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Orders of π-Bases

Isaac Gorelic

Abstract. We extend the scope of B. Shapirovskii’s results on the order of π-bases in compact spaces

and answer some questions of V. Tkachuk.

Introduction

The notion of π-base is an essential tool for studying the internal structure of a topo-

logical space as well as its external properties (embeddings, functions and the like);

this was established primarily in the work of Boris Shapirovskii [6,7] containing ma-

jor discoveries. In this paper we attempt to show the full natural scope of his ideas

regarding the order of π-bases.

In Section 1, we decipher and refine the method of induction used by Shapirovskii

[7, Section 3].

In Section 2, using the results of Section 1, we describe a canonical form for

π-bases in regular spaces and prove that canonical π-bases always exist. In Lemma 2.4

we give a characterization of free sequences and with its help we derive a series of new

results, starting with the central Theorem 2.6.

Section 3 deals with the natural question as to whether or not the assumptions in

our theorems could be further relaxed. We give some examples to the contrary which

also solves three problems of V. Tkachuk [8].

The idea for this paper originated from the observation that our Lemma 2.4 could

be used in place of final compactness (that is, small L(X)), even in the original

Shapirovskii argument made for compact spaces.

We have used [2, 3] as general references for definitions and notation. ON is the

class of ordinal numbers. Additions and multiplications are ordinal operations. We

write [γ, δ), or δ \ γ, for {α : γ ≤ α < δ}. We denote by TX the family of all

non-empty open subsets of a topological space X.

1 Canonical κ-Functions

Definition 1.1 For an infinite cardinal κ, a canonical κ-function is a class function

φ = φκ : ON → [ON × κ]<ω satisfying the following two conditions:

(i) for every ordinal α, φ(α) ⊆ α × κ,
(ii) for every ordinal δ of the form δ = κ · ǫ there is γ(δ) < δ such that

[

[γ(δ), δ) × κ
]<ω

⊆ φ ′ ′δ.

Received by the editors May 7, 2007.
Published electronically April 6, 2010.
The author’s research was supported by NSERC
AMS subject classification: 54A25, 03E10, 03E75, 54A35.
Keywords: Shapirovskii π-base, point-countable π-base, free sequences, canonical form for ordinals.

286

https://doi.org/10.4153/CMB-2010-036-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-036-5


Orders of π-Bases 287

Definition 1.2 A τ -strong canonical (κ, λ)-function is a function ψ : λ → [λ × κ]τ

satisfying the following two conditions:

(i) (∀α ∈ dom(ψ)) ψ(α) ⊆ α × κ.

(ii) for every ordinal δ ≤ λ with cf(δ) = κ+ there is γ(δ) < δ such that

[

[γ(δ), δ) × κ
] τ

⊆ ψ ′ ′δ.

Definition 1.3 Let κ be an infinite cardinal. Define a class-function σ = σκ : ON →
ON by the following rule:

• σ(0) = 0,
• σ(1) = κ,
• σ(α + 1) = σ(α) + |σ(α)|, for α > 0,
• σ(β) = sup{σ(α) : α < β}, for β limit.

Lemma 1.4 Every ordinal δ has the following unique σκ-normal form:

δ = σ(α0) + σ(α1) + · · · + σ(αn−1) + ∆,

where n ∈ ω,

|σ(α0)| > |σ(α1)| > |σ(α2)| > · · · > |σ(αn−2)| > |σ(αn−1)|, αn−1 > 0,

and ∆ < κ.

Proof To visualize, we partition ON into intervals [0], [1, κ+), . . . , [µ, µ+), . . . . This

is the finest partition of ON into intervals that are closed under σ. Then we choose

descending αi from different intervals, excluding the first.

Existence. Since σ is increasing continuous, and σ(1) = κ, if δ ≥ κ, then ∃!α0 > 0

such that σ(α0) ≤ δ < σ(α0 + 1). Similarly, if type(δ \ σ(α0)) ≥ κ, then ∃!α1 > 0

such that σ(α1) ≤ type(δ \ σ(α0)) < σ(α1 + 1). Eventually, we get to αn−1 > 0 (if

any, otherwise set n = 0) such that

σ(αn−1) ≤ type(δ \ (σ(α0) + σ(α1) + · · · + σ(αn−2)) < σ(αn−1 + 1),

but now type(δ \ (σ(α0) + σ(α1) + · · · + σ(αn−1)) < κ. Put

∆ = type(δ \ (σ(α0) + σ(α1) + · · · + σ(αn−1)).

Uniqueness is now easily proved by induction on the length of the normal form.

It follows that the lexicographic ordering of the σ-normal forms (that is, the ordinal

sequences 〈α0, α1, . . . , αn−1,∆〉) coincides with the natural order of their values in

ON, but we will not need this explicitly.

Definition 1.5 Define a total pressing-down (save for γ(0) = 0) class-function

γ = γκ : ON → ON as follows. For every ordinal δ with the σκ-normal form δ =

σ(α0) + σ(α1) + · · · + σ(αn−2) + σ(αn−1) + ∆, set
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• γ(δ) = 0, if n = 0,
• γ(δ) = σ(α0) + σ(α1) + · · · + σ(αn−2), otherwise.

Theorem 1.6 For every infinite cardinal κ there is a canonical κ-function φ = φκ.

Proof Step 1: For every ordinal δ with ∆ = 0 in its normal form, let

δ ′
= γ(δ) + σ(αn−1 + 1)

(for δ > 0 this is also δ ′
= δ + |σ(αn−1)|). Then fix a function

fδ : [δ, δ ′) −→
[

[γ(δ), δ ′) × κ
]<ω

such that

(i) fδ is onto, and

(ii) ∀ξ ∈ [δ, δ ′) fδ(ξ) ⊆ ξ × κ.

This is very easy to arrange, because for every α, |σ(α+ 1)| = |[σ(α), σ(α+ 1))| ≥ κ.

We may start with an arbitrary surjection mapping |σ(αn−1 + 1))|-many times to

every member of the range.

Step 2: Now consider ordinals δ of the form δ = κ · ǫ. These are the same as the just

considered ordinals with ∆ = 0 in their normal form.

Suppose that we have finitely many functions h0, . . . , hn−1 such that (∀i < n)

hi : [δ, δ + κ) → [(δ + κ) × κ]<ω and (∀ξ ∈ dom(hi)) hi(ξ) ⊆ ξ × κ. Then set

H = H[h0, . . . , hn−1] and fix a function with the same domain and co-domain such

that (∀i)(∀ξ ∈ [δ, δ + κ)) (∃η ≥ ξ) H(η) = hi(ξ) (and so H(η) = hi(ξ) ⊆ ξ × κ ⊆
η × κ). In other words, H is a combination of h0, . . . , hn−1 mapping onto the union

of their ranges.

Step 3: Finally, define φ = φκ on the ordinal intervals of the form [δ, δ + κ) with

δ = κ·ǫ, simultaneously for all such δ, by the following explicit rule. Find the normal

form κ · ǫ = δ = σ(α0) + σ(α1) + · · · + σ(αn−1) + 0. Then set φ ↾ [δ, δ + κ) =

H[h0, . . . , hn−1], where hi = fσ(α0)+σ(α1)+···+σ(αi ) ↾ [δ, δ + κ).

Step 4: We are left to check that the function φ just defined satisfies Definition 1.1.

It is transparent that the first condition is satisfied, and the second is in the following

assertion.

Claim 1.7 Suppose that for every δ with ∆ = 0 (and n ≥ 0) in its normal form,

ran( fδ) ⊆ ran(φ ↾ [δ, δ ′)).

Then for every such δ with n ≥ 1,

[

[γ(δ), δ) × κ
]<ω

⊆ ran(φ ↾ [γ(δ), δ)).
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Proof This is straightforward, by induction on n and then by a subinduction on

αn−1 in the normal form for δ.

The case αn−1 = β + 1 is explicit, and for αn−1 a limit ordinal, use

[

[γ(δ), γ(δ) + σ(αn−1)) × κ
]<ω

=
⋃

β<αn−1

[

[γ(δ), γ(δ) + σ(β)) × κ
]<ω

.

The equation is true, because {β < αn−1 : γ(γ(δ) + σ(β)) = γ(δ)} is cofinal in

αn−1.

Theorem 1.8 If (κ+)κ
= κ+ and for every cardinal µ with κ+ ≤ µ < λ we have

µκ
= µ, then there is a κ-strong (κ, λ)-function. Under CH, there is an ω-strong

(ω,ℵω)-function.

Proof This time consider σκ+ -normal forms for ordinals δ ∈ ON and the regressive

function γκ+ . Otherwise do, mutatis mutandis, as in the proof of Theorem 1.6. It will

still be possible to define fδ : [δ, δ ′) ։ [[γ(δ), δ ′) × κ]κ because for every δ of the

form δ = κ+ · ǫ we have |[δ, δ ′)|κ = |[δ, δ ′)| ≥ κ+.

2 Shapirovskii π-Bases in Regular Spaces

Recall [2] that R ⊆ TX is a π-base for the topology TX of X if and only if ∀U ∈ TX

∃R ∈ R with R ⊆ U . A family R ⊆ TX is a local π-base for p ∈ X if and only if

∀U ∈ TX with p ∈ U ∃R ∈ R with R ⊆ U . The π-character of a point p in X is the

cardinal πχ(p, X) = min{|R| : R ⊆ TX is a local π-base for p} and the π-character

of X is πχ(X) = sup{πχ(p, X) : p ∈ X}.

For P = {pα : α < µ} and δ < µ, we write Pδ = {pα : α < δ} and Pδ
= {pα :

δ ≤ α < µ}. Then P = {pα : α < µ} ⊆ X is called left-separated if Pδ ∩ Pδ
= ∅, for

every δ < µ (this means that all initial segments of P are relatively closed in P). It is

well known and easy to see that every space X has a dense subspace left-separated in

the order-type d(X).

Definition 2.1 Suppose X is a regular topological space with πχ(X) = κ. Suppose

the density of X, d(X) = λ, is an infinite cardinal and P = {pα : α < λ}, is a

left-separated dense subspace, left-separated as written. Then S = {Sα,i : 〈α, i〉 ∈
λ×κ} ⊆ TX , or S together with P, is called a Shapirovskii π-base for X if the following

conditions are satisfied:

(i) {Sα,i : i < κ} a local π-base for pα in X,

(ii) Pα ∩
⋃

{Sβ,i : α ≤ β, i < κ} = ∅,

(iii) (∀δ = κ · ǫ)(∀A ∈ [[γ(δ), δ) × κ]<ω) if
⋂

a∈A Sa 6= ∅, then
⋂

a∈A Sa ∩
⋃

{Pα :

α < δ} 6= ∅, and therefore
⋂

a∈A Sa ∩ Pδ 6= ∅.

We will also say that S as above is a κ-strong Shapirovskii π-base, if the condition

(iii) is replaced by the following:

(iii ′) (∀δ = κ+ ·ǫ)
(

∀A ∈ [[γ(δ), δ)×κ]κ
)

if
⋂

a∈A Sa 6= ∅, then
⋂

a∈A Sa ∩Pδ 6= ∅.

Theorem 2.2 Every regular space has a Shapirovskii π-base.
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Proof Let Q = {qα : α < λ} be a left-separated dense subspace of X. Define

P = {pα : α < λ} and S = {Sα,i : 〈α, i〉 ∈ λ × κ} by induction on δ < λ.

Suppose at the stage δ ≥ 0 we have Pδ = {pα : α < δ} and S = {Sα,i : 〈α, i〉 ∈
δ × κ}. If

⋂

{Sa : a ∈ φκ(δ)} ∩ Pδ = ∅ and
⋂

{Sa : a ∈ φκ(δ)} 6= ∅, pick pδ in
⋂

{Sa : a ∈ φκ(δ)}. Otherwise, put pδ = qξ , where ξ is the least index of a member

of Q \ Pδ .

Next, pδ being thus defined, pick a π-base B for pδ of size |B| ≤ κ and with

Pδ ∩ B = ∅ for each member B of B, index it as {Sδ,i : i ∈ κ}. This completes the

induction.

Theorem 2.3 Under the cardinal assumptions of Theorem 1.8, every regular space

with πχ(X) ≤ κ and d(X) ≤ λ has a κ-strong Shapirovskii π-base.

Recall [2] that P = {pα : α < µ} ⊆ X is a free sequence in the space X if

Pδ ∩ Pδ = ∅, for every δ < µ. Let F(X) = sup{|P| : P is a free sequence in X}.

The following characterization of free sequences parallels Shapirovskii’s character-

ization of discrete sets in [5].1 It says that small F(X) can be viewed as a compactness-

like reflection property of the space X, and this is precisely what we will need in the

sequel.

Lemma 2.4 Let X be any topological space and κ any infinite cardinal. Then

(i) F(X) ≤ κ if and only if (ii) for every Y ⊆ X, every family U ⊆ TX such that

(∀A ∈ [Y ]≤κ) (∃U ∈ U) A ⊆ U has a subfamily V ⊆ U of size |V| ≤ κ covering Y .

Proof Sufficiency. Suppose Y and U are as in (ii), but (ii) fails, so there is no V ∈
[U]≤κ covering Y . We will pick up a free sequence P = {pα : α < κ+} by induction

on δ < κ+. Suppose that at the stage δ ≥ 0 we have Pδ = {pα : α < δ} and

{Uα : α < δ} ⊆ U. Then pick Uδ ∈ U with Pδ ⊆ Uδ and pδ ∈ Y \
⋃

α≤δ Uα.

We claim that P is a free sequence. Indeed, for δ < κ+, Pδ ⊆ Uδ and Pδ ∩Uδ = ∅,

whereupon Pδ ∩ Pδ = ∅.

Necessity. Now assume that (i) fails, and there is a free sequence P = {pα : α <

κ+}. Let U = {X \ Pδ : δ < κ+}. Because κ+ is a regular cardinal, (∀A ∈ [P]≤κ)

(∃δ < κ+) A ⊆ Pδ ⊆ X \ Pδ . Therefore, U is as in (ii) with Y = P. Let V be a

subfamily of U of size |V| ≤ κ. Then, again by regularity of κ+, (∃δ < κ+) such that
⋃

V ⊆
⋃

γ≤δ(X \Pγ) = X \Pδ . Therefore
⋃

V is disjoint from Pδ , and thus does not

cover P.

Recall (see [1]) that a space X is initially κ-compact, if every cover of cardinal-

ity at most κ has a finite subcover, and X is (κ, κ+]-compact, if every cover of X of

cardinality κ+ has a subcover of cardinality κ.

The fact that t(X) = F(X) in compact spaces is well known, but we will need

these weaker covering properties of X as a factor in the relationship between t(X)

and F(X). The following is folklore.

1For an important different approach to free sequences, see [10, 11].
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Lemma 2.5 Suppose that X is a regular space. Then

(i) X is initially κ-compact and F(X) ≤ κ ⇒ t(X) ≤ κ.

(ii) X is (κ, κ+]-compact and t(X) ≤ κ ⇒ F(X) ≤ κ.

Proof (i) Let Y ⊆ X with Y =
⋃

{A : A ∈ [Y ]≤κ} and observe that Y is initially

κ-compact. It is sufficient to show that Y is closed. So fix p /∈ Y . We will find a

neighbourhood of p disjoint from Y . For every A ∈ [Y ]≤κ find UA, a neighbour-

hood of p with UA ∩ A = ∅. Then U = {X \ UA : A ∈ [Y ]≤κ} is a cover of

Y as in of Lemma 2.4(ii). Therefore, there is a V ⊆ U, |V| ≤ κ, V covers Y , and

since Y is initially κ-compact, a finite W ⊆ V ⊆ U which also covers Y . But then
⋂

{UA : X \UA ∈ W} is a neighbourhood of p disjoint from Y , as wanted.

(ii) Suppose P = {pα : α < κ+} ⊆ X. By tightness, P =
⋃

{Pα : α < κ+}. If

P were a free sequence in X, then U = {X \ Pδ : δ < κ+} would be an increasing

κ+-cover of X, contradicting (κ, κ+]-compactness of X.

For a family R of subsets of X and a point p ∈ X, the order of p in R is the cardinal

ord(p,R) = |{R ∈ R : p ∈ R}|. The order of R is ord(R) = sup{ord(p,R) : p ∈ X}.

Finally, a family R is point-κ if ord(R) ≤ κ, i.e., if every point belongs to at most κ
members of R.

Theorem 2.6 Suppose X is a regular initially κ-compact space with πχ(X) = κ and

no free sequences of length κ+ (that is, F(X) ≤ κ). Then any Shapirovskii π-base is

point-κ.

Proof Let S be a Shapirovskii π-base for X, as displayed in the definition, and sup-

pose that R ⊆ S, |R| = κ+. We must show that
⋂

R = ∅.

For some I ∈ [λ × κ]κ+

, R = {Sα,i : 〈α, i〉 ∈ I}, and so |π ′ ′
0 I| = κ+, where

π0 denotes the projection from the square to the first coordinate, π0(〈a, b〉) = a.

Pick δ ∈ λ, the least ordinal such that |(π ′ ′
0 I) ∩ δ| = κ+. Then cf(δ) = κ+. Let

J = I ∩ ([γ(δ), δ) × κ). Then |π ′ ′
0 J| = κ+, because γ(δ) < δ.

Let Q = {Sα,i : 〈α, i〉 ∈ J} ⊆ R. By Lemma 2.5(i), t(X) ≤ κ. Since t(X) ≤ κ <
κ+

= cf(δ),

(1) Pδ =
⋃

{Pα : α < δ}.

Since by the choice of δ, π ′ ′
0 J is cofinal in δ,

⋂

{Q : Q ∈ Q} ∩ Pδ = ∅. This uses (1)

above and Definition 2.1(ii). Therefore, U = {X \ Q : Q ∈ Q} is an open cover of

Pδ , and (∀A ∈ [Pδ]≤κ) (∃Q ∈ Q) with A ⊆ X \ Q.

Since F(X) ≤ κ, Lemma 2.4 applies (with Y = Pδ), and ∃V ⊆ U, |V| ≤ κ,

such that V is also a cover of Pδ . Since Pδ is initially κ-compact, there if a finite

W ⊆ V ⊆ U which is a cover of Pδ . Say, W = {X \ Sa : a ∈ A}, for some finite

A ⊆ J, and so we have (
⋂

a∈A Sa) ∩ Pδ = ∅. Since δ with cf(δ) = κ+ is a fortiori of

the form δ = κ · ǫ for some ǫ, by Definition 2.1(iii) this implies that
⋂

a∈A Sa = ∅,

and therefore
⋂

a∈A Sa = ∅. But {Sa : a ∈ A} ⊆ Q ⊆ R, and so
⋂

R = ∅.

Corollary 2.7 Every regular countably compact space with countable π-character and

no uncountable free sequences has a point-countable π-base.
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This corollary gives a partial positive answer to [8, Problem 4.4]. The core of our

argument, in fact, also proves the following variations.

Corollary 2.8 Every regular initially t(X)+-compact space with

κ = max{πχ(X), t(X)}

has a point-κ π-base.

Corollary 2.9 Every first-countable initially ω1-compact regular space has a point-

countable π-base.

Corollary 2.10 Let κ = max{πχ(X), t(X)}. If d(X) ≤ κ+, then X has a point-κ
π-base.

This is, in essence, Tkachuk’s Theorem 3.2 [8].

Corollary 2.11 Suppose X is a regular space which is initially F(X)-compact. Let

κ = max{F(X), πχ(X)}. Then X has a point-κ π-base. In fact, any Shapirovskii

π-base is point-κ.

Corollary 2.12 Every regular countably compact space with no uncountable free se-

quences has a point-πχ(X) π-base.

In the presence of a nice cardinal arithmetic, the covering restrictions can be alto-

gether omitted, but only when the density of the space is not too large.

Theorem 2.13 Suppose that κ and λ are cardinals such that (κ+)κ
= κ+ and for every

µ with κ+ ≤ µ < λ, µκ
= µ. Then every regular space X with πχ(X) ≤ κ, F(X) ≤ κ

and d(X) ≤ λ has a point-κ π-base.

Corollary 2.14 Under CH, every regular space with F(X) = ω and d(X) ≤ ℵω has

a point-πχ(X) π-base.

Corollary 2.15 Under CH, every regular first-countable space with d(X) ≤ ℵω and

no uncountable free sequences has a point-countable π-base.

3 Counterexamples to Weaker Assumptions

Shapirovskii [7, Theorem 3.2]2 provided the main tool for proving that a space does

not have a point-κ π-base, which we will need in the following weak form:

(⋆) If max{κ+, s(X)} < d(X), then X does not have a point-κ π-base.

This criterion is used in every example below.

Example 3.1 There is in, ZFC , a first-countable zero-dimensional left-separated

space X such that d(X) = |X| ≥ (iω)+, hL(X) = iω , and hence s(X) = iω .

2If we define m(X) = min{sup{(ord(p, R))+ : p ∈ X} : R is a π-base for X }, it states that d(X) ≤
m(X) · s(X).
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By (⋆), X cannot have a point-countable π-base. This is one of the celebrated

generalized L-spaces of Stevo Todorčević (see [9, Theorem 16]). This example gives

a negative answer to [8, Problem 4.1].

Example 3.2 There is in ZFC a zero-dimensional first-countable space left-sepa-

rated in the order-type b with no discrete subspace of size b. It has a point-countable

π-base if and only if b = ω1.

This is another L-space of Stevo Todorčević [9]. In the case of b = ω1, whatever

the value of F(X) is, the space has a point-countable π-base by Corollary 2.10.

Example 3.3 Consistently, relative to the existence of a supercompact cardinal,

there is a first-countable hereditarily Lindelöf (hence with F(Y ) = s(Y ) = ω) space

Y left-separated in the order-type ω2 = 2ω without a point-countable π-base.

There is in ZFC a zero-dimensional space X left-separated in the order-type

d(X) = |X| = 2iω1 with χ(X) = ω1 and s(X) = hL(X) = iω1
. This is still another

generalized L-space of Todorčević [9]. By (⋆), it does not have a point-ω1 π-base.

By a result of Magidor [4, Corollary 3] V |= 2iω1 = (iω1
)++ is consistent, rela-

tive to the existence of a supercompact cardinal.3 Force with Fn(ω, iω1
) from V as

a ground model. This will preserve (iω1
)+ (in the form of (ℵ1)V [G]) and all cardi-

nals above it, while collapsing all cardinals below it to ℵ0. By a routine computation

(counting names and using the generic collapsing function), 2ℵ0 = ℵ2 in V [G]. We

claim that the space X from the ground model V will possess in the generic extension

V [G] all the properties of Y stated above. As usual, the topology of Y is understood

to be generated in V [G] from TX as a base.

All topological base properties (i.e., those which can be formulated in terms of

a base and are invariant under choosing a base) of X will be inherited by Y . These

include regularity, left-separated structure, and “p is a complete accumulation point

of A,” provided A is in V (even if the cardinal |A|V is collapsed). The only property

that needs an argument is the hereditary Lindelöfness of Y . It is sufficient to check

that a set of size ℵ1 in the extension contains a point of complete accumulation of

itself. Now, a set A of cardinality ℵ1 in V [G] has a name Å in V indexed by the

ordinals in (iω1
)+. Since our forcing poset has size iω1

, there is a single condition

in G which evaluates in V (iω1
)+-many points of Å, say a set B. Now a complete

accumulation point b ∈ B of B in X (which exists by hL(X) < |B| in V ), as we

remarked, is the same for B ⊆ A in V [G].

This space does not have a point-countable π-base for the cardinal arithmetic

reason alone (since it has χ(Y ) = F(Y ) = ℵ0 and |Y | = ℵ2 ≤ ℵω). This shows

that the cardinal assumption in Corollary 2.15 (and a fortiori in Theorem 2.13) is

necessary. This example also gives a negative answer to [8, Problems 4.3, 4.6].

3The author would like to thank Moti Gitik for the following comment: “It is possible to replace the
supercompact cardinal with the strong cardinal, as was done by Segal and Merimovitch”.
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[9] S. Todorčević, Remarks on cellularity in products. Compositio Math. 57(1986), no. 3, 357–372.
[10] , Free sequences. Topology Appl. 35(1990), no. 2-3, 235–238.

doi:10.1016/0166-8641(90)90108-E

[11] , Some applications of S and L combinatorics. In: The Work of Mary Ellen Rudin. Ann. New
York Acad. Sci. 705. New York Acad. Sci., New York, 1993, pp. 130–167.

Government of Canada, Ottawa, ON
e-mail: isaacgorelic@yahoo.com

https://doi.org/10.4153/CMB-2010-036-5 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF02759779
http://dx.doi.org/10.4064/fm186-1-4
http://dx.doi.org/10.1016/0166-8641(90)90108-E
https://doi.org/10.4153/CMB-2010-036-5

