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Attracting dynamical modes of highly elastic
fibres settling under gravity in a viscous fluid
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The dynamics of a single highly elastic fibre settling under gravity in a very viscous fluid
is studied numerically. We employ the bead model and multipole expansion of the Stokes
equations, corrected for lubrication that is implemented in the precise HYDROMULTIPOLE
numerical codes. Four attracting regular dynamical modes of highly elastic fibres are
found: two stationary shapes (one translating and the other rotating and translating),
and two periodic oscillations around such shapes. The phase diagram of these modes
is presented. It illustrates that the existence of each mode depends not only on the
elasto-gravitation number but also on the fibre aspect ratio. Characteristic time scales,
fibre deformation patterns and motion in the different modes are determined.
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1. Introduction

Dynamics of flexible elongated objects in viscous fluid flows has been researched
extensively for some time because of the importance of such objects in many
biological systems and technological processes, especially at the scale of nanometres and
micrometres. Examples could be diatom chains in the ocean (Nguyen & Fauci 2014),
cellulose fibres in paper manufacturing (Hubbe & Heitmann 2007) or fibre hydrogels
for wound healing and drug delivery (Perazzo et al. 2017). Deformation, orientation and
motion of flexible fibres and flexible planar bodies have been studied in various fluid flows
at small (Du Roure et al. 2019; Yu & Graham 2024), moderate (Shelley & Zhang 2011)
and large Reynolds numbers, including turbulence (Dotto & Marchioli 2019). Instabilities
have been investigated for sedimenting suspensions of flexible filaments (Manikantan et al.
2014; Manikantan & Saintillan 2016; Banaei et al. 2020).
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It is known that the dynamics of not only flexible but also rigid objects of various shapes
settling under gravity in the laminar regime are usually very complex (Witten & Diamant
2020), often owing to non-negligible, small inertia effects. For example, it was shown
numerically (Ravichandran & Wettlaufer 2023) that the dynamics of a concavo–convex
rigid body settling under gravity in a viscous fluid changes significantly with the increase
of the Reynolds number Re. When consecutive critical threshold values of Re are exceeded,
in the range of O(1)–O(102), one stationary orientation changes into two, then back to one
and next to an attracting limit cycle. Even more pronounced dependence on the Reynolds
number and shape (different types of periodic motions and a chaotic behaviour) has
been observed for the dynamics of sedimenting: thin curved rigid objects (experiments at
Re > 100) (Chan et al. 2021) and rigid discs (numerical simulation at 25 ≤ Re ≤ 300)
(Auguste, Magnaudet & Fabre 2013). Experiments performed at 31 < Re < 259
(Lorite-Díez et al. 2022) showed that a settling elongated, finite-length, flexible but rather
stiff cylinder exhibits periodic rigid-body oscillations and periodic bending oscillations,
dependent on Re.

Systems of elastic microfilaments settling under gravity at the Reynolds number much
smaller than unity are of special interest. To study them, a variety of simulation methods
have been applied, including the slender-body theory (Xu & Nadim 1994; Li et al.
2013; Waszkiewicz, Szymczak & Lisicki 2021) and the bead-chain model (Cosentino
Lagomarsino, Pagonabarraga & Lowe 2005; Llopis et al. 2007; Saggiorato et al. 2015;
Bukowicki & Ekiel-Jeżewska 2018, 2019; Gruziel-Słomka et al. 2019; Shashank, Melikhov
& Ekiel-Jeżewska 2023). The lack of inertia seems to simplify the dynamics of elastic
fibres with large and moderate bending stiffness. Numerical simulations (Cosentino
Lagomarsino et al. 2005; Schlagberger & Netz 2005; Li et al. 2013; Saggiorato et al. 2015;
Shojaei & Dehghani 2015; Bukowicki & Ekiel-Jeżewska 2018) and experiments together
with simulations (Marchetti et al. 2018; Cunha et al. 2022), without and with Brownian
motion, for elastic filaments of large and moderate bending stiffness indicate the existence
of stable, stationary, planar, U-shaped configuration oriented vertically.

However, numerical simulations (Cosentino Lagomarsino et al. 2005; Saggiorato
et al. 2015; Shashank et al. 2023) and experiments (Shashank et al. 2023) with highly
elastic fibres indicate that even for Re � 1, the U-shaped configurations are no longer
stationary. A variety of different dynamical modes, with complex out-of-plane shapes,
both stationary and with time-dependent deformations, have been reported for a highly
elastic sedimenting loop (Gruziel-Słomka et al. 2019). Periodic deformations of a highly
elastic fibre sedimenting in two-dimensional fluid have been reported (Shojaei & Dehghani
2015).

Therefore, in this work, we focus on the long-time three-dimensional dynamics of a
highly elastic fibre settling under gravity in a very viscous fluid at the Reynolds number
Re = 0, i.e. within the Stokes regime. We look into the existence of different attracting
dynamical modes. In § 2, the theoretical and numerical approach is outlined. Section 3
contains a phase diagram of different attracting dynamical modes, depending on the fibre
aspect ratio and elasto-gravitation number, which estimates the ratio of gravitational and
bending forces. The characteristic properties of these modes are discussed in §§ 4 and 5.
The conclusions are presented in § 6.

2. Theoretical description and parameters of the simulation

The fibre is modelled as a chain of N identical spherical beads of a diameter d, with the
centres of the consecutive beads connected by springs. We employ a finitely extensible
nonlinear elastic (FENE) model (Warner 1972; Bird, Armstrong & Hassager 1977) as the

994 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.729


Attracting dynamical modes of highly elastic fibres settling

stretching potential energy,

UFENE = −1
2

k(l0 − d)2
N−1∑
i=1

ln

[
1 −

(
l0 − li
l0 − d

)2
]

. (2.1)

Here, k is the spring constant, li = |ri+1 − ri| is the time-dependent distance between
centres of two consecutive beads at the positions ri+1 and ri and

l0 = 1.01d (2.2)

is the length of each spring at elastic equilibrium. In our simulations, the distance li(t)
between the centres of the consecutive beads stays relatively close to the equilibrium value
l0 for all the times t: typically, maxt,i li(t) � 1.017 and mint,i li(t) � 1.003.

Each triplet of the consecutive beads j − 1, j, j + 1 is straight at the elastic equilibrium,
and it resists bending with the potential energy,

Ub
j = A

2l0
β2

j , (2.3)

where A is the bending stiffness and βj is the bending angle between ri − ri−1 and
ri+1 − ri.

The harmonic potential is commonly used in the literature to represent the bending
potential energy in molecular modelling, in particular of proteins and DNA, as described,
e.g. by MacKerell et al. (1998), Storm & Nelson (2003) and Frenkel & Smit (2023). For
sedimenting elastic fibres, the Kratky–Porod potential is commonly used by most authors,
including Schlagberger & Netz (2005), Manghi et al. (2006), Marchetti et al. (2018), Llopis
et al. (2007) and Saggiorato et al. (2015). However, Bukowicki & Ekiel-Jeżewska (2018)
showed that sometimes for larger bending angles, the Kratky–Porod potential may lead
to spurious dynamics. For highly elastic fibres, large bending angles are expected, and
therefore in this work, we use the harmonic bending potential that at large bending angles
binds the fibre segments much stronger than the Kratky–Porod potential. It was checked
by Bukowicki & Ekiel-Jeżewska (2018) and Bukowicki (2019) that the harmonic bending
potential for highly elastic trumbbells does not lead to spurious dynamics. It was done by
comparing with a logarithmic potential that blows up for increasing bending angles.

The bending stiffness

A = EYπd4

64
= kd2l0

16
(2.4)

is related to the spring constant k by the model of an elastic cylinder of diameter d with
the Young’s modulus EY (Bukowicki & Ekiel-Jeżewska 2018, 2019).

In addition to the elastic forces on a bead i,

F e
i = −

∂

⎛
⎝UFENE +

N−1∑
j=2

Ub
j

⎞
⎠

∂ri
, (2.5)

there is also a constant gravitational force that acts on each bead along the z-axis:

F g = −mg êz. (2.6)

Here, m is the bead mass corrected for buoyancy, g is the acceleration due to gravity and
êz is the unit vector along the z-axis.
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The fluid flow is assumed to obey the Stokes equations. The time-dependent positions
ri of the bead centres, i = 1, . . . , N, satisfy the set of the first-order ordinary differential
equations,

ṙi =
N∑

j=1

µij · (F e
j + F g). (2.7)

Here, the 3-× Cartesian mobility matrix µij accounts for hydrodynamic interactions
between all the beads and is evaluated from the multipole expansion by the precise
numerical codes HYDROMULTIPOLE (Cichocki, Ekiel-Jeżewska & Wajnryb 1999;
Ekiel-Jeżewska & Wajnryb 2009). The multipole truncation order of 3 (Cichocki et al.
1994) was used in these computations, as previous modelling on similar systems showed
that the improvement in accuracy was practically negligible when the multipole truncation
order of 4 was used (Shashank et al. 2023).

A dimensionless elasto-gravitation number B is introduced to relate gravitational and
bending forces acting on the fibre (Cosentino Lagomarsino et al. 2005; Llopis et al. 2007;
Saggiorato et al. 2015; Bukowicki & Ekiel-Jeżewska 2018, 2019; Marchetti et al. 2018),

B = L2
0G/A, (2.8)

where G = Nmg is the gravity corrected for buoyancy acting on the whole fibre and
L0 = (N − 1)l0 + d is the equilibrium length of the fibre. With (2.2), the fibre aspect ratio
is well-approximated as N.

In this study, the total number of beads varies in the range 12 ≤ N ≤ 40, and the
elasto-gravitation number is in the range 1000 ≤ B ≤ 11 000. Our choice is related to the
results of Llopis et al. (2007) and Saggiorato et al. (2015), who assumed a moderate aspect
ratio N = 30. We extended for a range of N around this value. In addition, the choice of B
is motivated by the above references. We include the upper limits for the range of values
B ≤ 5000 from Llopis et al. (2007), and B ≤ 3000 from Saggiorato et al. (2015) and we
also go above them to reach highly flexible fibres with much larger values of B.

Our choice of the initial conditions is also motivated by previous results. Cosentino
Lagomarsino et al. (2005) and Llopis et al. (2007) investigated an elastic fibre initially
straight and horizontal, and observed the evolution restricted to a vertical plane. Saggiorato
et al. (2015) pointed out that highly elastic fibres (contrary to moderately elastic ones) are
unstable to a perturbation out of this vertical plane, and demonstrated that the dynamics
of highly elastic fibres with and without such perturbation are different (in-plane and
out-of-plane, respectively).

Therefore, in this work, we follow Saggiorato et al. (2015) and apply a weak noise on
the initially straight and horizontal fibre in the elastic equilibrium, with li(0) = l0. The
amplitude of the random perturbation is equal to 0.0001d. The evolution of the fibre is
monitored until time 106τb/N, with τb = πηd2/(mg) chosen as the time unit, with η being
the dynamic viscosity of the fluid. For almost all cases, it takes nearly half of this time
before the attracting mode is reached.

3. Phase diagram of different dynamical modes

For moderately elastic fibres, a vertical mode, with a stationary, symmetric V-like
(or U-like) shape located in a vertical plane, is the only mode observed (Cosentino
Lagomarsino et al. 2005; Schlagberger & Netz 2005; Saggiorato et al. 2015; Marchetti
et al. 2018). For highly elastic fibres, i.e. for large values of B, the tilted and rotation modes,
with stationary out-of-plane shapes, were reported by Saggiorato et al. (2015) (see figure 1
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Figure 1. Attracting dynamical modes achieved by an elastic fibre with aspect ratio N and elasto-gravitation
number B.

therein). Here, we confirm this finding and find new families of attracting dynamical
modes (we call them crawling and rotation-crawling), using a different theoretical and
numerical method. We also show that for very flexible fibres, the dynamics often become
irregular.

Physically, there are two different reasons for large fibre flexibility: small ratio of
the local elastic to the local gravitational forces, or large aspect ratio. In general, the
dynamics are expected to depend on both these parameters. For moderately elastic fibres,
the dynamics are often reported in the literature to depend only on a single parameter:
the elasto-gravitation number that depends on both physical parameters. Indeed, in the
phase diagram in figure 1, we observe that the transition between vertical and tilted mode
corresponds to the same value of B in the wide range of the aspect ratios N.

However, the important finding of our manuscript is that the dynamics of highly elastic
fibres depend on both physical parameters. Figure 1 is the map of the attracting dynamical
modes of the highly elastic fibre, based on a systematic study of the dynamics in a wide
range of the aspect ratio N and the elasto-gravitation number B. The borders between
the modes in the phase diagram in figure 1 indicate that there is no single parameter to
determine the dynamics: two are needed.

It is interesting to study the transition from the tilted to the crawling mode, shown in
figure 1, and extract the transition value BT of the elasto-gravitation number B as a function
of the transition value NT of the fibre aspect ratio N. Figure 2 depicts the transition points
BT(NT), which were identified employing the procedure described in Appendix A.

We expect a power law (Ekiel-Jeżewska 2014) dependence of the form

BT − Bc = α(NT − Nc)
p. (3.1)

We predict that there might exist a critical value of Nc with qualitatively different
dynamics for N < Nc and N > Nc. This hypothesis is based on the dynamics of elastic
loops, investigated numerically (Gruziel-Słomka et al. 2019). It was shown there that
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Figure 2. Transition elasto-gravitation number BT and corresponding aspect ratio NT for the transition from
the tilted to the crawling mode. Data points represent values obtained from numerical simulations. The solid
line depicts the fit based on (3.1). Error bars are comparable to the size of the symbol.

for a wide range of the bending stiffness A, sedimenting elastic loops made of N = 15
overlapping beads (with the aspect ratio 9.4) orient horizontally and practically do not
deform, in contrast to the loops with N ≥ 16 and the same A, which tend to orient
vertically, stay inclined or deform significantly.

The nonlinear least-square fit to the data presented in figure 2 was performed based on
(3.1). The identified parameters Bc = 3250 ± 140, Nc = 11.8 ± 0.4, α = 44 000 ± 14 000
and p = −1.32 ± 0.14 yield a function that adequately describes the data, as illustrated
in figure 2. To determine the parameters in the power law (3.1) with greater precision,
an estimation of BT with significantly higher accuracy is needed, which would require a
significantly larger number of simulations near the transition values, and also simulations
with the fibres having smaller numbers of beads.

4. Basic properties of the attracting dynamical modes

4.1. Comparison of typical shapes
Typical shapes of highly elastic fibres in different sedimentation modes are shown in
figure 3. In the tilted and rotation modes, the shapes do not depend on time. In the crawling
and rotation-crawling modes, the shapes change in time with a period T .

To quantify properties of the sedimentation modes, it is useful to compute the moment
of inertia tensor (alternatively, the gyration tensor (1/N)

∑N
j=1 r′

jαr′
jβ is often evaluated),

Iαβ =
N∑

j=1

(δαβr′
j
2 − r′

jαr′
jβ), (4.1)

where α = x, y, z, β = x, y, z and r′
j = (r′

jx, r′
jy, r′

jz) is the position of jth bead centre
in the centre-of-mass reference frame, r′

j = rj − rCM , with the centre-of-mass position
rCM = (xCM, yCM, zCM) and r′

j = |r′
j|. Knowledge of the moment of inertia tensor allows

evaluation of its eigenvectors and eigenvalues. A unit vector n, which is parallel to the
eigenvector associated with the largest eigenvalue, can be introduced. For a planar shape,
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Figure 3. Snapshots of the fibre made of N = 36 beads in different dynamical modes, reached after a long
time. Positions of the fibre beads are normalised by their diameter. (a) The notation used. (b,c) Fixed shapes
in the tilted (B = 3500) and rotation (B = 6500) modes, respectively. (d,e) Periodic evolution of shapes in the
crawling (B = 7500) and rotation-crawling (B = 8500) modes, respectively. The reference frames are given in
(4.2a–c) for (b), (4.3) for (c), (4.4a–c) for (d) and (4.5) for (e). See also the supplementary movies available at
https://doi.org/10.1017/jfm.2024.729.
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n would be perpendicular to this plane. For shapes slightly out of plane, n is perpendicular
to a certain ‘average plane’ and determines its orientation. The unit vector n can be
expressed in spherical coordinates with the polar angle θ that it makes with the vertical
axis z (parallel to gravity) and the azimuthal angle φ that its projection onto xy-plane
makes with the x-axis (see figure 3a). The x and y axes are chosen arbitrarily and are not
related to the initial fibre orientation that usually changes during the transient time of the
evolution. In the following, the angles θ and φ are determined as functions of time and are
used to characterise the dynamical modes.

The time-dependent end-to-end vector r1N = rN − r1 provides more information about
the fibre shape and motion in different modes. Here we are interested in the radius ρ and
the altitude �z, i.e. the cylindrical coordinates of r1N , with the cylindrical axis parallel
to gravity and the origin at the point r1. The projection of the trajectory of the tip of the
end-to-end vector r1N on the plane of the cylindrical coordinates ρ and �z will be analysed
in § 5 to show the difference between the modes and bifurcations they undergo.

4.2. Tilted mode
The fibre shape in the tilted mode does not change with time, and it is not planar, as shown
in figure 3(b) (compare with the similar numerical results in figure 1 of Saggiorato et al.
2015). The mode name, tilted, indicates that the ‘averaged plane’ of the fibre shape is
inclined with respect to gravity. In figure 3(b), the horizontal axes of the side and front
planes and vertical axis correspond respectively to

(x − xCM)/d, ( y − yCM)/d, (z − zCM)/d. (4.2a–c)

More information about the fibre shape, orientation and motion is provided in figure 4
(blue dashed lines). Its orientation is fixed: the polar angle θ and the azimuthal angle
φ are constant in time, as shown in figure 4(a,d). The shape is symmetric with respect
to reflection in the vertical plane parallel to the side plane of the snapshot shown in
figure 3(b). In particular, the fibre ends are at the same horizontal level, with �z = 0, as
visible in figure 4(b). Due to the inclined shape, i.e. the non-zero inclination angle θ , the
fibre moves horizontally along x. Therefore, the top view of the centre-of-mass trajectory
is a straight line, shown in figure 4(c).

4.3. Rotation mode
The rotation mode is another mode in which the shape of the fibre does not change with
time. The shape is chiral and, therefore, it rotates around the gravity direction z with a
certain period TR. In the reference frame with the origin on the rotation axis of the fibre
centre of mass, xCM = R cos(2πt/TR) and yCM = R sin(2πt/TR), where R is the radius of
rotation. Projections of the fibre shape in the reference frame rotating and translating with
the fibre and the origin on the rotation axis are shown in figure 3(c). Here, the horizontal
axes of the side and front planes and the vertical axis correspond to

⎛
⎜⎜⎜⎝

cos
(

2πt
TR

)
sin

(
2πt
TR

)
0

− sin
(

2πt
TR

)
cos

(
2πt
TR

)
0

0 0 1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

(
x − R cos

(
2πt
TR

))
/d(

y − R sin
(

2πt
TR

))
/d

(z − zCM)/d

⎞
⎟⎟⎟⎟⎟⎠ , (4.3)

respectively.
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Figure 4. Basic features of the regular (a–d) and irregular (e, f ) modes of fibre with N = 36 (one example of
each mode). Time dependence of (a) polar angle θ , (b) vertical coordinate �z of the fibre end-to-end vector
r1N , and (d) azimuthal angle φ. Top view (c) of the centre-of-mass trajectory (the ranges of times are 1150τb
for tilted, 1545τb for rotation, 1800τb for crawling and 3700τb for rotation-crawling modes). Evolution of an
irregular mode: (e) azimuthal angle φ (with the results for crawling and rotation-crawling modes shown for
comparison) and ( f ) top view of the centre-of-mass trajectory.

More information about the fibre shape, orientation and motion is provided in figure 4
(orange dotted lines). The polar angle θ remains constant in time, as visible in figure 4(a).
The azimuthal angle φ increases with a constant slope that defines the characteristic
period of rotation, with TR = 1545τb for the orange dotted line in figure 4(d). A non-zero,
time-independent value of the difference �z between vertical positions of the fibre ends
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can be seen in figure 4(b). The fibre centre of mass follows a helical trajectory with a
circular cross-section, shown in figure 4(c). Another example of the fibre motion in the
rotation mode was evaluated numerically by a different method (Saggiorato et al. 2015).

4.4. Crawling mode
The crawling mode has not been reported in the literature so far. The shape of the fibre
in the crawling mode does not remain fixed but changes periodically with a period T . The
snapshots of the fibre shape, taken at time intervals equal to T/8, are shown in figure 3(d),
where the horizontal axes of the side and front planes and the vertical axis correspond
respectively to

(x − xCM)/d, y/d, (z − zCM)/d. (4.4a–c)

The fibre appears to be making crawling motions with its arms, hence the name of the
mode. First, for half of the period T , the left arm is positioned above the right one and,
then, for the next half of the period T , the right arm becomes above the left one. Moreover,
the fibre shape at time t + T/2 is the mirror reflection of the shape at time t, with the
reflection plane parallel to the side plane, as seen in figure 3(d).

More information about the fibre shape, orientation, and motion is provided in figure 4
(green solid lines). It is clear already in figure 3(d) that the shape is inclined, with the
inclination angle θ > 0, displayed in figure 4(a). This inclination causes a lateral drift of
the fibre centre of mass along x, with small periodic side movements along y, as seen in
figure 4(c). The azimuthal angle φ and the difference �z between the vertical positions of
the fibre ends are periodic functions with the same period T = 440τb (see the solid green
lines in figure 4b,d). The polar angle θ is a periodic function with the period T/2 (see
figure 4a).

4.5. Rotation-crawling mode
The rotation-crawling mode has not been reported in the literature so far. It is a more
complex mode than those discussed previously. The rotation-crawling mode seems to be a
quasi-periodic motion with two incommensurable characteristic time scales, TR and T . The
shape is chiral, and the fibre rotates around z with a period TR, which is the time it takes for
the time-averaged azimuthal angle φ to change by 2π. In addition, similar to the crawling
mode, the shape of the fibre changes with time, allowing to introduce a characteristic time
T required for the fibre to return to its initial conformation after completing a full cycle of
deformation. To identify the period T , the time dependence of either θ or �z is used.

The period TR of the rotation-crawling mode is typically larger than the rotation period
of the rotation mode with similar values of B and N. Therefore, the shape oscillations
influence the rotational dynamics.

The sequence of snapshots of the fibre shape, taken at the time intervals T/8, are shown
in figure 3(e). The moving frame of reference is chosen in such a way that the horizontal
axes of the side and front planes and the vertical axis are specified using the following
equation: ⎛

⎜⎜⎜⎜⎜⎝
cos

(
2πt
TR

)
sin

(
2πt
TR

)
0

− sin
(

2πt
TR

)
cos

(
2πt
TR

)
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

(x − xCM)/d(
y − R sin

(
2πt
TR

))
/d

(z − zCM)/d

⎞
⎟⎟⎟⎠ , (4.5)

994 A13-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.729


Attracting dynamical modes of highly elastic fibres settling

where R is the radius of rotation of the time-averaged centre-of-mass trajectory yCM(xCM).
Therefore, yCM oscillates around R sin(2πt/TR).

The snapshots in figure 3(e) are strikingly reminiscent of the sequence of snapshots
from the crawling mode, shown in figure 3(d). In contrast to the crawling mode, for the
rotation-crawling mode, the shapes at t + T/2 differ from the mirror reflection of shapes
at time t.

The centre-of-mass trajectory in this mode shows the superposition of three motions:
settling down, rotation around gravity and periodic sideways motion (see figure 4c). In
the reference frame settling down with velocity żCM , two independent characteristic time
scales describe this motion: a longer period TR that is associated with the rotation and
a shorter period T that characterises the smaller variations. For the example shown by
red solid lines in figure 4, TR ≈ 3690τb and T ≈ 390τb. Both time scales are also seen
in figure 4(d) as the azimuthal angle φ increases with the superimposed small periodic
oscillations. The difference �z between the vertical positions of the fibre ends is also a
periodic function with the period T , although its positive and negative amplitudes have
different magnitudes, as opposed to the crawling mode (see figure 4b).

4.6. Irregular mode
Up to this point, we have discussed regular modes, which are attained after a sufficiently
long time. However, for certain values of the parameters, the attracting modes have not
been reached, even for a very long time. Such a behaviour will be called an irregular
mode. An example of such an irregular evolution is shown in figure 4(e, f ), from t = 0
until t = 27 800τb. The azimuthal angle φ(t) is plotted in figure 4(e). In the same plot, for
comparison, we added two examples of the numerical trials, which, after a certain time,
reach an attracting regular mode and later stay in this mode for a long time.

For all the numerical trials, the initial almost straight and horizontal configuration is
followed by a short-time U-shape deformation of the fibre almost in a vertical plane (as
for more stiff fibres Schlagberger & Netz 2005; Llopis et al. 2007). However, a vertical
U-shape configuration is not stable for highly flexible fibres and, then, transient or irregular
dynamics of the out-of-plane shapes are observed. For a range of large (but not too large)
values of B, the dynamics after a relatively short time is transformed into a regular mode.
However, for some of the larger values of B, the fibre moves non-systematically all the
time. An example of the irregularity is visible in figure 4(e, f ). The irregularity of the
centre-of-mass trajectory shown in figure 4( f ) contains certain parts with an irregular
rotation and irregular oscillations, resembling the regular rotation-crawling mode on a very
short time scale. The irregularity is also discussed in the next section and in Appendix C.

5. Time scales, asymmetry and bifurcations of the modes

In this section, we study in detail the properties of the modes. We first focus on the regular
modes and determine the dependence on B and N of two characteristic periods: the rotation
period, TR, and the oscillation period, T .

The rotation period TR is the longest characteristic time that is present for rotation and
rotation-crawling modes. TR as a function of B and N is shown in colours in figure 5(a).
For both modes, TR varies in the comparable range of values. There is a clear dependence
on N and B observed in the case of the rotation mode: TR decreases with an increase of B
for a fixed N, and it decreases also with growing N for a fixed B. More flexible fibres form
stationary shapes that rotate faster.
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Figure 5. Characteristic features of the modes. (a) The rotation period TR for the rotation and rotation-crawling
modes. (b) The oscillation period T for the crawling and rotation-crawling modes. (c) Maximum difference
between vertical positions of the fibre ends |�z|max during the mode. (d) Average time T100d for a fibre to
sediment by zCM = 100d. In (a) and (b), the white colour corresponds to the absence of rotation or oscillation,
and the hatched area to the irregular mode; in (c), the white colour corresponds to �z = 0 (exactly) for the
tilted mode. In (a) TR = 93 280τb for N = 34 and B = 5500, and TR = 20 800τb for N = 22 and B = 9000.

For the rotation-crawling mode, the dependence of TR on N and B is not so simple.
In most cases, a general tendency is observed, but there are exceptions. When N = 26 is
considered, TR for the rotation-crawling mode decreases with an increase of B, similar to
the behaviour of TR for the rotation mode. This is also observed for N = 38, though on
two data points only. However, exceptionally, for N = 34, the value of TR for B = 10 000 is
much larger than for B = 8500. In general, for the rotation-crawling mode, the dependence
of TR on N for a fixed B is as for B = 8500: a gradual increase of TR with increasing N is
observed, in contrast to the rotation mode. This difference is related to the time-dependent
shape and time-dependent angular velocity of the fibre in the rotation-crawling mode.
However, for B = 9000, there is an exception from this general tendency: the value
TR = 20 800τb for N = 22 is much larger than TR for a slightly larger N = 24.

The characteristic oscillation period T for the crawling behaviour as a function of N and
B is shown in colours in figure 5(b). It is seen that, in general, T increases with increasing
N for a fixed B, and T decreases with increasing B for a fixed N. But again, there are
exceptions. Three regions stand out from the general tendency described previously. Two
of them correspond to the exceptional behaviour of TR. Namely, the value of T for N = 22
and B = 9000 is much larger than the values of its neighbours. The values of T for N = 32,
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34 and B = 9500, 10 000 are also larger than T for smaller values of B. The third region is
spanned by 30 ≤ N ≤ 34 and 4500 ≤ B ≤ 6000. In this range, extremely large values of
T are observed for the largest value N = 34, close to the border with the rotation mode. It
seems that the exceptions from the general tendency occur for values of B and N close to
transitions between different modes.

It is useful to compare TR and T to a characteristic time of the gravitational settling,
chosen as the time T100d needed for a fibre to move along gravity the distance equal to
100d. The time T100d is computed separately for each pair B and N, based on the mean
vertical centre-of-mass velocity in the respective attracting mode. In figure 5(d), we show
T100d as a function of N and B with the use of colours.

It is clear that T100d is much smaller than the rotation period TR and also much smaller
than the oscillation period T . The settling time T100d only weakly depends on B, but it
systematically decreases with the increase of N. The increase of N results in the increase of
the fibre mass, but also in the increase of its drag. The competing nature of these two effects
leads to a small increase of the fibre settling velocity and, therefore, a small decrease of
T100d (for larger values of N, the settling velocity scales as ln N + C Adamczyk et al.
2010). Therefore, even though the fibre’s mass, as well as the fibre’s flexibility, change by
up to a factor of three or more, figure 5(d) shows that the sedimentation time T100d changes
by no more than 1.4 times. Recall that for a single bead, T100d = 300τb.

For the tilted mode, there is a clear dependence of T100d on N and B: the sedimentation
time T100d increases with increasing B for a fixed N, but for a fixed B it decreases with
increasing N as the fibre becomes heavier and heavier. In the case of the rotation mode, a
similar decreasing tendency is observed with increasing N for a fixed B. For this mode, on
the other hand, T100d practically does not change with increasing B for a fixed N. For the
other sedimentation modes, the fibre shape changes over time, which significantly affects
the mean sedimentation velocity and also T100d.

More information about the time-dependent sedimentation velocity is provided in
Appendix B. In figure 9, we plot the maximum sedimentation velocity and the difference
between the maximum and the minimum sedimentation velocities for each mode with
given values of B and N.

The regular and irregular modes can be compared with each other by ‘an asymmetry
parameter’: the maximum difference |�z|max between the vertical positions of the fibre
ends achieved during the observation of the mode with given values of B and N. In
figure 5(c), |�z|max is normalised by L0: the fibre length in the elastic equilibrium. In
general, the increase in the fibre flexibility, i.e. the increase of B or N, leads to an increase
in |�z|max/L0. However, due to the symmetry of the tilted mode, �z = 0 for any values
of N and B. The rotation mode exhibits an increase in |�z|max/L0 with increasing N
(or B) for a fixed B (or N). For the crawling and rotation-crawling modes |�z|max/L0
behaves similarly to the rotation mode, except the three regions of N and B which exhibit
exceptional behaviour of TR or T , as described earlier.

To emphasise the complexity of the motion and shape deformation of different modes,
and to highlight their differences, figure 6 shows the projection of the trajectories of the
tip of the end-to-end vector r1N on the plane of the cylindrical coordinates ρ and �z, for
N = 36 and 3000 ≤ B ≤ 8500, changed by the step of 500. For the tilted mode, |�z| = 0
and, therefore, the radial coordinate ρ is constant in time, and the same is true for the
length of the end-to-end vector |r1N |. As the shape of the fibre does not change in the
rotation mode, the radial coordinate ρ of the end-to-end vector does not change in time.
Symmetry with respect to the reflection �z → −�z is present in the crawling mode when
the ρ − �z projection of the tip of the vector follows a figure of eight: �z is a symmetric
periodic function with a period T (see also figure 4b). Finally, a distorted figure of eight
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Figure 6. Projection of the trajectories of the tip of the end-to-end vector r1N on the plane of the cylindrical
coordinates ρ and �z for N = 36 and 3000 ≤ B ≤ 8500, changed by the step of Bstep = 500. The colours of
the curves in the online version correspond to the same colours of the modes as in figures 1 and 4. The values
of B are stated for the tilted (B = 3000, 3500), crawling (B = 7500, 8000) and rotation-crawling (B = 8500)
modes. The values 4000 ≤ B ≤ 7000 for the rotation mode correspond to the dots (orange online) under an
arrow, which marks the increase of B.

is drawn on the ρ − �z plane by the tip of the end-to-end vector in the rotation-crawling
mode, as �z is now a non-symmetric periodic function with a period T (see also figure 4b).

Overall, the data analysis suggests that sedimentation modes with a non-stationary fibre
shape cannot be easily described. There are several indications that this is the case. First,
there exists the region 30 ≤ N ≤ 34 and 4500 ≤ B ≤ 6000, for which the behaviour of T
and |�z|max/L0 differs from the behaviour for the other values of N and B. Second, there
are two other regions (with N = 22 and B = 8500, and N = 32, 34 and B = 9500, 10 000),
which break the monotonic dependence on N and/or B for TR, T and |�z|max/L0. Finally,
there exists the irregular mode for different, separated from each other regions of N and B.

Therefore, in figure 7 we analyse the differences between the dynamics for B = 5500
and different values of N. We show the projection of the trajectory of the tip of the
end-to-end vector on the plane of ρ and �z for N = 28, 30 (crawling mode), N = 32
(irregular mode) and N = 34 (rotation-crawling mode), close to the transition to the
rotation mode, observed at N = 36. Between N = 28 and N = 30, a period-doubling
bifurcation takes place. A sequence of bifurcations between N = 30 and N = 32 might
lead to a strange attractor and chaotic behaviour of the irregular mode. A sequence of
period-halving bifurcations between N = 32 and N = 36 may lead to the formation of the
rotation mode.

Figure 7 illustrates that the existence of the irregular mode is an inherent feature of the
dynamics of highly elastic fibres. Transitions between the crawling, rotation-crawling and
irregular modes, seem to be sensitive to even small changes in values of the parameters
B and N, as illustrated in Appendix C. To determine the nature of the bifurcations in the
phase diagram, the Floquet stability analysis would be useful, but it goes beyond the scope
of this paper.

6. Conclusions

In this work, we have numerically determined the dynamics of a single highly elastic
fibre settling under gravity in a very viscous fluid, at the Reynolds number much smaller
than unity. We focused on long-time behaviour and showed that there exist different
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Figure 7. Bifurcations of the dynamics with the increasing aspect ratio N (top-down: N = 28, 30, 32, 34) for
a fixed value B = 5500. In each frame, points or curves for N = 36 (rotation mode) are drawn in orange for
comparison. (Left column) Cylindrical coordinate ρ as a function of �z, (centre) vertical coordinate �z as
a function of time t, and (right) polar angle θ as a function of time t. For N = 32, the parts of the curves
corresponding to 20 000 ≤ t/τb ≤ 23 000 are highlighted in red on all three plots.

attracting modes. We provided in figure 1 the phase diagram of these modes, obtained
by systematically varying the elasto-gravitation number B and the fibre aspect ratio N in
certain ranges. In this way, we demonstrated that for highly elastic fibres, not only B but
also N significantly affects the fibre shapes and their dynamics. We confirmed the existence
of two families of non-planar stationary configurations, shown by Saggiorato et al. (2015),
one translating and one rotating, and we investigated their properties. We found two
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new families of the dynamical modes with periodic deformations of the fibre shape, one
translating and one rotating. Finally, we showed that very flexible fibres often deform and
move irregularly. This irregularity seems to be related to bifurcations of the dynamics
relatively close to transitions between the crawling, rotation-crawling and irregular modes,
with a possibility of chaotic dynamics. The transition between the vertical, tilted and
crawling modes is more simple and regular.

The regular modes presented in this work are achieved after a very long time, as
illustrated in figures 4(e) and 5(d). However, in our simulations, we often observe
transient, short-time effects similar to the long-time attracting modes described previously.
Examples of this similarity are visible by comparing our long-time modes with some
features of the short-time dynamics observed in the numerical and experimental data
reported by Shashank et al. (2023).

It is worth emphasising that the complex time-dependent shapes of highly elastic
fibres and their motion found in this work are three-dimensional. Initially, we impose a
small perturbation out of a vertical plane. Within our theoretical description of a highly
elastic fibre in a three-dimensional unbounded fluid, we have not found any stationary
or periodic solutions restricted to a vertical plane. Therefore, we have not recovered the
non-symmetric periodic motions of a highly flexible filament within a vertical plane, found
for a two-dimensional fluid and reported by Shojaei & Dehghani (2015). The absence
of such solutions in our simulations may be related to a much smaller aspect ratio and,
therefore, a much smaller value of B. Alternatively, it may be caused by the use of a more
precise theoretical approach. Namely, we take into account the thickness of the fibre and
the hydrodynamic interactions between all its segments.

The complex dynamics of highly flexible fibres found in this work differ significantly
from the dynamics of moderately or weakly flexible fibres. It suggests the possibility of
a qualitative change in the structure and transport properties of flexible fibre suspensions
when their bending stiffness is decreased.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.729.
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Maria L. Ekiel-Jeżewska https://orcid.org/0000-0003-3134-460X.

Appendix A. Procedure for identification of the elasto-gravitation number BT for the
transition from the tilted to crawling mode

The transition value BT of the elasto-gravitation number B for a given value of the fibre
aspect ratio N is identified as follows. The two smallest values of B for which the crawling
mode is observed are selected. For each case, the amplitude of the time-varying polar angle
θ in the crawling mode is determined. Subsequently, a linear fit identifies the value of B at
which the amplitude of the polar angle diminishes to zero, signifying the cessation of the
crawling mode and thereby establishing the transition value BT . A graphical representation
of this procedure is shown in figure 8, with N = 24 chosen as an example. A conservative
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Figure 9. (a) Maximum sedimentation velocity Vz,max and (b) the difference between maximum and
minimum sedimentation velocities Vz,max − Vz,min during sedimentation.

estimation yields an error in the determination of BT not exceeding 100. This value of the
error was incorporated into the fitting procedure.

Appendix B. Sedimentation velocity

The sedimentation velocity Vz is defined as the absolute value of the vertical component
of the centre-of-mass velocity. The mean sedimentation velocity, i.e. Vz averaged over all
the time spent in the given mode, separately for each pair of values, B and N, has already
been evaluated, and it can be extracted from figure 5(d) as 100d/T100d. Now, we estimate
how large the time-dependent fluctuations of Vz are for every mode. First, separately for
each N and B, we evaluate Vz,max (shown in figure 9a) and Vz,min, the maximum and the
minimum of Vz in the given mode. Then, in figure 9(b), we present the dependence of
Vz,max − Vz,min on N and B. Clearly, the maximum velocity and the velocity fluctuations
are the largest in the irregular mode. In the irregular mode, the fluctuations may reach even
one-third of the maximum velocity, owing to large changes in the fibre shape.

In general, Vz,max increases with the fibre weight much weaker than N. For example,
consider the fibre with N = 40 beads and B = 9500, i.e. the case for which the maximum
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Figure 10. Part of the phase diagram from figure 1 with a refined grid near the two irregular ‘islands’ at
{N, B} = {32, 5500} and {N, B} = {34, 6500}. The labels ‘I’ and ‘C’ stand for the irregular and crawling modes,
respectively.

sedimentation velocity of Vz,max = 1.75d/τb is observed among the studied fibres. It can
be seen that the fibre that is 40 times heavier sediments only 5 times faster than a single
bead, which settles with the velocity mg/3πηd = 1

3 d/τb. In this case, the mode is irregular,
and the shape of the fibre is constantly changing.

If a simpler case of the tilted mode is considered, e.g. the case with N = 40 beads and
B = 3000, a rough comparison of the velocity can be made with the previous numerical
study of sedimenting rigid shapes (Adamczyk et al. 2010). In a first approximation,
one can assume that the fibre under consideration has the shape of a half-circle. For
a rigid half-circle, the hydrodynamic radius R̄H was computed by Adamczyk et al.
(2010). Taking the rigid fibre of this shape, with N = 40, the hydrodynamic radius
is R̄H = 9.61a which gives the velocity value, averaged for all the orientations, of
VR̄H

= N/(R̄H/a)/3 = 1.39(d/τb). This number approximately agrees with that reported
here Vz,max = 1.48(d/τb), obtained for one specific orientation of the fibre, relatively close
to a vertical plane and therefore with a larger velocity than the averaged value.

Appendix C. Notes on the existence of the irregular mode

The existence of the irregular mode has been investigated near the vicinity of the irregular
‘islands’ observed for N = 32, B = 5500 and N = 34, B = 6500 in figure 1. Additional
simulations have been performed with a more refined grid for B. The results are shown in
figure 10. For N = 32, the irregular mode appears for all values of B. However, for N = 34,
in the new simulations, there appears also a value of B corresponding to the crawling
mode, in between the values of B leading to the irregular behaviour. It seems that there
are regions in the phase space of B and N with deterministic behaviour, where the same
dynamical mode is present no matter how fine is the grid. However, there might be also a
chaotic region, with different modes appearing in between when the grid is decreased, as
for N = 34 in figure 10.

In addition, we demonstrated that for a given value of B and N, the irregular mode may
appear for different initial configurations. As an example, we performed the numerical
simulation for N = 34, B = 6500, and the initial configuration chosen to resemble a
configuration typical for the rotation mode (this configuration was created from the final
configuration of the rotation mode of the fibre with N = 36, B = 6500, with the first
and last beads removed to create a fibre with N = 34). Again, we observed the irregular
dynamics, as in the case of the fibre that was initially horizontal and straight with small
perturbations.

994 A13-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.729


Attracting dynamical modes of highly elastic fibres settling

REFERENCES

ADAMCZYK, Z., SADLEJ, K., WAJNRYB, E., EKIEL-JEŻEWSKA, M.L. & WARSZYŃSKI, P. 2010
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