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We consider inference for possibly misspecified GMM models based on possibly
nonsmooth moment conditions. While it is well known that misspecified GMM
estimators with smooth moments remain

√
n consistent and asymptotically normal,

globally misspecified nonsmooth GMM estimators are n1/3 consistent when either
the weighting matrix is fixed or when the weighting matrix is estimated at the n1/3

rate or faster. Because the estimator’s nonstandard asymptotic distribution cannot be
consistently estimated using the standard bootstrap, we propose an alternative rate-
adaptive bootstrap procedure that consistently estimates the asymptotic distribution
regardless of whether the GMM estimator is smooth or nonsmooth, correctly or
incorrectly specified. Monte Carlo simulations for the smooth and nonsmooth
cases confirm that our rate-adaptive bootstrap confidence intervals exhibit empirical
coverage close to the nominal level.

1. INTRODUCTION

Many GMM models are based on nonsmooth moment conditions that involve
indicator functions. Examples include quantile instrumental variables (e.g., Cher-
nozhukov and Hansen, 2005; Honoré and Hu, 2004b) and simulated method of
moments that are based on frequency simulators (McFadden, 1989; Pakes and
Pollard, 1989). While the asymptotic behavior of nonsmooth GMM estimators
has been well established when the model is assumed to be correctly specified,
in practice it can happen that the model is misspecified in the sense that the
population moment conditions evaluated at the parameter value which minimizes
the population GMM objective do not equal zero. For example, Phillips (2015)
points out that quantile regression is always misspecified for a model with unit-root
nonstationary regressors. In this paper, we derive the rate of convergence and the
limit distribution for the GMM estimator based on nonsmooth moment functions
in the misspecified case. The study of misspecification is not only important for
estimation and inference of model parameters and for model testing and selection,
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but also important for studying the properties of computational methods (Creel
et al., 2015).

Misspecified GMM models are studied in, for example, Hall and Inoue (2003),
Berkowitz, Caner, and Fang (2012), Guggenberger (2012), Lee (2014), Hansen
and Lee (2021),Bonhomme and Weidner (2022), Giurcanu and Presnell (2018),
Armstrong and Kolesár (2021), and Cheng, Liao, and Shi (2019). All assume that
the sample moment conditions are smooth (in the sense of twice continuously
differentiable) or directionally differentiable (in the sense of Gateaux) in the
parameters, which allows the GMM estimator to remain

√
n consistent and asymp-

totically normal. In the case of smooth moments, Hall and Inoue (2003) derived
the asymptotic distribution of globally misspecified GMM estimators in the sense
that the population moments are equal to a vector of fixed nonzero constants that
do not approach zero as n → ∞. They show that the globally misspecified smooth
GMM estimator is still

√
n-consistent and asymptotically normal, except with a

different variance–covariance matrix than the correctly specified case. In contrast,
we show that globally misspecified GMM estimators with nonsmooth, specifically
non-directionally differentiable moments, converge at the cubic-root rate to a
nonstandard asymptotic distribution, similar to ones in Kim and Pollard (1990) and
Jun, Pinkse, and Wan (2015). This nonstandard distribution cannot be estimated
consistently by any of the current methods for bootstrapping GMM estimators
(for example, the standard [nonparametric] bootstrap, centered bootstrap of Hall
and Horowitz, 1996, or empirical likelihood bootstrap of Brown and Newey,
2002) because convergence to this limiting distribution is not locally uniform in
the underlying data generating process (DGP) (Lehmann and Romano, 2006).
However, other resampling methods such as subsampling (Politis, Romano, and
Wolf, 1999) or the numerical bootstrap (Hong and Li, 2020) will work, assuming
that we know the rate of convergence. In other words, we need to know whether
the model is correctly or incorrectly specified because if the nonsmooth GMM
estimator is correctly specified, then the asymptotic distribution remains

√
n-

consistent and asymptotically normal.
An insightful paper by Cattaneo and Nagasawa (2020) proposes a rate-adaptive

bootstrap for M-estimators which does not require knowing the estimator’s rate
of convergence to consistently estimate the estimator’s limiting distribution and
to construct asymptotically valid confidence intervals. They can overcome the
inconsistency of the standard bootstrap because they are bootstrapping consistent
estimates of the components of the nonstandard limiting distribution rather than
applying the bootstrap to the objective function of the M-estimator. Taking
inspiration from their paper, we propose a rate-adaptive bootstrap that consistently
estimates the limiting distribution of the GMM estimator regardless of whether the
model is correctly or globally incorrectly specified, smooth or nonsmooth. Our
rate-adaptive bootstrap procedure differs from the one in Cattaneo and Nagasawa
(2020) because our focus is on GMM, which is not handled by their procedure for
M-estimators. In the case where the model is correctly specified, our rate-adaptive
bootstrap confidence intervals cover the true parameter with the specified nominal
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coverage probability asymptotically. In the case where the model is globally
incorrectly specified, the rate-adaptive bootstrap confidence intervals achieve the
nominal coverage asymptotically for the pseudo-true parameter, which is defined
as the parameter which minimizes the population GMM objective function. We
acknowledge that our rate-adaptive bootstrap is not uniformly valid because it
cannot consistently estimate the asymptotic distribution for locally misspecified
models where the population moments are drifting toward zero at the

√
n rate.

The difficulty lies in not being able to consistently estimate the drift constant
which appears in the asymptotic distribution. For procedures that handle local
misspecification for smooth GMM models, we refer readers to the important work
by Bonhomme and Weidner (2022), Armstrong and Kolesár (2021), and references
therein.

Both Lee (2014) and Giurcanu and Presnell (2018) have proposed bootstrap
procedures that are robust to misspecification, but neither allows for the
moment conditions to be nonsmooth. Lee (2014) used Hall and Inoue’s (2003)
misspecification-robust (MR) estimator of the asymptotic variance of GMM to
develop an MR bootstrap procedure. We investigate their procedure in Appendix
A.4’s Monte Carlo study and find that our procedure has similar performance to
theirs when the moments are smooth. Giurcanu and Presnell (2018) recommend
first testing for misspecification using a J-test and then applying either the standard
bootstrap, centered bootstrap of Hall and Horowitz (1996), or empirical likelihood
bootstrap of Brown and Newey (2002) depending on the outcome of the test.
In contrast to Giurcanu and Presnell (2018), our procedure does not test for
misspecification but instead adaptively performs inference for the pseudo-true
parameter under misspecification. However, we are similar to Giurcanu and
Presnell (2018) in that we also find that the choice of the weighting matrix impacts
the GMM estimator’s asymptotic distribution.

Several important papers have considered another form of misspecification
which arises in the context of two-step semiparametric GMM estimators, where
the lack of precision in the first-stage nonparametric estimator can make traditional
normal confidence intervals suffer from extreme undercoverage. Cattaneo and
Jansson (2018) propose novel bootstrap percentile confidence intervals which pro-
vide an automatic method of bias correction and are therefore “robust” to first-stage
misspecification. Their intervals are derived from a new bootstrap distributional
approximation based on small bandwidth asymptotics. In a recent paper, Cattaneo
and Jansson (2022) consider the problem of estimating the average density of a
continuously distributed random vector and show that the nonparametric bootstrap
can consistently estimate the distribution of the simple plug-in estimator even
though the estimator is known to be biased. This automatic bias correction property
is qualitatively related to the ability of the rate-adaptive bootstrap to automatically
select in or select out certain components of the asymptotic distribution depending
on the level of smoothness and specification of the moments.

Section 2 explains in greater detail the different impacts that global misspec-
ification has on the asymptotic distribution of GMM when the moments are
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smooth versus nonsmooth. We show that misspecification under the nonsmooth
case is of more concern because the rate of convergence becomes cubic-root and
the asymptotic distribution becomes nonstandard, thus invalidating the standard
bootstrap or inference using asymptotic critical values. We explain how our
rate-adaptive bootstrap can still provide consistent inference for this nonsmooth
case as well as for the smooth case under either correct specification or global
misspecification. We also provide three examples illustrating the applicability
of our method: GMM formulation of instrumental variables quantile regression
(Chernozhukov and Hansen, 2005), simulated method of moments (McFadden,
1989; Pakes and Pollard, 1989), and dynamic censored regression (Honoré and
Hu, 2004a). While Section 2 studies the one-step GMM estimator under a fixed
weighting matrix W, Section 4 studies the two-step GMM estimator computed
using an estimated weighting matrix Wn and proposes a rate-adaptive bootstrap for
consistent inference. Section 5 contains Monte Carlo simulation results demon-
strating that the empirical coverage frequencies of the rate-adaptive bootstrap
confidence intervals are close to the nominal level, while the empirical coverage
frequencies of the standard bootstrap confidence intervals are far from the nominal
level for a simple location model and a quantile regression model with misspecified
nonsmooth moments. Section 6 concludes. The Appendix contains additional
theoretical results and proofs of the theorems, in addition to another Monte Carlo
example with misspecified smooth moments, where the rate-adaptive bootstrap
performs just as well as the standard bootstrap in terms of empirical coverage and
average interval width.

2. GMM MODEL WITH FIXED WEIGHTING MATRIX

Consider a random sample Xn = (X1,X2, . . . ,Xn) of independent draws from a
probability measure P on a sample space X . Define the empirical measure Pn ≡
1
n

∑n
i=1 δXi , where δx is the measure that assigns mass 1 at x and zero everywhere

else. Denote the bootstrap empirical measure by P∗
n, which can refer to the

multinomial, wild, or other exchangeable bootstraps. Weak convergence is defined
in the sense of Kosorok (2007): Xn � X in the metric space (D,d) if and only if
supf∈BL1

|E∗f (Xn) − Ef (X)| → 0 where BL1 is the space of functions f : D �→ R

with Lipschitz norm bounded by 1. Conditional weak convergence in probability

is also defined in the sense of Kosorok (2007): Xn
P�
W

X in the metric space (D,d)

if and only if supf∈BL1
|EWf (Xn)−Ef (X)| p−→ 0 and EWf (Xn)

∗ −EWf (Xn)∗
p−→ 0

for all f ∈ BL1. EW denotes expectation with respect to the bootstrap weights W
conditional on the data, and f (Xn)

∗ and f (Xn)∗ denote measurable majorants and
minorants with respect to the joint data (including the weights W). Let X∗

n = o∗
P (1)

if P
(|X∗

n | > ε|Xn
) = oP (1) for all ε > 0. Also, define M∗

n = O∗
P (1) (hence also

OP (1)) if limm→∞ limsupn→∞ P
(
P
(
M∗

n > m|Xn
)
> ε
)→ 0∀ε > 0.

Define the moment function π : X ×� → R
m. To simplify exposition, we first

consider a fixed weighting matrix W. Later in Section 4, we will consider estimated
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weighting matrices. The GMM estimator using a fixed positive definite weighting
matrix W and sample moments π̂n (θ) ≡ Pnπ (·,θ) is given by

θ̂n ≡ argmin
θ∈�⊂Rd

Q̂n (θ), Q̂n (θ) ≡ 1

2
π̂n (θ)′ Wπ̂n (θ) .

We assume the population GMM objective has a unique minimizer θ# ≡
argmin

θ∈�

Q(θ) where Q(θ) ≡ 1
2π (θ)′ Wπ (θ) and π (θ) ≡ Pπ (·,θ). It is well known

from standard results in Newey and McFadden (1994) that for correctly specified

models where π
(
θ#
) = 0,

√
n
(
θ̂n − θ#

)
�
(
G′WG

)−1
G′WN

(
0,Pπ

(·,θ#
)
π(·,θ#

)′)
, where G = ∂

∂θ
π
(
θ#
)
.

Under model misspecification, the asymptotic distribution differs depending on
whether the model is smooth or nonsmooth. For smooth models that are globally
misspecified in the sense that π (·,θ) is twice continuously differentiable with
respect to θ and π

(
θ#
) = c for a vector of fixed constants c �= 0, Hall and Inoue

(2003) showed that
√

n
(
θ̂n − θ#

)
� N

(
0,H̄−1�H̄−1′)

where

	11 = P
(
π
(·,θ#

)−π
(
θ#
))(

π
(·,θ#

)−π
(
θ#
))′

,

	12 = P
(
π
(·,θ#

)−π
(
θ#
))

π
(
θ#
)′

W

(
∂

∂θ
π
(·,θ#

)−G

)
,

	21 = 	′
12,

	22 = P

(
∂

∂θ
π
(·,θ#

)−G

)′
Wπ

(
θ#
)
π
(
θ#
)′

W

(
∂

∂θ
π
(·,θ#

)−G

)
, (2.1)

� = G′W	11WG+	22 +G′W	12 +	21WG,

H̄ = G′WG+
m∑

j=1

m∑
k=1

Wjkπk
(
θ#)Hj,

where for each j = 1, . . . ,m, define Hj = ∂2

∂θ∂θ ′ πj
(
θ#
)
.

Although misspecification changes the asymptotic distribution of smooth esti-
mators, the estimator remains

√
n-consistent, and the nonparametric bootstrap can

be used for inference. However, misspecification is a much more serious issue
in the nonsmooth case because the rate of convergence becomes cubic-root and
the asymptotic distribution becomes nonstandard, which invalidates the standard
bootstrap. For GMM estimators that are globally misspecified and nonsmooth,
specifically non-directionally differentiable (in the sense of Gateaux), we will
show that

n1/3
(
θ̂n − θ#

)
� argmin

h∈Rd

{
π
(
θ#
)′

WZ0 (h)+ 1

2
h′H̄h

}
.

Z0 (h) is a mean-zero Gaussian process in the space of locally bounded functions
Bloc

(
R

d
)

equipped with the topology of uniform convergence on compacta.
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For g(·,θ) = π (·,θ)−π
(·,θ#

)
, the covariance kernel of Z0 (h) is

	1/2 (s,t) = lim
α→∞αPg

(
·,θ# + s

α

)
g
(
·,θ# + t

α

)′
.

We next develop a rate-adaptive bootstrap procedure to consistently estimate the
limiting distribution of the GMM estimator regardless of whether the model is
correctly or incorrectly specified, smooth or nonsmooth. In other words, we do
not need to know the rate of convergence of the GMM estimator when using
the rate-adaptive bootstrap to construct asymptotically valid confidence intervals
for θ#. The rate-adaptive bootstrap estimate in the case of a fixed weighting
matrix W is

θ̂∗
n = argmin

θ∈�

{
π̂n

(
θ̂n

)′
W
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))
(2.2)

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′W

(
P∗

n −Pn
)
π
(
·,θ̂n

)}
.

Here, π̂n

(
θ̂n

)
= Pnπ

(
·,θ̂n

)
, Ĝ is a consistent estimate of G, and Ĥj is a consistent

estimate of Hj, for j = 1, . . . ,m.

For γ ∈ {1/3,1/2}, we will show that the limiting distribution of nγ
(
θ̂∗

n − θ̂n

)
coincides with the limiting distribution of nγ

(
θ̂n − θ#

)
. We do not need to know

the value of γ in order to form asymptotically valid confidence intervals for θ#

using the empirical distribution of θ̂∗
n − θ̂n. The intuition for why our rate-adaptive

bootstrap procedure is consistent is similar to the arguments given in Cattaneo
and Nagasawa (2020). Instead of bootstrapping the GMM objective function, we
are bootstrapping consistent estimates of the different components that can appear
in the asymptotic distribution, depending on whether the model is correctly or
incorrectly specified, smooth or nonsmooth. For the case of nonsmooth moments,
the first term in (2.2) is used to approximate the Gaussian process π

(
θ#
)′

WZ0 (h),
while the second term is used to approximate the quadratic mean 1

2 h′H̄h. The
third term will disappear asymptotically for nonsmooth models but remain for
sufficiently smooth models. We can use the same estimator for both smooth and
nonsmooth models because their different rates of convergence will automatically
cause the appropriate terms to disappear from the asymptotic distribution.

The following steps illustrate how to use the rate-adaptive bootstrap to form
asymptotically valid intervals for θ# if we use the multinomial bootstrap empirical
measure P∗

n ≡ 1
n

∑n
i=1WniδXi for the multinomial vector Wn = (Wn1, . . . ,Wnn)

with probabilities (1/n, . . . ,1/n) and number of trials n.
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1. Compute θ̂n, π̂n

(
θ̂n

)
= 1

n

∑n
i=1 π

(
Xi,θ̂n

)
, Ĝ, Ĥj for j = 1, . . . ,m.

2. Repeat for B bootstrap iterations: draw a bootstrap sample X∗
1, . . . ,X

∗
n and

compute

θ̂∗
n = argmin

θ∈�

⎧⎨
⎩π̂n

(
θ̂n

)′
W

⎛
⎝ 1

n

n∑
i=1

(
π
(
X∗

i ,θ
)−π

(
X∗

i ,θ̂n

))
− 1

n

n∑
i=1

(
π (Xi,θ)−π

(
Xi,θ̂n

))⎞⎠

+ 1

2

(
θ − θ̂n

)′⎛⎝Ĝ′WĜ+
m∑

j=1

m∑
k=1

Wjkπ̂nk

(
θ̂
)

Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′W

⎛
⎝ 1

n

n∑
i=1

(
π
(

X∗
i ,θ̂n

)
−π

(
Xi,θ̂n

))⎞⎠
⎫⎬
⎭ .

3. For k = 1, . . . ,d, compute the 1 − α/2 and α/2 percentiles of the empirical
distribution of θ̂∗

nk − θ̂nk. Call them ck,1−α/2 and ck,α/2.

A 1−α two-sided equal-tailed confidence interval for θ#
k can be formed by[

θ̂nk − ck,1−α/2,θ̂nk − ck,α/2

]
.

We will use the following notation to denote the stacked confidence intervals for
the vector of parameters:[
θ̂n − c1−α/2,θ̂n − cα/2

]
.

We can also compute a confidence interval for ρ
(
θ#
)
, where ρ : � �→ R, by using

the percentiles of the empirical distribution of ρ
(
θ̂∗

n

)
−ρ

(
θ̂n

)
:[

ρ
(
θ̂n

)
− cρ,1−α/2,ρ

(
θ̂n

)
− cρ,α/2

]
.

2.1. Asymptotic Distribution for Nonsmooth Misspecified GMM
Using a Fixed Weighting Matrix

Throughout the paper, we will impose the following assumptions. The different
values of γ and ρ depend on the rate of convergence of θ̂n.

Assumption 1. For Q̂n (θ) ≡ 1
2 Pnπ (·,θ)′ WPnπ (·,θ) and Q(θ) ≡ 1

2 Pπ (·,θ)′
WPπ (·,θ), where W is positive definite, suppose the following conditions are
satisfied for some ρ ∈ { 1

2,1
}

and γ = 1
2(2−ρ)

:

(i) Q̂n

(
θ̂n

)
≤ inf

θ∈�
Q̂n (θ)+oP

(
n−2γ

)
.

(ii) inf
θ∈�:‖θ−θ#‖>ε

Q(θ) > Q
(
θ#
)

for all ε > 0.

(iii) sup
θ∈�

‖Pnπ(·,θ)−Pπ(·,θ)‖ = oP(1).

(iv) sup
θ∈�

P |π(·,θ)| < ∞.
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Assumption 2. Let g(·,θ) ≡ π (·,θ)−π
(·,θ#

)
satisfy the following conditions

for some ρ ∈ { 1
2,1
}

and γ = 1
2(2−ρ)

:

(i) θ# is an interior point of �.
(ii) The classes of functions GR = {gj(·,θ) : ‖θ − θ#‖ ≤ R,j = 1, . . . ,m} for R

near zero are uniformly manageable for the envelope functions GR (·) ≡
sup

gj∈GR

∣∣gj(·,θ)
∣∣.

(iii) Pg(·,θ) is twice differentiable at θ# with full-rank Jacobian matrix G =
∂
∂θ

π
(
θ#
)

and positive-definite Hessian matrices Hj = ∂2

∂θ∂θ ′ πj
(
θ#
)

for j =
1, . . . ,m.

(iv) 	ρ(s,t) = lim
α→∞α2ρPg

(·,θ# + s
α

)
g
(·,θ# + t

α

)′
exists for each s,t in R

d.

(v) lim
α→∞α2ρP‖g

(·,θ# + t
α

)‖21{‖g(·,θ# + t
α
)‖ > εα2(1−ρ)} = 0 for each ε > 0

and t ∈ R
d.

(vi) PG2
R = O(R2ρ) for R → 0.

(vii) For each η > 0, there exists a K such that PG2
R1{GR > K} < ηR2ρ for R

near 0.
(viii) P‖g(·,θ1)−g(·,θ2)‖ = O

(‖θ1 − θ2‖2ρ
)

for ‖θ1 − θ2‖ → 0.
(ix) H̄ = G′WG+∑m

j=1

∑m
k=1 Wjkπk

(
θ#
)

Hj is positive definite.

Assumption 1 is needed to show consistency of θ̂n for θ#, while Assumption
2 is needed to derive its asymptotic distribution. Manageable classes are defined
in Definition 4.1 of Pollard (1989), and an example is all euclidean classes. A
manageable class for a constant envelope is a universal Donsker class in the sense
of Dudley (1987). Uniform manageable classes are manageable classes for which
a uniform upper bound exists in the maximal inequalities for the corresponding
empirical processes. As discussed after Corollary 3.2 of Kim and Pollard (1990),
we need to assume GR are uniformly manageable in order to demonstrate stochastic
equicontinuity of certain processes that appear in the expansion of the objective
function. We demonstrate stochastic equicontinuity by applying the maximal
inequalities in Lemma 3.1 of Kim and Pollard (1990) over the classes GR for all
values of R near zero, rather than a particular value of R.

Similar to Kim and Pollard (1990), the cubic-root rate of convergence is obtained
when Assumptions 1 and 2 are satisfied for γ = 1/3 and ρ = 1/2. In particular,
this amounts to a linear rate of decay of PG2

R. Usually the linear rate of decay arises
when π (·,θ) is not directionally differentiable, such as the ones that appear in the
GMM formulation of IV quantile regression or simulated method of moments.
Other types of nonsmooth moments that are directionally differentiable do not
have this linear rate of decay and therefore retain the

√
n rate of convergence. We

now provide some examples that distinguish between different types of nonsmooth
moments.

Example 1. GMM formulation of instrumental variable quantile regression
(IVQR): This example studies how to do inference in the case of possible
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misspecification of moments in Chernozhukov and Hansen’s (2005)) IVQR
GMM estimator. The IVQR estimator can be used to estimate quantile treatment
effects under non-compliance, and under correct specification, the estimator is
known to be

√
n-consistent and asymptotically normal. However, if the moments

are (globally) misspecified, which can happen, for example, if the instruments
are invalid, then the estimator is cubic-root consistent and has a nonstandard
asymptotic distribution.

The moment conditions for IVQR are nonsmooth, in particular non-directionally
differentiable, because π (·,θ) = (τ −1(yi ≤ q(di,wi,θ)))zi, where yi is the
dependent variable, di is a vector of endogenous regressors, wi is a vector of
exogenous regressors, zi is a vector of instruments, and q(·) is the quantile response
function, which has a single index structure q(di,wi,θ) = q

(
x′

iθ
)

for x′
i = [di,wi].

Additionally, q(·) is assumed to be a monotonic, twice differentiable function,
and Fy|x,z is absolutely continuous. For π (θ) = E

(
τ −Fy|x,z

(
q
(
x′θ#

)))
z, the

Jacobian is G = ∂
∂θ

π
(
θ#
) = −Efy|x,z

(
q
(
x′θ#

))
zq′ (x′θ#

)
x′ and the jth element

of the Hessian is Hj = ∂2

∂θ∂θ ′ πj
(
θ#
) = −Ef ′

y|x,z
(
q
(
x′θ#

))
zj
(
q′ (x′θ#

))2
xx′ +

Efy|x,z
(
q
(
x′θ#

))
zjq′′ (x′θ#

)
xx′. We will assume that the assumptions in Cher-

nozhukov and Hansen (2005) needed to ensure that G and Hj are well defined
are satisfied.

A crucial condition that generates cubic-root convergence in globally misspeci-
fied models with non-directionally differentiable moments is when the value of ρ

that satisfies Assumption 2 is ρ = 1/2. In the Appendix, we show this is true for
this example.

Example 2. Simulated method of moments: Simulated method of moments has
a wide range of applications especially in discrete choice models where an agent’s
choice probabilities are too complicated to calculate analytically (McFadden,
1989; Pakes and Pollard, 1989). Instead, we take simulation draws from some
assumed distribution for the errors and using the empirical frequency simulator
to estimate the choice probabilities. In this example, we consider a binary discrete
choice model, but the results are easily generalizable to multivariate discrete choice
models.

The moment conditions are π (·,θ) =
(

yi − 1
S

∑S
s=1 1

(
h
(
x′

iθ
)+ηis > 0

))
zi,

where yi ∈ {0,1} is the choice of individual i, zi is a vector of instruments,
xi is a vector of covariates, h(·) is a monotonic, twice differentiable func-
tion, and {ηis}S

s=1 are individual i’s simulation draws from an absolutely
continuous distribution Fη|x,z with density function fη|x,z symmetric around
zero. For π (θ) = E

(
y−Fη|x,z

(
h
(
x′θ
)))

z, the Jacobian is G = ∂
∂θ

π
(
θ#
) =

−Efη|x,z
(
h
(
x′θ#

))
zh′ (x′θ#

)
x′ and the jth element of the Hessian is Hj =

∂2

∂θ∂θ ′ πj
(
θ#
)= −Ef ′

η|x,z
(
h
(
x′θ#

))
zj
(
h′ (x′θ#

))2
xx′ +Efη|x,z

(
h
(
x′θ#

))
zjh′′ (x′θ#

)
xx′.

We will assume that the assumptions in McFadden (1989) needed to ensure that
G and Hj are well defined are satisfied.
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We verify in the Appendix that the value of ρ that satisfies Assumption 2 is
ρ = 1/2.

Example 3. Dynamic censored regression: Honoré and Hu (2004a) consider
the estimation of a panel data censored regression model with lagged dependent
variables: yit = max {0,yit−1θ +αi + εit} where {εit}T

t=1 is a sequence of i.i.d.
random variables conditional on (yi0,αi). They show that the GMM estima-
tor of θ using π (·,θ) = max {0,yit − yit−1θ} − yit−1 as the moment conditions
will be

√
n consistent and asymptotically normal and that the true parame-

ter uniquely satisfies the population moments under correct specification. The
stacked moments are π (θ) = [π2 (θ), . . . ,πT (θ)]′, where for each t = 2, . . . ,T ,
πt (θ) = E [max {0,yit − yit−1θ}− yit−1] = E [1(yit > yit−1θ)(yit − yit−1θ)− yit−1].
The Jacobian is G = [G2, . . . ,GT ]′ for Gt = −E

[
yit−11

(
yit > yit−1θ

#
)]

, and the
Hessians for t = 2, . . . ,T are Ht = E

[
yit−1fyit|yit−1

(
yit−1θ

#
)]

.

Even though π (·,θ) is nonsmooth, the
√

n rate of convergence arises because
π (·,θ) remains directionally differentiable. We check in the Appendix that the
value of ρ that satisfies Assumption 2 is ρ = 1 instead of ρ = 1/2 as in the previous
two examples.

Theorem 1. Suppose π
(
θ#
) = c for a vector of fixed constants c �= 0 and that

Assumptions 1 and 2 are satisfied for γ = 1/3 and ρ = 1/2. Then, θ̂n −θ# = oP(1)

and

n1/3
(
θ̂n − θ#

)
� arg min

h∈Rd

{
π
(
θ#)′ WZ0,1/2 (h)+ 1

2
h′H̄h

}
,

H̄ = G′WG+
m∑

j=1

m∑
k=1

Wjkπk
(
θ#
)

Hj,

where Z0,1/2 (h) is a mean-zero Gaussian process with covariance kernel

	1/2 (s,t) = lim
α→∞αPg

(
·,θ# + s

α

)
g
(
·,θ# + t

α

)′
.

In the Appendix, we show that the globally misspecified GMM estimator
is

√
n-consistent when the moments are nonsmooth but remain directionally

differentiable. In the correctly specified case, a reduction to the standard result
of Newey and McFadden (1994) previously mentioned is achieved.

3. RATE-ADAPTIVE BOOTSTRAP FOR FIXED WEIGHTING MATRIX

We impose the following envelope integrability assumptions in order to show that

nγ
(
θ̂n − θ#

)
and nγ

(
θ̂∗

n − θ̂n

)
have the same limiting distribution. The assumption

is needed to show bootstrap equicontinuity results so that both the localized
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empirical process and its bootstrap analog converge weakly to the same limiting
process. There are some differences between our assumption and the ones in
Cattaneo and Nagasawa (2020) because Cattaneo and Nagasawa (2020) show
bootstrap equicontinuity using the maximal inequalities in Pollard (1989), whereas
we make use of Lemma 4.2 in Wellner and Zhan (1996), which states that
stochastic equicontinuity implies bootstrap equicontinuity under a relatively mild
envelope (square) integrability assumption (their Assumption A.5).

Assumption 3. For some ρ ∈ { 1
2,1
}

and γ = 1
2(2−ρ)

, define mn (·,θ,h) ≡
nγρ
(
π
(·;θ + h

nγ

)−π (·;θ)
)
. (i) For any εn → 0 and any compact set K ⊂ R

d,

lim
λ→∞limsup

n→∞
sup
t≥λ

t2 P

{
sup

h∈K,‖θ−θ#‖≤εn

∥∥∥∥mn(·,θ,h)−mn(·,θ#,h)

1+nγ ‖θ − θ#‖
∥∥∥∥> t

}
= 0.

(ii) Furthermore, if Assumptions 1 and 2 are satisfied for γ = 1/2 and ρ = 1, then,
for any εn → 0,

lim
λ→∞limsup

n→∞
sup
t≥λ

t2 P

{
sup

‖θ−θ#‖≤εn

∥∥∥∥π(·,θ)−π(·,θ#)

1+√
n‖θ − θ#‖

∥∥∥∥> t

}
= 0.

Using the notation of Assumption A.5 of Wellner and Zhan (1996), Assumption
3(i) is using B(θ)(h) = mn (·,θ,h) andH= K. Assumption 3(ii) is using B(θ)(h) =
π (·,θ) and H is a finite set whose cardinality is the dimension of θ .

Strong sufficient conditions for Assumption 3 are that the envelopes are
uniformly bounded. For all sufficiently large n such that εn → 0 and any
compact K ⊂ R

d, there exists some constants C1 > 0 and C2 > 0 such that

sup
h∈K,‖θ−θ#‖≤εn

∥∥∥mn(·,θ,h)−mn(·,θ#,h)

1+nγ ‖θ−θ#‖
∥∥∥≤ C1, and sup

‖θ−θ#‖≤εn

∥∥∥π(·,θ)−π(·,θ#)

1+√
n‖θ−θ#‖

∥∥∥≤ C2.

The next theorem illustrates consistency of the rate-adaptive bootstrap for
correctly specified and globally misspecified models which can be either smooth
or nonsmooth. Under correct specification, the asymptotic distribution is normal
for smooth and nonsmooth moments. Under global misspecification, the asymp-
totic distribution is normal in the smooth case but in the nonsmooth case, it is
nonstandard.

Theorem 2. Suppose Assumptions 1 and 3 are satisfied, Ĝ
p→ G, and Ĥj

p→ Hj

for j = 1, . . . ,m.
For correctly specified models,

√
n
(
θ̂∗

n − θ̂n

)
P�
W

(
G′WG

)−1
G′WN

(
0,Pπ

(·,θ#
)
π
(·,θ#

)′)
.

For globally misspecified models with twice continuously differentiable π (·,θ), if
Assumptions 1 and 2 are satisfied for γ = 1/2,ρ = 1,
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√
n
(
θ̂∗

n − θ̂n

)
P�
W

N
(

0,H̄−1�H̄−1′)
,

where � and H̄ are defined in equation (2.1). If instead Assumptions 1 and 2 are
satisfied for γ = 1/3,ρ = 1/2,

n1/3
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h

{
π
(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h

}
.

4. THE CASE OF AN ESTIMATED WEIGHTING MATRIX

We now consider the case of an estimated weighting matrix. First, we show that a
nonsmooth misspecified GMM has a different asymptotic distribution depending
on the rate at which the estimated weighting matrix converges to its probability
limit. Next, we show that the rate-adaptive bootstrap needs to be modified to
include an additional term to capture the variation between the estimated weighting
matrix and its probability limit.

Note that we need to redefine the presumed to be unique pseudo-true parameter
to be θ# = argmin

θ∈�

π (θ)′ W
(
θ#

1

)
π (θ) where W

(
θ#

1

)
depends on the presumed to

be unique 1-step GMM pseudo-true parameter using some fixed weighting matrix
W1: θ#

1 = argmin
θ∈�

π (θ)′ W1π (θ). For example, we may choose W
(
θ#

1

)
to be the

inverse of the variance–covariance matrix of the population moments evaluated at

θ#
1 : W

(
θ#

1

) =
(

E
[
π
(·,θ#

1

)
π
(·,θ#

1

)′]−π
(
θ#

1

)
π
(
θ#

1

)′)−1
. Different choices of W1

and W
(
θ#

1

)
typically lead to different values of θ#, but we suppress the dependence

of θ# on the weighting matrices for notational simplicity.

The estimated weighting matrix Wn

(
θ̂1

)
will depend on the one-step GMM esti-

mator θ̂1 = argmin
θ∈�

π̂ (θ)′ W1π̂ (θ). The next theorem demonstrates that the globally

misspecified two-step GMM estimator θ̂n = argmin
θ∈�

π̂ (θ)′ Wn

(
θ̂1

)
π̂ (θ) with non-

directionally differentiable π (·,θ) will have a different asymptotic distribution

depending on the rate at which Wn

(
θ̂1

)
converges to W

(
θ#

1

)
. To simplify notation,

we will use Wn to refer to Wn

(
θ̂1

)
and W to refer to W

(
θ#

1

)
.

Theorem 3. Suppose π
(
θ#
) = c for a vector of fixed constants c �= 0 and that

Assumptions 1 and 2 are satisfied for γ = 1/3 and ρ = 1/2.
If Wn − W = oP

(
n−1/3

)
, then θ̂n − θ# = oP(1) and for Z̄0 (h) ≡

π
(
θ#
)′

WZ0,1/2 (h),

n1/3
(
θ̂n − θ#

)
� arg min

h∈Rd

{
Z̄0 (h)+ 1

2
h′H̄h

}
.

https://doi.org/10.1017/S0266466623000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000385


RATE-ADAPTIVE BOOTSTRAP FOR POSSIBLY MISSPECIFIED GMM 13

If Wn − W = OP
(
n−1/3

)
and

(
π
(
θ#
)′

Wn2/3 (Pn −P)g
(·,θ# +n−1/3h

)
h′G′n1/3 (Wn −W)π

(
θ#
) )

�(
Z̄0 (h)

h′G′W0

)
in the product space of locally bounded functions

{
Bloc

(
R

d
)}2

for

some tight random vector W0, then θ̂n − θ# = oP(1) and

n1/3
(
θ̂n − θ#

)
� arg min

h∈Rd

{
Z̄0 (h)+h′G′W0 + 1

2
h′H̄h

}
.

When Wn converges to W at the cubic-root rate, we assume that n1/3 (Wn −W)

π
(
θ#
)

converges in distribution to some tight random vector W0. Wn’s cubic-root
rate of convergence arises when the moments are nonsmooth (non-directionally
differentiable) and misspecified because then the one-step GMM estimator θ̂1

converges at the cubic-root rate and determines the asymptotics of Wn. More details
are in Appendix A.3.

In the case where the moments are smooth, our estimated weighting matrix Wn

typically satisfies the following assumption, which states that Wn is
√

n-consistent
with an influence function representation, and that the bootstrapped weighting
matrix W∗

n shares the same influence function representation.

Assumption 4. The weighting matrix Wn satisfies
√

n(Wn −W) = √
n(Pn −P)

φ
(·,θ#

1

)+ oP(1) where θ#
1 is the probability limit of the one-step GMM esti-

mate using a fixed weighting matrix, P
∥∥vech

(
φ
(·,θ#

1

))∥∥2
< ∞, and the boot-

strapped weighting matrix W∗
n has the same representation

√
n
(
W∗

n −Wn
) =√

n
(
P∗

n −Pn
)
φ
(·,θ#

1

)+o∗
P(1). Additionally, for each ε > 0 and t ∈ R

d,

lim
n→∞P

∥∥∥∥∥∥∥
⎛
⎜⎝

√
ng
(
·,θ# + t√

n

)
π
(·,θ#

)
vech

(
φ
(·,θ#

1

))
⎞
⎟⎠
∥∥∥∥∥∥∥

2

1

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥∥
⎛
⎜⎝

√
ng
(
·,θ# + t√

n

)
π
(·,θ#

)
vech

(
φ
(·,θ#

1

))
⎞
⎟⎠
∥∥∥∥∥∥∥> ε

√
n

⎫⎪⎬
⎪⎭= 0.

When we use an estimated weighting matrix, we have to modify the rate-
adaptive bootstrap estimate to include an additional term that accounts for the
additional variation induced by estimating the weighting matrix:

θ̂∗
n = argmin

θ∈�

{
π̂n

(
θ̂n

)′
Wn
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))
(4.1)

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′Wn

(
P∗

n −Pn
)
π
(
·,θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′ (W∗

n −Wn
)
π̂n

(
θ̂n

)}
,
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where W∗
n = W∗

n

(
θ̂∗

1

)
could potentially depend on the rate-adaptive bootstrap

estimator θ̂∗
1 using a fixed weighting matrix W1:

θ̂∗
1 = argmin

θ∈�

{
π̂n

(
θ̂n

)′
W1
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))
(4.2)

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′W1Ĝ+

m∑
j=1

m∑
k=1

W1,jkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′W1

(
P∗

n −Pn
)
π
(
·,θ̂n

)}
.

The following theorem shows that the rate-adaptive bootstrap is consistent for the
limiting distribution of the two-step GMM estimator under correct specification
and different scenarios of global misspecification.

Theorem 4. Suppose Assumptions 1 and 3 are satisfied, Ĝ
p→ G, and Ĥj

p→ Hj

for j = 1, . . . ,m.

(i) For correctly specified models, when Wn −W = oP (1) and W∗
n −Wn = o∗

P(1),

√
n
(
θ̂∗

n − θ̂n

)
P�
W

(
G′WG

)−1
G′WN

(
0,Pπ

(·,θ#
)
π
(·,θ#

)′)
.

(ii) For globally misspecified models with twice continuously differentiable
π (·,θ) where Assumptions 1 and 2 are satisfied for γ = 1/2 and ρ = 1,
and the weighting matrix Wn satisfies Assumption 4,

√
n
(
θ̂∗

n − θ̂n

)
P�
W

N
(

0,H̄−1�WH̄−1′)
,

�W = G′W	11WG+	22 +G′W	12 +	21WG

+G′	33G+G′W	13G+G′	31WG+	23G+G′	32,

where H̄, 	11, 	12, 	21, and 	22 are the same as in equation (2.1) and

	13 = P
(
π
(·,θ#)−π

(
θ#))π (θ#)′ (φ (·,θ#

1

)−φ
(
θ#

1

))′
,

	31 = 	′
13,

	23 = P

(
∂

∂θ
π
(·,θ#

)−G

)′
Wπ

(
θ#
)
π
(
θ#
)′ (

φ
(·,θ#

1

)−φ
(
θ#

1

))′
,

	32 = 	′
23,

	33 = P
(
φ
(·,θ#

1

)−φ
(
θ#

1

))
π
(
θ#
)
π
(
θ#
)′ (

φ
(·,θ#

1

)−φ
(
θ#

1

))′
.

(iii) For globally misspecified models where Assumptions 1 and 2 are satisfied for
γ = 1/3 and ρ = 1/2, if Wn − W = oP

(
n−1/3

)
and W∗

n − Wn = o∗
P

(
n−1/3

)
,
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then

n1/3
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h

{
π
(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h

}
.

If

(
π
(
θ#
)′

Wn2/3 (Pn −P)g
(·,θ# +n−1/3h

)
h′G′n1/3 (Wn −W)π

(
θ#
) )

�
(

π
(
θ#
)′

WZ0,1/2 (h)

h′G′W0

)
in
{
Bloc

(
R

d
)}2

for some tight random vector W0, and(
π
(
θ#
)′

Wn2/3
(
P∗

n −Pn
)

g
(·,θ# +n−1/3h

)
h′G′n1/3

(
W∗

n −Wn
)
π
(
θ#
) )

P�
W

(
π
(
θ#
)′

WZ0,1/2 (h)

h′G′W0

)
in
{
Bloc

(
R

d
)}2

, then

n1/3
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h

{
π
(
θ#
)′

WZ0,1/2 (h)+h′G′W0 + 1

2
h′H̄h

}
.

5. MONTE CARLO

5.1. Nonsmooth Location Model

Consider a simple location model with i.i.d. data,

yi = θ0 + εi,i = 1, . . . ,n,

where εi ∼ N(0,1) and θ0 = 0.
For π (·,θ) = [1(yi ≤ θ)− τ ;yi − θ ]′, let the population moments be

π (θ) = [P(yi ≤ θ)− τ ;Eyi − θ ]′ .

The model cannot be correctly specified as long as τ �= 0.5. First, consider using a
fixed weighting matrix W = I, and consider the following GMM criterion function
and its probability limit:

Q̂n (θ) = π̂n (θ)′ π̂n (θ) =
(

1

n

n∑
i=1

1(yi ≤ θ)− τ

)2

+
(

1

n

n∑
i=1

yi − θ

)2

,

Q(θ) = π (θ)′ π (θ) = (P(yi ≤ θ)− τ)2 + (Eyi − θ)2 .

The pseudo-true value θ# = argmin
θ∈�

Q(θ) is given by the root of the following

equation:

fy
(
θ#
)(

Fy
(
θ#
)− τ

)+ θ# = 0.

We examine the empirical coverage frequencies of nominal 95% equal-tailed rate-
adaptive bootstrap confidence intervals:[
θ̂n − c0.975,θ̂n − c0.025

]
,
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where c0.975 and c0.025 are the 97.5th and 2.5th percentiles of θ̂∗
n − θ̂n. Recall that

θ̂∗
n = argmin

θ∈�

{
π̂n

(
θ̂n

)′
W
((

π̂∗
n (θ)− π̂∗

n

(
θ̂n

))
−
(
π̂ (θ)− π̂

(
θ̂n

)))

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′W

(
π̂∗

n

(
θ̂n

)
− π̂

(
θ̂n

))}
,

where π̂ (θ) = 1
n

∑n
i=1 π (yi,θ) and π̂∗

n (θ) = 1
n

∑n
i=1 π

(
y∗

i ,θ
)
,

Ĝ =
[

1
nh

∑n
i=1 Kh

(
yi − θ̂n

)
−1

]
Ĥ =

[
1

nh2

∑n
i=1 K′

h

(
yi − θ̂n

)
0

]

for Kh (x) = K (x/h), K′
h (x) = K′ (x/h), K (x) = (2π)−1/2 e−x2/2, and K′ (x) =

−(2π)−1/2 xe−x2/2. We use the Silverman’s Rule of Thumb bandwidth h =
1.06std(y)n−1/5, but the results are robust to other choices of the bandwidth such
as on the order of n−1/3, n−1/4, n−1/6, or n−1/10.

The first three columns of Table 1 show the rate-adaptive bootstrap empirical
coverage frequencies for θ# (along with the average widths of the confidence
intervals in parentheses) for τ ∈ {0.1,0.3,0.5}, n ∈ {200,800,1,600,3,200,6,400},
B = 1,000 bootstrap iterations, and R = 1,000 Monte Carlo simulations. Due
to the symmetry of the problem, similar results will hold for τ ∈ {0.7,0.9} and
are available upon request. The remaining columns show the empirical coverage
frequencies of nominal 95% equal-tailed standard bootstrap confidence intervals[
θ̂n −d0.975,θ̂n −d0.025

]
, where d0.975 and d0.025 are the 97.5th and 2.5th percentiles

of θ̃1 − θ̂n for θ̃1 = argminθ∈�

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′(
π̂∗

n (θ)− π̂n

(
θ̂n

))
. We can

see that the standard bootstrap performs well under correct specification (which
corresponds to τ = 0.5), but the performance deteriorates as τ moves away from
0.5, with more severe undercoverage for the smaller values of τ . In contrast, the
empirical coverage frequency of the rate-adaptive bootstrap is quite close to the
nominal level of 95% for all values of τ , even at the smaller sample sizes.

Now, we consider the case of an estimated weighting matrix. The variance–
covariance matrix of the moments is

E (π (·,θ)−π (θ))(π (·,θ)−π (θ))′ =
[

Fy (θ)−Fy (θ)2 −fy (θ)

−fy (θ) 1

]
.
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Table 1. Rate-adaptive versus standard bootstrap, fixed weighting matrix.

Rate-adaptive bootstrap Standard bootstrap

τ 0.1 0.3 0.5 0.1 0.3 0.5

n = 200 0.949 0.946 0.952 0.900 0.917 0.949

(0.330) (0.298) (0.279) (0.277) (0.277) (0.277)

n = 800 0.950 0.955 0.949 0.864 0.920 0.947

(0.180) (0.156) (0.140) (0.139) (0.139) (0.139)

n = 1,600 0.959 0.950 0.948 0.845 0.909 0.954

(0.134) (0.113) (0.099) (0.098) (0.098) (0.098)

n = 3200 0.957 0.960 0.955 0.828 0.889 0.936

(0.101) (0.083) (0.070) (0.070) (0.070) (0.070)

n = 6,400 0.952 0.946 0.947 0.797 0.894 0.951

(0.076) (0.061) (0.049) (0.049) (0.049) (0.049)

We consider using an estimate of the inverse of the variance–covariance matrix of
the moments as our weighting matrix:

Wn

(
θ̂1

)
=
⎡
⎣ F̂y

(
θ̂1

)
− F̂y

(
θ̂1

)2 −f̂y
(
θ̂1

)
−f̂y
(
θ̂1

)
1

⎤
⎦

−1

,

where θ̂1 = argminθ∈� π̂n (θ)′ π̂n (θ), f̂y
(
θ̂1

)
= 1

nh

∑n
i=1 Kh

(
yi − θ̂1

)
, F̂y

(
θ̂1

)
=

1
n

∑n
i=1 1

(
yi ≤ θ̂1

)
. For θ̂n = argminθ∈� π̂n (θ)′ Wn

(
θ̂1

)
π̂n (θ), the rate-adaptive

bootstrap estimate is

θ̂∗
n = argmin

θ∈�

{
π̂n

(
θ̂n

)′
Wn

(
θ̂1

)((
π̂∗

n (θ)− π̂∗
n

(
θ̂n

))
−
(
π̂ (θ)− π̂

(
θ̂n

)))

+ 1

2

(
θ − θ̂n

)′⎛⎝Ĝ′Wn

(
θ̂1

)
Ĝ+

m∑
j=1

m∑
k=1

Wn,jk

(
θ̂1

)
π̂nk

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′Wn

(
θ̂1

)(
π̂∗

n

(
θ̂n

)
− π̂n

(
θ̂n

))
+
(
θ − θ̂n

)′
Ĝ′ (W∗

n

(
θ̂∗

1

)
−Wn

(
θ̂1

))
π̂n

(
θ̂n

)}
.

The bootstrapped weighting matrix is

W∗
n

(
θ̂∗

1

)
=
⎡
⎣ F̂∗

y

(
θ̂∗

1

)
− F̂y

(
θ̂∗

1

)2 −f̂ ∗
y

(
θ̂∗

1

)
−f̂ ∗

y

(
θ̂∗

1

)
1

⎤
⎦

−1

,
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where θ̂∗
1 is the rate-adaptive bootstrap estimate using W = I, f̂ ∗

y

(
θ̂∗

1

)
=

1
nh

∑n
i=1 Kh

(
y∗

i − θ̂∗
1

)
, and F̂∗

y

(
θ̂∗

1

)
= 1

n

∑n
i=1 1

(
y∗

i ≤ θ̂∗
1

)
. We use the same

Silverman’s Rule of Thumb bandwidth as before h = 1.06std(y)n−1/5.
We are interested in the rate-adaptive bootstrap empirical coverage frequencies

for θ# = argmin
θ∈�

π (θ)′ W
(
θ#

1

)
π (θ) where W

(
θ#

1

) =
[

Fy
(
θ#

1

)−Fy
(
θ#

1

)2 −fy
(
θ#

1

)
−fy
(
θ#

1

)
1

]−1

and θ#
1 = argmin

θ∈�

π (θ)′ π (θ). The first three columns of Table 2 show the empirical

coverage frequencies and average interval lengths of nominal 95% equal-tailed
rate-adaptive bootstrap confidence intervals:[
θ̂n − c0.975,θ̂n − c0.025

]
,

where c0.975 and c0.025 are the 97.5th and 2.5th percentiles of θ̂∗
n − θ̂n. We

used B = 1,000 bootstrap iterations and R = 1,000 Monte Carlo simula-
tions. There is some slight under-coverage for the case of τ = 0.5 and
over-coverage for the other values of τ , but the performance is much bet-
ter than the standard bootstrap intervals shown in the remaining columns:[
θ̂n −d0.975,θ̂n −d0.025

]
, where d0.975 and d0.025 are the 97.5th and 2.5th percentiles

of θ̃2 − θ̂n, for θ̃2 = argminθ∈�

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′
W∗

n

(
θ̃1

)(
π̂∗

n (θ)− π̂n

(
θ̂n

))
and θ̃1 = argminθ∈�

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′(
π̂∗

n (θ)− π̂n

(
θ̂n

))
. The standard boot-

strap has under-coverage across all values of τ , except for the correctly specified
case of τ = 0.5. This is to be expected because the standard bootstrap is
inconsistent under misspecification for nonsmooth models. However, the rate-
adaptive bootstrap will be consistent.

5.2. Quantile Regression

Motivated by Chernozhukov and Hong (2003) and Chernozhukov and Hansen
(2005), we consider the following DGP for α0 = β0 = 1:

yi = α0 +β0di +ui,

⎛
⎝ ui

di

wi

⎞
⎠∼ N

⎛
⎝
⎛
⎝ 0

0
0

⎞
⎠,

⎛
⎝ 1 0 δ

0 1 0.5
δ 0.5 1

⎞
⎠
⎞
⎠ .

It follows then that

ui|di,wi ∼ N

((
0 δ

)( 1 0.5
0.5 1

)−1( di
wi

)
,1− ( 0 δ

)( 1 0.5
0.5 1

)−1( 0
δ

))

= N

((
− 2

3
di + 4

3
wi

)
δ,1− 4

3
δ2
)

yi|di,wi ∼ N

(
α0 +β0di +

(
− 2

3
di + 4

3
wi

)
δ,1− 4

3
δ2
)

.
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Table 2. Rate-adaptive versus standard bootstrap, estimated weighting matrix.

Rate-adaptive bootstrap Standard bootstrap

τ 0.1 0.3 0.5 0.1 0.3 0.5

n = 200 0.967 0.968 0.944 0.691 0.844 0.951

(1.211) (0.686) (0.285) (0.341) (0.329) (0.310)

n = 800 0.984 0.979 0.951 0.633 0.765 0.957

(0.702) (0.369) (0.143) (0.175) (0.172) (0.160)

n = 1,600 0.982 0.949 0.941 0.606 0.755 0.965

(0.521) (0.293) (0.101) (0.124) (0.122) (0.114)

n = 3,200 0.985 0.960 0.963 0.575 0.708 0.976

(0.398) (0.235) (0.071) (0.089) (0.088) (0.081)

n = 6,400 0.977 0.950 0.951 0.562 0.674 0.963

(0.314) (0.189) (0.050) (0.064) (0.063) (0.057)

The population moments are for zi = ( 1 di wi
)′

,

π (θ) = E

[(
1

2
−1(yi ≤ α +βdi)

)
zi

]

= E

[(
1

2
−Fy|d,w (α +βdi)

)
zi

]

= E

⎡
⎣
⎛
⎝1

2
−�

⎛
⎝α −α0 + (β −β0)di +

(
2
3 di − 4

3 wi
)
δ√

1− 4
3δ2

⎞
⎠
⎞
⎠zi

⎤
⎦ .

At the true parameter values, the population moments are

π (θ0) = E

⎡
⎣
⎛
⎝1

2
−�

⎛
⎝( 2

3 di − 4
3 wi
)
δ√

1− 4
3δ2

⎞
⎠
⎞
⎠zi

⎤
⎦ .

Note that if δ = 0, then we have a correctly specified model for median regression.
For values of δ �= 0, the model is misspecified. Because the researcher is not able
to observe δ, it is desirable to have a procedure that will perform valid inference for
the true parameters θ0 = (α0,β0)

′ when δ = 0, and also will perform valid inference
for the pseudo-true parameters θ# = (α∗,β∗)′ = argmin

θ

π (θ)′ Wπ (θ) when δ �= 0.

We first consider the case of a fixed weighting matrix W = I. The sample moments
are

π̂n (θ) = 1

n

n∑
i=1

(
1

2
−1(yi ≤ α +βdi)

)
zi.
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The bootstrapped sample moments using the multinomial bootstrap are

π̂∗
n (θ) = 1

n

n∑
i=1

(
1

2
−1
(
y∗

i ≤ α +βd∗
i

))
z∗

i .

The population Jacobian and Hessians are for d̃i = (1,di)
′,

G(θ) = −E
[
fy|d,w (α +βdi)zid̃

′
i

]
, H1 (θ) = −E

[
f ′
y|d,w (α +βdi) d̃id̃

′
i

]
,

H2 (θ) = −E
[
f ′
y|d,w (α +βdi)did̃id̃

′
i

]
, H3 (θ) = −E

[
f ′
y|d,w (α +βdi)wid̃id̃

′
i

]
.

Their estimates are

Ĝ = − 1

nh

n∑
i=1

Kh

(
yi − α̂n − β̂ndi

)
zid̃

′
i, Ĥ1 = − 1

nh2

n∑
i=1

K′
h

(
yi − α̂n − β̂ndi

)
d̃id̃

′
i,

Ĥ2 = − 1

nh2

n∑
i=1

K′
h

(
yi − α̂n − β̂ndi

)
did̃id̃

′
i, Ĥ3 = − 1

nh2

n∑
i=1

K′
h

(
yi − α̂n − β̂ndi

)
wid̃id̃

′
i,

where Kh (x) = K (x/h), K′
h (x) = K′ (x/h), K (x) = (2π)−1/2 e−x2/2, and K′ (x) =

−(2π)−1/2 xe−x2/2. The rate-adaptive bootstrap estimator in the case of a fixed
weighting matrix W is

θ̂∗
n = argmin

θ∈�

{
π̂n

(
θ̂n

)′
W
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂n,k

(
θ̂n

)
Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′W

(
P∗

n −Pn
)
π
(
·,θ̂n

)
.

Table 3 compares the empirical coverage frequencies and average interval lengths

of nominal 95% equal-tailed confidence intervals
[
θ̂n − c0.975,θ̂n − c0.025

]
con-

structed using the rate-adaptive bootstrap estimator and the centered standard

bootstrap estimator θ̃1 = argmin
θ

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′(
π̂∗

n (θ)− π̂n

(
θ̂n

))
. We use

B = 2,000 bootstrap iterations, R = 5,000 Monte Carlo simulations, and δ = 0.1
and h = 0.3. The standard bootstrap produces shorter intervals and undercovers
for all values of n, while the rate-adaptive bootstrap achieves coverage close to the
nominal level for both parameters.

Now, consider the case of an estimated weighting matrix. Let W
(
θ#

1

) =
plim Wn

(
θ̂1

)
be the probability limit of an estimated weighting matrix computed

using an initial GMM estimator θ̂1 = argmin
θ

π̂n (θ)′ π̂n (θ) whose probability

limit is θ#
1 = argmin

θ

π (θ)′ π (θ). The pseudo-true parameters are given by
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Table 3. Rate-adaptive versus standard bootstrap, fixed weighting matrix W = I.

n 200 800 1,600 3,200 6,400

α0 0.967 0.954 0.957 0.957 0.957

Rate-adaptive (0.362) (0.188) (0.136) (0.099) (0.072)

β0 0.969 0.951 0.950 0.954 0.955

(0.380) (0.195) (0.139) (0.100) (0.072)

α0 0.861 0.915 0.919 0.915 0.910

Standard (0.280) (0.177) (0.125) (0.088) (0.062)

β0 0.852 0.909 0.913 0.912 0.921

(0.282) (0.184) (0.130) (0.092) (0.065)

θ# = argmin
θ

π (θ)′ W
(
θ#

1

)
π (θ). W

(
θ#

1

)
is the inverse of the variance–covariance

matrix of the population moments

W
(
θ#

1

)=
(

E
[
π
(·,θ#

1

)
π
(·,θ#

1

)′]−π
(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

E

[
E

[(
1

2
−1
(
yi ≤ α∗ +β∗di

))2
∣∣∣∣∣zi

]
ziz

′
i

]
−π

(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

1

4
E
[
ziz

′
i

]−π
(
θ#

1

)
π
(
θ#

1

)′)−1

.

The last line follows from the fact that conditional on zi, 1
2 − 1(yi ≤ α∗ +β∗di)

is a Bernoulli random variable that equals − 1
2 with probability Fy|d,w (α∗ +β∗di)

and equals 1
2 with probability 1−Fy|d,w (α∗ +β∗di). Therefore, E[( 1

2 −1(yi ≤ α∗ +
β∗di))

2|zi] = 1
4 .

The estimated weighting matrix is

Wn ≡ Wn

(
θ̂1

)
=
(

1

4

1

n

n∑
i=1

ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′
)−1

.

The bootstrapped weighting matrix is computed using the multinomial bootstrap
and an initial rate-adaptive bootstrap estimator θ̂∗

1 computed using a fixed weight-
ing matrix W = I.

W∗
n ≡ W∗

n

(
θ̂∗

1

)
=
(

1

4

1

n

n∑
i=1

z∗
i z∗′

i − π̂∗
n

(
θ̂∗

1

)
π̂∗

n

(
θ̂∗

1

)′
)−1

.

The rate-adaptive bootstrap estimator in the case of an estimated weighting
matrix is
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Table 4. Rate-adaptive versus standard bootstrap, estimated weighting matrix.

n 200 800 1,600 3,200 6,400

α0 0.968 0.949 0.951 0.949 0.947

Rate-adaptive (0.369) (0.195) (0.143) (0.106) (0.079)

β0 0.969 0.951 0.954 0.955 0.956

(0.371) (0.194) (0.142) (0.105) (0.078)

α0 0.889 0.916 0.913 0.886 0.878

Standard (0.278) (0.177) (0.126) (0.089) (0.063)

β0 0.864 0.918 0.904 0.901 0.877

(0.262) (0.176) (0.126) (0.089) (0.063)

θ̂∗
n = argmin

θ∈�

⎧⎨
⎩π̂n

(
θ̂n

)′
Wn
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))

+ 1

2

(
θ − θ̂n

)′
⎛
⎝Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂n,k

(
θ̂
)

Ĥj

⎞
⎠(θ − θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′Wn

(
P∗

n −Pn
)
π
(
·,θ̂n

)

+
(
θ − θ̂n

)′
Ĝ′ (W∗

n −Wn
)
π̂n

(
θ̂n

)⎫⎬
⎭ .

Table 4 compares the empirical coverage frequencies and average interval lengths

of nominal 95% equal-tailed confidence intervals
[
θ̂n − c0.975,θ̂n − c0.025

]
con-

structed using the rate-adaptive bootstrap estimator and the centered standard boot-

strap estimator θ̃2 = argminθ∈�

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′
W∗

n

(
θ̃1

)(
π̂∗

n (θ)− π̂n

(
θ̂n

))
,

where the weighting matrix depends on θ̃1 = argminθ∈�

(
π̂∗

n (θ)− π̂n

(
θ̂n

))′

(
π̂∗

n (θ)− π̂n

(
θ̂n

))
. We use B = 2,000 bootstrap iterations, R = 5,000 Monte

Carlo simulations, and δ = 0.1 and h = 0.3. The standard bootstrap produces
shorter intervals and undercovers for all values of n, while the rate-adaptive
bootstrap achieves coverage close to the nominal level.

6. CONCLUSION

We have demonstrated that globally misspecified GMM estimators with nons-
mooth (specifically non-directionally differentiable) moments have a cubic-root
rate of convergence to a nonstandard asymptotic distribution, hence invalidating
the standard bootstrap for inference. We have proposed an alternative inference
procedure that does not require knowing the rate of convergence to consistently
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estimate the limiting distribution and is thus robust to global misspecification
and nonsmoothness. Our rate-adaptive bootstrap provides asymptotically valid
inference for the true parameter when the model is correctly specified and for the
pseudo-true parameter when the model is globally misspecified.

A. Appendix

A.1. Additional Results for Misspecified GMM with Directionally
Differentiable Moments

Asymptotic distribution under fixed weighting matrix.

Theorem A.1. Suppose π
(
θ#
)

= c for a vector of fixed constants c �= 0 and that

Assumptions 1 and 2 are satisfied for γ = 1/2 and ρ = 1, and π (·,θ) is Lipschitz continuous
in θ with a stochastically bounded Lipschitz constant. Suppose that for each ε > 0 and
t ∈ R

d,

lim
n→∞P

∥∥∥∥∥∥
⎛
⎝ √

ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
⎞
⎠
∥∥∥∥∥∥

2

1

⎧⎨
⎩
∥∥∥∥∥∥
⎛
⎝ √

ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
⎞
⎠
∥∥∥∥∥∥> ε

√
n

⎫⎬
⎭= 0.

Then θ̂n − θ# = oP(1) and

√
n
(
θ̂n − θ#

)
� argmin

h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h

}
,

where U0 ∼ N

(
0,P
(
π
(
·,θ#

)
−π

(
θ#
))(

π
(
·,θ#

)
−π

(
θ#
))′)

and Z0,1 (h) is a

mean-zero Gaussian process with covariance kernel 	1 (s,t) = lim
α→∞α2Pg

(
·,θ# + s

α

)
g
(
·,θ# + t

α

)′
. The joint covariance kernel of Z0,1 (h) and h′G′WU0 is given by

	(s,t) = lim
α→∞P

⎡
⎣ αg

(
·,θ# + s

α

)
s′G′W

(
π
(
·,θ#

)
−π

(
θ#
))
⎤
⎦[ αg

(
·,θ# + t

α

)′ (
π
(
·,θ#

)
−π

(
θ#
))′

WGt
]

.

Note that in the case of smooth misspecified models, the asymptotic distribution in
Theorem A.1 reduces down to the one in Theorem 1 of Hall and Inoue (2003) since then

π
(
θ#
)′

WZ0,1 (h) can be replaced by h′Z′
0Wπ

(
θ#
)

, where Z′
0Wπ

(
θ#
)

is a mean-zero

Gaussian random variable with covariance matrix P
(

∂
∂θ

π
(
·,θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′

W
(

∂
∂θ

π
(
·,θ#

)
−G

)
.

The next theorem states that the rate adaptive bootstrap is consistent for globally
misspecified GMM models with directionally differentiable moments.

Theorem A.2. Suppose Assumption 3 is satisfied in addition to the assumptions in

Theorem A.1, Ĝ
p→ G, and Ĥj

p→ Hj for j = 1, . . . ,m. Then,

√
n
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h

}
.
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Asymptotic distribution under estimated weighting matrix.

Theorem A.3. Suppose π
(
θ#
)

= c for a vector of fixed constants c �= 0 and that

Assumptions 1 and 2 are satisfied for γ = 1/2 and ρ = 1, and π (·,θ) is Lipschitz continuous
in θ with a stochastically bounded Lipschitz constant.

If Assumption 4 is satisfied, then θ̂n − θ# = oP(1) and

√
n
(
θ̂n − θ#

)
� arg min

h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 +h′G′�0π
(
θ#
)

+ 1

2
h′H̄h

}
,

where �0π
(
θ#
)

∼ N

(
0,P
(
φ
(
·,θ#

1

)
−φ

(
θ#

1

))
π
(
θ#
)
π
(
θ#
)′ (

φ
(
·,θ#

1

)
−φ

(
θ#

1

))′)
.

The joint covariance kernel of Z0,1 (h), h′G′WU0, and h′G′�0π
(
θ#
)

is given by

�(s,t) = lim
α→∞P

⎡
⎢⎣ αg

(·,θ# + s
α

)
s′G′W

(
π
(·,θ#

)−π
(
θ#
))

s′G′ (φ (·,θ#
1

)−φ
(
θ#

1

))
π
(
θ#
)
⎤
⎥⎦
⎡
⎢⎣ αg

(·,θ# + t
α

)′(
π
(·,θ#

)−π
(
θ#
))′

WGt

π
(
θ#
)′ (

φ
(·,θ#

1

)−φ
(
θ#
))′

Gt

⎤
⎥⎦

′

.

If Wn −W = op

(
n−1/2

)
, then θ̂n − θ# = oP(1) and

√
n
(
θ̂n − θ#

)
� arg min

h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h

}
.

Note that in the case of smooth misspecified models, the asymptotic distribution in
Theorem A.3 reduces down to the one in Theorem 2 of Hall and Inoue (2003) since then

π
(
θ#
)′

WZ0,1 (h) can be replaced by h′Z′
0Wπ

(
θ#
)

, where Z′
0Wπ

(
θ#
)

is a mean-zero

Gaussian random variable with covariance matrix P
(

∂
∂θ

π
(
·,θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′

W
(

∂
∂θ

π
(
·,θ#

)
−G

)
.

Theorem A.4. Suppose Assumptions 1–3 are satisfied, Ĝ
p→ G, and Ĥj

p→ Hj for j =
1, . . . ,m. For globally misspecified models where Assumptions 1 and 2 are satisfied for γ =
1/2 and ρ = 1, if Wn −W = op

(
n−1/2

)
and W∗

n −Wn = o∗
p

(
n−1/2

)
, then

√
n
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h∈Rd

{
h′G′WU0 +π

(
θ#
)′

WZ0,1 (h)+ 1

2
h′H̄h

}
.

If instead Assumption 4 is satisfied,

√
n
(
θ̂∗

n − θ̂n

)
P�
W

argmin
h∈Rd

{
h′G′WU0 +π

(
θ#
)′

WZ0,1 (h)+h′G′�0π
(
θ#
)

+ 1

2
h′H̄h

}
.

A.2. Proofs for Theorems

Proof for Theorem 1. The consistency argument is a direct application of Theorem
5.7 in van der Vaart (2000) since the equation array in the proof of Theorem 2.6 in
Newey and McFadden (1994) in combination with Assumptions 1(iii) and (iv) imply
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sup
θ∈�

∣∣∣Q̂n(θ)−Q(θ)

∣∣∣= oP(1). Next, we show that n1/3
(
θ̂n − θ#

)
= OP (1). Define Ĝn (θ) =

√
n(Pn −P)g(·,θ), ĝ(θ) = Png(·,θ), and g(θ) = Pg(·,θ). Then π̂n (θ) = g(θ)+π̂n

(
θ#
)
+

η̂n (θ), where η̂n (θ) = 1√
n
Ĝn (θ). Recall that Q̂n (θ) = 1

2 π̂n (θ)′ Wπ̂n (θ). Write Q̂n (θ) −
Q̂n

(
θ#
)

= Q1 (θ)+ Q̂2 (θ)+ Q̂3 (θ), where

Q1 (θ) = 1

2
g(θ)′ Wg(θ)+g(θ)′ Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′

Wη̂n (θ),

Q̂2 (θ) = 1

2
η̂n (θ)′ Wη̂n (θ)+g(θ)′ W

(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ Wη̂n (θ)

+
(
π̂n

(
θ#
)

−π
(
θ#
))′

Wη̂n (θ) .

Apply Kim and Pollard (1990, Lem. 4.1) to η̂n (θ), and in turn Q̂3 (θ): ∀ε > 0, ∃Mn,3 =
OP (1) such that

|Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−2/3M2
n,3.

The first, third, and fourth terms in Q̂2 (θ) are all of the form oP (1) η̂n (θ), hence are also
bounded by ε‖θ − θ#‖2 + n−2/3M2

n,2. For the second term in Q̂2 (θ), for n large enough,
∀ε > 0, ∃Mn,22 = OP (1) such that

|g(θ)′ W
(
π̂n

(
θ#
)

−π
(
θ#
))

| = OP

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 +n−2/3M2

n,22.

Therefore, ∀ε > 0, ∃Mn = OP (1) such that |Q̂2 (θ)+ Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−2/3M2
n .

Because Q1 (θ) achieves the minimal value of 0 at θ#, the Taylor expansion of Q1 (θ)

around θ# is Q1 (θ) = Q1

(
θ#
)

+
(
θ − θ#

)′ ∂Q1
(
θ#
)

∂θ
+ 1

2

(
θ − θ#

)′ ∂2Q1
(
θ#
)

∂θ∂θ ′
(
θ − θ#

)
+

o
(
‖θ − θ#‖2

)
= 1

2

(
θ − θ#

)′ (
H̄ +o(1)

)(
θ − θ#

)
since

∂Q1
(
θ#
)

∂θ
= G′Wg

(
θ#
)

+
G′Wπ

(
θ#
)

= 0 and
∂2Q1

(
θ#
)

∂θ∂θ ′ = H̄. Because H̄ is positive definite, there exists C > 0

and a small enough neighborhood of θ# such that Q1 (θ) ≥ C
∥∥∥θ − θ#

∥∥∥2
. By consistency of

θ̂n for θ#, with probability approaching 1, Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
= Q̂n

(
θ̂n

)
− Q̂n

(
θ#
)

≤ Q̂n

(
θ̂n

)
− inf

θ∈�
Q̂n (θ) ≤ oP

(
n−2/3

)
.

Choose ε so that C − ε > 0. Then,

oP

(
n−2/3

)
≥ Q1

(
θ̂n

)
− ε

∥∥∥θ̂n − θ#
∥∥∥2 −n−2/3M2

n

≥ (C − ε)

∥∥∥θ̂n − θ#
∥∥∥2 −n−2/3M2

n

�⇒
∥∥∥θ̂n − θ#

∥∥∥2 ≤ (C − ε)−1 n−2/3M2
n +oP

(
n−2/3

)
= OP

(
n−2/3

)
.

It follows that n1/3
(
θ̂n − θ#

)
= OP (1).
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Next, ĥ = n1/3
(
θ̂n − θ#

)
= argminh n2/3Q̂n

(
θ# +n−1/3h

)
. Note that θ# being in the

interior of � ensures that θ# + n−1/3h will belong in � for n large enough. It will follow

from the argmin continuous mapping theorem that ĥ � argminh π
(
θ#
)′

WZ0,1/2 (h) +
1
2 h′H̄h if we can show that

n2/3
(

Q̂n

(
θ# +n−1/3h

)
− Q̂n

(
θ#
))

� π
(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h

as a process indexed by h in the space of locally bounded functions Bloc

(
R

d
)

equipped with

the topology of uniform convergence on compacta. Since Q1

(
θ# +n−1/3h

)
= Q1

(
θ#
)

+
n−1/3h′ ∂Q1

(
θ#
)

∂θ
+ 1

2 n−2/3h′ ∂2Q1
(
θ#
)

∂θ∂θ ′ h + o
(

n−2/3
)

, n2/3Q1

(
θ# +n−1/3h

)
= 1

2 h′H̄h +
o(1).

It remains to show that n2/3
(

Q̂2 + Q̂3

)(
θ# +n−1/3h

)
� π

(
θ#
)′

WZ0,1/2 (h).

First, note that Assumptions 2(iv) and (v) implies that the Lindeberg condition is

satisfied. Then the Lindeberg–Feller CLT implies that Sn (h) ≡ n2/3η̂n

(
θ# +n−1/3h

)
=

n1/6Ĝn

(
θ# +n−1/3h

)
converges in finite-dimensional distribution to a mean-zero

Gaussian process Z0,1/2 (h) with covariance kernel 	1/2 (s,t) = lim
α→∞αPg(·,θ# +

s
α )g(·,θ# + t

α )′.
To show that Sn (h) is stochastically equicontinuous, it suffices to show that for every

sequence of positive numbers {δn} converging to zero, and for every j = 1, . . . ,m,

n2/3E sup
dj∈D(n)

∣∣Pndj −Pdj
∣∣= o(1), (A.1)

where D(n) =
{

dj

(
·,θ#,h1,h2

)
= gj

(
·;θ# +n−1/3h1

)
−gj

(
·;θ# +n−1/3h2

)
such that

max(‖h1‖,‖h2‖) ≤ M and ‖h1 − h2‖ ≤ δn

}
. Note that D(n) has envelope function Dn =

2GR(n) where R(n) = Mn−1/3.
Using the Maximal Inequality in Lemma 3.1 of Kim and Pollard (1990), for sufficiently

large n, splitting up the expectation according to whether n1/3PnD2
n ≤ η for each η > 0, and

applying the Cauchy–Schwarz inequality,

n2/3E sup
D(n)

∣∣Pndj −Pdj
∣∣≤ E

√
n1/3PnD2

nJ

⎛
⎜⎜⎝

n1/3 sup
D(n)

Pnd2
j

n1/3PnD2
n

⎞
⎟⎟⎠

≤√
ηJ(1)+

√
En1/3PnD2

n

√√√√EJ2

(
min

(
1,

1

η
n1/3 sup

D(n)

Pnd2
j

))
.

To show that this is o(1) for each fixed η > 0, first, note that by Assumption
2(vi), En1/3PnD2

n = 4n1/3EG2
R(n)

= O(n1/3R(n)) = O(1) since R(n) = Mn−1/3. The

proof will then be complete if n1/3 sup
D(n)

Pnd2
j = op (1). Next, for each K > 0, write
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E sup
D(n)

Pnd2
j ≤ EPn sup

D(n)

d2
j 1{Dn > K}+KE sup

D(n)

Pn
∣∣dj
∣∣≤ EPnD2

n1{Dn > K}+K sup
D(n)

P
∣∣dj
∣∣+

KE sup
D(n)

∣∣Pn
∣∣dj
∣∣−P

∣∣dj
∣∣∣∣. By Assumption 2(vii), EPnD2

n1{Dn > K} < ηn−1/3 for large

enough K. By Assumption 2(viii) and the definition of D(n), K sup
D(n)

P
∣∣dj
∣∣= O(n−1/3δn) =

o(n−1/3). By Assumption 2(vi) and the maximal inequality in Lemma 3.1 of Kim and

Pollard (1990), KE sup
D(n)

∣∣Pn
∣∣dj
∣∣−P

∣∣dj
∣∣∣∣ < Kn− 1

2 J(1)

√
PD2

n = O(n−2/3) = o(n−1/3).

Therefore, En1/3 sup
D(n)

Pnd2
j = o(1).

We have shown that Sn(h) � Z0,1/2 (h), which implies that n2/3Q̂3

(
θ# +n−1/3h

)
�

π
(
θ#
)′

WZ0,1/2 (h). Since the first, third, and fourth terms in n2/3Q̂2

(
θ# +n−1/3h

)
are

all of the form oP (1)n2/3η̂n

(
θ# +n−1/3h

)
, they all converge in probability to 0. For the

second term there,

n2/3|g
(
θ# +n−1/3h

)′
W
(
π̂n

(
θ#
)

−π
(
θ#
))

| = n2/3OP

(‖n−1/3h‖√
n

)
= OP

(
hn−1/6

)
= oP (1) .

Therefore, n2/3Q̂2

(
θ# +n−1/3h

)
= oP (1). By Slutsky’s theorem,

n2/3
(

Q1 + Q̂2 + Q̂3

)(
θ# +n−1/3h

)
� π

(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h.

Lemma 2.6 in Kim and Pollard (1990) implies that the Gaussian process −Z0,1/2 (h) has a
unique maximum, which implies that Z0,1/2 (h) has a unique minimum. In combination

with the fact that 1
2 h′H̄h is a convex function of h, there is a unique h that minimizes

π
(
θ#
)′

WZ0,1/2 (h) + 1
2 h′H̄h. The result follows from the argmin continuous mapping

theorem (Theorem 2.7 in Kim and Pollard (1990)). �

Proofs for Theorems 2 and A.2. Equation 4.2 implies that for ĥ∗ = nγ
(
θ̂∗

n − θ̂n

)
,

ĥ∗ = argmin
h∈Rd

π̂n

(
θ̂n

)′
Wnγρ√

n
(
P∗

n −Pn
)(

π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))

+
√

nnγρ

2n2γ
h′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠h

+ nγρ

nγ
h′Ĝ′W√

n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
.

Assumptions 2(iv) and (v) implies that the Lindeberg condition is satisfied, so by the

Lindeberg–Feller CLT, Sn(h) ≡ nγρ√
n(Pn −P)

(
π
(
·,θ# + h

nγ

)
−π

(
·,θ#

))
converges in

finite-dimensional distribution to a mean-zero Gaussian process Z0,ρ (h) with covariance

kernel 	ρ(s,t) = lim
α→∞α2ρPg

(
·,θ# + s

α

)
g
(
·,θ# + t

α

)′
.
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We already showed in Theorem 1 that Sn(h) is stochastically equicontinuous in h for
ρ = 1/2, γ = 1/3, and we already showed in Theorem A.1 that Sn(h) is stochastically
equicontinuous in h for ρ = 1, γ = 1/2.

Therefore, Sn (h) � Z0,ρ (h) as a process indexed by h in Bloc

(
R

d
)

equipped with

the topology of uniform convergence on compacta. Theorem 3.6.13 in van der Vaart and
Wellner (1996) or Theorem 2.6 in Kosorok (2007) then implies that the bootstrapped process

nγρ√
n
(
P∗

n −Pn
)(

π
(
·,θ# + h

nγ

)
−π

(
·,θ#

))
is consistent for the same limiting process as

Sn (h):

nγρ√
n
(
P∗

n −Pn
)(

π

(
·,θ# + h

nγ

)
−π

(
·,θ#

))
P�
W

Z0,ρ (h) .

We already showed nγρ√
n(Pn −P)

(
π
(
·,θ + h

nγ

)
−π (·,θ)

)
is stochastically equicontin-

uous in θ , which implies that for any compact K ⊂ R
d ,

nγρ√
nsup

h∈K

∥∥∥∥(Pn −P)

(
π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

)
−
(

π

(
·,θ# + h

nγ

)
−π

(
·,θ#

)))∥∥∥∥
= oP

(
1+nγ

∥∥∥θ̂n − θ#
∥∥∥)= oP(1).

Under the envelope integrability Assumption 3, Lemma 4.2 in Wellner and Zhan (1996)
implies that for any compact K ⊂ R

d ,

nγρ√
nsup

h∈K

∥∥∥∥(P∗
n −Pn

)(
π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

)
−
(

π

(
·,θ# + h

nγ

)
−π

(
·,θ#

)))∥∥∥∥
= o∗

P

(
1+nγ

∥∥∥θ̂n − θ#
∥∥∥)= o∗

P(1).

In combination with the fact that π̂n

(
θ̂n

) p→ π
(
θ#
)

,

π̂n

(
θ̂n

)′
Wnγρ√

n
(
P∗

n −Pn
)(

π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))
P�
W

π
(
θ#
)′

WZ0,ρ (h),

as a process indexed by h in Bloc

(
R

d
)

equipped with the topology of uniform convergence

on compacta. For the second term, note that since
√

nnγρ

n2γ = 1, Ĝ
p→ G, Ĥj

p→ Hj for

j = 1, . . . ,m, and π̂n

(
θ̂n

) p→ π
(
θ#
)

,

√
nnγρ

2n2γ
h′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠h

p→ 1

2
h′
⎛
⎝G′WG+

m∑
j=1

m∑
k=1

Wjkπk

(
θ#
)

Hj

⎞
⎠h ≡ 1

2
h′H̄h.

When γ = 1/3 and ρ = 1/2, nγρ

nγ = o(1), which implies that the third term is o∗
P(1):

nγρ

nγ
h′Ĝ′W√

n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
= o∗

P(1).
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It then follows from a bootstrapped version of the argmin continuous mapping theorem (see
Lemma 14.2 in Hong and Li (2020) for proof)

ĥ∗ P�
W

argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h

}
.

For misspecified nonsmooth models with γ = 1/2 and ρ = 1, nγρ

nγ = 1, so the third term
also contributes to the asymptotic distribution.

We showed in Theorem A.1

⎛
⎝π̂n

(
θ#
)′

Wnγρ√
n(Pn −P)

(
π
(
·,θ# + h

nγ

)
−π

(
·,θ#

))
h′Ĝ′W√

n(Pn −P)π
(
·,θ#

)
⎞
⎠

P�
W

(
π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

)
. Under Assumption 2, GR ≡

{
πj (·,θ)−πj

(
·,θ#

)
: ‖θ −θ#‖ ≤

R,j = 1, . . . ,m
}

for R near zero are uniformly manageable classes (and therefore Donsker

classes) that satisfy for all j = 1, . . . ,m, P
(
πj (·,θ)−πj

(
·,θ#

))2 → 0 for θ → θ#. By

Lemma 3.3.5 of van der Vaart and Wellner (1996),∥∥∥√n(Pn −P)
(
π
(
·,θ̂n

)
−π

(
·,θ#

))∥∥∥= oP

(
1+√

n
∥∥∥θ̂n − θ#

∥∥∥)= oP(1).

Under the envelope integrability Assumption 3, Lemma 4.2 in Wellner and Zhan (1996)
implies that the process is bootstrap equicontinuous.

∥∥∥√n
(
P∗

n −Pn
)(

π
(
·,θ̂n

)
−π

(
·,θ#

))∥∥∥= o∗
P

(
1+√

n
∥∥∥θ̂n − θ#

∥∥∥)= o∗
P(1).

Therefore,

⎛
⎝ π̂n

(
θ̂n

)′
Wnγρ√

n
(
P∗

n −Pn
)(

π
(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))
h′Ĝ′W√

n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
⎞
⎠ P�

W

(
π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

)
.

And, it follows from a bootstrapped version of the argmin continuous mapping theorem (see
Lemma 14.2 in Hong and Li (2020) for proof)

ĥ∗ P�
W

argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h

}
.

Under correct model specification, π
(
θ#
)

= 0, so the first term π
(
θ#
)′

WZ0,1 (h) disap-

pears and

ĥ∗ P�
W

argmin
h∈Rd

{
1

2
h′G′WGh+h′G′WU0

}

= (G′WG
)−1 G′WN

(
0,Pπ

(
·,θ#

)
π
(
·,θ#

)′)
.
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For smooth models that are misspecified, π̂n

(
θ̂n

)′
Wn
(
P∗

n −Pn
)(

π
(
·,θ̂n + h√

n

)
−π
(
·,θ̂n

))
P�
W

h′Z′
0Wπ

(
θ#
)

, where Z′
0Wπ

(
θ#
)

is a mean-zero Gaussian random variable with

covariance matrix P
(

∂
∂θ

π
(
·,θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′

W
(

∂
∂θ

π
(
·,θ#

)
−G

)
.

Furthermore, the joint distribution of Z′
0Wπ

(
θ#
)

and U0 is given by

(
U0

Z′
0Wπ

(
θ#
) )∼ N

(
0,

(
	11 	12
	21 	22

))
,

	11 = P
(
π
(
·,θ#

)
−π

(
θ#
))(

π
(
·,θ#

)
−π

(
θ#
))′

,

	12 = P
(
π
(
·,θ#

)
−π

(
θ#
))

π
(
θ#
)′

W

(
∂

∂θ
π
(
·,θ#

)
−G

)
,

	21 = P

(
∂

∂θ
π
(
·,θ#

)
−G

)′
Wπ

(
θ#
)(

π
(
·,θ#

)
−π

(
θ#
))′

,

	22 = P

(
∂

∂θ
π
(
·,θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′

W

(
∂

∂θ
π
(
·,θ#

)
−G

)
.

Therefore, the asymptotic distribution is given by

ĥ∗ P�
W

argmin
h∈Rd

{
h′Z′

0Wπ
(
θ#
)

+h′G′WU0 + 1

2
h′H̄h

}
= H̄−1N

(
0,G′W	11WG+	22 +G′W	12 +	21WG

)
. �

Proof for Theorem 3. The consistency argument is a direct application of Theorem
5.7 in van der Vaart (2000) since the equation array in the proof of Theorem 2.6 in Newey
and McFadden (1994) in combination with Assumption 1(iii) and (iv) and Wn −W = op(1)

imply sup
θ∈�

∣∣∣Q̂n(θ)−Q(θ)

∣∣∣ = oP(1). Next, write Q̂n (θ) − Q̂n

(
θ#
)

= Q1 (θ) + Q̂2 (θ) +
Q̂3 (θ)+ Q̂4 (θ)+ Q̂5 (θ)+ Q̂6 (θ), where

Q1 (θ) = 1

2
g(θ)′ Wg(θ)+g(θ)′ Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′

Wη̂n (θ),

Q̂2 (θ) = 1

2
η̂n (θ)′ Wη̂n (θ)+g(θ)′ W

(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ Wη̂n (θ)+
(
π̂n

(
θ#
)

−π
(
θ#
))′

Wη̂n (θ),

Q̂4 (θ) = 1

2
g(θ)′ (Wn −W)g(θ)+g(θ)′ (Wn −W)π

(
θ#
)
,

Q̂5 (θ) = g(θ)′ (Wn −W)
(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ (Wn −W) η̂n (θ)+
(
π̂n

(
θ#
)

−π
(
θ#
))′

(Wn −W) η̂n (θ),

Q̂6 (θ) = π
(
θ#
)′

(Wn −W) η̂n (θ)+ 1

2
η̂n (θ)′ (Wn −W) η̂n (θ) .
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We already showed in Theorem 1 that ∀ε > 0, there exists Mn = OP(1) such that
|Q̂2 (θ)+ Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−2/3M2

n .
Next, recall that Kim and Pollard (1990, Lem. 4.1) applied to η̂n (θ), and in turn

Q̂6 (θ) = oP (1) η̂n (θ) implies that ∀ε > 0, ∃Mn,6 = OP (1) such that

|Q̂6 (θ) | ≤ ε‖θ − θ#‖2 +n−2/3M2
n,6.

The second and third terms in Q̂5 (θ) are also of the form oP (1) η̂n (θ), hence are also
bounded by ε‖θ − θ#‖2 + n−2/3M2

n,51, for some Mn,51 = OP (1) and ∀ε > 0. The first

term in Q̂5 (θ) can also be bounded by, for some Mn,52 = OP (1) and ∀ε > 0,

|g(θ)′ (Wn −W)
(
π̂n

(
θ#
)

−π
(
θ#
))

| = op

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 +n−2/3M2

n,52.

If Wn − W = OP
(
n−γ

)
for γ ≥ 1/3,

∂Q̂4
(
θ#
)

∂θ
= G′ (Wn −W)g

(
θ#
)

+ G′ (Wn −W)

π
(
θ#
)

= OP
(
n−γ

)
. Taylor expanding Q̂4 (θ) around θ# gives for some Mn,4 = OP (1)

and ∀ε > 0,

Q̂4 (θ) = Q̂4

(
θ#
)

+
(
θ − θ#

)′ ∂Q̂4
(
θ#
)

∂θ
+ 1

2

(
θ − θ#

)′ ∂2Q̂4
(
θ#
)

∂θ∂θ ′
(
θ − θ#

)
+op

(
‖θ − θ#‖2

)

= 1

2

(
θ − θ#

)′
⎛
⎝G′ (Wn −W)G+

m∑
j=1

m∑
k=1

(
Wn,jk −Wjk

)
πk

(
θ#
)

Hj +op (1)

⎞
⎠(θ − θ#

)

+OP

(‖θ − θ#‖
nγ

)
≤ ε‖θ − θ#‖2 +n−2γ M2

n,4.

Then ∀ε > 0, there exists Mn = OP(1) such that |Q̂2 (θ) + Q̂3 (θ) + Q̂4 (θ) + Q̂5 (θ) +
Q̂6 (θ) | ≤ ε‖θ − θ#‖2 +n−2/3M2

n .

We already showed that there exists some C > 0 such that almost surely Q1

(
θ̂n

)
≥

C
∥∥∥θ̂n − θ#

∥∥∥2
. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
+ Q̂4

(
θ̂n

)
+ Q̂5

(
θ̂n

)
+ Q̂6

(
θ̂n

)
≤ Q̂n

(
θ̂n

)
− inf

θ∈�
Q̂n (θ) ≤ oP

(
n−2/3

)
.

Choose ε so that C − ε > 0. Then,

oP

(
n−2/3

)
≥ Q1

(
θ̂n

)
− ε

∥∥∥θ̂n − θ#
∥∥∥2 −n−2/3M2

n

≥ (C − ε)

∥∥∥θ̂n − θ#
∥∥∥2 −n−2/3M2

n

�⇒
∥∥∥θ̂n − θ#

∥∥∥2 ≤ (C − ε)−1 n−2/3M2
n +oP

(
n−2/3

)
= OP

(
n−2/3

)
.

It follows that n1/3
(
θ̂n − θ#

)
= OP (1).
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We already showed in Theorem 1 that n2/3Q1

(
θ# +n−1/3h

)
= 1

2 h′H̄h + o(1),

n2/3Q̂3

(
θ# +n−1/3h

)
� π

(
θ#
)′

WZ0 (h), and n2/3Q̂2

(
θ# +n−1/3h

)
= oP (1). Fur-

thermore, if Wn −W = OP

(
n−1/3

)
,

n2/3Q̂4

(
θ# +n−1/3h

)
= 1

2
n2/3g

(
θ# +n−1/3h

)′
(Wn −W)g

(
θ# +n−1/3h

)
+ n2/3g

(
θ# +n−1/3h

)′
(Wn −W)π

(
θ#
)

= n2/3OP

(∥∥n−1/3h
∥∥2

n1/3

)

+
(

n1/3
{

g
(
θ#
)′ +h′G′n−1/3

}
+oP (1)

)
n1/3 (Wn −W)π

(
θ#
)

= h′G′n1/3 (Wn −W)π
(
θ#
)

+oP (1) � h′G′W0,

n2/3Q̂5

(
θ# +n−1/3h

)
= n2/3g

(
θ# +n−1/3h

)′
(Wn −W)

(
π̂n

(
θ#
)

−π
(
θ#
))

+g
(
θ# +n−1/3h

)′
(Wn −W)n2/3η̂n

(
θ# +n−1/3h

)
+
(
π̂n

(
θ#
)

−π
(
θ#
))′

(Wn −W)n2/3η̂n

(
θ# +n−1/3h

)

= n2/3OP

(∥∥n−1/3h
∥∥

n5/6

)
+OP

(∥∥n−1/3h
∥∥

n1/3

)
OP (1)+OP

(
n−5/6

)
OP (1)

= oP(1),

n2/3Q̂6

(
θ# +n−1/3h

)
= π

(
θ#
)′

(Wn −W)n2/3η̂n

(
θ# +n−1/3h

)
+ 1

2
η̂n

(
θ# +n−1/3h

)′
(Wn −W)n2/3η̂n

(
θ# +n−1/3h

)
= OP

(
n−1/3

)
OP (1)+OP

(
n−2/3

)
OP

(
n−1/3

)
OP (1)

= oP(1).

By assumption,

⎛
⎝ π

(
θ#
)′

Wn2/3 (Pn −P)g
(
·,θ# +n−1/3h

)
h′G′n1/3 (Wn −W)π

(
θ#
)

⎞
⎠�

(
π
(
θ#
)′

WZ0,1/2 (h)

h′G′W0

)
.

Therefore, by Slutsky’s theorem and the argmin continuous mapping theorem,

n1/3
(
θ̂n − θ#

)
� arg min

h∈Rd

{
π
(
θ#
)′

WZ0,1/2 (h)+h′G′W0 + 1

2
h′H̄h

}
.
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If Wn −W = op

(
n−1/3

)
, n1/3

(
θ̂n − θ#

)
� argminh∈Rd

{
π
(
θ#
)′

WZ0,1/2 (h)+ 1
2 h′H̄h

}
because

n2/3Q̂4

(
θ# +n−1/3h

)
= n2/3oP

⎛
⎜⎝
∥∥∥n−1/3h

∥∥∥2

n1/3

⎞
⎟⎠+n2/3oP

⎛
⎝
∥∥∥n−1/3h

∥∥∥
n1/3

⎞
⎠

= oP

(
n−1/3

)
+oP(1) = oP(1). �

Proofs for Theorems 4 and A.4. Equation 4.1 implies that for ĥ∗ = nγ
(
θ̂∗

n − θ̂n

)
,

ĥ∗ = argmin
h∈Rd

π̂n

(
θ̂n

)′
Wnnγρ√

n
(
P∗

n −Pn
)(

π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))

+
√

nnγρ

2n2γ
h′
⎛
⎝Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠h

+ nγρ

nγ
h′Ĝ′Wn

√
n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
+ nγρ

nγ
h′Ĝ′√n

(
W∗

n −Wn
)
π̂n

(
θ̂n

)
.

We already showed in Theorem 2 that

π̂n

(
θ̂n

)′
Wnγρ√

n
(
P∗

n −Pn
)(

π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))
P�
W

π
(
θ#
)′

WZ0,ρ (h) .

Consistency of Wn for W implies that

π̂n

(
θ̂n

)′
Wnnγρ√

n
(
P∗

n −Pn
)(

π

(
·,θ̂n + h

nγ

)
−π

(
·,θ̂n

))
P�
W

π
(
θ#
)′

WZ0,ρ (h) .

We also showed in Theorem 2 that

√
nnγρ

2n2γ
h′
⎛
⎝Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

⎞
⎠h

p→ 1

2
h′
⎛
⎝G′WG+

m∑
j=1

m∑
k=1

Wjkπk

(
θ#
)

Hj

⎞
⎠h ≡ 1

2
h′H̄h.

For misspecified nonsmooth models with γ = 1/3 and ρ = 1/2, the third term is o∗
P(1):

n−γ /2h′Ĝ′Wn
√

n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
= o∗

P(1).

If Wn −W = op

(
n−1/3

)
and W∗

n −Wn = o∗
p

(
n−1/3

)
, the fourth term is also o∗

P(1):

h′Ĝ′n1/3 (W∗
n −Wn

)
π̂n

(
θ̂n

)
= o∗

P(1).

Therefore, only the first two terms contribute to the asymptotic distribution. It follows from
a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗ P�
W

argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1/2 (h)+ 1

2
h′H̄h

}
.
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When Wn − W = OP

(
n−1/3

)
and W∗

n − Wn = O∗
P

(
n−1/3

)
, we assumed⎛

⎝ π
(
θ#
)′

Wn2/3 (P∗
n −Pn

)
g
(
·,θ# +n−1/3h

)
h′G′n1/3 (W∗

n −Wn
)
π
(
θ#
)

⎞
⎠ P�

W

(
π
(
θ#
)′

WZ0,1/2 (h)

h′G′W0

)
. Under

the uniform manageability Assumption 2 and the envelope integrability Assumption 3,
we can invoke Lemma 4.2 in Wellner and Zhan (1996) to show bootstrap equicontinuity.
Therefore,⎛
⎝ π̂n

(
θ̂n

)′
Wnn2/3

(
P∗

n −Pn
)(

π
(
·,θ̂n + h

n1/3

)
−π

(
·,θ̂n

))
h′G′n1/3

(
W∗

n −Wn
)
π̂n

(
θ̂n

)
⎞
⎠ P�

W

(
π
(
θ#
)′

WZ0,1/2 (h)

h′G′W0

)
.

It follows from a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗ P�
W

argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1/2 (h)+h′G′W0 + 1

2
h′H̄h

}
.

For misspecified nonsmooth models with ρ = 1, γ = 1/2, we already showed in Theo-
rem A.3⎛
⎜⎜⎜⎝

π
(
θ#
)′

Wnn(Pn −P)g
(
·,θ# +n−1/2h

)
h′G′Wn

√
n(Pn −P)π

(
·,θ#

)
h′G′√n(Wn −W)π

(
θ#
)

⎞
⎟⎟⎟⎠�

⎛
⎜⎜⎝

π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

h′G′�0π
(
θ#
)

⎞
⎟⎟⎠ .

Under Assumption 4, the bootstrapped weighting matrix can be written as
√

n
(
W∗

n −Wn
)=√

n
(
P∗

n −Pn
)
φ
(
·,θ#

1

)
+ o∗

P(1). Under the uniform manageability Assumption 2 and the

envelope integrability Assumption 3, we can invoke Lemma 4.2 in Wellner and Zhan (1996)
to show bootstrap equicontinuity. Therefore,⎛
⎜⎜⎜⎝

π̂n

(
θ̂n

)′
Wnn

(
P∗

n −Pn
)(

π
(
·,θ̂n + h√

n

)
−π

(
·,θ̂n

))
h′Ĝ′Wn

√
n
(
P∗

n −Pn
)
π
(
·,θ̂n

)
h′Ĝ′√n

(
W∗

n −Wn
)
π̂n

(
θ̂n

)
⎞
⎟⎟⎟⎠ P�

W

⎛
⎜⎜⎝

π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

h′G′�0π
(
θ#
)

⎞
⎟⎟⎠ .

It follows from a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗ P�
W

argmin
h∈Rd

{
h′G′WU0 +π

(
θ#
)′

WZ0,1 (h)+h′G′�0π
(
θ#
)

+ 1

2
h′H̄h

}
.

For misspecified smooth models where ρ = 1 and γ = 1/2, π
(
θ#
)′

WZ0,1 (h) can be

replaced by h′Z′
0Wπ

(
θ#
)

, where the joint distribution of U0, Z′
0Wπ

(
θ#
)

, and �0π
(
θ#
)

is given by⎛
⎜⎜⎝

U0

Z′
0Wπ

(
θ#
)

�0π
(
θ#
)
⎞
⎟⎟⎠∼ N

⎛
⎝0,

⎛
⎝ 	11 	12 	13

	21 	22 	23
	31 	32 	33

⎞
⎠
⎞
⎠ .
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Then the asymptotic distribution is given by

ĥ∗ P�
W

argmin
h∈Rd

{
h′G′WU0 +h′Z′

0Wπ
(
θ#
)

+h′G′�0π
(
θ#
)

+ 1

2
h′H̄h

}
= N

(
0,H̄−1�W H̄−1

)
�W ≡ G′W	11WG+	22 +G′W	12 +	21WG+G′	33G+G′W	13G

+G′	31WG+	23G+G′	32.

Under correct model specification, π
(
θ#
)

= 0, so the second and third terms disappear:

ĥ∗ P�
W

argmin
h∈Rd

{
1

2
h′G′WGh+h′G′WU0

}

= (G′WG
)−1 G′WN

(
0,Pπ

(
·,θ#

)
π
(
·,θ#

)′)
. �

Proof for Theorem A.1. The consistency argument is the same as in Theorem 1. Next,

we show that
√

n
(
θ̂n − θ#

)
= OP (1). Recall that Q̂n (θ) − Q̂n

(
θ#
)

= Q1 (θ) + Q̂2 (θ) +
Q̂3 (θ), where

Q1 (θ) = 1

2
g(θ)′ Wg(θ)+g(θ)′ Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′

Wη̂n (θ),

Q̂2 (θ) = 1

2
η̂n (θ)′ Wη̂n (θ)+g(θ)′ W

(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ Wη̂n (θ)+
(
π̂n

(
θ#
)

−π
(
θ#
))′

Wη̂n (θ),

and η̂n (θ) = (Pn −P)g(·,θ), ĝ(θ) = Png(·,θ), and g(θ) = Pg(·,θ). Apply a modified
version of Kim and Pollard (1990) Lemma 4.1 with γ = 1/2, ρ = 1,1 to η̂n (θ), and in
turn Q̂3 (θ): ∀ε > 0, ∃Mn,3 = OP (1) such that

|Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−1M2
n,3.

The first, third, and fourth terms in Q̂2 (θ) are all of the form oP (1) η̂n (θ), hence are also
bounded by ε‖θ − θ#‖2 + n−1M2

n,2. For the second term in Q̂2 (θ), for n large enough,
∀ε > 0, ∃Mn,22 = OP (1) such that

|g(θ)′ W
(
π̂n

(
θ#
)

−π
(
θ#
))

| = OP

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 +n−1M2

n,22.

Therefore, ∀ε > 0, ∃Mn = OP (1) such that |Q̂2 (θ)+ Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−1M2
n .

Because Q1 (θ) achieves the minimal value of 0 at θ#, the Taylor expansion of Q1 (θ)

around θ# is Q1 (θ) = Q1

(
θ#
)

+
(
θ − θ#

)′ ∂Q1
(
θ#
)

∂θ
+ 1

2

(
θ − θ#

)′ ∂2Q1
(
θ#
)

∂θ∂θ ′
(
θ − θ#

)
+

o
(
‖θ − θ#‖2

)
= 1

2

(
θ − θ#

)′ (
H̄ +o(1)

)(
θ − θ#

)
since

∂Q1
(
θ#
)

∂θ
= G′Wg

(
θ#
)

+

1The main revisions to Lemma 4.1 of Kim and Pollard (1990) are redefining A(n,j) = (j−1)n−γ ≤ |θ | ≤ jn−γ ,

bounding the jth summand in P(Mn > m) by n4γ Psup|θ |<jn−γ |Png(·,θ)−Pg(·,θ) |2�[
η(j−1)2 +m2

]2
, where the

numerator is further bounded by n4γ
(
n−1C′jn−γ (2ρ)

)= C′j.
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G′Wπ
(
θ#
)

= 0 and
∂2Q1

(
θ#
)

∂θ∂θ ′ = H̄. Because H̄ is positive definite, there exists C > 0

and a small enough neighborhood of θ# such that Q1 (θ) ≥ C
∥∥∥θ − θ#

∥∥∥2
. By consistency of

θ̂n for θ#, with probability approaching 1, Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
= Q̂n

(
θ̂n

)
− Q̂n

(
θ#
)

≤ Q̂n

(
θ̂n

)
− inf

θ∈�
Q̂n (θ) ≤ oP

(
n−1
)

.

Choose ε so that C − ε > 0. Then,

oP

(
n−1

)
≥ Q1

(
θ̂n

)
− ε

∥∥∥θ̂n − θ#
∥∥∥2 −n−1M2

n

≥ (C − ε)

∥∥∥θ̂n − θ#
∥∥∥2 −n−1M2

n

�⇒
∥∥∥θ̂n − θ#

∥∥∥2 ≤ (C − ε)−1 n−1M2
n +oP

(
n−1

)
= OP

(
n−1

)
.

It follows that
√

n
(
θ̂n − θ#

)
= OP (1).

Next, ĥ = √
n
(
θ̂n − θ#

)
= argminh nQ̂n

(
θ# +n−1/2h

)
. Note that θ# being in the inte-

rior of � ensures that θ# +n−1/2h will belong in � for n large enough. It will follow from the

argmin continuous mapping theorem that ĥ � argmin
h∈Rd

{
π
(
θ#
)′

WZ0,1 (h) + h′G′WU0 +
1
2 h′H̄h

}
if we can show that

n
(

Q̂n

(
θ# +n−1/2h

)
− Q̂n

(
θ#
))

� π
(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h,

as a process indexed by h in the space of locally bounded functions Bloc

(
R

d
)

equipped with

the topology of uniform convergence on compacta. Since Q1

(
θ# +n−1/2h

)
= Q1

(
θ#
)

+
n−1/2h′ ∂Q1

(
θ#
)

∂θ
+ 1

2 n−1h′ ∂2Q1
(
θ#
)

∂θ∂θ ′ h+o
(

n−1
)

, nQ1

(
θ# +n−1/2h

)
= 1

2 h′H̄h+o(1).

It remains to show that n
(

Q̂2 + Q̂3

)(
θ# +n−1/2h

)
� π

(
θ#
)′

WZ0,1 (h)+ h′G′WU0.

Since the first, third, and fourth terms in nQ̂2

(
θ# +n−1/2h

)
are all of the form

oP (1)nη̂n

(
θ# +n−1/2h

)
, they all converge in probability to 0. For the second term, we

can Taylor expand g
(
θ# +n−1/2h

)
around θ#:

√
ng
(
θ# +n−1/2h

)′
W

√
n
(
π̂n

(
θ#
)

−π
(
θ#
))

= h′ (G+o(1))′ W
√

n
(
π̂n

(
θ#
)

−π
(
θ#
))

.

Since we assumed the joint Lindeberg condition: for each ε > 0 and t ∈ R
d ,

lim
n→∞P

∥∥∥∥∥∥
⎛
⎝ √

ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
⎞
⎠
∥∥∥∥∥∥

2

1

⎧⎨
⎩
∥∥∥∥∥∥
⎛
⎝ √

ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
⎞
⎠
∥∥∥∥∥∥> ε

√
n

⎫⎬
⎭= 0,
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the Lindeberg–Feller CLT implies that Sn (h) ≡
⎛
⎝ π

(
θ#
)′

Wnη̂n

(
θ# +n−1/2h

)
h′G′W√

n
(
π̂n

(
θ#
)

−π
(
θ#
))

⎞
⎠ con-

verges in finite-dimensional distribution to

(
π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

)
, where Z0,1 (h) is

a mean-zero Gaussian process with covariance kernel 	1 (s,t) = lim
α→∞α2Pg

(
·,θ# + s

α

)
g
(
·,θ# + t

α

)′
, and U0 ∼ N

(
0,P
(
π
(
·,θ#

)
−π

(
θ#
))(

π
(
·,θ#

)
−π

(
θ#
))′)

.

Since h′G′W√
n
(
π̂n

(
θ#
)

−π
(
θ#
))

is a linear (and therefore convex) function of h,

pointwise convergence implies uniform convergence over compact sets K ⊂ R
d (Pollard

(1991)). Therefore, to show that Sn (h) is stochastically equicontinuous, it suffices to
show that for every sequence of positive numbers {δn} converging to zero, and for every
j = 1, . . . ,m,

nE sup
D(n)

∣∣Pndj −Pdj
∣∣= o(1), (A.2)

where D(n) = {dj

(
·,θ#,h1,h2

)
= gj

(
·,θ# +n−1/2h1

)
− gj

(
·,θ# +n−1/2h2

)
such that

max(‖h1‖,‖h2‖) ≤ M and ‖h1 − h2‖ ≤ δn}. Note that D(n) has envelope function
Dn = 2GR(n) where R(n) = Mn−1/2.

Using the Maximal Inequality in Lemma 3.1 of Kim and Pollard (1990), for sufficiently
large n, splitting up the expectation according to whether nPnD2

n ≤ η for each η > 0, and
applying the Cauchy–Schwarz inequality,

nE sup
D(n)

∣∣Pndj −Pdj
∣∣≤ E

√
nPnD2

nJ

⎛
⎜⎜⎝

n sup
D(n)

Pnd2
j

nPnD2
n

⎞
⎟⎟⎠

≤√
ηJ(1)+

√
EnPnD2

n

√√√√EJ2

(
min

(
1,

1

η
n sup
D(n)

Pnd2
j

))
.

To show that this is o(1) for each fixed η > 0, first, note that by Assumption 2(vi), EnPnD2
n =

4nEG2
R(n)

= O
(

nR(n)2
)

= O(1) since R(n) = Mn−1/2. The proof will then be complete if

n sup
D(n)

Pnd2
j = op (1).

For each K > 0, write E sup
D(n)

Pnd2
j ≤ EPn sup

D(n)

d2
j 1{Dn > K} + KE sup

D(n)

Pn|dj| ≤

EPnD2
n1{Dn > K} + K sup

D(n)

P|dj| + KE sup
D(n)

∣∣Pn|dj|−P|dj|
∣∣. By Assumption 2(vii),

EPnD2
n1{Dn > K} < ηn−1 for large enough K. By Assumption 2(viii) and the definition

of D(n), K sup
D(n)

P|dj| = O(n−1δn) = o(n−1). Under the assumption that g(·,θ) is Lipschitz

in θ , so that Dn = OP

(
n−1/2δn

)
, use the maximal inequality in Lemma 3.1 of Kim and

Pollard (1990) to show KE sup
D(n)

∣∣Pn|dj|−P|dj|
∣∣< Kn− 1

2 J(1)

√
PD2

n = O(n−1δn) = o(n−1).
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Therefore, En sup
D(n)

Pnd2
j = o(1). It follows that

⎛
⎝ π

(
θ#
)′

Wnη̂n

(
θ# +n−1/2h

)
h′G′W√

n
(
π̂n

(
θ#
)

−π
(
θ#
))

⎞
⎠�

(
π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

)

as a process indexed by h in the product space of locally bounded functions
{

Bloc

(
R

d
)}2

equipped with the topology of uniform convergence on compacta. By Slutsky’s theorem,

n
(

Q1 + Q̂2 + Q̂3

)(
θ# +n−1/2h

)
� π

(
θ#
)′

WZ0,1 (h)+h′G′WU0 + 1

2
h′H̄h.

Lemma 2.6 in Kim and Pollard (1990) implies that the Gaussian process π
(
θ#
)′

WZ0,1 (h)

has a unique minimum. In combination with the fact that h′G′WU0 + 1
2 h′H̄h is a convex

function of h, there is a unique h that minimizes π
(
θ#
)′

WZ0,1 (h)+ h′G′WU0 + 1
2 h′H̄h.

The result follows from the argmin continuous mapping theorem (Theorem 2.7 in Kim and
Pollard, 1990). �

Proof for Theorem A.3. The consistency argument is the same as in Theorem 3. Next,

write Q̂n (θ)− Q̂n

(
θ#
)

= Q1 (θ)+ Q̂2 (θ)+ Q̂3 (θ)+ Q̂4 (θ)+ Q̂5 (θ)+ Q̂6 (θ), where

Q1 (θ) = 1

2
g(θ)′ Wg(θ)+g(θ)′ Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′

Wη̂n (θ),

Q̂2 (θ) = 1

2
η̂n (θ)′ Wη̂n (θ)+g(θ)′ W

(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ Wη̂n (θ)+
(
π̂n

(
θ#
)

−π
(
θ#
))′

Wη̂n (θ),

Q̂4 (θ) = 1

2
g(θ)′ (Wn −W)g(θ)+g(θ)′ (Wn −W)π

(
θ#
)
,

Q̂5 (θ) = g(θ)′ (Wn −W)
(
π̂n

(
θ#
)

−π
(
θ#
))

+g(θ)′ (Wn −W) η̂n (θ)+
(
π̂n

(
θ#
)

−π
(
θ#
))′

(Wn −W) η̂n (θ),

Q̂6 (θ) = π
(
θ#
)′

(Wn −W) η̂n (θ)+ 1

2
η̂n (θ)′ (Wn −W) η̂n (θ) .

We already showed in Theorem A.1 that ∀ε > 0, there exists Mn = OP(1) such that |Q̂2 (θ)+
Q̂3 (θ) | ≤ ε‖θ − θ#‖2 +n−1M2

n .
A modified version of Kim and Pollard (1990, Lem. 4.1) applied to η̂n (θ), and in turn

Q̂6 (θ) = oP (1) η̂n (θ) implies that ∀ε > 0, ∃Mn,6 = OP (1) such that

|Q̂6 (θ) | ≤ ε‖θ − θ#‖2 +n−1M2
n,6.

The second and third terms in Q̂5 (θ) are also of the form oP (1) η̂n (θ), hence are also
bounded by ε‖θ − θ#‖2 + n−1M2

n,51. The first term in Q̂5 (θ) can also be bounded by, for
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some Mn,52 = OP (1) and ∀ε > 0,

|g(θ)′ (Wn −W)
(
π̂n

(
θ#
)

−π
(
θ#
))

| = op

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 +n−1M2

n,52.

If Wn − W = OP
(
n−γ

)
for γ ≥ 1/2,

∂Q̂4
(
θ#
)

∂θ
= G′ (Wn −W)g

(
θ#
)

+ G′ (Wn −W)

π
(
θ#
)

= OP
(
n−γ

)
. Taylor expanding Q̂4 (θ) around θ# gives for some Mn,4 = OP (1)

and ∀ε > 0,

Q̂4 (θ) = Q̂4

(
θ#
)

+
(
θ − θ#

)′ ∂Q̂4
(
θ#
)

∂θ
+ 1

2

(
θ − θ#

)′ ∂2Q̂4
(
θ#
)

∂θ∂θ ′
(
θ − θ#

)
+op

(
‖θ − θ#‖2

)

= 1

2

(
θ − θ#

)′
⎛
⎝G′ (Wn −W)G+

m∑
j=1

m∑
k=1

(
Wn,jk −Wjk

)
πk

(
θ#
)

Hj +op (1)

⎞
⎠(θ − θ#

)

+OP

(‖θ − θ#‖
nγ

)
≤ ε‖θ − θ#‖2 +n−2γ M2

n,4.

Then ∀ε > 0, there exists Mn = OP(1) such that |Q̂2 (θ) + Q̂3 (θ) + Q̂4 (θ) + Q̂5 (θ) +
Q̂6 (θ) | ≤ ε‖θ − θ#‖2 + n−1M2

n . We already showed that there exists some C > 0 such

that almost surely Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
+ Q̂4

(
θ̂n

)
+ Q̂5

(
θ̂n

)
+ Q̂6

(
θ̂n

)
≤ Q̂n

(
θ̂n

)
− inf

θ∈�
Q̂n (θ) ≤ oP

(
n−1
)

.

Choose ε so that C − ε > 0. Then,

oP

(
n−1

)
≥ Q1

(
θ̂n

)
− ε

∥∥∥θ̂n − θ#
∥∥∥2 −n−1M2

n

≥ (C − ε)

∥∥∥θ̂n − θ#
∥∥∥2 −n−1M2

n

�⇒
∥∥∥θ̂n − θ#

∥∥∥2 ≤ (C − ε)−1 n−1M2
n +oP

(
n−1

)
= OP

(
n−1

)
.

It follows that
√

n
(
θ̂n − θ#

)
= OP (1).

We already showed in Theorem A.1 that nQ1

(
θ# +n−1/2h

)
= 1

2 h′H̄h + o(1), and

nQ̂2

(
θ# +n−1/2h

)
+ nQ̂3

(
θ# +n−1/2h

)
� π

(
θ#
)′

WZ0,1 (h) + h′G′W ′U0. Further-

more, if Wn −W = OP

(
n−1/2

)
,

nQ̂4

(
θ# +n−1/2h

)
= 1

2
ng
(
θ# +n−1/2h

)′
(Wn −W)g

(
θ# +n−1/2h

)
+ng

(
θ# +n−1/2h

)′
(Wn −W)π

(
θ#
)

= nOP

⎛
⎜⎝
∥∥∥n−1/2h

∥∥∥2

√
n

⎞
⎟⎠
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+
(√

n

{
g
(
θ#
)′ +h′G′n−1/2

}
+oP (1)

)√
n(Wn −W)π

(
θ#
)

= h′G′√n(Wn −W)π
(
θ#
)

+oP (1)

� h′G′�0π
(
θ#
)
,

nQ̂5

(
θ# +n−1/2h

)
= ng

(
θ# +n−1/2h

)′
(Wn −W)

(
π̂n

(
θ#
)

−π
(
θ#
))

+g
(
θ# +n−1/2h

)′
(Wn −W)nη̂n

(
θ# +n−1/2h

)
+
(
π̂n

(
θ#
)

−π
(
θ#
))′

(Wn −W)nη̂n

(
θ# +n−1/2h

)

= nOP

⎛
⎝
∥∥∥n−1/2h

∥∥∥
n

⎞
⎠+OP

⎛
⎝
∥∥∥n−1/2h

∥∥∥
√

n

⎞
⎠OP (1)+OP

(
n−1

)
OP (1)

= OP

(
n−1/2

)
+OP

(
n−1

)
+OP

(
n−1

)
= oP(1),

nQ̂6

(
θ# +n−1/2h

)
= π

(
θ#
)′

(Wn −W)nη̂n

(
θ# +n−1/2h

)
+ 1

2
η̂n

(
θ# +n−1/2h

)′
(Wn −W)nη̂n

(
θ# +n−1/2h

)
= OP

(
n−1/2

)
OP (1)+OP

(
n−1

)
OP

(
n−1/2

)
OP (1)

= oP(1).

The joint Lindeberg condition is satisfied by Assumption 4: for each ε > 0 and t ∈ R
d ,

lim
n→∞P

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

√
ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
vech

(
φ
(
·,θ#

1

))
⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

√
ng
(
·,θ# + t√

n

)
π
(
·,θ#

)
vech

(
φ
(
·,θ#

1

))
⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

> ε
√

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭= 0.

Therefore, by the Lindeberg–Feller CLT and stochastic equicontinuity arguments similar to
those in Theorem A.1,

⎛
⎜⎜⎜⎝

π
(
θ#
)′

Wnn(Pn −P)g
(
·,θ# +n−1/2h

)
h′G′Wn

√
n(Pn −P)π

(
·,θ#

)
h′G′√n(Pn −P)φ

(
·,θ#

1

)
π
(
θ#
)

⎞
⎟⎟⎟⎠�

⎛
⎜⎜⎝

π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

h′G′�0π
(
θ#
)

⎞
⎟⎟⎠,

as a process indexed by h in the product space of locally bounded functions
{

Bloc

(
R

d
)}3

equipped with the topology of uniform convergence on compacta. By Assumption 4,
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√
n(Wn −W) = √

n(Pn −P)φ
(
·,θ#

1

)
+oP(1); therefore,

⎛
⎜⎜⎜⎝

π
(
θ#
)′

Wnn(Pn −P)g
(
·,θ# +n−1/2h

)
h′G′Wn

√
n(Pn −P)π

(
·,θ#

)
h′G′√n(Wn −W)π

(
θ#
)

⎞
⎟⎟⎟⎠�

⎛
⎜⎜⎝

π
(
θ#
)′

WZ0,1 (h)

h′G′WU0

h′G′�0π
(
θ#
)

⎞
⎟⎟⎠ .

By Slutsky’s theorem and the argmin continuous mapping theorem,

√
n
(
θ̂n − θ#

)
� arg min

h∈Rd

{
π
(
θ#
)′

WZ0,1 (h)+h′G′W ′U0 +h′G′�0π
(
θ#
)

+ 1

2
h′H̄h

}
.

If Wn −W = op

(
n−1/2

)
,

nQ̂4

(
θ# +n−1/2h

)
= noP

⎛
⎜⎝
∥∥∥n−1/2h

∥∥∥2

√
n

⎞
⎟⎠+noP

⎛
⎝
∥∥∥n−1/2h

∥∥∥
√

n

⎞
⎠

= oP

(
1√
n

)
+oP(1) = oP(1),

which implies
√

n
(
θ̂n − θ#

)
� argminh∈Rd

{
π
(
θ#
)′

WZ0,1 (h) + h′G′W ′U0 +
1
2 h′H̄h

}
. �

A.3. More Details for Examples

IV quantile regression. We show that the classes GR ≡
{
πj (·,θ) − πj

(
·,θ#

)
:∥∥∥θ − θ#

∥∥∥≤ R,j = 1, . . . ,m
}

have envelope functions which decay at the linear rate:

GR (·) = sup∥∥θ−θ#
∥∥≤R

∣∣∣πj (·,θ)−πj

(
·,θ#

)∣∣∣
= sup∥∥θ−θ#

∥∥≤R

∣∣∣zij

(
1
(

yi ≤ q
(

x′
iθ

#
))

−1
(
yi ≤ q

(
x′

iθ
)))∣∣∣ .

Using monotonicity of q(·), we can bound the second moment of the envelope function by
considering all possible ways of adding or subtracting R from each coordinate of θ#.

PG2
R ≤ E

⎡
⎣∣∣zij

∣∣2 E

⎡
⎣ sup∥∥θ−θ#

∥∥≤R

∣∣∣1(yi ≤ q
(

x′
iθ

#
))

−1
(
yi ≤ q

(
x′

iθ
))∣∣∣
∣∣∣∣∣∣xi,zi

⎤
⎦
⎤
⎦

≤ E

⎡
⎢⎣∣∣zij

∣∣2 ∑
ω∈{−1,1}d

(
P
(

q
(

x′
i

(
θ# −ωR

))
≤ yi ≤ q

(
x′

iθ
#
)∣∣∣xi,zi

))⎤⎥⎦
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+E

⎡
⎢⎣∣∣zij

∣∣2 ∑
ω∈{−1,1}d

P
(

q
(

x′
iθ

#
)

≤ yi ≤ q
(

x′
i

(
θ# +ωR

))∣∣∣xi,zi

)⎤⎥⎦

≤ E

⎡
⎢⎣∣∣zij

∣∣2 sup
θ∈�

∑
ω∈{−1,1}d

2fy|x,z
(
q
(
x′

iθ
))

q′ (x′
iθ
)

x′
iωR

⎤
⎥⎦= O(R).

For the third inequality, we applied mean-value expansions to the probabilities since we
assumed that Fy|x,z is absolutely continuous and q(·) is twice differentiable.

In the case of a fixed weighting matrix, the asymptotic distribution of the IV quan-
tile regression estimator is given in Theorem 1. We now consider the case of an esti-

mated weighting matrix. The two-step GMM estimator θ̂n = argmin
θ

π̂n (θ)′ Wn

(
θ̂1

)
π̂n (θ)

depends on the one-step GMM estimator θ̂1 = argmin
θ

π̂n (θ)′ W1π̂n (θ) whose probability

limit is θ#
1 = argmin

θ

π (θ)′ W1π (θ). The pseudo-true parameters are given by θ# =

argmin
θ

π (θ)′ W
(
θ#

1

)
π (θ), where W

(
θ#

1

)
is the inverse of the variance–covariance matrix

of the population moments

W
(
θ#

1

)
=
(

E

[
π
(
·,θ#

1

)
π
(
·,θ#

1

)′]−π
(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

E

[(
τ −1

(
yi ≤ q

(
x′

iθ
#
1

)))2
ziz

′
i

]
−π

(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

E

[
E

[(
τ −1

(
yi ≤ q

(
x′

iθ
#
1

)))2
∣∣∣∣xi,zi

]
ziz

′
i

]
−π

(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

E
[(

τ2 + (1−2τ)Fy|x,z
(

q
(

x′
iθ

#
1

)))
ziz

′
i

]
−π

(
θ#

1

)
π
(
θ#

1

)′)−1
.

The last line follows from the fact that conditional on xi,zi, τ − 1
(

yi ≤ q
(

x′
iθ

#
1

))
is a

Bernoulli random variable that equals τ − 1 with probability Fy|x,z
(

q
(

x′
iθ

#
1

))
and equals

τ with probability 1−Fy|x,z
(

q
(

x′
iθ

#
1

))
. Therefore,

E

[(
τ −1

(
yi ≤ q

(
x′

iθ
#
1

)))2
∣∣∣∣zi

]
= (τ −1)2 Fy|x,z

(
q
(

x′
iθ

#
1

))
+ τ2

(
1−Fy|x,z

(
q
(

x′
iθ

#
1

)))
= τ2 + (1−2τ)Fy|x,z

(
q
(

x′
iθ

#
1

))
.

Note that in the case of correct specification, W
(
θ#

1

)
reduces down to

(
τ (1− τ)E

[
ziz

′
i

])−1

since Fy|x,z
(

q
(

x′
iθ

#
1

))
= τ .
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The estimated weighting matrix is

Wn

(
θ̂1

)
=
(

1

n

n∑
i=1

(
τ 2 + (1−2τ) F̂y|x,z

(
q
(

x′
iθ̂1

)))
ziz

′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′
)−1

=
⎛
⎝τ 2 1

n

n∑
i=1

ziz
′
i + (1−2τ)

1

n2

n∑
i=1

n∑
j=1

1
(

yj ≤ q
(

x′
iθ̂1

))
ziz

′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′
⎞
⎠−1

π̂n

(
θ̂1

)
= 1

n

n∑
i=1

(
τ −1

(
yi ≤ q

(
x′

iθ̂1

)))
zi.

Suppose there exists Dn such that the following mean value expansion around θ#
1 holds:

(
Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
(

Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

+D′
n

(
θ̂1 − θ#

1

)
+oP(1).

Dn can be interpreted as a subgradient (with respect to θ1) of Wn (θ1)π
(
θ#
)

evaluated at θ#
1

that is consistent for the population derivative matrix: Dn
p→ D0 ≡ ∂W(θ1)π

(
θ#
)

∂θ1

∣∣∣∣
θ1=θ#

1

. If

the one-step GMM estimator θ̂1 has an influence function representation, then there is also

an influence function representation for Wn

(
θ̂1

)
. However, θ̂1 has an influence function

representation only in the case of correct specification in which case we can use the simpler

estimated weighting matrix Wn =
(
τ (1− τ) 1

n
∑

i ziz
′
i

)−1
as in Chernozhukov and Hansen

(2005). In the case of misspecification so that n1/3
(
θ̂1 − θ#

1

)
�J , the estimated weighting

matrix is cubic-root consistent because of the dominant effect of θ̂1.

n1/3
(

Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

= n1/3
√

n

√
n
(

Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

︸ ︷︷ ︸
OP(1)

+D′
nn1/3

(
θ̂1 − θ#

1

)
+oP(1)

= D′
nn1/3

(
θ̂1 − θ#

1

)
+oP(1)

� D′
0J ≡ W0.

Simulated method of moments. The classes GR ≡
{
πj (·,θ)−πj

(
·,θ#

)
:
∥∥∥θ − θ#

∥∥∥≤
R,j = 1, . . . ,m

}
have envelope functions

GR (·) = sup∥∥θ−θ#
∥∥≤R

∣∣∣πj (·,θ)−πj

(
·,θ#

)∣∣∣
= sup∥∥θ−θ#

∥∥≤R

∣∣∣∣∣∣zij
1

S

S∑
s=1

(
1
(

h
(

x′
iθ

#
)

+ηis > 0
)

−1
(
h
(
x′

iθ
)+ηis > 0

))∣∣∣∣∣∣ .
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Using similar arguments as in the previous example,

PG2
R ≤ E

[∣∣zij
∣∣2 E

[
sup

‖θ−θ#‖≤R

1

S

S∑
s=1

∣∣∣1(h
(

x′
iθ

#
)

+ηis > 0
)

−1
(
h
(
x′

iθ
)+ηis > 0

)∣∣∣
∣∣∣∣∣xi,zi

]]

≤ E

⎡
⎣∣∣zij

∣∣2 1

S

S∑
s=1

∑
ωs∈{−1,1}d

P
(

h
(

x′
i

(
θ# −ωsR

))
≤ −ηis ≤ h

(
x′

iθ
#
)∣∣∣xi,zi

)⎤⎦

+E

⎡
⎣∣∣zij

∣∣2 1

S

S∑
s=1

∑
ωs∈{−1,1}d

P
(

h
(

x′
iθ

#
)

≤ −ηis ≤ h
(

x′
i

(
θ# +ωsR

))∣∣∣xi,zi

)⎤⎦

≤ E

⎡
⎣∣∣zij

∣∣2 1

S

S∑
s=1

sup
θ∈�

∑
ωs∈{−1,1}d

2fη|x,z
(
h
(
x′

iθ
))

h′ (x′
iθ
)

x′
iωsR

⎤
⎦= O(R).

Just as in the previous example, the pseudo-true parameters are given by θ# =
argmin

θ

π (θ)′ W
(
θ#

1

)
π (θ), where W

(
θ#

1

)
is the inverse of the variance–covariance matrix

of the population moments:

W
(
θ#

1

)
=
(

E

[
π
(
·,θ#

1

)
π
(
·,θ#

1

)′]−π
(
θ#

1

)
π
(
θ#

1

)′)−1

=
⎛
⎜⎝E

⎡
⎢⎣
⎛
⎝yi − 1

S

S∑
s=1

1
(

h
(

x′
iθ

#
1

)
+ηis > 0

)⎞⎠2

ziz
′
i

⎤
⎥⎦−π

(
θ#

1

)
π
(
θ#

1

)′⎞⎟⎠
−1

.

The estimated weighting matrix is

Wn

(
θ̂1

)
=
⎛
⎜⎝1

n

n∑
i=1

⎛
⎝yi − 1

S

S∑
s=1

1
(

h
(

x′
iθ̂1

)
+ηis > 0

)⎞⎠2

ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′⎞⎟⎠
−1

.

Suppose there exists Dn such that the following mean value expansion around θ#
1 holds:

(
Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
(

Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

+D′
n

(
θ̂1 − θ#

1

)
+oP(1).

Dn can be interpreted as a subgradient (with respect to θ1) of Wn (θ1)π
(
θ#
)

evaluated at θ#
1

that is consistent for the population derivative matrix: Dn
p→ D0 ≡ ∂W(θ1)π

(
θ#
)

∂θ1

∣∣∣∣
θ1=θ#

1

. If

the one-step GMM estimator θ̂1 has an influence function representation, then there is also

an influence function representation for Wn

(
θ̂1

)
. However, θ̂1 has an influence function

representation only in the case of correct specification in which case we can use Wn

(
θ̂1

)
=(

1
n
∑n

i=1

(
yi − 1

S
∑S

s=1 1
(

h
(

x′
iθ̂1

)
+ηis > 0

))2
ziz

′
i

)−1
. In the case of misspecification
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so that n1/3
(
θ̂1 − θ#

1

)
�J , the estimated weighting matrix is cubic-root consistent because

of the dominant effect of θ̂1.

n1/3
(

Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

= n1/3
√

n

√
n
(

Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

︸ ︷︷ ︸
OP(1)

+D′
nn1/3

(
θ̂1 − θ#

1

)
+oP(1)

= D′
nn1/3

(
θ̂1 − θ#

1

)
+oP(1)

� D′
0J ≡ W0.

Dynamic censored regression. The classes GR ≡
{
πj (·,θ)−πj

(
·,θ#

)
:
∥∥∥θ − θ#

∥∥∥≤
R,j = 1, . . . ,m

}
have envelope functions

GR (·) = sup∥∥θ−θ#
∥∥≤R

∣∣∣πj (·,θ)−πj

(
·,θ#

)∣∣∣
= sup∥∥θ−θ#

∥∥≤R

∣∣∣max
{
0,yit − yit−1θ

}−max
{

0,yit − yit−1θ#
}∣∣∣ .

Because each moment condition πj (·,θ) is Lipschitz in θ , PG2
R will be O

(
R2
)

if

E sup
1≤t≤T

|yit|2 < ∞2. For yi· ≡ [ yi2 , . . . , yiT
]′and yi·− ≡ [ yi1 , . . . , yiT−1

]′,
W
(
θ#

1

)
is the inverse of the variance–covariance matrix of the population moments

W
(
θ#

1

)
=
(

E

[
π
(
·,θ#

1

)
π
(
·,θ#

1

)′]−π
(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

E

[
E

[(
1

2
−1
(
yi ≤ α∗ +β∗di

))2
∣∣∣∣∣zi

]
ziz

′
i

]
−π

(
θ#

1

)
π
(
θ#

1

)′)−1

=
(

1

4
E
[
ziz

′
i
]−π

(
θ#

1

)
π
(
θ#

1

)′)−1
.

The estimated weighting matrix is

Wn

(
θ̂1

)
=
(

1

n

n∑
i=1

(
max

{
0,yi· − yi·−θ̂1

}
− yi·−

)(
max

{
0,yi· − yi·−θ̂1

}
− yi·−

)′

− π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′)−1
,

π̂n

(
θ̂1

)
= 1

n

n∑
i=1

(
max

{
0,yi· − yi·−θ̂1

}
− yi·−

)
.

2We thank an anonymous referee for pointing this out.
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If the one-step GMM estimator θ̂1 has an influence function representation
√

n
(
θ̂1 − θ#

1

)
=

√
n(Pn −P)κ

(
·,θ#

1

)
+oP(1), then there is also an influence function representation for the

estimated weighting matrix, which we now derive. Suppose there exists �n such that the
following mean value expansion around θ#

1 holds:

√
n vech

(
Wn

(
θ̂1

)
−W

(
θ#

1

))
= √

n vech
(

Wn

(
θ#

1

)
−W

(
θ#

1

))
+�′

n
√

n
(
θ̂1 − θ#

1

)
+oP(1)

= −vech
(

W
(
θ#

1

)√
n(Pn −P)ψ

(
·,θ#

1

)
W
(
θ#

1

))
+�′

0
√

n(Pn −P)κ
(
·,θ#

1

)
+oP(1)

= vech
(√

n(Pn −P)φ
(
·,θ#

1

))
+oP(1).

�n can be interpreted as a subgradient of vech(Wn (θ1)) evaluated at θ#
1 that is consistent

for the population derivative matrix: �n
p→ �0 ≡ ∂vech(W(θ1))

∂θ1

∣∣∣
θ1=θ#

1

.

We can obtain the expression for
√

n(Pn −P)ψ
(
·,θ#

1

)
using U-statistic projection

arguments:

1√
n

n∑
i=1

(
π
(
·,θ#

1

)
π
(
·,θ#

1

)′ −E

[
π
(
·,θ#

1

)
π
(
·,θ#

1

)′])−√
n

(
π̂n

(
θ#

1

)
π̂n

(
θ#

1

)′ −π
(
θ#

1

)
π
(
θ#

1

)′)

= 1√
n

n∑
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(

max
{

0,yi· − yi·−θ#
1

}
− yi·−

)(
max

{
0,yi· − yi·−θ#

1

}
− yi·−

)′
︸ ︷︷ ︸

δ(yi·,yi·)

−E [δ (yi·,yi·)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−
√

n

n2

n∑
i=1

n∑
j=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
max

{
0,yi· − yi·−θ#

1

}
− yi·−

)(
max

{
0,yj· − yj·−θ#

1

}
− yj·−

)′
︸ ︷︷ ︸

δ
(
yi·,yj·

)
−E

[
δ
(
yi·,yj·

)]
︸ ︷︷ ︸

g
(
yi·,yj·

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1√
n

n∑
i=1

(δ (yi·,yi·)−E [δ (yi·,yi·)])− 1√
n

n∑
i=1

E
[

g
(
yi·,yj·

)∣∣yi·
]− 1√

n

n∑
j=1

E
[

g
(
yi·,yj·

)∣∣yj·
]+oP(1)

= √
n(Pn −P)ψ

(
·,θ#

1

)
+oP(1),

where the second to last equality follows from the fact that 1
n2

∑n
i=1
∑n

j=1 g
(
yi·,yj·

)
is a non-degenerate V-statistic which has the same asymptotic distribution as the non-
degenerate U-statistic 2

n(n−1)

∑
1≤i<j≤n g

(
yi·,yj·

)
if E [‖vech(g(yi·,yi·))‖] < ∞ and

E[‖vech
(
g
(
yi·,yj·

))‖2] < ∞. A discussion of this asymptotic equivalence result can be
found in Section 8.2 of Newey and McFadden (1994), Section 6.4 of Serfling (1980), and
Appendix A of Zhou, Mentch, and Hooker (2021).
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The bootstrapped weighting matrix is computed using the multinomial bootstrap and an
initial rate-adaptive bootstrap estimator θ̂∗

1 computed using a fixed weighting matrix.

W∗
n

(
θ̂∗

1

)
=
⎛
⎝1

n

n∑
i=1

(
max

{
0,y∗

i· − y∗
i·−θ̂∗

1

}
− y∗

i·−
)(

max
{

0,y∗
i· − y∗

i·−θ̂∗
1

}
− y∗

i·−
)′

− π̂n

(
θ̂∗

1

)
π̂n

(
θ̂∗

1

)′⎞⎠−1

,

π̂n

(
θ̂∗

1

)
= 1

n

n∑
i=1

(
max

{
0,y∗

i· − y∗
i·−θ̂∗

1

}
− y∗

i·−
)

.

We can show that when the bootstrapped one-step GMM estimator θ̂∗
1 has the same

influence function representation as θ̂1,
√

n
(
θ̂∗

1 − θ̂1

)
= √

n
(
P∗

n −Pn
)
κ
(
·,θ#

1

)
+ o∗

P(1),

the bootstrapped weighting matrix W∗
n

(
θ̂∗

1

)
has the same influence function representation

as Wn

(
θ̂1

)
. Suppose there exists �∗

n such that W∗
n

(
θ̂∗

1

)
has a mean value expansion around

θ#
1 . �∗

n can be interpreted as a subgradient of vech
(
W∗

n (θ1)
)

evaluated at θ#
1 that is consistent

for the population derivative matrix: �∗
n

p→ �0 ≡ ∂vech(W(θ1))
∂θ1

∣∣∣
θ1=θ#

1

. Then since �n is a

subgradient of vech(Wn (θ1)) evaluated at θ#
1 , and it is also consistent for �0, we can write

√
n vech

(
W∗

n

(
θ̂∗

1

)
−Wn

(
θ̂1

))
= √

n vech
(

W∗
n

(
θ̂∗

1

)
−Wn

(
θ#

1

))
−√

n vech
(

Wn

(
θ̂1

)
−Wn

(
θ#

1

))
= √

n vech
(

W∗
n

(
θ#

1

)
−Wn

(
θ#

1

))
+
(
�∗′

n
√

n
(
θ̂∗

1 − θ#
1

)
−�′

n
√

n
(
θ̂∗

1 − θ#
1

))
+o∗

P(1)

= √
n vech

(
W∗

n

(
θ#

1

)
−Wn

(
θ#

1

))
+�′

0
√

n
(
θ̂∗

1 − θ̂1

)
+o∗

P(1)

= −vech
(

W
(
θ#

1

)√
n
(
P∗

n −Pn
)
ψ
(
·,θ#

1

)
W
(
θ#

1

))
+�′

0
√

n
(
P∗

n −Pn
)
κ
(
·,θ#

1

)
+oP(1)

= vech
(√

n
(
P∗

n −Pn
)
φ
(
·,θ#

1

))
+o∗

P(1),

where
√

n
(

W∗
n

(
θ#

1

)
−Wn

(
θ#

1

))
= −W

(
θ#

1

)√
n
(
P∗

n −Pn
)
ψ
(
·,θ#

1

)
W
(
θ#

1

)
+oP(1) fol-

lows from the consistency of the multinomial bootstrap for V-statistics of order 2 (see
Theorem 3.1 in Bickel and Freedman, 1981).

A.4. Monte Carlo Simulation for Smooth Misspecified GMM

Now, suppose we consider the data combination example in Section 7.1 of Lee (2014).
Suppose we observe (yi,zi) ∈ R

2, and our goal is to estimate θ = Ezi. Suppose we think
that the mean of yi is 0, and we would like to exploit this information to get more accurate
estimates of θ . Our moments are

π1 (·,θ) = yi, π2 (·,θ) = zi − θ .
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However, suppose the actual mean of yi is δ �= 0, so the model is misspecified. We generate
data as(

yi
zi

)
i.i.d∼ N

((
δ

0

)
,

(
1 0.5

0.5 1

))
.

As shown in the supplemental appendix of Lee (2014), the one-step GMM estimator (using
the identity weighting matrix) is θ̂1 = z̄ and the two-step GMM estimator using the optimal

weighting matrix Wn =
(

S2
y Syz

Syz S2
z

)−1

= 1
S2

y S2
z −S2

yz

(
S2

z −Syz
−Syz S2

y

)
is θ̂2 = z̄− Syz

S2
y

ȳ.

We would like to compare the performance of our rate-adaptive bootstrap to the standard

bootstrap estimators θ̃∗
1 = z̄∗ and θ̃∗

2 = z̄∗ − Syz∗
S2

y∗
ȳ∗.

It turns out that the rate-adaptive bootstrap one-step GMM estimator is numerically
identical to the standard bootstrap one-step GMM estimator. We can see this by noting

that
(
P∗

n −Pn
)(

π (·,θ)−π
(
·,θ̂n

))
= 0, H = 0, G = [0; −1], G′G = 1, and therefore

θ̂∗
1 = argmin

θ∈�

{
1

2

(
θ − θ̂1

)2 +
(
θ − θ̂1

)
Ĝ′ (P∗

n −Pn
)
π
(
·,θ̂1

)}

= argmin
θ∈�

{
1

2
(θ − z̄)2 − (θ − z̄)

(
z̄∗ − z̄

)}
= z̄∗.

The rate-adaptive two-step GMM estimator differs from the standard bootstrap two-step
GMM estimator:

θ̂∗
2 = argmin

θ∈�

{
1

2

(
θ − θ̂2

)2
Ĝ′WnĜ+

(
θ − θ̂2

)
Ĝ′Wn

(
P∗

n −Pn
)
π
(
·,θ̂2

)
+
(
θ − θ̂2

)
Ĝ′ (W∗

n −Wn
)
π̂n

(
θ̂2

)}

= argmin
θ∈�

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
θ − θ̂2

)2 S2
y

S2
yS2

z −S2
yz

+
(
θ − θ̂2

) (Syz
(
ȳ∗ − ȳ

)−S2
y
(
z̄∗ − z̄

))
S2

yS2
z −S2

yz

+
(
θ − θ̂2

)
(

Syz∗ −S2
y∗

Syz

S2
y

)
ȳ

S2
y∗S2

z∗ −S2
yz∗

⎫⎪⎪⎬
⎪⎪⎭

�⇒ θ̂∗
2 = z̄∗ − Syzȳ∗

S2
y

− S2
yS2

z −S2
yz

S2
y∗S2

z∗ −S2
yz∗

(
Syz∗

S2
y

−
S2

y∗

S2
y

Syz

S2
y

)
ȳ.

We examine the empirical coverage frequencies of nominal 95% equal-tailed rate-

adaptive bootstrap confidence intervals
[
θ̂2 − c0.975,θ̂2 − c0.025

]
, where c0.975 and

c0.025 are the 97.5th and 2.5th percentiles of θ̂∗
2 − θ̂2. We also examine the empirical

coverage frequencies of nominal 95% equal-tailed standard bootstrap confidence intervals:
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Table A.1. Empirical coverage frequencies for δ = 1.

n 200 800 1,600 3,200 6,400 9,600

Rate-adaptive 0.948 0.953 0.948 0.952 0.953 0.953

(0.343) (0.170) (0.120) (0.085) (0.060) (0.049)

Standard 0.944 0.952 0.948 0.953 0.952 0.953

(0.339) (0.170) (0.120) (0.085) (0.060) (0.049)

MR 0.944 0.951 0.949 0.952 0.952 0.953

(0.339) (0.170) (0.120) (0.085) (0.060) (0.049)

Table A.2. Empirical coverage frequencies for δ = 0.1.

n 200 800 1,600 3,200 6,400 9,600

Rate-adaptive 0.950 0.947 0.953 0.950 0.951 0.952

(0.240) (0.121) (0.085) (0.060) (0.043) (0.035)

Standard 0.950 0.947 0.952 0.950 0.951 0.952

(0.241) (0.121) (0.085) (0.060) (0.043) (0.035)

MR 0.951 0.947 0.952 0.950 0.950 0.952

(0.241) (0.121) (0.085) (0.060) (0.043) (0.035)

[
θ̂2 −d0.975,θ̂2 −d0.025

]
, where d0.975 and d0.025 are the 97.5th and 2.5th percentiles of

θ̃∗
2 − θ̂2. We also examine the empirical coverage frequencies of Lee’s (2014) nominal 95%

MR bootstrap confidence intervals. We use B = 5,000 bootstrap iterations and R = 5,000
Monte Carlo simulations.

From Tables A.1 and A.2, which correspond to δ = 1 and δ = 0.1, respectively, we can
see that the rate-adaptive bootstrap performs similarly to the standard and MR bootstraps in
terms of both coverage and confidence interval width. The coverage frequencies of the three
methods are very similar because in the smooth case, the asymptotic distribution remains
normal, so the standard bootstrap will be consistent. Results for symmetric confidence
intervals are very similar and available upon request.
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