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Abstract 12 

 13 

The aquaculture industry requires good water quality for its successful operation but 14 

produces wastes that can cause environmental deterioration and pose high risks to the 15 

sector. Adequate waste treatment and recycling are necessary to make aquaculture a 16 

sustainable and profitable industry and contribute to the circular economy. Polluted 17 

water sources, excess feeding, overstocking, use of antibiotics/chemicals, and harmful 18 

algal blooms (HABs) are major causes of water quality deterioration and low 19 

production in aquaculture systems. Discharges of untreated wastes would have serious 20 

impacts on the receiving water bodies, and eventually on the aquaculture industry itself. 21 

Possible solutions include technological innovations in environmentally friendly 22 

production systems, use of efficient processes in water quality management, and 23 

improved legislation and governance. Environmentally feasible aquaculture production 24 

technologies such as RAS (recycling aquaculture system), IMTA (integrated multi-25 

trophic aquaculture), and aquaponics including features of waste recycling are viable 26 
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options in aquaculture schemes. Best aquaculture practices integrating advanced water 1 

quality treatment processes and technologies, supported by automation and sensors, 2 

modelling, and AI-IoT (artificial intelligence-internet of things) are necessary for a 3 

sustainable aquaculture environment, production, and stable value chain. In general, 4 

low-cost technologies for aquaculture waste treatment and environmental impact 5 

reduction through good governance are crucial for achieving sustainability in the 6 

aquaculture industry and natural environmental management.  7 

 8 

Graphical Abstract 9 

 10 

Impact Statement 11 

 12 

Good water quality is mandatory in different phases of a successful aquaculture 13 

production, water intake, water use and waste discharges. However, unsustainable 14 

aquaculture practices can result in low yields and cause negative impacts on 15 

environment and the human community. This review provides assessments on the water 16 

quality in different aquaculture systems, and the impacts of their effluents on the natural 17 

water bodies. To optimize aquaculture production, and minimize their impacts on the 18 

environment, effective management of the water quality and wastes in aquaculture is 19 

needed. Major constraints in adequate aquaculture wastewater treatment including high 20 

capital and operation cost of waste treatment systems, lack of incentives for waste 21 

treatment, and lack of legislation and enforcement in discharges of raw aquaculture 22 
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wastes should be overcome. Possible solutions include technological innovations in 1 

production systems and wastewater treatments, increased professionals in water quality 2 

control and waste management, improved legislation and certification, financial 3 

assistance, and incentives to farmers along the aquaculture industrial chains can be 4 

applied for a sustainable aquaculture sector. If water quality management can be 5 

effectively carried out, it would have a great long-term impact on the aquaculture 6 

industry. 7 
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Keywords: Aquaculture wastewater, eutrophication, harmful algal blooms, 1 

aquaculture production systems, integrated recycling systems.  2 

 3 

Introduction 4 

Aquaculture is the fastest-growing food-production sector and its sustainable growth is 5 

vital to food security, ecosystem health, uninterrupted natural resource utilization, 6 

biodiversity conservation, and socio-economic resilience. In the face of declining 7 

capture fishery resources and rising demand for fish and fishery products, aquaculture 8 

has become the main source of aquatic food/protein supply and contributes to the food 9 

security of the global population (Boyd et al., 2022; Troell et al., 2023). However, there 10 

are concerns about the impacts of aquaculture activities on the environment and natural 11 

resources, such as habitat destruction, exploitation of wild-fish stocks, fishmeal/fish oil 12 

requirements, and waste disposal (Bull et al., 2021; Klootwijk et al., 2021). Different 13 

aquaculture systems (extensive, semi-intensive, intensive), types of systems (closed, 14 

semi-open, open), different cultured species, and stocking densities can generate 15 

different environmental impacts (Figure 1). Environmental impacts can occur through 16 

three different processes such as consumption of natural resources, culture 17 

procedures/practices, and generation of wastes. Each ecosystem has its own carrying 18 

capacity and working within the limit is crucial to avoid negative impacts. The 19 

transition of traditional cultural practices to the intensified cultural system involves 20 

increased waste that requires proper treatment to avoid pollution and deleterious 21 

impacts on the environment (da Silva Morales et al., 2022). With the high demand for 22 

aquaculture products, more farms are opting for intensive culture systems which tend 23 

to affect the environment more than extensive and semi-intensive systems due to large 24 

amounts of waste containing toxins, drugs, and chemicals in the former system (Zhang 25 

et al., 2021; Nagaraju et al., 2022). Thus, unsustainable aquaculture activities could 26 

result in widespread habitat destruction, loss of biodiversity, declined fishery and other 27 

aquatic resources in the surrounding area (Valiela et al., 2001; Polidoro et al., 2010; 28 

Herbeck et al., 2013; Cardoso-Mohedano et al., 2018).  29 

 30 

In aquaculture production systems, poor water quality due to accumulation of toxic 31 

compounds, including ammonia, nitrite, and hydrogen sulphide, together with low 32 
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dissolved oxygen, hypoxic conditions, harmful algal blooms, and pathogenic bacteria 1 

can greatly affect the fish health through bacterial infections, poor growth, and stress 2 

rendering them less tolerant to handling. Diseases in aquaculture systems are closely 3 

related to the environmental health. Uncontrolled diseases can rapidly decimate 4 

operations and can cause high mortality in aquaculture systems. Lusiastuti et al. (2020) 5 

attributed the disease outbreaks, mass fish mortality, and low aquaculture production to 6 

poor water quality associated with environmental degradation and climate change. 7 

Climate change can affect the aquaculture industry through flooding (too much water), 8 

drought (too little water), and changes in water quality. Decline in pH due to ocean 9 

acidification could seriously affect aquaculture, especially those in the coastal areas 10 

(Guo et al., 2023). Hassan et al. (2022) noted that improving water quality, maintaining 11 

stable environmental factors, and controlling water exchange would reduce the 12 

occurrence of fish diseases in aquaculture production systems.  13 

                   14 

Untreated or improperly treated aquaculture discharges with high nutrient 15 

concentrations can cause eutrophication and water quality deterioration, hypoxia, and 16 

harmful algal blooms in adjacent water bodies (Zhang et al., 2018; Purnomo et al., 17 

2022). Harmful algal blooms (HABs) can be a serious concern in coastal and inland 18 

waters (rivers, lakes, and reservoirs) that receive aquaculture effluents. Lukassen et al. 19 

(2019a) reported that the off-flavour compounds produced by the HABs especially 20 

geosmin in tilapia produced in cage aquaculture increased the risk of decreasing fish 21 

quality and value. Hu et al. (2022) reported that Lake Datong, a shallow lake in China, 22 

became eutrophic and its water quality deteriorated after the introduction of 23 

aquaculture.  24 

 25 

Extraction of ground water for aquaculture can cause saltwater intrusion and 26 

salinization in coastal areas (Gopaiah et al., 2023). All these environmental changes 27 

could affect the livelihoods of the local communities (da Silva Morales at al., 2022; 28 

Nagaraju et al., 2022; Menon et al. 2023). Kim et al. (2022a) reported that an increasing 29 

number of farms in the coastal area resulted in the release of organic wastes derived 30 

from excess feed and fish metabolites. Yang et al. (2021) and Chiquito-Contreras et al. 31 

(2022) reported that approximately 27% to 49% of the feeds supplied to aquaculture 32 

production ponds are converted to fish products while the rest goes to wastes that are 33 
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usually discharged into the nearby water bodies, and eventually form one of the factors 1 

that negatively affect the aquaculture value chain.  2 

 3 

Water treatment technologies that are technically feasible, environmentally 4 

promising, and financially profitable can be integrated into different aquaculture 5 

systems to make aquaculture industry a sustainable sector and contributes to the circular 6 

economy. Aquaculture wastes can be recovered and recycled using various 7 

technologies such as bioremediation, aeration, biocoagulation, and biofiltration applied 8 

in various production systems such as RAS (recirculating aquaculture system), IMTA 9 

(integrated multi-trophic aquaculture), and aquaponics (aquaculture and hydroponics). 10 

In these circular economic activities, aquaculture wastes can generate additional 11 

products such as seaweeds, herbs, vegetables, mollusks, and other by-products, while 12 

generating a clean water source that can be recycled and used for the fed culture (Figure 13 

2). Legal instruments and authoritative interventions are also necessary for regulating 14 

aquaculture waste discharge and ensuring producers consider environmental impact 15 

and water quality management in their operations and practices. This review assessed 16 

the impacts of different production systems on the water quality, and suggested possible 17 

approaches such as the use of environmentally friendly technological innovations and 18 

good governance in improving water quality management for a sustainable aquaculture 19 

industry.  20 

Pollution and threats to water quality in aquaculture systems 21 

 22 

Most aquaculture systems require a thorough understanding of water quality and waste 23 

management for accurate treatment decisions to ensure healthy cultured organisms with 24 

high yields (Davidson et al., 2022). Ssekyanzi et al. (2022) reported that in Sub-Saharan 25 

Africa, limited knowledge of water quality is one of the main factors contributing to 26 

low production (<1% of global production) and slow growth of the aquaculture sector.  27 

 28 

Major factors contributing to the deteriorating environment and water quality in 29 

the aquaculture industry include nutrients (17%), other pollutants including emerging 30 

pollutants (12%), habitat loss (16%), harmful algal blooms (9%), lack of treatment 31 

technologies (8%), and socio-economic factors (38%) (Theuerkauf et al., 2019). 32 

Nutrients play a major role in eutrophication, resulting in massive proliferation of 33 
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harmful algal blooms (HAB), such as cyanobacteria and dinoflagellates, and high 1 

mortality of cultured organisms in cultured systems (Table 1). Cyanobacterial blooms 2 

are also commonly associated with toxic-odour compounds such as geosmin and 2-3 

MIB (2-methylisoborneol) which impart an unpleasant taste to water and cultured 4 

organisms. Marques et al. (2018) and Ryan et al. (2022) noted the negative impacts of 5 

an intensive aquaculture farm on effluent water quality due to excessive nutrients, 6 

especially phosphorus and nitrogen.  7 

 8 

Emerging pollutants such as microplastics (Table 1) can cause health implications 9 

such as reduced feeding rate, gill malfunction, reduced reproductive capacity, and 10 

immune suppression of cultured animals (Mallik et al., 2021). In aquaculture, plastic 11 

debris from aquaculture farms, rafts, cages, nets, and other related production structures 12 

are sources of microplastics (Chen et al., 2018; Krüger et al.,2020). In addition, biofilms 13 

formed on microplastic particles are sources of pathogenic bacteria which can 14 

negatively affect aquaculture (Cholewińska et al., 2022).   15 

 16 

Contamination in water sources for aquaculture production 17 

 18 
Availability of clean water for aquaculture is an important consideration in site 19 

selection for aquaculture operation. In fact, suitable site selection for aquaculture 20 

activities is vital to alleviate potential problems associated with pollution and 21 

conflicting activities, and to ensure that the selected water body would be a conducive 22 

growing environment without jeopardizing the existing ecosystems (Table 1). Brigolin 23 

et al. (2015) and Jayanthi et al. (2021) used remote sensing, geospatial tools, and 24 

mathematical models in combination with water quality factors, environmental 25 

characteristics, and socio-economic data to identify suitable areas for cage aquaculture 26 

in estuaries and coastal areas. Vaz et al. (2021) and Arega et al. (2022) developed a 27 

habitat suitability model based on water quality, hydrodynamics, and biogeochemistry 28 

for aquaculture site selection.  29 

 30 

In aquaculture systems, pollutants can originate from both allochthonous sources 31 

(such as feeds, fertilizers, and/or polluted water sources) and autochthonous sources 32 

(phytoplankton biomass, metabolites). Polluted water from rivers and coastal waters 33 
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can seriously affect health and growth of the culture species resulting in high mortality 1 

and low yields. In closed culture systems such as ponds and tanks, the quality of the 2 

intake water can be controlled. Under limited circumstances, low quality water can be 3 

first treated before use, although the production would still be lower compared to those 4 

with clean water intake. In aquaculture systems located in open waters such as lakes 5 

and coastal waters (Figure 1), yields are highly dependent on the in-situ water quality. 6 

In these natural waters where cage aquaculture or extractive aquaculture are common, 7 

pollutants are mainly associated with anthropogenic activities in the catchment and 8 

upstream areas. Kim et al. (2022a) used 15-N isotopic signatures to show that organic 9 

pollutants in estuaries and coastal areas were mainly contributed by sources related to 10 

anthropogenic activities including organic fertilizers and aquaculture discharges 11 

exported through rivers.  12 

 13 

To ensure the sustainability of aquaculture production through sound water quality 14 

management of open waters, Liu et al. (2023a) proposed a watershed management 15 

framework using economic-based and water quality-based protection strategies to 16 

manage catchment areas for sustainable development. To prevent non-point source 17 

pollution, interactions between land cover, landscape pattern and design, and pollution 18 

loading should be assessed and optimized (Ouyang et al., 2014; Falconer et al., 2018; 19 

Rong et al., 2021). 20 

 21 
 22 

Table 1.  Major problems and mitigating measures in water quality management in 23 
aquaculture production systems. 24 

 25 

Problems Aquaculture 

System  

Mitigating 

Measures/ 

Technologies  

Benefits References 

Nutrients from 

excess feeds and 

metabolites 

(phosphorus and 

nitrogen) - 

Eutrophication 

Intensive 

culture 

systems with 

high stocking 

rates – 

generate large 

amounts of 

wastes (liquid 

and solid 

wastes)   

Integrated/ 

restorative 

aquaculture - use of 

combined species 

of molluscs and 

seaweeds. 

Water treatment 

plants; removal of 

soluble reactive P 

(SRP) by 

adsorption to 

Improved water 

quality, 

improved 

aquaculture 

production, and 

enhanced 

sustainability 

Falconer et 

al., 2018;  

Zhang et al., 

2018;  

Theuerkauf et 

al., 2019; Pu 

et al., 2021;  

Purnomo et 

al., 2022  
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particulate organic 

matter 

 

  Installation of 

seaweed farms 

Extract 

pollutants and 

improve water 

quality. 

Improved 

ecosystem 

services 

Cabral et al., 

2016 

 

 

Harmful algal 

blooms (HABs) 

– taste and 

odour (T/O) 

compounds 

mainly due to 

geosmin and  

2-MIB (2-

methyl 

isoborneol) 

Open water 

systems (Cage 

aquaculture, 

extractive 

aquaculture) 

and land-based 

production 

systems (e.g. 

recirculating 

aquaculture 

systems 

(RAS), 

integrated 

multi-trophic 

aquaculture 

(IMTA)) 

Monitoring, early 

detection, and 

prevention of 

geosmin-producing 

cyanobacteria and 

other T/O 

compounds using 

PCR-based 

method. Reduce 

external nutrient 

loads 

 

 

Degradation of 

geosmin and 2-

MIB by 

UV/Chlorine 

process, 

maintains the 

water quality 

and enhances 

the quality of 

aquaculture 

products 

 

Ma et al., 

2018; John et 

al., 2020; 

Kibuye et al., 

2021  

 Fish cages - 

Oreochromis 

niloticus) 

Use of probiotics 

for management of 

the intestinal 

bacteria  

Reduce geosmin 

and other off-

flavour 

compounds, and 

improve fish 

quality 

Lukasssen et 

al., 2019a 

 RAS – off 

flavour 

compounds 

Optimization of the 

depuration method 

with improved 

water treatment 

Reduce the off-

flavour 

compounds 

Azaria and 

van Rijn, 

2018 

Microplastics – 

toxic to living 

organisms 

Mariculture – 

rafts, cages, 

and nets are 

sources of 

microplastics.  
 

 

Monitoring 

microplastic 

concentrations in 

water bodies and 

aquaculture 

systems. Reduce 

the usage of 

plastics 

Reduce harmful 

effects on 

organisms and 

human health; 

healthy and safe 

aquaculture 

production 

Chen et al., 

2018; Krüger 

et al., 2020; 

Mallik et al., 

2021; 

Cholewińska 

et al., 2022 

Unsuitable 

aquaculture sites 

Ponds, fish 

cages 

 

 

 

Use of models for 

selecting suitable 

sites 

Avoid pollution, 

continuous 

supply of good 

quality water for 

culture 

Jayanthi et 

al., 2021; 

Racine et al., 

2021  
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 1 

 2 

Factors affecting water quality in aquaculture production systems 3 
 4 

Water quality in aquaculture systems is influenced by various physical, chemical, and 5 

biological factors such as temperature, light, pH, dissolved oxygen, organic 6 

matter/nutrients, micro-organisms, and various biological interactions (Table 2). 7 

Climate change could exert drastic fluctuations in these physical chemical factors that 8 

would affect water quality, increase the incidence of fish diseases, and cause high fish 9 

mortality and production (Lusiastuti et al., 2020). Alam et al. (2021) reported that Nile 10 

tilapia, Oreochromis niloticus, produced fewer eggs under high temperatures associated 11 

with climate change, and suggested effective management strategies to overcome the 12 

low egg production in commercial fish hatcheries. Ocean acidification and decrease in 13 

pH caused problems in shellfish aquaculture, such as oysters (Abisha et al., 2022; 14 

Mayrand and Benhafid, 2023). Higher sea levels could cause positive consequences 15 

such as the creation of new habitats in the coastal waters or negative impacts like 16 

saltwater intrusion. Increased wind speed and waves caused sediment suspension and 17 

high turbidity that affected water quality and aquaculture activities (Shen et al., 2023).  18 

Mitigating measures to overcome impacts of physico-chemical changes include 19 

adaptations in production systems, good culture strategies such as species 20 

diversification, and use of predictive models (Table 2). Abisha et al. (2022) suggested 21 

the development of climate-resilient aquaculture through adaptations to environmental 22 

factors that have negative impacts on organisms to minimize the impacts of climate 23 

change. Shen et al. (2023) used satellite remote sensing to assess the impacts of the 24 

environment and improve the ecological and environmental regulations to support the 25 

sustainable development of the coastal area.  26 

 27 

High organic wastes in aquaculture systems, mainly from excess feeds and 28 

metabolites, caused water quality degradation characterised by high ammonia, nitrate, 29 

and soluble reactive phosphorus, high biological oxygen demand (BOD), high chemical 30 

oxygen demand (COD), and low dissolved oxygen (Table 2). Phosphorus (P) can be a 31 

source of environmental contamination and eutrophication in aquaculture systems if 32 

not adequately removed from the wastewater. In terms of nitrogen, the proportion of 33 

toxic unionized ammonia (NH3) depends on the total ammonia concentration (ionized 34 
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ammonium ion (NH4
+) and NH3 in the water column which is in turn governed by water 1 

temperature and pH. Once ammonia concentrations in the water are high, fish are less 2 

able to excrete ammonia through gill diffusion resulting in the accumulation of 3 

ammonia in fish tissues, which would finally affect fish health and growth. Zhang et al. 4 

(2022a) reported that toxic ammonia can reduce the quality and yield of Japanese sea 5 

perch (Lateolabrax japonicus). Due to its adverse effects on aquaculture species, 6 

ammonia concentrations in production systems should be closely monitored. Yu et al. 7 

(2021) used a hybrid soft computing method to accurately predict ammonia 8 

concentrations in aquaculture water in real time. Temperature, dissolved organic 9 

carbon, and redox potential are the primary drivers of chemical fluxes in freshwater 10 

aquaculture ponds (Yuan et al., 2021). 11 

 12 

Accumulation of organic matter in the pond bottom can be the main cause of 13 

hypoxic conditions in enriched aquaculture ponds (Yang et al., 2021). Under anaerobic 14 

conditions, high organic matter accumulation can produce methane (CH4), hydrogen 15 

sulphide (H2S), and nitrous oxide (N2O), which could adversely affect water quality 16 

(Table 2). Toxic hydrogen sulphide (H2S), commonly found in production systems with 17 

low oxygen, could cause sudden fish/shrimp mass mortality. Wu et al. (2018b) reported 18 

that CH4 and N2O fluxes in inland aquaculture ponds were positively correlated to 19 

temperature and sediment organic carbon, and negatively correlated to dissolved 20 

oxygen concentration. Chen et al. (2016) and Yang et al. (2018) noted that substantial 21 

amounts of methane and carbon dioxide were released from mariculture ponds. In 22 

freshwater aquaculture ponds, Zhao et al. (2021) reported that high concentrations of 23 

methane were released and showed that dredging of the pond bottom as part of pond 24 

preparation was more effective in reducing methane compared to aeration. Thus, there 25 

is a need for immediate and continuous removal of toxic compounds such as ammonia, 26 

nitrite, H2S, and methane in aquaculture systems.   27 

 28 

Nutrient-rich waters are also associated with cyanobacterial blooms that could 29 

produce toxic-odour compounds such as geosmin and 2-MIB (2-methylisoborneol), 30 

causing an unpleasant taste to water and cultured organisms. Although a variety of 31 

bacteria and fungi produce geosmin, cyanobacteria including planktonic and benthic 32 

species belonging to Nostocales, Oscillatoriales, and Synechococcales are major 33 
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producers of geosmin (Watson et al., 2016; John et al., 2018). Cyanobacterial toxins 1 

pose threats and risks to human and animal health. Cyanobacteria proliferate rapidly in 2 

eutrophic waters due to their ability to float and overcome light limitations (Table 2). 3 

Geosmin has been found to cause off-flavour in a wide range of environments including 4 

recirculating aquaculture systems (RAS) (Azaria and Rijn., 2018; Lukassen et al., 5 

2019b). Lukassen et al. (2019a) reported that higher densities of geosmin-producing 6 

bacteria were found in the intestinal mucous layer and digestive system of tilapia 7 

(Oreochromis niloticus) compared to the water column, indicating that probiotics can 8 

be used to manage intestinal microflora to improve fish quality. Due to the detrimental 9 

impacts of HABs on aquaculture production systems, environmental and human health, 10 

and socioeconomics, microalgal toxic species distribution and abundance should be 11 

closely monitored for early detection and preventive action. In fact, reduction of the 12 

external nutrient load is the most fundamental aspect of cyanobacterial control (Kibuye 13 

et al., 2021). Derot et al. (2020) used two machine learning models with a long-term 14 

base to forecast harmful algal blooms. Pal et al. (2020) suggested biological options 15 

such as bacteria, viruses, fungi, and zooplankton for controlling HABs. John et al. 16 

(2018) developed a novel polymerase chain reaction (PCR) method targeting the 17 

geosmin synthase gene (geoA) to assess all important sources of geosmin, while Ma et 18 

al. (2018) showed that chlorine aqueous solution under ultraviolet (UV) light could 19 

effectively remove geosmin and 2-MIB in acidic conditions.  20 

 21 

In addition to nutrients, aquaculture systems can also be subjected to other 22 

pollutants such as antibiotics and heavy metals that could eventually affect the quality 23 

of the produce (Table 2). Le et al. (2022) noted heavy metal pollution in the aquaculture 24 

coastal area and emphasized the need for good management practices if sustainable 25 

aquaculture is to persist in the coastal area. The use of antibiotics and chemicals in 26 

aquaculture can also have far-reaching effects on ecological food pyramids. Fernanda 27 

et al. (2022) showed that water quality parameters in aquaculture ponds were 28 

significantly correlated with the abundance of antibiotic-resistant genes which were 29 

brought down by a river polluted by various sources from the cultivated and industrial 30 

lands. In the environment, the partitioning and distribution of antibiotics are positively 31 

correlated to salinity, suspended solids, pH, ammonia, and zinc, and negatively 32 

correlated to temperature, dissolved oxygen, phosphate, COD, oil, copper, and 33 
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cadmium (Li et al., 2022a). Ecological and biological risks of antibiotics are high and 1 

can be detrimental to aquaculture products. Chen et al. (2022) developed a biomarker 2 

using cyanobacterial carbonic anhydrase for monitoring antibiotics. Chemicals used in 3 

aquaculture should also be removed before discharging wastewater into the surrounding 4 

environment. Sulfonamides from aquaculture wastewater can be degraded using 5 

laccase-syringaldehyde mediator system through response surface optimization, 6 

degradation kinetics, and degradation pathways (Lou et al., 2022).  Pandey et al. (2022) 7 

suggested the removal of malachite green, which is commonly used for disease 8 

treatment in aquaculture ponds, using laccase immobilized biochar. Yanuhar et al. 9 

(2022) reported that water quality in concrete ponds can be improved by aeration, 10 

filtration, and reduction of organic matter by optimizing the feed. 11 

 12 

In addition to physical and chemical parameters, disease agents such as bacteria, 13 

fungi and other pathogenic organisms can also affect water quality and aquaculture 14 

performance (Table 2). Microbial communities in aquaculture systems are shaped by 15 

the environmental conditions which are in turn influenced by inland discharges, climate 16 

changes, and anthropogenic pressures. Swathi et al. (2021) reported that water quality 17 

parameters were closely related to the outbreak of white spot disease in shrimp culture 18 

ponds. Thus, regular monitoring and estimating microbial diversity would allow 19 

farmers to link water quality parameters to subsequent fish performance and assess the 20 

environmental health of the aquaculture systems and the vicinity for early detection of 21 

microbial conditions that could lead to impaired fish health.   22 

 23 
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             Table 2. Factors affecting water quality in aquaculture production systems and mitigation measures 1 

Factors Types of Stressors/Impacts Mitigating Measures References 

Physico-chemical 

factors/Climate 

change 

Increased mortality, and low 

production - threaten food 

security 

Developed climate-change resilient aquaculture 

through adaptation to environmental stressors, 

selective breeding; species diversification, and 

innovative aquaculture system  

Abisha et al., 2022 

 Extreme fluctuations of 

environmental parameters with 

high rainfall - increased 

incidence of fish diseases 

Formulate aquatic animal health strategies to 

reduce diseases and use fewer/less chemicals in 

aquaculture operation 

Lusiastuti et al., 2020  

 Light availability Reduce/regulate the abundance and buoyancy of 

toxic cyanobacteria such as Microcystis 

Xu et al., 2023 

 

 

 Extreme temperature 

fluctuations – affect Atlantic 

salmon cage aquaculture 

Predictive models to match aquaculture activities 

and climate change 

Gamperl et al., 2020 

 Increasing temperature: 

Hatchery – Nile tilapia 

(Oreochromis niloticus) 

Management strategies – decrease light intensity 

and temperature  

Alam et al., 2021 

 Ocean acidification – decrease 

in pH; reduced calcification in 

shellfish 

Reduce atmospheric CO2 Guo et al., 2023 

Organic matter  Excreta and excess feeding Precision feeding; high-quality feeds, optimize 

stocking rate, and effective waste removal 

Kawasaki et al., 2016; Zhang 

et al., 2018; Liu et al., 2023b 

 Types of feed – release 

nitrogenous compounds – 

contaminate water and cause 

health problems 

Feeding technologies and management to 

improve water quality 

Fiordelmondo et al., 2020 

 

Age and pond 

bottom quality 

Organic matter accumulation, 

increased C/N ratio result in low 

production 

Proper pond management to reduce organic 

matter accumulation 

Hasibuan et al., 2023 
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Toxic compounds Ammonia – Effects on growth, 

survival and yields of Japanese 

sea-perch (Lateolabrax 

japonicus) culture 

Reduce total ammonia nitrogen to < 0.3 mg N L-1 Zhang et al., 2022a 

 Low dissolved oxygen – 

hypoxia in Atlantic Salmon 

(Salmo salar) Aquaculture 

Aeration (especially in the bottom layers) to 

increase dissolved oxygen (DO) and decrease the 

amount of organic matter. Microbubbles can be 

used to increase DO in the bottom layers where 

oxygen consumption tends to be high. Advanced 

technologies such as internet of things can be 

applied to ensure adequate DO in all aquaculture 

systems all the time 

Gamperl et al., 2020  

 Hydrogen sulphide (H2S) in 

RAS – cause sudden mass 

mortality 

Addition of hydrogen peroxide (H2O2) for H2S 

removal. Safe for fish. 

Bergstedt et al., 2022 

 

 Heavy metal pollution 

contaminates water and 

fish/shrimp 

Good management practices and good 

governance to reduce heavy metal contamination 

Le et al., 2022 

 Methane and CO2 release from 

aquaculture ponds 

Reduce organic wastes, aerate ponds and/or 

dredge pond bottom to prevent hypoxia   

Chen et al., 2016; Yang et al., 

2018; Yuan et al., 2021; Zhao 

et al., 2021 

Algal blooms Cyanobacterial blooms, algal 

toxins 

Prevent eutrophication and toxic algal blooms. 

High and stable pH and dissolved oxygen 

concentrations 

Yñigues et al., 2021; Xue et 

al., 2023 

Chemicals Antibiotics, chemicals (e.g. 

malachite green), heavy metals 

Use high-quality water sources for culture.  Avoid 

using antibiotics and chemicals; use their 

alternatives such as probiotics, remove antibiotics 

by UV- photolysis and degradation by microbial 

granules 

Falconer et al., 2018; Pandey et 

al., 2022; Sha et al., 2022 

 

 

 Development of antibiotic-

resistant genes (ARGs) that 

would be harmful to aquaculture 

health. Most antibiotics are from 

aquaculture farms and/or 

domestic sewage 

Minimal and regulated antibiotics use in farms. 

Development of technologies for antibiotic 

removal from wastewater.  Development of 

biomarker for antibiotic monitoring 

Han et al., 2020; Fernanda et 

al., 2022;  

Chen et al., 2022 

 Sulfonamides – degradation 

from aquaculture wastewater 

Remove sulfonamides - Use laccase-

syringaldehyde mediator system through response 

Lou et al., 2022 
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surface optimization, degradation kinetics and 

degradation pathways 

 

Microbial 

communities 

Environmentally friendly 

bacteria/bioremediate 

ecosystem; Pathogenic 

bacteria/diseases and related 

health problems 

Monitoring the dynamics of bacterial populations 

in the aquaculture systems and its related 

processes (bio-filtration, biofilms) 

Lukassen et al., 2019b 

Diseases Poor water quality – increased 

incidence of white spot disease - 

high mortality and low 

production. 

 Good farm management includes improving 

water quality, maintaining and stabilizing 

physical-chemical parameters, and controlling 

water exchange to reduce the pathogen prevalence 

Swathi et al., 2021; Hassan et 

al., 2022 

 

 

 1 
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        Water quality management in aquaculture production systems and 1 

methods to enhance it  2 

 3 

Water quality in aquaculture production systems 4 

 5 

Aquaculture production systems including RAS (recirculating aquaculture system), 6 

IMTA (integrated multi-trophic aquaculture), aquaponics (aquaculture and 7 

hydroponics), and ecosystem-based approaches were designed and constantly 8 

improved to enhance water quality and production (Table 3). These integrated 9 

production systems which have zero-water exchange and produce microorganisms as 10 

food sources, can be integrated with different types of biofiltration, biocoagulation, 11 

bioflocculation, and biological interactions including bioflocs and bioremediation (Xu 12 

et al., 2021; Igwegbe et al., 2022) to enhance their wastewater treatment performance 13 

(Table 4).  14 

 15 

Aquaponics 16 

 17 

Aquaponics, the integration of aquaculture and hydroponics, is conceptually based on 18 

the efficient use of water and recycling of accumulated organic nutrients using plants, 19 

as one of the effective approaches in addressing the problems of aquaculture wastewater 20 

treatment, pollution in public waters, improved water quality in culture systema and 21 

sustainable aquaculture development (Yep and Zheng, 2019; Chiquito-Contrera et al., 22 

2022); Okomoda et al., 2023). Essentially, aquaponics uses bacterial processes and 23 

enhances plant nutrient uptake to recover and recycle nutrients from aquaculture 24 

systems (Kalayci Kara et al., 2021; Chen et al., 2023). Sopawong et al. (2023) showed 25 

that integrating fish culture and plants in a bio-green floating system (BFAS) 26 

significantly improved water quality, fish health, and aquaculture production. In 27 

addition, aquaponics overcomes the land scarcity for aquaculture as the system can be 28 

constructed and designed to fit any area available, such as in urban areas and water-29 

scarce areas. Palm et al. (2018) and Obirikorang et al. (2021) demonstrated the 30 

increased efficiency of aquaculture production in aquaponics improvised for 31 

commercial aquaculture production and food security. To make the aquaponics more 32 

effective, Calone et al. (2019) and Ekawati et al. (2021) combined it with RAS as A-33 

RAS (aquaponic-RAS), which proved to be effective in improving water quality, 34 
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survival rate, feed conversion ratio, and yield in catfish aquaculture (Table 3). Based 1 

on the same principle, Goddek and Körner (2019) designed RAS-hydroponic multi-2 

loop aquaponic system for better fish and plant production with flexible sizing. Liu et 3 

al. (2019) introduced CRIS (cray fish integrated system) for efficient use of waste for 4 

rice production. There are different combinations of fed and extractive species in 5 

different systems to improve water quality, such as catfish, plants, and bacteria in 6 

hydroponic-biofilm and NFT (nutrient film technique (NFT) systems (Mohapatra et al., 7 

2020; Li et al., 2022b) to improve biofilter and ammonia removal efficiencies. Addy et 8 

al. (2017) showed that microalgae was more efficient in ammonia removal compared 9 

to plants in aquaponic co-cultivation. Other technologies such as biochar-supplemented 10 

planting panel system, polylactic acid addition and smart sensing systems have been 11 

integrated into the design of aquaponics to improve water quality (Table 3).  12 

 13 

Integrated Multi-Trophic Aquaculture (IMTA) 14 

 15 

The concept of integrated multi-trophic aquaculture (IMTA) utilizes complementary 16 

aquaculture species along the food chain in the process of eating and being eaten such 17 

that wastes are fully recycled and minimal pollutants are released to the adjacent waters 18 

(Figure 3). In IMTA system, commercially important fed species (the main fish or 19 

invertebrates that consume given feeds) are cultured together with commercially 20 

important extractive species (aquatic species such as seaweeds or molluscs that feed/use 21 

the waste of other species) so that ecological balance and water quality in the system 22 

could be maintained (Figure 3). Since feeding is an important factor in an IMTA 23 

system, Flickinger et al. (2020) showed that feed management is important to determine 24 

the water quality that translates into prawn and fish production in IMTA.  25 

 26 

The selection of the species from various trophic is based on their physiological 27 

and ecology functions to ensure a complete recycling of organic matter in the system 28 

with minimal wastes and good water quality which contributes to the sustainability of 29 

the aquaculture industry (Table 3). Largo et al. (2016) reported the use of abalone 30 

(donkey’s ear, Haliotis asinina) as fed species and seaweeds (Gracilaria heteroclada 31 

and Eucheuma denticulatum) as the inorganic nutrient extractive species. Seaweeds 32 

functioned effectively in sequestering nutrients in various fish and shellfish culture to 33 
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minimize impacts of pollution and improve water quality not only in aquaculture 1 

systems, but also in the related water bodies (Table 3). Kelp (Macrocystis pyifera) farms 2 

in a macroalgae-based IMTA, were used to sequester nitrogenous compounds from 3 

salmon aquaculture effluents resulting in low chlorophyll concentrations and improved 4 

water quality (Hadley et al., 2018). In freshwater IMTA, Paolacci et al. (2022) showed 5 

that duckweed, Lemna spp. could substantially remove total nitrogen and total 6 

phosphorus, maintain good water quality, and increase aquaculture yields. In addition 7 

to macroalgae, microalgae can be introduced in IMTA in the form of periphyton and/or 8 

microalgae-bacterial consortia to reduce nutrients and other pollutants, improve water 9 

quality and produce algal biomass for enhancement of culture yields in the system 10 

(Milhazes-Cunha and Otero, 2017).  11 

 12 

Recirculating aquaculture system (RAS) 13 

 14 

The recirculating aquaculture system (RAS) is a closed-circuit high density aquatic 15 

animal farming where water from fish tanks is recirculated to remove solid and liquid 16 

wastes, and the purified water is returned to the aquaculture tanks (Figure 4). It is 17 

designed to provide a more controlled aquaculture system to reduce water usage and 18 

produce less wastes (both liquid and solid wastes), and thus it is more efficient and 19 

economical compared to the conventional flow-through and cage aquaculture systems 20 

(Table 3). In RAS, the relative water renewal rate can be optimized, the fish feed 21 

conversion ratio (FCR) decreased, and the growth rate increased (Pulkkinen et al., 22 

2018). As excess and poor-quality feeds can cause water quality problems in RAS, 23 

Kamali et al. (2022) took into account the effects of feeding regimes on the 24 

accumulation of ammonia and dissolved oxygen in designing a new RAS to enhance 25 

the sustainability of aquaculture. 26 

 27 

The efficiency of RAS in water quality management could be enhanced by 28 

combining the system with other functional components such as depuration system to 29 

eliminate off-flavour, microalgae system to enhance nutrient removal, and bacterial 30 

communities as in SNAD (simultaneous partial nitrification, anammox and 31 

denitrification) system to enhance organic-inorganic matter recycling (Table 3). 32 
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Biofiltration in RAS functions to convert ammonia to the less toxic form, nitrate. 1 

According to Santos et al. (2022), nitrate is about 100-200 folds less toxic.  2 

 3 

Other alternative methods of nutrient removal such as direct or indirect oxidation, 4 

adsorption by zeolites and activated carbon, air stripping, and reverse osmosis have 5 

their own drawbacks in terms of low efficiency and high energy costs (Diaz et al., 2012; 6 

Gendel and Lahav, 2013). Yogev et al. (2020) showed that P from RAS can be 7 

efficiently (> 99%) removed through biomineralization in an anaerobic reactor and 8 

reused as fertilizer. For other toxic compounds, Bergstedt et al. (2022) proposed the use 9 

of hydrogen peroxide to remove H2S from a saltwater RAS. RAS is advantageous in 10 

areas with limited land and water. In countries with severe water shortages, such as 11 

Gulf Cooperation Council countries, RAS is useful for recycling wastewater to 12 

overcome water scarcity for aquaculture (Qureshi, 2022). 13 

 14 

Integration of production systems using ecosystem-based approaches for water quality 15 

improvement 16 

 17 

In most aquaculture systems, toxic compounds such as ammonia, nitrite, and hydrogen 18 

sulphide can deteriorate water quality, increase mortality, and reduce yields.  Although 19 

Aquaponics, IMTA, and RAS have been designed individually to improve water quality 20 

and increase yields, integration of these production system could increase the 21 

efficiencies and performances of aquaculture systems. Integration of aquaponics and 22 

RAS (A-RAS), IMTA, and RAS (I-RAS) supported by a variety of functional 23 

biological components such as bacteria and microalgae can make aquaculture 24 

production systems more productive, cost-effective, and efficient with less water 25 

consumption and lower disease risks (Figure 5).  26 

 27 

Essentially aquaponics, IMTA, RAS and their combinations (A-RAS, I-RAS) are 28 

conceptually based on ecosystem-based approaches, where holistic integration and 29 

management of different ecosystem components are essential to maintain its ecological 30 

resilience and stability to ensure optimum production in closed aquaculture systems.  31 

However, ecosystem-based aquaculture system (EBAS) can also be carried out in the 32 

open system such as the integration of aquaculture and mangrove forest management 33 

in eco-green approach (Racine et al., 2021; Musa et al., 2023). Ecosystem model with 34 
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the co-culture of bivalves (as the grazers) and seaweeds (as nutrient consumers) would 1 

drive the nutrient-phytoplankton-zooplankton-detrital food web, increase the efficiency 2 

of waste recycling, improve water quality, and enhance aquaculture yields (Cabral et 3 

al., 2016; Park et al., 2018). Fan et al. (2020) reported increased production of kelp 4 

(Saccharina japonica - seaweed) and oysters (Crassostrea gigas – a mollusk) with 5 

improved water quality, making the ecosystem resilient and stable (Table 3).  6 

 7 

Methods for water quality enhancement 8 

 9 
Different technologies (such as bioremediation, bio-floc, and Internet-of-things) and 10 

processes (chemical reactions, filtrations, coagulations, and flocculations) can be 11 

imbedded in closed aquaculture systems such as aquaponics and RAS, or open systems 12 

such as coastal waters to make the wastewater treatment and recycling more efficient, 13 

which in turns, improve water quality and enhance aquaculture yields (Table 4, Figure 14 

5). Liu et al. (2021b) integrated heterotrophic biofloc and nitrifying biofloc filters to 15 

simultaneously control ammonia, nitrite, nitrate, soluble reactive phosphorus, and 16 

alkalinity with relevant functional microbes such as ammonia and nitrite-oxidizing 17 

bacteria, denitrifying bacteria, phosphorus accumulating organisms (PAOs), 18 

denitrifying PAOs, and glucogen accumulating bacteria. 19 

 20 
Bioremediation 21 

 22 
Bioremediation involves the use of environmentally friendly microorganisms to 23 

mitigate pollution, improve water quality and maintain ecological health in aquaculture 24 

systems (Devaraja et al., 2002; Sun et al., 2022). These bioremediation bacteria function 25 

to decompose organic wastes into useful inorganic compounds which are recycled to 26 

maintain a healthy nutrient cycle in various culture systems (Table 4). Bioremediation 27 

minimizes the use of antibiotics and drugs and thus, decreases the detrimental 28 

consequences of routinely used chemotherapeutic agents and produces safe aquatic 29 

products for human consumption (Sha et al., 2022). In addition, these environmentally 30 

friendly bacteria help to improve the health conditions of cultured organisms by 31 

protecting them against infectious diseases, delivering antigens, and providing several 32 

other health benefits in aquaculture.  33 
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Table 3. Aquaculture production systems for improving water quality in aquaculture. 1 
 2 

Approaches/ 

Methods/ 

Processes 

Aquaculture 

Species/Systems 

Supporting Species/Function References 

Aquaponics  Catfish (Clarias gariepinus) 

 

Spinach and bacterial communities in the aquaponic 

system (A-RAS) 

Ekawati et al., 2021 

 

 European catfish (Silurus 

glanis) 

 

Lettuce (Lactuca sativa) for nutrient removal from 

aquaculture wastewater, improved water quality, fish 

yields and plant biomass (A-RAS) 

Calone et al., 2019 

 Multiloop aquaponic system RAS-hydroponic for better fish and plant production with 

flexible sizing 

Goddek and Körner, 

2019 

 Pangas (Pangasius 

hypophthalmus) 

Marigold (Tagetes erecta) in portable nutrient film 

technique (NFT) aquaponic system 

Mohapatra et al., 2020 

 Hydroponic-biofilm 

combined treatment system 

Efficiently removed nutrients by both plants and 

biofilms. Biofilm promoted the removal of nitrogenous 

compounds by denitrification. Improved water quality, 

fish health, and fish production 

Li et al., 2022b; 

Sopawong et al., 2023 

 

 

 Co-cultivation – Tilapia and 

microalgae in aquaponics 

Microalgae (Chlorella sp.) was more efficient in 

ammonia removal compared to plants.  An additional 

product of microalgae biomass 

Addy et al., 2017 

 

 

 Crayfish-rice integrated 

system (CRIS) 

Less fertilizer for rice plants boosts farmers’ production 

and economy 

Liu et al., 2019 

 

 Biochar-supplemented 

planting panel system; 

Laccase immobilized biochar 

Water treatment for fish culture -increase dissolved 

oxygen and convert toxic compounds to those beneficial 

for plant growth; bioremoval of toxic malachite green 

from aquaculture systems   

Mopoung et al., 2020; 

Pandey et al., 2022 

 

 Aeration and polylactic acid 

addition in aquaponics 

Decrease of dissolved organic matter, improved water 

quality 

Wu et al., 2018a 

 

 Internet-of-things (IoT) in 

aquaponics 

Cloud-based IoT monitoring and smart sensing systems. 

Improved water quality and fish production 

Lee and Wang, 2020; 

Taha et al., 2022 
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Integrated Multi-

trophic 

Aquaculture 

(IMTA) 

Abalone (Haliotis asinine) 

and other bivalves 

Mollusks and seaweeds. Seaweeds (Gracilaria 

heteroclada and Eucheuma denticulatum) extract 

nutrients (especially nitrate and ammonia) from the water 

column 

Largo et al., 2016; Park 

et al., 2018 

 Rainbow trout (Oncorhynchus 

mykiss) and European perch 

(Perca fluviatilis) 

Duckweed species; Lemna minor and L. gibba/enhanced 

nutrient removal and biomass production 

Paolacci et al., 2022  

 Hybrid grouper (Epinephelus 

fiscoguttatus x E. 

lanceolatus) and whiteleg 

shrimp (Litopenaeus 

vannamei) 

Seaweed (Gracilaria bailinae)/ removed inorganic 

nutrients, improved water quality, enhanced health and 

promoted the growth of cultured organisms  

 

Zhang et al., 2022b 

 Commercial shellfish species  Seaweed aquaculture (extractive species)/decrease or 

minimize impacts of pollution, habitat loss, ocean 

acidification, and fishing pressures – Restorative IMTA 

Theuerkauf et al., 2019 

 

 

Macroalgal-based 

IMTA 

Salmon aquaculture Macroalgal based IMTA - Kelp farm (Macrocystis 

pyrifera). 3D ecosystem model used to quantify water 

quality changes. Reduce chlorophyll a concentrations 

Hadley et al., 2018 

 

 

Microalgal-based 

IMTA 

Aquaculture systems – 

effluents; Binary microalgae 

culture system 

Periphyton, microalgae-bacterial consortia, cell 

immobilization-alginate beads /reduce nutrients and 

other pollutants, improve water quality, production of 

algal biomass for feed, fertilizers, and other valuable 

compounds 

Milhazes-Cunha and 

Otero, 2017; Luo et al., 

2019 

 

 

 Microalgae cultivation – 

recycling of culture medium 

Sequestering of nutrients by microalgae 

(autoflocculation); flocculating bacteria enhanced 

microalgae growth 

Li et al., 2019; Nguyen 

et al., 2019b  

 

Recirculating 

Aquaculture 

System (RAS) 

Rainbow trout 

(Oncorhynchus mykiss) 

culture 

Optimized relative water renewal rate, maintained good 

water quality with online water quality monitoring, low 

feed conversion ratio, high growth rate; Single-sludge 

denitrification to remove organic matter and nitrate 

Pulkkinen et al., 2018; 

Suhr et al., 2014 
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RAS – depuration 

system 

Atlantic salmon, Salmo salar 

culture with depuration 

system 

Additional depuration system in RAS improved water 

quality, low geosmin and 2-methylisoboreol levels 

Davidson et al., 2022 

RAS -microalgae Tilapia (Oreochromis 

niloticus) culture - 

Microalgae 

Include microalgae (Chlorella vulgaris and Tetradesmus 

obliquus) for aquaculture effluent pretreatment – 

enhanced microalgal growth and nutrient removal  

Ramli et al., 2017; 

Tejido-Nuñez et al., 

2019 

 Marine fish culture - 

Microalgae 

Microalga, Tetraselmis sp. High nutrient removal (N 

and P). Production of microalgal biomass high in lipids 

and useful compounds suitable for fish feeds 

de Alva and Pabello, 

2021  

 Shrimp culture - Microalgae Immobilized microalga Tetraselmis sp. Reduction of 

nitrogenous and phosphorus compounds  

Khatoon et al., 2021  

 

RAS - microbes Marine fish culture – 

Bacteria; immobilized 

bacterial granules 

Nitrifying bacteria in RAS, oxidize ammonia to nitrate; 

removal of antibiotics – ultraviolet photolysis and 

biodegradation by immobilized bacterial granules  

Sha et al., 2022 

 

 

 Freshwater fish culture, 

Shrimp culture – Microbial 

communities 

Microbial communities in RAS biofiltration system.  

The addition of carbon sources enhanced microbial 

communities in biofilters in RAS 

Jiang et al., 2019; Chen 

et al., 2020 

 

 Shrimp culture -Microbial 

community improvement 

Water circulation on the microbial community/improved 

water quality, better growth 

Chen et al., 2019 

 

 Aquaculture System - SNAD 

Bioreactor (Simultaneous 

partial nitrification, anammox 

and denitrification) 

Effective removal of nitrogen and COD under high 

dissolved oxygen condition 

 
 

Lu et al., 2020 

 African catfish (Clarias 

gariepinus) culture - Near-

zero discharge RAS 

Recovery and reuse of phosphorus by microbes under 

anoxic and anaerobic treatments 

Yogev et al., 2020 

 

 

 Microalgae-bacteria consortia 

in RAS 

Significant reduction of nitrogenous compounds, and 

improved water quality 

Chun et al., 2018 

 

 Moving-bed biofilm reactor 

(MBBR) 

Ammonia removal by MBBR resulting in improved 

water quality 

Ashkanani et al., 2019  
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Integrated RAS-

IMTA 

River prawn and tambaqui 

fish – RAS-IMTA 

Improved system efficiencies, better yields Flickinger et al., 2020 

 

 

Ecosystem-based 

approach – 

Integration of 

aquaculture system 

extractive species 

(seaweed  

cultivation; 

mangrove forest) 

Coastal aquaculture, shrimp 

farming, whiteleg shrimp 

(Litopenaeus vannamei).  

 

 

 

Eco-green approach. Integration of aquaculture and 

mangrove forest management/Preserve and sustain 

mangrove forest, sustain aquaculture industry 

 

Integration of seaweed cultivation in aquaculture system 

Racine et al., 2021; 

Musa et al., 2023 

Physical-biological 

coupling ecosystem 

model 

Integrated bivalve-seaweed 

culture 

Increased production of kelp (Saccharina japonica - 

seaweed) and oysters (Crassostrea gigas - mollusks), 

improved water quality, sustainable ecosystem 

Fan et al., 2020   

 

 

 1 
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Several bioremediation bacteria have been used in aquaculture and the most common 1 

and popular ones are Bacillus species. Geng et al. (2022) used bacteria (Bacillus subtilis 2 

and B. licheniformis) and microalgae (Chlorella vulgaris) to bioremediate aquaculture 3 

wastes, and these organisms, in turn, became foods for the filtering triangle sail mussel 4 

(Hyriopsis cumingii). In addition, Bacillus species enhanced the digestive enzymes 5 

activities of the mussel. Gao et al. (2018) reported that an efficient aerobic denitrifier 6 

B. megaterium has a high capacity to remove toxic nitrite and improve water quality. 7 

John et al. (2020) reported that ammonia, nitrite, and nitrate concentrations in tilapia 8 

culture wastewater microbial consortium were significantly reduced by using microbial 9 

consortium of Bacillus cereus, B. amyloliquefaciens, and Pseudomonas stutzeri as 10 

bioremediators.  11 

 12 

Phytoremediation using plants such as macrophytes and microalgae, for 13 

sequestering nutrients, is another form of bioremediation which is useful treatment to 14 

improve water quality aquaculture systems (Table 4). Tejido-Nunez et al. (2019) 15 

showed improved water quality when the aquaculture effluent was treated with 16 

Chlorella vulgaris and Tetraselmis obliquus, indicating that the microalgae were 17 

effective in nutrient removal. Nie et al. (2020) suggested a few options for the 18 

integration of microalgae culture with the aquaculture system such as permeable 19 

floating photobioreactors, bacteria-microalgae consortia, mixotrophic microalgae 20 

cultivation, and biofilm production. Bioflocculation of microalgae and bacteria can 21 

enhance nutrient removal and facilitate microalgae harvesting (Nguyen et al., 2019a). 22 

Kumar et al. (2016) showed that agar-alginate algal blocks (AAAB) known as 23 

immobilized marine microalgae biofilter system, were effective for nutrient removal 24 

from aquaculture wastewater. Microalgae can be introduced not only in the biofiltration 25 

system but also as a component to utilize inorganic N and P for their enhanced growth, 26 

and the resulting biomass can be valorized as feed for other aquatic organisms 27 

(Milhazes-Cunha and Otero, 2017). Li et al. (2019) and Nguyen et al. (2019b) reported 28 

that Chlorella vulgaris produced higher biomass with a significant decrease in total N, 29 

total P, BOD, and COD when recycled aquaculture wastewater was used as the culture 30 

medium. Wang et al. (2021) showed that microalgae produced higher biomass and 31 

nutritional contents when cultured in fishery wastes. When cultured with 32 

bioremediation bacteria (binary microalgae culture), microalgae exhibited a high 33 
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growth rate, enhanced bio-flocculation, high-value metabolites and high removal 1 

efficiencies of total organic carbon, ammonium nitrogen, and total phosphorus (Rashid 2 

et al., 2018; Luo et al., 2019). An increased number of degrading bacteria causes the 3 

integration of microalgae bacteria more effective in degradation of organic pollutants 4 

in aquaculture wastewater which promotes fish health (Zhang et al., 2022b). 5 

 6 

Biofloc Technology (BFT) 7 

 8 

Bioflocs are aggregates of mixed biological communities consisting of bacteria, algae, 9 

fungi, and zooplankton that function not only to degrade the organic matter, reduce 10 

contaminants, and improve water quality, but also to form an important source of food 11 

and immunostimulants to the cultured organisms (Table 4). The microbial community 12 

enhances the nutrient recycling of metabolites through in-situ bioremediation, 13 

generating nutrients for the development of microalgae and zooplankton which serve 14 

as natural foods, and maintains the water quality in the system (Chen et al., 2023). In 15 

the biofloc technology, bacterial communities dominated by heterotrophic bacteria can 16 

be developed in aquaculture systems using appropriate carbon sources in suitable C:N 17 

ratios (Gaona et al., 2016). Ríos et al. (2023) reported that C:N ratio of 10 significantly 18 

enhanced the immune stimulation in shrimp. Heterotrophic bacteria use organic carbon 19 

such as starch and sugar to generate energy and to grow into micro-biomass. Putra et 20 

al. (2020) observed that molasses was the best biofloc starter for a tilapia culture system. 21 

Luo et al. (2017) suggested the use of external carbohydrates (poly-β-hydroxybutyric 22 

and polycaprolactone) to improve the bacterial community, nitrogen dynamic, and 23 

biofloc quality in tilapia (Oreochromis niloticus) culture system. Kim et al. (2022b) 24 

reported that environmentally friendly microbial groups in a biofloc system of Pacific 25 

white shrimp, Litopenaeus vannamei, include Rhodobacteraceae, Flavobacteriaceae, 26 

and Actinobacteria. In general, in BFT, heterotrophs were better compared to 27 

autotrophic bacteria for the treatment of the wastewater (Kim et al., 2020). 28 

 29 

Physical-chemical methods 30 

 31 

Physical and chemical methods such as filtrations, coagulation, flocculation, and 32 

adsorption function to remove contaminants from the aquaculture wastewater, while 33 
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electrochemical oxidation breakdown persistent organic compounds and aeration 1 

increased the dissolved oxygen in the water (Santos et al., 2022). These methods can 2 

be applied singly or in combination in various aquaculture systems to further increase 3 

the efficiency of water quality improvement and enhance aquaculture production (Table 4 

4). Biofilters (media with attached microorganisms such as bacteria, fungi, algae and 5 

protozoans) and membrane filters remove contaminants as the wastewater flows 6 

through them (Ng et al., 2018; Hassan et al., 2022; Jin et al., 2023). Coagulation 7 

(clumping of particles), flocculation (settling of coagulated materials) and adsorption 8 

(adhering of substances) can effectively remove suspended and dissolved solids from 9 

the aquaculture wastewater (Letelier-Gordo and Fernandes, 2021; Igwegbe et al., 10 

2022).  Yanuhar et al. (2022) reported that water quality in concrete ponds can be 11 

improved by aeration, filtration, and reduction of organic matter by optimizing the feed. 12 

Different types of biofiltration, biocoagulation, bioflocculation, and biological 13 

interactions can be selected to enhance wastewater treatment and performance in 14 

aquaculture systems depending on their functionality and costs (Table 4).  15 

 16 

Santos et al. (2022) introduced electrochemical oxidation as an alternative to 17 

biofiltration in RAS and reported several advantages including the decrease of toxic 18 

compounds and harmful by-products, water disinfection, reduced water use, easy 19 

adaptation to different production scales, and an increase in fish health and yields. In 20 

addition, aquaculture effluents can be treated by coagulation of phosphorus and organic 21 

matter using FeCl3 and AlSO4 (Letelier-Gordo and Fernandes, 2021). Kujala et al. 22 

(2020) and Lindholm et al. (2020) used a woodchip reactor, organic flocculants, and 23 

slow sand filtration to efficiently remove nitrogen, phosphorus, geosmin, and heavy 24 

metal, from rainbow trout (Oncorhynchus mykiss) culture. 25 

 26 

Internet-of-things technologies (IoT) and models 27 
 28 

Traditionally, water quality monitoring in aquaculture systems needs manual sampling 29 

which requires a lot of time and cost. With the advent of technologies, real-time 30 

monitoring and early warning systems based on the internet-of-things (IoT) and 31 

intelligent-monitoring-system (IMS) can be designed and developed to make water 32 

quality monitoring and management more efficient and effective. Internet-of things, 33 
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consisting of collective network of communication devices, integrated with artificial 1 

intelligence and modeling, can improve the monitoring and management of essential 2 

water quality parameters such as dissolved oxygen, pH values, turbidity, and 3 

temperature in an aquaculture system (Figure 5). Wireless sensor network has been 4 

used widely for water quality monitoring (Shi et al., 2018; Wei et al., 2023). Rana et al. 5 

(2021) used the machine learning approach to assess the influence of water quality 6 

parameters on the growth performance of freshwater aquaculture. Rahman et al. (2021) 7 

developed an integrated framework for aquaculture prawn farm management using 8 

sensors, machine learning, and augmented reality-based visualization methods through 9 

real-time interactive interfaces. Thus, models for accurate predictions of water quality 10 

parameters such as the hybrid prediction model (Eze et al., 2021; Ranjan et al., 2023), 11 

and fuzzy comprehensive evaluation method (You et al., 2021) can be developed for 12 

improved water quality management. Caballero and Navarro (2021) and Oiry and 13 

Barillé (2021) used sentinel-2 satellite to monitor water quality, cyanoHAB, and 14 

microphytobenthos. Xiang et al. (2023) used satellite remote sensing to monitor water 15 

colour and water transparency, in relation to land-based activities which cause water 16 

turbidity and an increase of pollutants in aquatic ecosystems.  17 

  18 

Precision feeding with minimal food waste is essential to maintain good water 19 

quality in aquaculture systems since excess feed is one of the major reasons for water 20 

quality deterioration in aquaculture systems. Fiordelmondo et al. (2020) reported that 21 

feeding type and management could improve water quality in rainbow trout farming. 22 

Liu et al. (2023b) developed a precision feeding system on a software platform by 23 

integrating feeding management, a water quality monitoring system, a fish feeding 24 

activity sensor, and an automatic feeding machine on a software platform. For 25 

convenience, efficiency and precision, Wu et al. (2022) applied intelligent and 26 

unmanned equipment for water quality management, underwater inspection, precision 27 

feeding, and biomass estimation in deep-sea aquaculture. Ubani and Cheng (2022) 28 

noted unmanned systems are necessary for locations that are difficult to access due to 29 

risks associated with extreme climate and long distances from the shore. 30 

 31 

The internet-of-things (IoT) can be used to develop automatic fish feeding with 32 

precise amounts and timing. Gao et al. (2019) developed IoT-based intelligent fish 33 
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farming system that includes a forecasting method for water quality management. The 1 

overall framework and constructs of the IoT and IMS-based aquaculture environment 2 

should integrate the control circuit, information collection, culture observation, data 3 

transmission, and early warning system. IoT in aquaculture water quality monitoring 4 

involved the development of a cloud-based dashboard for data acquisition. Several 5 

cameras installed in the aquaculture farm are used to upload information wirelessly to 6 

the dashboard. Water quality parameters such as temperature, pH, conductivity, 7 

salinity, turbidity, dissolved oxygen, and light intensity can be downloaded from a 8 

wireless sensing module. Islam et al. (2021) proposed a cost-effective long-range multi-9 

step predictor to improve the forecasting for water quality monitoring. Sampaio et al. 10 

(2021) used low-to-high frequency data for water quality monitoring and fish 11 

production.  12 

 13 

Bai et al. (2021) proposed a risk assessment approach using bio-reaction kinetic 14 

models to evaluate pollutant accumulation in fish tissue as the index for environmental 15 

quality and safety in aquaculture. Various models for predicting and managing HABs 16 

have been established to reduce the impacts of algal toxins and water quality 17 

deterioration associated with eutrophication in aquaculture (Derot et al., 2020). Water 18 

quality modeling can also be based on disease agents. Jampani et al. (2022) suggested 19 

a water quality modeling framework to model and evaluate antibiotic-resistant (AR) 20 

bacteria and AR genes in aquaculture systems. 21 

 22 
 23 

Artificial intelligence (AI) techniques are useful and convenient for water quality 24 

management in aquaculture operations that are subjected to harsh environments and 25 

extreme climate such as offshore cage aquaculture. Chang et al. (2021) developed an 26 

AI-IoT smart cage culture management system to solve problems related to physical 27 

inaccessibility to large coastal and off-shore aquaculture operations. In fact, intelligent 28 

and unmanned equipment provide convenient and efficient applications for water 29 

quality management, precision feeding, and biomass estimation in aquaculture (Wu et 30 

al., 2022). AI-IoT methods supported by sensors, wireless networks, automation, and 31 

cloud data approaches are also applied for water quality monitoring in coastal waters, 32 
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estuaries, and land-based aquaculture systems (Danh et al., 2020; Huan et al., 2020; 1 

Pasika and Gandla, 2020). 2 

 3 
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Table 4. Technologies and processes for improving water quality in aquaculture systems. 1 

Technologies/Processes Applications/Main features Benefits References 

Bioremediation Triangle sail mussel culture (Hyriopsis 

cumingii) 

Bacillus subtilis, B. licheniformis and 

microalga, Chlorellavulgaris/bioremediate 

aquaculture wastes, provide foods for the 

mussels (Hyriopsis cumingii), enhance 

digestive enzyme activities of the mussel 

Geng et al., 2022 

 Intensive aquaculture ponds Bacillus megaterium with high aerobic 

denitrification efficiency (> 90% of NO2-N 

removal). Development of biofilm 

enhanced denitrification (> 95% nitrate 

removal) 

Gao et al., 2018; 

Xu et al., 2019  

 Tilapia culture - aquaculture wastewater  Bacterial consortium –  

Bacillus cereus, B. amyloliquefaciens and 

Pseudomonas stutzeri 

John et al., 2020 

Phytoremediation – 

Microalgae-based 

Aquaculture 

Aquaculture systems – fish, shrimp Microalgae (Nannochloropsis oculata, 

Tetraselmis suecica) –highly efficient 

nutrient removal (from waste water) with 

low cost, double crops (fish and algae) 

enhanced biomass production. Production 

of byproducts – bioethanol 

Immobilized marine microalgae biofilter 

Seaweed Ulva lactuca, bioremediate water 

and served as a food additive 

Reyimu and 

Özcimen, 2017; 

Nie et al., 2020; 

Emparan et al., 

2020; Elizondo-

González et al., 

2018; Kumar et 

al. 2016 

 

 Flow-through system for Eurasian Perch 

(Perca-fluviatilis) 

An alga, Pseudokirchneriella subcapita, 

improved water quality 

O’Neill and 

Rowan, 2022 

 Fishery wastewater Microalgae co-culture of Thalassiosira 

psedonana and Isochrysis galbana. 

Microalgae – improved water quality and 

enhanced algal growth 

Wang et al., 2021 
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 Binary microalgae culture system Microalgal- bacterial symbiotic system – 

synchronous wastewater treatment and 

nutrient recovery 

Rashid et al., 

2018; 

Bhatia et al., 2022; 

Sun et al., 2022;  

Wang et al., 2022  

 Microalgae-bacteria symbiotic system Integrated microalgae and bacteria system/ 

optimized carbon sources, enhanced 

nutrient removal 

Nguyen et al., 

2019a  

 Biotic control: biological agents for 

HABs treatment  

Species-specific mode of interactions with 

algal blooms (bacteria, viruses, fungi and 

zooplankton) through feeding (predation), 

lysis, and/or competition 

Pal et al., 2020 

 

 

Bioflocs Aquaculture systems - binary microalgae 

culture 

Microalgae-bacterial flocs/ nutrient 

removal and microalgae biomass 

Rashid et al., 

2018; Nguyen et 

al., 2019a 

 Tilapia culture (Oreochromis niloticus)  Reduce inorganic nutrients by different 

biofloc starters (carbohydrates)/improve 

water quality 

Luo et al., 2017; 

Putra et al., 2020 

 

 Jade Perch RAS – biofloc with 

heterotrophic and nitrifying bacteria 

Heterotrophic bacteria removed nitrate and 

soluble reactive P, and nitrifying bacteria 

removed nitrite. Save carbon resources. 

Heterotrophic bacteria showed better 

performance than autotrophic bacteria in 

wastewater purification capacity 

Kim et al., 2020; 

Liu et al., 2021b 

 

 

 Shrimp culture – Penaeid shrimp 

Litopenaeus vannamei 

Biofloc-based bacterio-plankton 

community/improve water quality, control 

pathogens, and enhance shrimp immunity 

Kim et al., 2022b; 

Ríos et al., 2023 

 

Biological Filtration Tank cultures – issues on emerging 

pollutants, antibiotic-resistant genes, and 

organic micropollution 

Environmentally friendly, recirculating 

aquaculture system, bio-enhanced 

biological filtration 

Jin et al., 2023 
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 Catalytic ozonation-membrane filtration Degradation of organic matter and 

decreased of ammonia 

Chen et al., 2015  

 Biological filters incommon carp culture Use of additional media such as wheat hay, 

rice husks as biological filters to improve 

water quality and fish growth 

Hassan et al., 2022 

Membrane filtration 

technology 

 

Membrane filtration in RAS  Good sieving effect and solute removal 

mechanism, but has problems such as high 

cost, and was subjected to high biofouling 

Ng et al., 2018 

 

 

Electrochemical 

Oxidation  

Seabream (Sparus aurata) and sea bass 

(Dicentrarchus labrax) in recirculating 

aquaculture system (RAS)  

No supporting species/ improved water 

quality with high efficiency of ammonia 

removal and fish disinfection, reduction in 

water use; improved fish yields 

Santos et al., 2022 

Hybrid electro-

coagulation filtration 

method 

  

Wastewater of aquaculture system-

electro-coagulation (EC) filtration system 

consisting of EC reactor, mixed 

flocculator, filtration equipment 

Pretreatment of marine aquaculture 

wastewater 

Xu et al., 2021 

Bio-coagulation-

flocculation/adsorptio

n - Picralima nitida seed 

extract  

 

Catfish culture Treatment of aquaculture effluent using 

Picralima nitida seed extract/improve 

waste biodegradability, significant 

pollutant removal, superior effluent quality 

Igwegbe et al., 

2022 

 Marine and land-based RAS for salmon 

(Salmo salar) 

Treatment of aquaculture effluents by 

coagulation of phosphorus and organic 

matter. 

Letelier-Gordo 

and Fernandes, 

2021 

 Fresh and brackish water RAS – Organic 

flocculants/ woodchip reactor/sand 

filtration 

Removed P, N, geosmin and heavy metals 

from RAS. Improved water quality in RAS 

Kujala et al., 

2020; Lindholm et 

al., 2020 

Chemicals and 

Veterinary Medicine  

Pacific whiteleg shrimp (Litopenaeus. 

vannamei) 

Improved health, survival, and production 

of cultured species 

Patil et al., 2022 

Development of green 

feeds 

Freshwater aquaculture Better feed conversion ratio (FCR), 

improved water quality 

Farradia et al., 

2022 
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Technologies: Internet 

of Things (IoT), 

Artificial intelligence 

(AI) and Models 

Wireless sensor network, artificial 

intelligence (AI)-web-based monitoring, 

automation, alert system   

Water quality monitoring of aquaculture 

systems 

Shi et al., 2018;  

Eze et al., 2021; 

Wei et al., 2023 

 

 Machine learning approach for water 

quality assessment in aquaculture systems 

 

Improve water quality and aquaculture 

yields 

Rana et al., 2021; 

Rahman et al., 

2021 

 A hybrid neural network model for 

dissolved oxygen and other water quality 

parameters 

For predicting dissolved oxygen 

concentration and other water quality 

parameters in aquaculture systems 

Eze and Ajmal, 

2020; Liu et al., 

2021a; Ranjan et 

al., 2023 

 Hybrid soft computing  Real-time measurement and monitoring of 

ammonia. 

 

Yu et al., 2021 

 

 Low-to-high frequency data – 

autonomous data collection platform  

Monitoring of water quality and fish 

production 

Sampaio et al., 

2021 

 Long-range multi-step water quality 

forecasting 

Accurate water quality prediction for 

effective water quality monitoring 

Islam et al., 2021 

 Fuzzy comprehensive evaluation method Improved water quality You et al., 2021 

 Bio-reaction kinetics model for assessing 

pollutant accumulation in fish tissue 

Environmental quality and safety risk 

assessment for fish 

Bai et al., 2021 

 Machine learning models for  

predicting HABs 

Prevention of HABs. Derot et al., 2020  

 Sentinel-2 satellites Water quality and cyanoHABs monitoring  Caballero and 

Navarro, 2021 

 Sentinel-2 satellite imagery for water 

quality index   

Assessment of microphytobenthos using 

remote sensing to determine the health 

status of water bodies 

Oiry and Barillé, 

2021  

 Machine learning models for  

predicting fish kills 

Predicting fish kills and toxic blooms in 

aquaculture areas 

Yñiguez and 

Ottong, 2020 
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 Intelligent IoT-based control and 

traceability system 

Forecast and maintain water quality in the 

aquaculture system.  

Gao et al., 2019 

 

 

 Deep belief network (DBN) and 

variational mode decomposition (VDM) 

data processing – VMD-DBN model  

VMD-DBM model for high prediction 

accuracy and stability of dissolved oxygen 

in aquaculture systems 

Ren et al., 2020 

 

 AI techniques   

 

 

Modeling daily dissolved oxygen. least 

square support vector machine (LSSVM), 

multivariate adaptive regression splines, 

and M5 model tree (M5T) 

Heddam and Kisi, 

2018  

 Integrated AI-IoT Integrates AI, IoT and smart sensors in 

aquaculture (water quality monitoring and, 

feeding)/ enhance water quality, precision 

feeding, increased survival, and production 

Danh et al., 2020; 

Huan et al., 2020; 

Pasika and 

Gandla, 2020; 

Chang et al., 2021 

 Solar-powered semi-floating aeration 

system  

Increase dissolved oxygen Dayɩoǧlu, 2022 

 Fish culture zone water quality model – 

taking into account interacting aquatic 

components: P cycle, N cycle, dissolved 

oxygen, phytoplankton, and particulate 

organic carbon 

For aquaculture site assessment Arega et al., 2022 

 Water quality modeling framework for 

antibiotic resistance in aquaculture 

systems 

Evaluate AR bacteria and AR genes in 

aquaculture systems 

Jampani et al., 

2022 

 Intelligent and unmanned equipment Convenient and efficient applications of 

intelligent and unmanned equipment for 

water quality management, precision 

feeding, and biomass estimation in 

aquaculture systems 

Ubina and Cheng, 

2022; Wu et al., 

2022  

 

 1 
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Policy and Regulation 1 

 2 
Policies and regulations are important in ensuring the implementation of aquaculture 3 

effluent management strategies as rapid expansion in the aquaculture industry not only 4 

provides economic opportunities but also presents risks to the environment and human 5 

society. In their assessment of sustainable global aquaculture Davies et al. (2023) noted 6 

that many countries with active aquaculture sectors have some level of governance but 7 

lack clear frameworks for sustainable aquaculture development. Bohnes et al. (2022) 8 

proposed a stepwise framework to assess the environmental impacts of aquaculture 9 

industries taking into account the existing national policy coupled with economic 10 

equilibrium models and life cycle assessment of aquaculture activities, especially those 11 

related to aquaculture feed production and usage.  12 

 13 

Aquaculture farmers in many countries in Asia, where 90% of aquaculture 14 

activities are located, have difficulties in adopting environmental governance due to 15 

their small farms with limited physical and financial resources. For large farms, access 16 

to global markets via certification could be the major driver for adopting environmental 17 

governance. Quyen et al. (2020) reported that Vietnamese shrimp farmers followed 18 

specific certification guidelines and conducted good aquaculture practices to produce 19 

quality and safe products as required by the importing countries, avoiding rejections 20 

and economic losses. However, most aquaculture smallholders are experiencing 21 

environmental and water quality problems that extend beyond the boundary of their 22 

farms. To mitigate environmental risk due to non-sustainable aquaculture practices, 23 

Bush et al. (2019) suggested implementing environmental governance for water quality 24 

management such as certification, finance, and insurance on a wider landscape instead 25 

of focusing on each farm. Bohnes et al. (2022) proposed a stepwise framework to assess 26 

the environmental impacts of aquaculture industries taking into account the existing 27 

national policy coupled with economic equilibrium models and life cycle assessment 28 

of aquaculture activities, especially those related to aquaculture feed production and 29 

usage. Wood et al. (2017) also showed that a small farm on its own is unlikely to have 30 

a significant effect on water quality and environmental conservation compared to a very 31 

large farm or a conglomerate of small farms. Thus, environmental policies and 32 

regulations that consider all elements of farm-to-market operation including production 33 
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systems (cost-effectiveness and sustainable supply), water quality (sources and 1 

effluents), ecosystem health (ecosystem services), and socio-economics (human health, 2 

economy, and livelihoods) are needed to make the aquaculture industry a viable food 3 

producer.  4 

 5 

Conclusions 6 

 7 

Water quality is one of the critical factors to be considered in aquaculture as it has 8 

significant effects on fish growth, health, and yields. A lack of knowledge and practices 9 

in water quality management could severely impede the growth of the aquaculture 10 

sector and jeopardize the utilization of the available water resources for a sustainable 11 

aquaculture industry.  12 

 13 

Aquaculture requires significant understanding of the factors and problems 14 

affecting production systems, in addition to improvements of approaches and 15 

technologies in water quality management.   Water quality enhancement in production 16 

systems such as such as RAS, IMTA, and aquaponics through efficient integration with 17 

physical, chemical, and biological factors would boost the feed conversion ratio and 18 

improve the health of cultured animals. The recycling of nutrients using different 19 

organisms along the aquatic food chain such as bacteria, microalgae, seaweeds, and fish 20 

can enhance the growth, survival, and production of the cultured species as well as 21 

accumulate the biomass of the supporting organisms. In addition, microalgae-based 22 

technologies are a promising solution for aquaculture wastewater treatment and the 23 

resulting microalgal biomass can be valorized. The use of these technologies in the 24 

forms of biofloc, bioremediation, coagulation-flocculation-biofiltration technologies, 25 

and various ecosystem-based approaches provide options for aquaculture best practices 26 

that could improve water quality resulting in improved aquaculture production.  27 

 28 

The application of artificial intelligence and IoT (AI-IoT) in aquaculture 29 

production systems supported by sensors, wireless transmission systems, unmanned 30 

equipment, automation, and big data would enable intelligent water quality monitoring, 31 

precision feeding systems, fish activity monitoring, and early problem detection. The 32 

integration of smart production systems and advanced processes would result in 33 
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precision feeding, improved water quality, increased survival rates and increased 1 

growth of the cultured species. Overall, the use of these technologies in water quality 2 

management supported by relevant policy and regulation would facilitate the approach 3 

to sustainable aquaculture production via effective management of the environment and 4 

fish health.  5 
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