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Using patent statistics related to solar power on a panel of eleven countries from
1990 to 2008, we build a reduced-form model to analyze the role that public
policies play in fostering innovation. We conclude that public expenditure on
R&D and feed-in tariffs have a significant effect on the development of solar
energy. We also find a significant effect of electricity price, attributable to rising
energy prices. Using patent citations, we estimate the knowledge flows available
to inventors in each country over time and we find that the marginal
productivity of R&D has a positive and significant effect on innovation.
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In June 2001, the European Council of Gothenburg (Sweden) added an
environmental dimension to the Lisbon Agenda, constituting the European
plan for sustainable development. Under this new framework, public policies
in Europe should adopt a long-term vision to deal with issues such as
ratification of the Kyoto Protocol and promotion of renewable energies. In
this regard, the European Union (EU) has set a binding target for renewable
energy at 20% of the EU’s total energy needs by 2020. As Figure 1 shows,
renewable energy production has rapidly increased in Europe since 2001. In
fact, the contribution of renewables to electricity increased from less than
13% in 2001 to almost 17% in 2008. While hydropower has the lion’s share
of production of renewable energy, solar power production registered an
increase by a factor of 60 over the same period, as illustrated in Figure 2.
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Finally, Figure 3 ranks renewables by generation cost and shows that solar
energy still has great potential for improvement.
Figure 4 shows the “second boom” of the solar industry: after a period of

stagnation in the early 1990s, the count of patent applications related to
solar energy, which we use as one of the measures of technological progress
in this sector, has been booming in the 2000s, going from roughly 100 in
1995 to almost 700 in 2008. This time frame has been deeply analyzed by
the induced innovation literature because it coincided with the launch of
many public policies in the area of renewable energies in several European
countries, as discussed in the next subsection.
Figure 5 confirms that innovation in solar energy is still concentrated in a few

countries, namely Germany, Japan, and the United States. According to
Dechezlepretre et al. (2011), these three nations covered ⅔ of total
innovations in environmentally friendly technologies in 2003, while Japan
alone accounted on average for 40% of worldwide “green” innovations. In
addition, Peters et al. (2012) showed that these three countries were among
the first movers in the “first boom” of the solar energy (1974–1985) and that
they further reinforced their position of leadership in the solar industry

Figure 1. Share of Renewable Energies in Total Electricity Consumption in
EU-25
Source: Eurostat
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during the “second boom” (1995–2008). In this period, Germany became the
largest market for photovoltaic (PV) installations, and US patenting activity in
this industry grew by more than a factor of eleven, allowing the United States
to overtake Japan. Furthermore, these authors answer an interesting question
about the location of solar industry activities by providing evidence that
policies implemented in one country can benefit innovation in other
countries thanks to knowledge spillovers. This issue will also be addressed in
this paper by weighting our policy measures based on the intensity of
international trade, as explained in the specific section.
Our study aims at investigating the effects of public policies on the rate of

innovation in solar energy with a focus on the common framework developed
in Europe and includes the top eight European countries in addition to the
three industry leaders: Germany, Japan, and the United States.1

Figure 2. Primary Production of Solar Power in EU-25
Source: Eurostat

1 Rankings based on the count of patent applications in solar energy over the period 1990–2008.
Data constraints severely limit the number of countries and the period of coverage in the study.
Our results reflect only this period and the countries listed in the Appendix and cannot be
extended to other countries or to other time periods.
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Figure 4. Number of EPO Patent Applications in Solar Energy in 11 Countries

Figure 3. Base-case Levelized Cost of Energy, First Quarter 2009
Source: Bloomberg New Energy Finance
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Technology and Environmental Policy

The relationship between technology and environmental policy has been under
scrutiny for the last twenty years. Seminal contributions to this field include
Lanjouw and Mody (1996) and Jaffe and Palmer (1997). The former found a
positive correlation between lagged regulatory compliance costs and
patenting activity in environmental technologies, whereas the latter found no
significant effect of compliance expenditures on inventive output over
twenty-four manufacturing industries across many sectors of the economy.
By restricting the analysis only to environmentally related patents and not to
overall innovation, Brunnermeier and Cohen (2003) provided evidence of a
small positive impact of pollution abatement expenditures on environmental
innovation.
Jaffe, Newell, and Stavins (2005) showed the design of effective policies in the

energy market to be complex because these policies must address not one, but
two market failures. The first is the presence of negative externalities in the
form of pollution costs that firms do not internalize, thus generating
overproduction of electricity from nonrenewable sources, whereas the second
is the existence of positive externalities in the form of knowledge spillovers
that posit a problem of underproduction in the creation and diffusion of new
technologies. Here, public expenditure on R&D can be seen as a source of

Figure 5. Top 3 Countries Ranked by Number of EPO Patent Applications in
Solar Energy

Agricultural and Resource Economics Review48 April 2017

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

36
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.36


variety and flexibility, reducing uncertainty that may be associated with
research investments, allowing a larger number of trajectories. In particular,
Callon (1994) contrasted market forces, which tend to be path-dependent by
focusing only on a narrow set of highly profitable alternatives, with
government protection that can allow promising research opportunities to
grow, thanks to its long-term vision. However, government intervention is not
a panacea. To protect against the risk of failure, Jaffe, Newell, and Stavins
(2005) argued in favor of a portfolio of policies in which technology and
environmental policies complement each other and cautioned against the
implementation of a single policy that cannot target all the possible future
scenarios, which are unpredictable at the beginning of the project. In their
extensive literature review of federal research in the field of energy and the
environment, the authors found that the benefits of a few successes can
justify the overall portfolio investments because R&D investments made in
several projects experience different payoffs under different future market
conditions.
Carrión-Flores and Innes (2010) provided evidence that technology and

environmental policy are not just complements, but they are also jointly
determined. Their study showed that causality is not unidirectional because
environmental policy can foster innovation, which in return leads to a further
tightening of regulation. For this reason, these authors proposed to address
the problem of endogeneity of emissions and patent counts by building a
structural model of bidirectional links and found that environmental
innovation is induced in part by policy, but mainly by technological progress,
ultimately resulting in stricter emission standards.
According to IEA (2004), a portfolio of policies has been adopted by several

countries to spur the growth of renewable energies. First, support for R&D in
the 1970s, then incentives for investing, tax credits, price-support policies,
and, finally, tradable certificates. This study focuses on three policy
initiatives.2 The first is public expenditure on R&D, which is a typical
example of a technology-push policy because it stimulates innovation from
the supply side by lowering the cost and the risk of private research efforts
in this sector. Several European countries along with Japan and the United
States have also financed large R&D budgets in solar energy, as shown in
Figure 6. The second is feed-in tariffs, which is an example of a demand-pull
policy that spurs technical change by specifically targeting the demand for
each type of renewable energy. Its objective is to increase market volumes
and thus to decrease uncertainty for producers of solar power both by
lowering the higher (private) generation costs from each renewable source
and by guarantying a fixed amount per kWh for a long period along with

2 The choice of these three policies is dictated by the eagerness to avoid binary variables and to
focus only on continuous policy proxies in order to track more closely changes in environmental
policy stringency or support.
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access to the grid. After the introduction of feed-in tariffs in Germany and
Denmark in the early 1990s, Austria, Greece, Italy, Luxembourg, and Spain
have followed this road in the mid-1990s, trailed by France and the
Netherlands in the early 2000s. The third and last one is renewable energy
targets, which is another example of a demand-pull policy, but more
specifically of a command-and-control regulation because it mandates
electricity retailers to include a certain portion of total electricity sales from
renewable energies, without explicitly distinguishing between them. In this
case, firms have their choice of how to comply with this regulation, and they
opt for the most cost-effective renewable sources.

Approach

Induced Technological Change in the environmental field has been studied from
several angles since Hicks (1932) formulated the hypothesis that a change in
relative (energy) prices induces innovation by substituting for the factor that
has become more expensive. Johnstone, Hascic, and Popp (2010) offered a
major study regarding the effects of different environmental policies on
innovation, with the most comprehensive analysis of patent data in five
renewable energies (solar, wind, ocean, geothermal, and biomass) in twenty-
five countries from 1978 to 2003. These authors found important differences
across technologies: specific policies are needed to develop less-competitive
sources such as solar power, while more broad-based policies favor more
mature technologies such as wind and geothermal energy. They also
concluded that generally policies rather than energy prices play the key role

Figure 6. Government R&D Budgets in Germany, Japan, and USA in Solar
Power
Source: International Energy Agency
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in fostering innovation in these technologies. Nesta, Vona, and Nicolli (2014)
built on their study by addressing the issue of endogeneity of the policy
variables, thanks to the introduction of both within-sample and out-of-sample
instruments. In modeling the relationship between technology and
environmental policy, we closely follow their approach and add a similar set
of instrumental variables to the econometric analysis presented in this paper.
However, none of the studies mentioned in the above literature review

accounts for the large fluctuations experienced by the productivity of R&D
when oil prices change so abruptly. In fact, omitting a control for the
productivity of past innovation could lead to a severe underestimation of
the contribution of public policies to technological change in renewable
energies. Using patent citations, this paper provides estimates of R&D
productivity in solar energy in eleven countries over the period 1990–2008
to address this omitted-variable bias. To our knowledge, this is the first study
to contribute to this research question in multiple countries after the
pioneering contribution given by Popp (2002), which was limited only to the
United States. Despite its limitations, the analysis of this additional variable
provides useful insight for governments about the timing of policy
instruments – in particular about the appropriate time to adjust public
support to solar energy – in reaction to rapidly changing market
circumstances. In fact, IEA (2011) estimated that from 2000 to 2010 solar
energy was the fastest-growing power technology worldwide, in terms of the
annual rate of market growth, making it cost competitive compared to retail
electricity prices in some favorable markets. This boom may have resulted in
the creation of so-called “PV bubbles” in a few countries, such as Spain, Italy,
France, and Germany, where larger-than-expected amounts of PV have
been installed. The purpose of introducing an additional control for the
productivity of R&D is also to caution policymakers against the
implementation of generous subsidies to solar energy (e.g., feed-in tariff
payments in Germany amounted to roughly $66 billion in 2010 (Peters et al.
2012)) during a period of rising energy prices, as these policies unintendedly
exaggerate the expectations of future market growth.

Data

Dependent variable: Patent data have been widely used as a measure of
innovative activity since the pioneering work of Griliches (1990). For patent
statistics, we refer to the European Patent Office (EPO)’s PATSTAT.3 The
main advantage of this approach is that every patent application is registered
using the International Patent Classification (IPC) system, which categorizes
inventions by product or process. An IPC code is composed of a letter

3 Available at https://www.epo.org/searching-for-patents/business/patstat.html#tab1. Accessed
May, 2016.
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denoting the IPC section, followed by two-digit number referring to the IPC
class, and another letter denoting the IPC subclass (e.g., F03G). Optionally,
there is a number (up to 3 digits) indicating the IPC main group and another
number (up to 3 digits), separated by a slash, which refers to the IPC
subgroup. This classification is thus composed of an alphanumerical code of
up to eleven digits that carefully disaggregates the scope of the patent.
Following the literature on environmental innovation, in particular the work
of Johnstone, Hascic, and Popp (2010) and Dechezlepretre et al. (2011), and
after consulting the World Intellectual Property Organization classification of
renewable energies, we select a set of IPC codes for solar power.4

The major shortcoming of this approach is that the propensity to patent
inventions varies across countries. In addition, patents do not protect perfectly
against imitation, thus lowering the incentives to patent all new ideas. Finally,
patent values follow a highly skewed distribution, because only a few are very
valuable, while many do not become a commercial success (Nagaoka,
Motohashi, and Goto 2010). To account for heterogeneity in patent quality, this
paper uses patent families rather than the raw count of patent applications.
Harhoff, Scherer, and Vopel (2003) regarded a patent family to be the number
of jurisdictions in which the same invention seeks protection, and found a
significant correlation between the family size of EPO patents and the value of
patents, obtained from a survey of German patent holders. In building the
dependent variable, we follow Popp, Hascic, and Medhi (2011), who treated
each member of a patent family as a separate invention. Hence, a patent
application receives a weight equal to the number of countries where the
patent grant has been sought. Here, the intuition is that filing a patent in
multiple countries is costly, and therefore only the most valuable inventions
will be patented in several offices, as they are expected to accrue enough
profits to recover the filing costs. To exclude low-value inventions, our study
introduces an additional quality hurdle by including only EPO patents, which
have higher filing costs than those filed at any single national patent office in
Europe.5

As standard in the literature, we use the application year of the patent for our
analysis because it signals when the invention is really conceived and because it
is a consistent measure over time. According to Harhoof and Wagner (2009),
the time lag between the application and the granting of a patent is not

4 IPC Green Inventory, available at http://www.wipo.int/classifications/ipc/en/est/index.html.
Accessed July, 2012. A complete list of IPC codes for solar power is also available in the Appendix.
5 To stress the different evaluation between EPO patents and patents filed at national offices,
Popp, Hascic, and Medhi (2011) assigned a minimum weight of two to the former (one point
for the home country and one for abroad) and of only one point to the latter. By including only
patents filed at the EPO, we avoid this arbitrary data manipulation, and by treating the
European Patent Office as a supranational entity we avoid the exclusion of patent applications
whose family size is equal to one. In fact, this exclusion would result in a loss of roughly 18%
of the patents in our dataset.
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constant over time, because it depends on several factors such as the
complexity of the patent and institutional changes at the EPO. For the
purpose of our paper, it is worth recollecting that the EPO started its
operation in 1978, and the number of patent applications has been increasing
considerably since then. Unfortunately, examination capacities at the EPO
cannot be adjusted right away because patent examiners have to undergo a
lengthy training before achieving the technical knowledge required to operate
in their field of expertise. For example, a shortage of examiners has to be
blamed for a longer examination period in the late 1990s. On the other hand,
computerization of the EPO records (e.g., Espacenet) has significantly
shortened the search and examination period in the 2000s.
Renewable energy policies: For the annual budget devoted to R&D in

renewable energies, we use data from the International Energy Agency
(IEA)’s Energy Technology Research and Development Database.6 The IEA
sends a questionnaire annually to national administrations, regarding
government energy technology R&D budgets, which are calculated by
identifying all the budget items involving R&D and measuring or estimating
their R&D content in terms of funding. Despite their efforts, coverage of the
data depends on the information delivered by national data collectors;
unfortunately, it contains several missing observations.
For feed-in tariffs, the source of the data is the IEA’s Global Renewable

Energy Database, covering different kinds of policy initiatives7, and a
survey of literature by Sijm (2002). For renewable energy targets, we
use data from the European Commission,8 from the US Department of
Energy9 and from the Japanese Minister of Economy, Trade, and Industry.10

Finally, the World Bank estimates the variable Tensys to measure the
democracy longevity in each country.11

Market measures: For the price of electricity, we refer to the IEA’s Energy
Prices and Taxes Database.12 As discussed in the introduction, despite the

6 Energy Technology RD&D 2011 edition, available at http://wds.iea.org/. Data in 2010 Billion
USD and PPP. Accessed July, 2012.
7 Available at http://www.iea.org/textbase/pm/index.html. Data in 2010 USD/kWh and PPP.
Accessed July, 2012.
8 Available at http://www.erec.org/projects/finalised-projects/res-in-eu-cc.html Accessed July,
2012.
9 Available at http://www.dsireusa.org/summarytables/rrpre.cfm Renewable Portfolio
Standards are set at the state level in the United States. The final renewable energy target for
the United States is a weighted average, where the weight is each state’s share of total US
electricity consumption. Accessed July, 2012.
10 Available at http://www.rps.go.jp/RPS/new-contents/top/toplink-english.html Accessed
July, 2012.
11 The World Bank Database of Political Institutions, available at www.econ.worldbank.org.
Accessed May 2016.
12 1Q 2012 edition, available at http://wds.iea.org/. The price of electricity (in 2010 USD/kWh
and PPP) is the average of residential and industrial prices, weighted by consumption levels.
Accessed July, 2012.
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major increase in the share of electricity generated from renewables in total
electricity consumption, hydropower has the lion’s share of electricity
generation; while other renewable sources such as solar power still have a
small proportion of the electricity market and hence cannot significantly
influence electricity prices. For this reason, we consider the price of
electricity as exogenous. According to IEA (2010), the cost of electricity in the
coming years will depend mainly on the costs of raising financial capital and
the price of carbon. For electricity consumption we rely on the IEA’s
Electricity Information Database.13 Following Johnstone, Hascic, and Popp
(2010), we use percentage growth in electricity consumption to measure
expectations for future growth in the electricity market. The final dataset
contains observations at the country and year level for the top nine European
countries, Japan, and the United States over the period 1990–2008 and
covers solar power.

Methods

Estimating the Productivity Parameter

As discussed in the introduction, neglecting to control for changes in the
usefulness of knowledge over time might cause underestimation of the role
of technological change induced by public policies, and overestimation of the
positive effects of higher energy prices on environmental innovation. A
growing literature, starting with the pioneering contribution of Trajtenberg
(1990), has looked at the number of citations a patent receives as a valid
estimator of the knowledge flow available to inventors in any given year. In
particular, if a patent receives numerous citations, the knowledge embodied
in that patent must have contributed significantly to the technological
progress in that particular year. As a consequence, the marginal productivity
of research should increase right after a technological breakthrough. To
estimate the pattern of R&D productivity over time, our study looks at the
probability of being cited for patents granted in any given year.14 So, we sort
potentially cited patents by year of grant and denote them nCTD, while we
rank citing patents by year of application and denote them nCTG.
Hence, the dataset is composed by cohorts of patents sorted by cited years

(CTD: 1980– 2008), by citing years (CTG: 1982– 2009), and by technology
(j: solar, wind, geothermal, and ocean). For example, one cohort may be
composed of the number of citations (csolar) to all solar energy patents

13 2012 edition, available at http://wds.iea.org/. Total net production in GWh. Accessed July,
2012.
14 The count of patents, which were granted in each technological group from 1980 to 2008
following an application to the EPO, is used as proxy for the number of potentially cited patents
(nCTD).
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granted in 2000 (CTD) made by solar energy patents applied for in 2002 (CTG).
As a consequence, the probability of citation for a patent within each cohort is
given by:

(1) pj,CTG,CTD ¼ cj,CTG,CTD
nCTGnCTD

However, looking at the likelihood of citation alone would be misleading
because this probability is affected by other factors that change over time.
Following closely the work of Popp (2002), we propose an exponential
distribution to estimate the probability of citation among cohort members,
where we include the following control variables:

(2) pj;CTG;CTD ¼ αj;CTDψCTGγj exp½�β1(CTG� CTD)�
× 1� exp½�β2(CTG� CTD)�f gþεj;CTG;CTD

• αj,CTD is the parameter on a set of dummy variables that change
according to cited years and technology. It represents the likelihood
that patents in year CTD and in technological group j will be cited by
subsequent patents and measures the marginal productivity of R&D;

• ψCTG is the parameter on a set of dummy variables that change
according to citing years. It stands for the frequency by which
patents in year CTG cite earlier patents, as we fear that several
institutional changes at the EPO may influence the likelihood of
citations over time. Because these changes would similarly affect all
the groups, ψCTG is not indexed by technology;

• γj is the parameter on a set of dummy variables that change according
to each technology. It is used to control for the breadth of each of the
four technological groups, as we expect that the broader the group, the
less related the subclasses, and the less likely the citations;

• β1 and β2 control for the rate of obsolescence and of diffusion of
knowledge, respectively. As time passes by, widening the gap
between the citing year (CTG) and the cited year (CTD), two
opposite effects contrast. On the one hand, the knowledge embodied
in older patents becomes obsolete, less likely to be cited by
subsequent inventors because innovations are substituted by newer
and better ones. On the other hand, the knowledge embodied in
newer patents will become more likely to be cited as it spreads
through society.
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We estimate this model using nonlinear least squares, and we repeat this
regression for all the eleven countries in the study in order to obtain
estimates of αj,CTD , which is our parameter of interest.15 In fact, an increase
of this parameter in one year indicates an improvement of the productivity of
research because the knowledge embodied in patents granted in that year
proved to be very useful to future inventors, as shown by the higher number
of citations.
First we notice that the exponential distribution seems to fit well the citation

data. In fact, all the estimates for the productivity parameters in all the
technologies are significant. Figure 7 shows the estimates of αsolar,CTD over
the period 1980–2008 for Germany, the country leader in terms of solar
energy patents. In line with the theory of diminishing returns to research, we
find a steady decline of this parameter over time, implying that ever-
increasing investments in R&D are required to acquire new knowledge. The
renewables cost function is indeed convex in its knowledge stock due to the
declining quality of available locations (Fischer and Newell, 2008). By
contrast, a few years of increased productivity can signify periods of
recharge; highly productive inventions expand the current technical frontier
(Evenson, 1993).
Furthermore, these results are in line with the conclusions of Popp (2002)

and of Newell, Jaffe, and Stavins (1999). The former noticed that patenting
activity in the energy field in the United States responds quickly to a rise in
energy prices, but then it falls due to invention potential exhaustion; the
latter found that most of the technological change in the efficiency of air
conditioners occurs in the five years following an increase in energy prices.
In our case, a rise in marginal productivity occurs in the early 1990s and mid
2000s, a plausible response to contemporaneous soaring energy prices.
Table 1 shows the estimates of the other parameters in the regression for

Germany. In this case, we find a rate of obsolescence (β1) and one of
diffusion (β2), very similar to those estimated by Jaffe and Trajtenberg
(1996) and by Popp (2002), while there is no clear trend in ψCTG. In fact, we
observe an initial increase in these estimates, followed by a slight decrease in
the late 1990s, and then a more vigorous increase in the 2000s. These results
are consistent with the account given by Harhoof and Wagner (2009) and
could be explained by the institutional changes that occurred at the EPO over
this period, as described in the previous section.
Once we have obtained the productivity parameters for solar energy (αsolar, t)

in each of the eleven countries in the dataset, we use lagged values of this

15 We normalize αj,1980 and ψ1982–83 to 1 to identify the parameters, we weight the observations
by (nCTD*nCTG)

0.5 to avoid problems of heteroscedasticity, and we exclude negative lags to ensure
that the citing year always follows the cited year. In order to achieve convergence, citing years are
grouped by two-year periods, and the base year has been postponed after 1980 for smaller
countries because they have few patents and thus few citations.
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parameter (α̂it�1) as estimates for the expected marginal productivity of
research in a country (i) and at a time (t) in the next section. Because the
decrease in the marginal productivity of research seems to be larger when
R&D expenditure is higher, often occurring in proximity to a peak in oil
prices, it is particularly important to control for this variable when there are
large fluctuations in energy prices.

Estimating the Effects of Public Policies

By including the estimates of the productivity of R&D from the previous section,
we can now improve the estimation of the effects of public policies on the
development of solar energy in two ways. First, following the induced
innovation literature, we can control for supply-side factors (e.g., the
productivity of R&D) and demand-side factors (e.g., energy prices). Second,
we can include an additional control for changes in the quality of patents. As
discussed above, highly valuable patents correspond to those with a higher
probability of being cited αj,CTD.
To further explore this correlation, we propose the following econometric

model:

Figure 7. R&D Productivity Estimates for Solar Energy (α̂solar, CTD) in
Germany, Base Year (1980) Normalized to 1
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(3) Fit ¼ β0 þ β1RDit þ β2RETit þ β3TARIFFit þ β4PRICEit þ β5CONSit
þ β6EPOit þ β7α̂it�1 þ ni þ τt þ εit

where Fit is the family size of patent applications for solar energy in country (i)
and at time (t), RD is the annual public budget devoted to research and
development in solar power, RET is the renewable energy target that is a
common target to be jointly reached by all renewables, TARIFF is the amount
of feed-in tariffs specifically set for solar energy, PRICE is the price of
electricity, CONS is the percentage growth of electricity consumption, EPO is
the total number of EPO patent applications in each country, α̂it�1’s are
estimates of R&D productivity with one lag, νi is a country-fixed effect, and
finally τt’s are year dummies, as summarized in Table 2. As we suspect
overdispersion in our dataset, we propose a negative binomial model that
ensures positivity for any value of the covariates. This model is necessary
because patent family size is a count variable that takes on nonnegative
integer values, as in Hausman, Hall, and Griliches (1984).
From the perspective of policy measures, the interest is on the coefficients β1,

β2, and β3: do countries with higher public expenditures on R&D, higher
renewable energy targets, and higher feed-in tariffs also experience an
increase in the number of patents? Based on the previous discussion, we
expect these coefficients to be positive and significant. From the market

Table 1. Miscellaneous Nonlinear Least-Squares Regression Results for
Germany (1982–2009)

Citing Years (ψCTG) Estimate Citing Years (ψCTG) Estimate

1982–83 (Base Year) 1 (.) 1996–97 0.786 (0.162)

1984–85 0.155 (0.007) 1998–99 0.835 (0.198)

1986–87 0.252 (0.067) 2000–01 0.970 (0.171)

1988–89 0.509 (0.064) 2002–03 1.393 (0.212)

1990–91 0.552 (0.099) 2004–05 2.199 (.)

1992–93 1.049 (0.133) 2006–07 1.919 (0.309)

1994–95 1.545 (0.158) 2008–09 1.425 (0.293)

Technology Group (γj) Estimate Technology Group (γj) Estimate

Solar (Base Group) 1 (.) Wind 6.179 (2.442)

Geothermal 19.230 (7.291) Ocean 10.766 (4.717)

Rate of Obsolescence Estimate Rate of Diffusion Estimate

β1 0.221 (0.007) β2 0.004 (0.002)

Note: Standard errors are given in parentheses.
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perspective, we ask if higher electricity prices can increase the competitiveness
of renewable energies with respect to more traditional sources, and if the
growth of electricity consumption can promote technological progress by
increasing investments from incumbent firms, and also by attracting other
innovative firms. In this case, we focus on the coefficients β4 and β5.
Finally, we include several control variables. First, we control for changes in

the productivity of R&D by adding lagged estimates (α̂it�1 or α̂it�2) obtained
in the previous section. We expect β7 to be positive and significant because
firms will increase their level of investments in the solar industry after
observing a high level of productivity in the previous one or two years. In
fact, investors attempt to anticipate the future innovative capacity of the solar
industry, and an increase in productivity would generate optimistic beliefs
about future larger returns from R&D investments. Second, we control for
country effects by adding country dummies (νi’s) and also by including the
variable EPO, as we fear that European countries may express a “home bias”
in terms of EPO patent applications, not just in solar energy but in all the
technological sectors. Third, we add year dummies (τt’s) to control for time
trends, such as macroeconomic cycles.

Results and Discussion

The overall results support the basic validity of the model, as most of the
parameters are estimated precisely both in terms of their expected sign and of
reasonable magnitude. Moreover, the presence of overdispersion in the data,
which we suspected from the statistics shown in Table 2, is confirmed in
Table 3 by the likelihood ratio test of the dispersion parameter that rejects the
null hypothesis of equality between the mean and the variance of the dependent
variable, making the negative binomial model preferable over the Poisson one.
In particular, the first column of Table 3 shows the results of the regression

excluding the estimates of R&D productivity. The coefficients on public R&D
and on feed-in tariff are positive and significant for solar power, while the
ones on renewable energy target are not significant. As discussed in the
introduction, targets are broad policy measures that allow renewable
energies to compete against each other to get access to the grid. Because
other renewable energies have lower generation costs than solar power, this
policy is not particularly effective for solar energy. On the other hand, feed-in
tariffs are set specifically to guarantee access to the grid for each renewable
source, which contributes to explaining their effectiveness for solar power.
This result is the pathway to the second part of the analysis. From a market
perspective, we find that the coefficient on electricity prices is positive and
significant, while the one on the growth of the electricity market is never
significant. We interpret this result as further evidence that solar power is
still less competitive than other renewable energies and thus is still sensitive
to changes in electricity prices. Furthermore, the coefficient on electricity
prices is much larger than the one on feed-in tariffs. Although they both
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Table 2. Description of Variables and Summary Statistics for 11 Countries (1990–2008)

Variable Description Obs. Mean Std. Dev. Min Max

Dependent Variable

(Fit) Patent Family Size 209 126.9 191.1 0 1014

Independent Variables

(RDit) Gov. R&D Budget (Million 2010 USD and PPP) 196 38.34 41.30 0.215 176.8

(TARGETit) Renewable Target (percentage) 209 7.315 16.27 0 78.10

(TARIFFit) Feed-in Tariff (2010 US cents/kWh and PPP) 209 11.99 23.22 0 76.90

(PRICEit) Electricity Price (2010 US cents/kWh and
PPP)

194 13.78 3.215 8.765 26.06

(CONSit) Growth Rate of Electricity Consumption
(percentage)

209 1.834 2.978 �8.985 10.02

(EPOit) Total EPO Applications (thousands) 209 7.797 8.962 0.253 35.693

(α̂it�1) R&D Productivity Estimates with One Lag 209 0.306 0.552 0 3.694

(α̂it�2) R&D Productivity Estimates with Two Lags 208 0.294 0.501 0 2.833
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contribute to the development of solar energy from the demand side of the
market, their level of correlation is unexpectedly low (0.14). From a policy
perspective, the ideal level of correlation would be equal to �1, so that a
decrease in feed-in tariffs automatically follows an increase in electricity
prices. If this were the case, feed-in tariffs would be a (perfect) substitute of
electricity prices: the policy stimulus would not add its effects to the market
forces, thus lowering the risk of creating PV bubbles. On the other hand, a
low level of correlation between these two variables has the clear advantage
of guarantying both a stable policy framework and access to the grid for
producers of solar power by reducing the high uncertainty associated with
fluctuations in electricity prices.
Finally, all the coefficients on the year dummies are negative, indicating the

presence of technological change. Because the base year is 2008, which is
the last year included in the analysis, a series of negative signs can be
graphically interpreted as an upward intercept shift across time. In particular,
this result implies that greater numbers of resources are needed as time
passes by, further reinforcing the evidence of diminishing returns to research
over time presented in the previous section. However, the comparison
between Figures 7 and 8 shows that the estimates of R&D productivity follow
a different pattern, and thus patent citations still provide valuable
information that is not fully captured by the time trend. The second and third
column of Table 3 introduce the R&D productivity estimates with one and
two lags, respectively.
First, we notice that lagged estimates of R&D productivity play a pivotal role

in explaining the technological progress of solar energy. In this industry the sign
on productivity estimates (αit�1 and αit�2) is positive and significant. Then we
observe that the coefficients on public expenditures on R&D and on feed-in
tariffs are still statistically significant and increase as more lags are added.
These results provide evidence to our intuition that not controlling for
changes in the productivity of research over time may attribute a smaller
effect on policy measures. By contrast, we find that the coefficient on
electricity price is now smaller, a possible sign that a fraction of the
contribution attributable to R&D productivity is erroneously bestowed on
electricity prices if the productivity estimates are omitted. Table 4 shows the
average marginal effects for the variables of interest, which confirm our
conclusions.16

In line with the conclusions of Nesta, Vona, and Nicolli (2014), we interpret
these results in terms of patent quality. In the case of a supply-side shock, an

16 Interpreting the marginal effects in the case of patent families is not immediate because any
change refers to the number of jurisdictions and not to the count of patents. However, we can still
infer from the second column of Table 4 that an increase of 1 cent per kWh in electricity price
would increase patent family size by roughly 16, which is almost ten times greater than would
have occurred in the case of the same hike in feed-in tariffs (1.65).
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Table 3. Estimated Coefficients of the Negative Binomial Model for 11 Countries (1990–2008)

Patent Family Size (1) (2) (3)

Government R&D Budget 0.004** (0.001) 0.004** (0.001) 0.005** (0.002)

Renewable Energy Target �0.002 (0.007) �0.001 (0.003) �0.002 (0.006)

Feed-in Tariff 0.010** (0.003) 0.011*** (0.003) 0.012*** (0.003)

Electricity Price 0.124** (0.043) 0.106** (0.042) 0.105** (0.041)

Growth of Electricity Consumption 0.024 (0.017) 0.019 (0.016) 0.015 (0.016)

Total EPO Patent Applications �0.037 (0.020) �0.039 (0.020) �0.037 (0.021)

One-Lag R&D Productivity 0.861** (0.279)

Two-Lag R&D Productivity 1.326*** (0.297)

Observations 188 188 188

Likelihood-Ratio Test of Alpha¼ 0 2225.75 (P¼ 0.000) 2144.65 (P¼ 0.000) 2158.79 (P¼ 0.000)

AR (1) Test 24.598 (P¼ 0.001) 24.210 (P¼ 0.001) 24.513 (P¼ 0.001)

Note: *p≤ 0.05. **p≤ 0.01. ***p≤ 0.001. Country and year dummies are included in all specifications. Huber-White robust standard errors are given in
parentheses. Likelihood-ratio tests for model selection: Assumption: Model (1) is nested in (2) LR¼ 6.64 (Prob.¼ 0.01). Assumption: Model (1) is nested in
(3) LR¼ 15.24 (Prob.¼ 0.001)
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increase in productivity corresponds to highly valuable patents, those more
likely to be cited by subsequent patents. In this instance, new highly
productive inventions enter the market, and the effects of public policies
become larger as the new knowledge diffuses through society with a delay of
one or two years. In the case of a demand-side shock, an increase in energy
prices implies a rapid decline in the productivity of research because even
the least valuable inventions become feasible when oil prices soar. This
second observation is also consistent with Popp (2002), who noticed that
some technologies are available before the energy crisis, but they are brought
to the market only when energy prices are high enough to justify their
introduction. All in all, these results should caution against implementing
generous public policies during a period of rising energy prices because their
effects risk being short lived due to the rapid decline in the marginal
productivity of R&D.

Alternative Specifications

Adding International Knowledge Spillovers

As discussed in the introduction, the locus of innovation might not coincide
with the location of solar industry activities. In other words, innovation in
solar energy may react both to domestic and foreign policy stimulus. A few
studies have looked at the effects of international knowledge spillovers on
environmentally friendly technologies. In particular, Popp (2006) found that
environmental regulation leads to increased domestic patenting in Germany,
Japan, and the United States. Though the author noticed that inventors
react mainly to domestic regulations, he argued that foreign knowledge can
indirectly be used as an input for domestic innovation, as he observed
flows of patent citations across countries. Building on these premises,
Verdolini and Galeotti (2011) found that a lower geographical distance,
greater similarity among countries (even in terms of language) and
membership in the same trade area help increase the likelihood of
knowledge transfer across borders. In addition, Peters et al. (2012)
examined whether Germany finances the production of solar panels across
the globe and found that demand-pull policies implemented in one country
benefit innovation in other countries, thanks to knowledge spillovers, while
they did not notice a similar effect for technology-push policies. To further
investigate this issue, we propose a slightly different specification of the
model presented in the previous section:

(4) Fit ¼ β0þβ1 ~RDitþβ2 ~RET itþβ3 ~TARIFF itþβ4PRICEitþβ5CONSit
þβ6EPOitþβ7α̂it�1 þ β8KYOTOit þ niþτtþεit

Marco Vincenzi and Deniz Ozabaci The Effect of Public Policies on Solar Energy 63

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

36
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.36


where we weight each national measure of environmental policy ( ~RD, RE~T , and
~TARIFF), based on the intensity of international trade.17 In line with the

Table 4. Average Marginal Effects of the Negative Binomial Model for 11
Countries (1990–2008)

Patent Family Size (1) (2) (3)

Government R&D Budget 0.620 0.644 0.749

Renewable Energy Target �0.275 �0.166 �0.301

Feed-in Tariff 1.509 1.651 1.822

Electricity Price 18.56 15.81 16.08

Growth of Electricity Consumption 3.642 2.868 1.597

Total EPO Patent Applications �5.526 �5.856 �5.582

One-Lag R&D Productivity 128

Two-Lag R&D Productivity 201

Figure 8. Estimated Coefficients on Year Dummies from First Specification of
Table 3, Base Year (2008) Normalized to 0

17 The spillover effect is equal to si*Σ(wk*Policyk), where the share (si) of export from each
country (i) to the European Union (EU) is multiplied by the average of each policy measure
(Policyk) across EU countries, weighted by the share (wk) of each EU country (k) of total EU
electricity consumption.
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aforementioned literature, we focus on European countries, where knowledge
spillovers seem to be stronger across the “fallen” borders. Here, the intuition
is that the more openness a country exhibits towards trade, especially in the
context of a large custom and political union such as the European Union, the
more it will benefit from public policies implemented in neighboring states.
Following Johnstone, Hascic, and Popp (2010), we add a dummy variable
(Kyoto), which takes the value of one, beginning in 1998 for countries that
ratified the Kyoto protocol. As discussed in the introduction, the Kyoto
protocol laid the foundation for the European Council of Gothenburg that
established the common policy framework towards sustainable development
in the European Union. The results of this alternative specification are shown
in Table 5. All the estimated coefficients have the same sign and similar
magnitude to the ones presented in Table 3, but the coefficient on Kyoto is
negative and not significant, likely due to the high correlation with the policy
variables.

Addressing Endogeneity

In this section we address the endogeneity problem, which may be due to the
possibly omitted variables and to the likely two-way causation between the
technology and environmental policy, as pointed out by Carrión-Flores and
Innes (2010). The literature that follows the reduced-form approach
addresses this problem in several different ways. Peters et al. (2012)
preferred a log-linear model; whereas Nesta, Vona, and Nicolli (2014)
estimated a version of the Poisson specification via a generalized method of
moments (GMM). Here, we use the Poisson specification with linear
persistency control as our functional form. We prefer to avoid the full log
transformation because of the empirical limitations imposed by the many
zeros and by the negative values present in our dataset. Furthermore, we
suspect our estimators to be heteroskedastic, which may lead to
inconsistency when the log transformation is employed.
Following Nesta, Vona, and Nicolli (2014), we use two-year lags of the policy

variables in addition to the length and durability of the democratic institutions
(Tensys), as our instruments. These authors believed Tensys to be a good
candidate as an instrument for their application because the level and age of
democracy in a country likely affect its policy activities. In particular,
countries with well-established democratic systems may also be more
responsive to their citizens’ preferences. Following Peters et al. (2012), we
also use public R&D funding for wind power as an instrument. The public
funding for wind energy research will likely be correlated with the research
funding for solar energy since a government supporting a certain alternative
energy source will likely do the same for more than one type of energy.
Though, the research funding for wind power will less likely impact the
patent activity for solar energy directly.
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Table 5. Estimated Coefficients of the Negative Binomial Model for 11 Countries (Weighted) (1990–2008)

Patent Family Size (1) (2) (3)

Weighted Government R&D Budget 0.004** (0.001) 0.004** (0.001) 0.005** (0.002)

Weighted Renewable Energy Target �0.003 (0.007) �0.002 (0.007) �0.002 (0.006)

Weighted Feed-in Tariff 0.012** (0.004) 0.012** (0.004) 0.012*** (0.004)

Electricity Price 0.125** (0.042) 0.108** (0.041) 0.105** (0.041)

Growth of Electricity Consumption 0.023 (0.017) 0.019 (0.016) 0.010 (0.016)

Total EPO Patent Applications �0.062* (0.028) �0.048 (0.028) �0.038 (0.030)

Kyoto Protocol �0.521 (0.290) �0.168 (0.311) �0.025 (0.319)

One-Lag R&D Productivity 0.800** (0.293)

Two-Lag R&D Productivity 1.305*** (0.298)

Observations 188 188 188

Likelihood-Ratio Test of Alpha¼ 0 2185.86 (P¼ 0.000) 2139.73 (P¼ 0.000) 2152.93 (P¼ 0.000)

AR (1) 25.221 (P¼ 0.001) 24.953 (P¼ 0.001) 25.507 (P¼ 0.001)

Note: *p≤ 0.05. **p≤ 0.01. ***p≤ 0.001. Country and year dummies are included in all specifications. Huber-White robust standard errors are given in
parentheses.
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Having established a set of instruments, we continue our discussion with the
estimation strategy that follows Nesta, Vona, and Nicolli (2014), who use the
pre-sample mean estimator developed by Blundell, Grith, and Vindmeijer
(2002). This estimator adds pre-sample information for the left-hand side
variable in the Poisson model to account for unobserved heterogeneity, which
is traditionally captured by fixed effects in the literature. Blundell et al.
(2002) achieved consistency for a large enough pre-sample size, whereas the
fixed effects models fail to do so. Pre-sample means per panel units are
included in the econometric model to account for persistent differences
among them. The estimation is conducted via GMM and our estimating
equation is shown below:

(5) Ft ¼ ρFt�1 þ exp(~XtβþXe
t δþ θln�f p)þ εt

where ~X are the price of electricity, the percentage growth of electricity
consumption, the total number of patent applications, and the first lag of
R&D productivity. Xe are the endogenous policy variables. On the other hand,
�f p are the pre-sample means, which are calculated by averaging the family
size of patent applications (F) per country over the pre-sample period of
1980–1989. Each variable in the equation above is of size equal to the
number of countries. Following Nesta, Vona, and Nicolli (2014), the first lag
of the left-hand side variable is added linearly to be able to bound the always
positive exponential function. Apart from Xe, we assume that all the variables
listed above are exogenous. In addition to these, a full set of instruments
(Tensys, wind R&D, and Xe

t�2) is included. Finally, we estimate this model
using GMM with heteroscedasticity and autocorrelation consistent (HAC)
standard errors and present our results in Table 6.18

When compared to the results in Table 3, we notice that the signs of the
estimates are the same in Table 6. Hence, our prior conclusions on the
directions of the marginal effects still hold. However, we notice differences in
the magnitudes of the estimated coefficients, which result from the likely
endogeneity and also from the different functional forms, making the
coefficients not directly comparable. For this reason, we also present
marginal effects, as well as elasticities in Table 6. First, we see that the
coefficient on EPO, the total number of patent applications, is now significant.
We suspect that the insignificance noted before was due to the country
dummies. As explained above, the model presented in this section does not
include country-fixed effects. Then, we notice that the marginal effects of the
policy variables and of the lagged productivity are different from the ones

18 The estimates and the likelihood-ratio tests shown in Table 3 indicate that the specification
with the first lag of the R&D productivity has a slightly better fit compared to the model with the
second lag of R&D productivity, and thus it is the only one presented in this section.
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presented in Table 4. We observe that the estimated average marginal effects
are now larger for the three policy variables, and they are all significant. On
the other hand, the estimated marginal effect for the lagged R&D productivity
is much smaller. Our results indicate that the failure to account for
endogeneity amplifies the marginal effect of the lagged productivity, which
may be in part due to the two-way causation. Although the estimated average
marginal effect is now smaller, the sign is still positive and the effect is still
significant, confirming the need to control for the lagged R&D productivity.
In order to assess our findings further, we also calculate elasticities. Among

the policy measures, the lowest elasticity is observed for target. This finding
supports our earlier argument that targets are broader policy initiatives than
tariffs and public R&D funding. Another interesting finding is that the
elasticity of the electricity consumption growth is much smaller than the one
of electricity price, which is also consistent with our findings from the
previous section. In conclusion, we can see that the size of the coefficients
changes once we account for endogeneity, but the estimates presented in this
section confirm that the policy variables still have a positive and significant
impact on patent family size, providing further evidence of the positive effect
of environmental policy on technological progress.

Conclusions

This paper delves into the role that relevant changes in the public policy
framework played in fostering technological change in solar energy in a panel

Table 6. Estimated Coefficients of the Presample Mean GMMModel for 11
Countries (1990–2008)

Patent Family Size Coefficients
Average

Marginal Effect
Average
Elasticity

Government R&D Budget 0.0652 (0.0009) 2.6560 0.6677

Renewable Energy Target 0.3785 (0.1876) 15.4200 0.0017

Feed-in Tariff 0.0852 (0.0005) 3.4720 0.2225

Electricity Price 0.2439 (0.0441) 9.9380 0.0046

Growth of Electricity Consumption 0.0088 (0.0061) 0.3583 0.0008

Total EPO Patent Applications �0.0620 (0.0009) �2.5270 0.1194

One-Lag R&D Productivity 0.0845 (0.0183) 3.4410 0.0076

Pre-sample Means �0.2046 (0.0025)

Time Trend �0.2766 (0.0631)

Note: HAC robust standard errors are given in parentheses. Elasticities are obtained from the following

equivalency:
dlny

dlnx
≈

dy

dx
:
x

y
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of eleven countries over the period 1990–2008, which has been regarded as the
second boom of this industry in the literature. Three key findings emerge from
our empirical analysis and are robust to different specifications. First, specific
policies, such as public expenditure on R&D and feed-in tariffs, had a positive
and significant impact on the development of solar energy. Second, the price
of electricity added its own positive and significant effects to the policy
stimulus. Third, the productivity of research, estimated by means of patent
citations, significantly affected the rate of innovation of this sector.
Despite its limitations, this study contributes to the vast literature on the

development of solar energy by estimating the productivity of R&D in the
solar industry for eleven countries and by showing that this variable seems
to be a central driver for innovation in this industry. In this paper, we discuss
several reasons in favor of introducing this additional control in the model,
the most relevant being that the omission of a control for changes in R&D
productivity over time leads to an underestimation of the contributions of
public policies to innovation in solar energy. In addition, we observe large
fluctuations in this variable over time and across countries. This result has
important consequences for the timing of policy initiatives. On the one hand,
we argue in favor of more active policies in granting support to innovative
firms during periods of declining productivity. In this case, the aim of policy
initiatives should be to reduce the high volatility in R&D investments that is
associated with a negative shock because it can be detrimental to innovation.
Hall (2008) estimated that the wages of highly educated workers account for
more than half of private R&D investments. As a consequence, innovative
firms face high costs in adjusting their R&D budget over time. In this case,
specific policy measures can sustain private research spending during a
downturn so that firms can avoid layoffs in their skilled workforce, which
constitutes their main asset in the long run, as the firm’s knowledge base is
embedded in its scientists and engineers. On the other hand, we caution
against generous incentives in case of a positive productivity shock, because
we fear the creation of other PV bubbles, as discussed in the introduction.
For example, Spain, among the first countries to heavily promote solar power
generation thanks to implementing high feed-in tariffs, had an installed PV
capacity of 4GW in 2008, which is almost ten times more than the official
target at that time (IEA, 2011). In this and other recent cases, governments
should constraint policy support, so that public intervention facilitates
private investment, but it does not crowd it out. In general, our results show
an important role for public policies in the development of solar energy, but
they also suggest that the level of public support should be adjusted
according to the productivity cycle, a point emphasized in more general
terms by Aghion and Cagè (2012).
Finally, our results reiterate the need to further investigate the causes of

shocks to research productivity because it appears that they asymmetrically
affect different countries. Initially, Popp (2002) argued that fluctuations in
R&D productivity in a total of twenty-two technology groups related to

Marco Vincenzi and Deniz Ozabaci The Effect of Public Policies on Solar Energy 69

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

36
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.36


environmental innovations in the United States are synchronized with soaring
energy prices. However, this explanation seems not to suffice anymore when
the analysis is extended to other countries. In fact, our results suggest that
different countries experience productivity shocks in different years. This
conclusion is at odds with a single shock caused by a sudden increase in the
world oil price that would simultaneously affect all the states.
An interesting extension of this paper would be to build a model of

international diffusion of knowledge where countries such as Germany, Japan,
and the United States, which are expanding the technological frontier in solar
energy, experience the productivity shock before the followers.
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Appendix

List of Countries Included in the Analysis

Austria Netherlands

Belgium Spain

France Switzerland

Germany United Kingdom

Italy United States

Japan
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List of IPC Codes Used in the Analysis

Solar Power IPC Class

Devices for producing mechanical power
from solar energy

F03 G 6

Use of solar heat, e.g., solar heat collectors F24J 2

Devices adapted for the conversion of
radiation energy into electrical energy

H01L 27/142, 31/04-078, H02N 6

Roof covering aspects of energy collecting
devices

E04D 13/00-18
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