section with some useful lemmas. Their content is essentially that

https://doi.org/10.1017/S0515036100011405 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011405


INEQUALITIES FOR STOP-LOSS PREMIUMS 79

the partial ordering is preserved under mixing and under convolu-
tion.

Lemma I:
let (pn) be

all n, then

Let (Gn),
a discrete

I pnGn *

[Hn] be sequences of distributions,
probability distribution. If Gn < H

^ 2 pnHn-

and
n for

Proof: Apply monotone convergence theorem

Lemma 2: If G < then

G* F < * F-

Proof: To establish the validity of condition (PO1), we observe that

J [1 — G * F(x)] dx
t

= J }[i—G(x — s)]dF(s)dx

and by Fubini's theorem

= J J [ i -

The last expression shows that we obtain an upper bound if we
replace G by H. . q.e.d.

Lemma 3: If Gj < Hi, (i — 1, 2, . . ., n), then

Gi * G2 * . . . * Gn < Hi * H2 * . . . * # n .

Proof: Repeated application of Lemma 2 leads to

Gi * Ga * G3 * . .. * Gn

< Hi * Gt * G3 * .. . * Gn

< Hi * Hi * G^ * . . . * G,,
< Hi * Hi * H3 * . . . * G,, e tc .

q.e.d.
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3. Application 1: Dangerous Distributions

Definition: A distribution H is called more dangerous than a
distribution G if (A) the first moments say (j.G) (*«• exist and \IG < \>-H
and if (B) there is a constant (3 such that

G{x) < H{x) for x < (3

G(*) > if (*) for % > (i.

Example 1: Let G be unimodal with G(a-) = 0, G(b) = 1 for
— co < a < 6 < 00. Let c, d be numbers such that c < a, b < d
and (c + rf)/2 > pic?- Then the uniform distribution over the interval
(c, d) is more dangerous than G.

Example 2: Let F be a distribution with F{a-) = 0, F(b) = 1
for — oo < a < 6 < 00. Let

t 0 for x < ay

( 1 for x > [ip

and

0 for x < a

Htx) = — for a < x < b
' b — a ~~
I for x > b.

Then F is more dangerous than G, and H is more dangerous
than F,

Theorem 2: If H is more dangerous than G, then G < H.

Proof: Condition {PO') is obviously satisfied if t > p. If i < (3. its
validity can be seen as follows:

J [1 - G(x)] dx — J [1 - ff (*)] <**

< J [H(x) — G(x)} dx = lL0 — [LH< 0. q.e.d.
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Illustration i: Let S = Si -f S% + . . . + Sn be a sum of n
independent risks. If we replace each of these risks by a more
dangerous risk, the stop-loss premium for the sum of these new
risks will be at least as high as the stop-loss premium for S (use
Theorems i, 2 and Lemma 3).

Illustration 2: Let S be a risk with a compound Poisson distribu-
tion, say with Poisson parameter X and amount distribution F(x).
We assume that F(o) = 0 (only positive claims) and that F(M) = 1
for some M > 0 (a claim amount is at most M), and let y. denote
the mean of F (i.e. the average claim amount). We compare S with
the two compound Poisson risks S*, SM with fixed claim amounts
jj., M, respectively, and Poisson parameters X* A = X((i/A/), respect-
ively. (Observe that £(Stt) = E{S) = E{SM).) From Example 2
(with a = 0, b = M), Lemmas i, 3, and Theorems 1, 2 we obtain
inequalities for the corresponding stop-loss premiums:

In the case of net stop-loss premiums the second inequality has
been proved by Gagliardi and Straub (Mitteilungen Vereinigung
schweizerischer Versicherungsmathematiker, 1974, Heft 2).

4. Application 2: Random sums of -positive risks

In this section we shall compare a distribution of the form

G = (1 —q) F*° -J- qF, 0 < q < 1 (4)

with one of the more general form

H = S pnF*n (5)

where

O <pn < I, 2 pn = I.

Theorem

If £ npn

3:

=

Suppose F(o)

q, then G <

=

H,

0

where G, H are given by (4). (5)-

https://doi.org/10.1017/S0515036100011405 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100011405


82 INEQUALITIES FOR STOP-LOSS PREMIUMS

Proof: Firstly, we show that

F < ^ — ^ F*° + - F**, n = i,2, ... (6)
n n

which is a special case of Theorem 3.

To show the validity of condition (PO) we introduce the indepen-
dent random variables Xi, Xi, ... Xn with common distribution F.
Then condition .(PO) is equivalent to

i E[(Xi — < ) • ] < ( « — 1) ( — < ) • +E[{i Xi — t)+].
(-1 i -1

But the corresponding inequality is satisfied for any outcomes of
Xi, Xz, . . ., Xn.

Secondly, we show that G < H in the general case. Since

\-i \n — 1 1
H = Lni>« \—r~F*0+ n

this follows from equation (6) and Lemma 1.

Illustration: Individual versus collective model: The individual
model is described by n numbers qi, 0 < q\ < 1, and n distribu-
tions F< with .Fi(o) = 0. We have in mind a portfolio consisting
of n components. Then g< is the probability that a claim occurs in
component i, and F% is the distribution of its amount. Let

Si + S2+ ... + Sn

denote the total claims of the portfolio, where

Prob (Sj = 0) = 1 — qt

Prob (Si < x) = 1 — qt + qiFt(x), x > 0

for i = 1, 2, . . . , n. We assume that S*, Si, ..., Sn are independent
and denote the stop-loss premium for Sind by P^nd (a = retention
limit).
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A collective model is assigned to the individual model in a well
known fashion: Let ScoU denote the compound Poisson random
variable with

tt

Poisson parameter X = 2 q%

Amount distribution F = 2 <ft/X Ft.
Let .P£011 denote the stop-loss premium for Sco11. By applying

Theorem 3 to each of the n components (replacing St by a compound
Poisson random variable with Poisson parameter q% and amount
distribution Ft), we recognize from Theorem 1 and Lemma 3 that
pind < p«>ii. Thus a cautious reinsurer will piefer the collective
model to the individual model.
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