
J. Fluid Mech. (2023), vol. 959, A25, doi:10.1017/jfm.2023.126

Cargo carrying with an inertial squirmer in a
Newtonian fluid

Zhenyu Ouyang1, Zhaowu Lin2, Jianzhong Lin1,†, Zhaosheng Yu2

and Nhan Phan-Thien3

1Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline,
Ningbo University, 315201 Ningbo, PR China
2Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, 310027 Hangzhou, PR China
3Department of Mechanical Engineering, National University of Singapore, 117575 Singapore

(Received 14 May 2022; revised 16 December 2022; accepted 8 February 2023)

We numerically investigate the hydrodynamics of a spherical swimmer carrying a rigid
cargo in a Newtonian fluid. This swimmer model, a ‘squirmer’, which is self-propelled
by generating tangential surface waves, is simulated by a direct-forcing fictitious domain
method (DF-FDM). We consider the effects of swimming Reynolds numbers (Re) (based
on the radius and the swimming speed of the squirmers), the assembly models (related to
the cargo shapes, the relative distances (ds) and positions between the squirmer and the
cargo) on the assembly’s locomotion. We find that the ‘pusher-cargo’ (pusher behind the
cargo) model swims significantly faster than the remaining three models at the finite Re
adopted in this study; the term ‘pusher’ indicates that the object is propelled from the rear,
as opposed to ‘puller’, from the front. Both the ‘pusher-cargo’ and ‘cargo-pusher’ (pusher
in front of the cargo) assemblies with an oblate cargo swim faster than the corresponding
assemblies with a spherical or prolate cargo. In addition, the pusher-cargo model is
significantly more efficient than the other models, and a larger ds yields a smaller carrying
hydrodynamic efficiency η for the pusher-cargo model, but a greater η for the cargo-pusher
model. We also illustrate the assembly swimming stability, finding that the ‘puller-cargo’
(puller behind the cargo) model is stable more than the ‘cargo-puller’ (puller in front of
the cargo) model, and the assembly with a larger ds yields more unstable swimming.
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1. Introduction

A proper understanding of the microswimmer’s biological functionality, i.e. predation
(Magar, Goto & Pedley 2003; Magar & Pedley 2005; Peng & Dabiri 2009; Soto &
Golestanian 2014; Jan & Löwen 2021), transport (Solovev et al. 2010; Pushkin, Shum
& Yeomans 2013; Jin et al. 2021) and pick-up (Burdick et al. 2008; Gao et al. 2011),
plays a significant role in designing efficient swimming devices relevant for drug delivery,
gene therapy and bionic applications. Recently, research on microswimming has been
broadened to the inertial flow regime because some aquatic microswimmers can swim
at a finite Reynolds number in the range of O(1)–(100) (Childress 1981; Beckett 1986;
Ishikawa & Hota 2006; Kiørboe, Jiang & Colin 2010; Wickramarathna, Noss & Lorke
2014).

Proposed by Lighthill (1952) and extended by Blake (1971), the spherical squirmer
model has been widely employed to mimic the self-propulsion of a swimmer with a
dense array of cilia on its surface, such as Opalina and Volvox (Pedley, Brumley &
Goldstein 2016). This model has been successfully used in simulating the self-propelled
organisms’ nutrient uptake (Magar et al. 2003; Magar & Pedley 2005), their hydrodynamic
interactions with a wall (Ishimoto & Gaffney 2013; Ouyang, Lin & Ku 2018a), the
two-body hydrodynamic interactions (Ishikawa, Simmonds & Pedley 2006; Götze &
Gompper 2010; Navarro & Pagonabarraga 2010; Ouyang, Lin & Ku 2019) and their
collective swimming (Ishikawa, Locsei & Pedley 2008; Ishikawa & Pedley 2008; Zöttl
& Stark 2014). The ‘inertial squirmer’ at a finite Re has been analytically and numerically
studied recently (Wang & Ardekani 2012; Khair & Chisholm 2014; Chisholm et al. 2016;
Li, Ostace & Ardekani 2016; Ouyang, Lin & Ku 2018b; Lin & Gao 2019; More & Ardekani
2020). These studies indicated that the fluid inertia had a significant impact on their
swimming, both enhancing or hindering the speed of the swimmer (depending on the
self-propelled modes), destabilizing the pusher (propelled from the rear), changing the
contact time with a wall and weakening the collective dynamics.

Microorganisms in nature usually have an irregular non-spherical shape (Schaller et al.
2010; Sanchez et al. 2012; Wensink et al. 2012), and the design of microswimming
devices needs to incorporate non-spherical structures. Hence, the hydrodynamics of a
squirmer dumbbell assembled by two or more squirmers has recently attracted attention.
These assemblies are crucial for constructing more complex shapes, such as autonomous
micro-robots (Ishikawa 2019), and new functional soft materials (Cates & MacKintosh
2011; Winkler & Gompper 2020). A stability analysis revealed that the squirmer dumbbell
could not achieve a stable forward swimming in the far-field without external torque, and
fore-and-aft swimming is stable when the aft squirmer is a strong pusher (Ishikawa 2019).
Clopés, Gompper & Winkler (2020) investigated the swimming behaviour of a squirmer
dumbbell and found that a pair of strong pullers (propelled from the front) was less
efficient by an order of magnitude smaller in swimming efficiency than a pair of pushers.
Zantop & Stark (2020) found that a squirmer rod with a noticeable elongation could
induce a flow field comprising four hydrodynamic moments: force dipole, source dipole,
force quadrupole and source octupole. Ouyang & Lin (2021) investigated a squirmer
rod swimming in a Newtonian fluid, and found that the fluid inertia, the number of
the squirmers, the swimming mode and the gap between two adjacent squirmers could
significantly affect its swimming speed, power expenditure and hydrodynamic efficiency.
Additionally, the larger power-law index n for a power-law fluid yields a faster squirmer rod
at Re ≤ 0.5, but a faster puller rod at Re ≥ 1 (Ouyang & Phan-Thien 2021). More recently,
Ouyang et al. (2022) considered the inertial swimming of a squirmer dumbbell inside a
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tube and found that the constrained tube could counterintuitively hasten an inertial pusher
dumbbell.

These above results are for the microswimmer alone, whereas its predation,
transportation and other functional behaviours (e.g. targeted drug delivery or performing
tissue biopsy) require the microswimmer to carry a specific load. Raz & Leshansky (2008)
considered a microswimmer towing a spherical load through a viscous fluid and found
that an optimal propeller-load size ratio depended on the propeller efficiency and their
mutual proximity, and the hydrodynamic interaction between the load and the propeller
could enhance the dragging efficiency. Gao et al. (2011) experimentally investigated the
efficient cargo-towing capabilities of magnetically driven nanomotors. They elucidated the
fundamental mechanism of cargo-towing by the flexible nanoswimmers and assessed to
what extent they could be used to transport a relevant cargo in biological media. Felderhof
(2014) considered a spherical cargo driven by the tail of little spheres via hydrodynamic
and direct elastic interactions. Their result showed that the estimates of the swimming
speed based on Stokes’ law and the resistive force theory did not take proper account
of the hydrodynamic interactions and led to an incorrect dependence of the swimming
speed on the radius of the cargo. Debnath et al. (2016) proposed a working model of the
active dimer’s diffusion to quantify the efficiency of Janus particles (particles with two
distinct surface physical properties) as cargo towers. They concluded that an active dimer
exhibits optimal towing capability only in the puller and pusher configurations. Gutman
& Or (2016) numerically studied the swimming of an undulating magnetic microswimmer
carrying a spherical cargo and established the optimal combinations of frequency, stiffness
and tail-cargo size ratio for maximizing either its displacement, mean speed or energetic
efficiency. Debnath et al. (2017) studied the dynamics of an elastic dimer consisting of
an active swimmer bound to a passive cargo in a Couette flow. They concluded that,
due to the long-range hydrodynamic interactions, the dimer’s diffusive properties depend
on three parameters: the size of its constituents, its self-propulsion speed and the shear
flow. Debnath & Ghosh (2018) investigated the escape kinetics of a Janus particle (a
self-propelled particle) carrying a cargo and found that hydrodynamic interactions could
significantly enhance the escape rate of the Janus-cargo dimer. Daddi-Moussa-Ider, Lisicki
& Mathijssen (2020) explored the cargo transport by a three-body microswimmer in an
external shear flow close to a planar boundary using fully resolved simulations. They
found that cargo pullers were the fastest at most flow strengths, but pushers featured a
non-trivial optimum that could be tuned by their geometry. Even though several aspects
of the swimmer carrying a cargo are considered, these above efforts have been made in
the limit of Stokes flow regime (the problem is linear at Re = 0). As mentioned above,
fluid inertia can significantly affect the hydrodynamic behaviour of the swimmers with
different self-propelled modes at a finite Re, and the inertial swimming problem requires
the Navier–Stokes (N–S) equations to be solved in full. Accordingly, we still know little
about how the fluid inertia affects the hydrodynamic interaction between the cargo and the
propeller, and consequently, their swimming behaviour.

This paper employs a direct-forcing fictitious domain method (DF-FDM) to investigate
a spherical squirmer dragging a rigid cargo in an infinite Newtonian fluid. The main
emphasis of this study is to elucidate how the fluid inertia, the cargo shapes, and the
relative position between the propeller and the cargo affect the assembly’s hydrodynamics.
We also expect to find potentially the most efficient cargo-carrying model. The remainder
of this paper is organized as follows. Section 2 outlines the DF-FDM and the dynamics
of the squirmer carrying a cargo in sufficient details. Subsequently, we validate the mesh
and domain independence in § 3. In § 4, the results, including the assemblies’ swimming
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speeds, their energy expenditure, hydrodynamic efficiency, swimming stability and the
drag force, are presented and discussed. Finally, some concluding remarks are given in
§ 5.

2. Physical description and numerical method

This section outlines the governing equations and the numerical method employed to
simulate the motion of a propeller carrying a cargo through a Newtonian fluid. The
incompressible Navier–Stokes (N–S) equations governing the fluid flow in the calculation
domain Ω:

ρf
Du
Dt

= ∇ · σ , in Ω, (2.1)

∇ · u = 0, in Ω, (2.2)

where D/Dt = ∂u/∂t + u · ∇u is the material derivative, and ρf , u and σ are the fluid
density, the fluid velocity and the fluid stress, respectively. Assuming that the spherical
propeller and the cargo are rigid and linked by a phantom rigid rod (see figure 1), the
whole body is governed by Newton’s equations,

M
dU
dt

= F H +
(

1 − 1
ρr

)
Mg, (2.3)

d(J · ωs)

dt
= T H, (2.4)

where M, J , U and ωs are respectively the body’s mass, its moment of inertia tensor, its
translational velocity and its angular velocity; g is the gravitational acceleration; and ρr is
the solid–fluid density ratio. Here, F H and T H are the hydrodynamic force and torque on
the body, respectively, which are defined by

F H =
∫

∂S
n · σ dS, (2.5)

T H =
∫

∂S
r × (n · σ ) dS, (2.6)

where n is the unit outward normal on the surface S, and r is the position vector concerning
the assembly’s centre O (see figure 1). An interface-resolved direct-forcing (DF) fictitious
domain method (FDM) (Yu & Shao 2007), which fills the interior of the body with the
fluid, and a pseudo body force is introduced over the body inner-domain to enforce the
fictitious fluid to satisfy the rigid-body motion constraint, is adopted here to deal with
hydrodynamic interactions between the body and the fluid. This scheme introduces a
body-force λ in the solid body domain S0(t) (as a Lagrange multiplier) and it reads

ρf
Du
Dt

= ∇ · σ + λ, in S0(t). (2.7)

In the spherical squirmer model, a progressive waving envelope is introduced to mimic
both radial and angular oscillations on the boundary of a microswimmer with arrays
of cilia like Volvox (Pedley et al. 2016). In the framework of FDM, the motion of the

959 A25-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.126


Cargo carrying with an inertial squirmer

H

W

L

ds

OCargo Squirmer

2a x

z

y

r0

Figure 1. Schematic of a squirmer carrying a cargo in an infinite flow (the green and grey spheres represent
respectively the squirmer and the cargo, and the blue arrow indicates the swimming direction).

fluid-filled fictitious domain (domain occupied by the squirmer and the cargo) is hence
governed by

u = U + ωs × r + us, (2.8)

where us is performed with the following divergence-free velocity field (in the frame of
reference moving with the body) inside the squirmer (Li et al. 2016; Lin & Gao 2019;
More & Ardekani 2020):

us =
[(rs

a

)m −
(rs

a

)m+1
] (

us
θ cot θ + dus

θ

dθ

)
er

+
[
(m + 3)

(rs

a

)m+1 − (m + 2)
(rs

a

)m
]

us
θeθ , (2.9)

where a is the radius of the squirmer, rs is the distance from the squirmer’s centre, er
and eθ are respectively the unit vectors along the radial and polar directions, and m is an
arbitrary positive integer; us

θ is expressed as

us
θ (θ) = B1 sin θ + B2 sin θ cos θ, (2.10)

where θ is the angle concerning the swimming direction, and B1 and B2 are the
swimming parameters. The mode of the squirmer can be defined as a puller (β > 0,
e.g. Chlamydomonas), pusher (β < 0, e.g. Escherichia coli) and neutral squirmer (β = 0),
based on the values of β = B2/B1 (B1 > 0) (Ishikawa & Pedley 2008). In the Stokes flow
regime, the velocity of a squirmer in an infinite domain is U0 = 2B1/3 (Lighthill 1952) and
we adopt it as the velocity scale in this study.

Integrating (2.7) and r × (2.7) over the interior of the squirmer and cargo, and
substituting it into (2.5) and (2.6) yields

F H = −
∫

S0

λ dx + M
ρr

dU
dt

+
∫

S0

ρf
dus

dt
dx, (2.11)

T H = −
∫

S0

r × λ dx + 1
ρr

d(J · ωs)

dt
+

∫
S0

ρf

(
r × dus

dt

)
dx. (2.12)

Substituting (2.11) into (2.3) and (2.12) into (2.4), we can hence solve the motion problem
of the whole body. For the details of the squirmer dynamics employing the DF-FDM, one
can refer to the work of Lin & Gao (2019).
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3. Validation of mesh and domain independence

The DF-FDM simulation of squirmer dynamics has been shown to be accurate when
compared with the theoretical solution at Re = 0 (Lin & Gao 2019) and other numerical
results at a finite Re (Ouyang et al. 2022). Note that the swimming Reynolds number in
this study is defined as Re = ρf aU0/μ, and the velocities and the time are normalized by
the velocity scale U0 and time scale a/U0, respectively. As shown in figure 1, we define
four typical models based on the arrangement of the squirmer and the spherical cargo,
namely, the pusher-cargo (pusher behind the cargo), puller-cargo (puller behind the cargo),
cargo-pusher (pusher in front of the cargo) and cargo-puller (puller in front of the cargo).
The squirmer and the cargo are assumed neutrally buoyant with identical volume. In this
section, we perform the validations of the mesh size and the flow field independence with
a possible extreme case (the maximum swimming speed confirmed in the next section, see
figure 4), namely, the pusher-cargo (β = −3) model at Re = 100 (ds = 2a). The periodic
boundary conditions are employed at all the boundaries to simulate the infinite flow field.
The moving mesh technology, shifting the flow field and the body position one mesh
distance once the body moves a horizontal position that is greater than the centre of the
domain in the horizontal direction (z-axis), is employed to keep the assembly nearly at
the centre of the calculated domain to save the computational resources. We initialize the
assembly at the centre of the fluid field with its orientation directing along the z-axis,
and its velocity reaches a steady state after the initial transient dynamics. Note that the
assembly’s translation and rotation in the x- and y-axes are restricted for better comparing
the speeds (the unstable swimming may occur at the finite Re, see § 4.4) if not otherwise
specified. This is because the axisymmetric vorticity around the squirmer may break at a
finite critical Re (Chisholm et al. 2016; Ouyang et al. 2018b; Ouyang & Lin 2021). Hence,
the swimming speed U here denotes the velocity component of the assembly in the z-axis.
Lin & Gao (2019) report that a mesh size with 32�x across the diameter of an individual
squirmer and a time step �t less than 0.002 have been shown to be convergent. Here,
we simulate the aforementioned case with three mesh sizes, namely, 24, 32 and 48�x
across the diameter of the squirmer or the cargo. We employ the height and width with
H × W = 18a × 18a which have been shown to be convergent (More & Ardekani 2020) to
simulate the infinite fluid field in the x- and y-directions. We employ three typical lengths
(L = 24, 36 and 48a in the z-direction) and compare the results.

Figures 2 and 3 present the steady speeds of the pusher-cargo model with different
mesh sizes and domains. The convergent result can be obtained by using the mesh size
with 32�x across the diameter of the squirmer or the cargo and the computational domain
with H × W × L = 18a × 18a × 36a. Hence, we employ these calculation parameters in the
following simulations if not otherwise specified.

4. Results and discussion

A squirmer (β = ±3) carrying a cargo in an infinite fluid field is conducted in this
section with the swimming Reynolds number in the range of 5 ≤ Re ≤ 100. We first
consider the effect of the relative position (the distance ds and the four different assembled
models) between the squirmer and the spherical cargo on the assembly’s locomotion.
Subsequently, we investigate the effects of the cargo’s geometry (i.e. spherical, oblate and
prolate cargoes) and orientation on the assembly’s locomotion. We also obtain and discuss
the energy expenditure of these assemblies and their carrying hydrodynamic efficiency.
Finally, the swimming stability of these assemblies is presented and analysed.
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Pusher-cargo model (β = –3, L = 36a, d = 24�x)

Pusher-cargo model (β = –3, L = 36a, d = 32�x)
Pusher-cargo model (β = –3, L = 36a, d = 48�x)

200

0.5

1.0

1.5

2.0

2.5

3.0

3.5

40 60

U
/U

0

tU0/a

Figure 2. Swimming speed evolution for the pusher-cargo model with different mesh sizes at Re = 100. The
velocity is normalized with the steady speed of the squirmer in Stokes flow, i.e. U0 = 2B1/3, and the time scale
a/U0 normalizes the time.

Pusher-cargo model (β = –3, L = 24a, d = 32�x)

Pusher-cargo model (β = –3, L = 36a, d = 32�x)
Pusher-cargo model (β = –3, L = 48a, d = 32�x)

200

0.5

1.0

1.5

2.0

2.5

3.0

3.5

40 60

U
/U

0

tU0/a

Figure 3. Swimming speed evolution for the pusher-cargo model with different domains at Re = 100.

4.1. Pusher-cargo model achieves a significantly faster swimming speed
Keeping the squirmer and the cargo in contact (ds = 2a), it is seen that the pusher-cargo
model swims significantly faster than the remaining three models at a finite Re adopted in
this study (see figure 4). The pusher-cargo model with β =−3 and ds = 2a, for example,
can swim approximately 320 % (180 %) faster than the counterpart cargo-pusher model at
Re = 25 (Re = 100). Note that these speeds are obtained by taking a time average once the
transients die out. This pattern is similar to that of an individual squirmer’s speed with a
finite fluid inertia (Li et al. 2016). The cargo-pusher model, nevertheless, has not shown
the advantage of the ‘pushed-type’ propeller. To illustrate the possible mechanism for these
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Pusher-cargo model (β = –3, ds = 2a)

Pusher-cargo model (β = –3, ds = 3a, amin)

Pusher-cargo model (β = –3, ds = 3a, amax)

Puller-cargo model (β = 3, ds = 2a)

Pusher-cargo model (β = –3, ds = 3a)

Cargo-pusher model (β = –3, ds = 2a)

Cargo-puller model (β = 3, ds = 2a)

Cargo-pusher model (β = –3, ds = 3a)

200

1

2

3

40 60 80 100

U
/U

0

Re
Figure 4. Steady swimming speed for a squirmer carrying a cargo in an infinite fluid field at different Re. The
speed denotes the velocity component in the z-axis and is normalized with the steady speed in Stokes flow, i.e.
U0 = 2B1/3. Here, amin and amax respectively denote the cargo radii with 0.5a and 2a. The time is normalized
with the time scale a/U0.

results, we plot the velocity magnitude and vorticity contours, as shown in figures 5 and 6.
This is because the vorticity generated around the individual squirmer’s body significantly
affects its swimming speed at a finite Re (Chisholm et al. 2016; Li et al. 2016; Ouyang
et al. 2018a; More & Ardekani 2020). From these results, it can be concluded that, with
increasing Re, a puller ‘pulls’ the vorticity (generated by the puller) to accumulate around
the body with increase in the inertia of the body (hence hindering its speed, see figure 6(d),
the vorticity around the green puller), whereas a pusher ‘pushes’ the vorticity (generated
by the pusher) downstream hence speeding up (see figure 6(e), the vorticity around the
green pusher). The pusher-cargo model’s speed clearly shows a similar pattern to that of an
individual pusher, because the front cargo has not affected the downstream of the vorticity
(see figure 6e). Since the cargo behind the pusher hinders the convection downstream of
the vorticity (see figure 5e), the cargo-pusher model’s speed is suppressed. In contrast, it
is seen that the cargo behind the puller contributes to the convection downstream of the
vorticity at Re = 25 (see figure 5d). Hence, the cargo-puller model swims slightly faster
than the puller-cargo model (see figure 4, Re = 25). The velocity of the flow in front of
the cargo-puller model is observed to decay more rapidly than that for the cargo-pusher
model at Re = 25, as shown in figures 5(a) and 5(b). This result proves that the cargo-puller
model swims faster than the cargo-pusher model, where a more rapid decay of the velocity
in front of the body leads to a faster swimmer (Zhu et al. 2011).

The distance between the propeller and the cargo can also affect the assembly’s
swimming speed, as shown in figure 4. The cargo-pusher model with a larger ds yields
a faster speed. This is because a larger ds contributes to the convection downstream of the
vorticity (see figures 5e and 5f ), and the hydrodynamic interaction between the squirmer
and the cargo with a narrow gap (ds = 2a) hinders the vorticity being pushed away. Hence,
a thicker vorticity in front of the squirmer is observed with ds = 2a than ds = 3a and,
accordingly (see figures 5b and 5c), a smaller velocity gradient, an indication of a slower
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u∗: 0.2 0.6 1.0 1.4 1.8 2.2 2.6 Wx: –2.0 –1.2 –0.4 0.4 1.2 2.0

(a) (b) (c) (d) (e) ( f )

Figure 5. Comparing the flow fields around the squirmer and the cargo with |β| = 3 at Re = 25: (a–c) velocity
magnitude contours; (d–f ) vorticity contours. The green sphere denotes the squirmer and the grey one denotes
the cargo. (a,d) cargo-puller model; (b,c,e, f ) cargo-pusher model. (a,b,d,e) ds = 2a; (c, f ) ds = 3a. The velocity
magnitude is normalized with 2B1/3.

u∗: 0.2 0.6 1.0 1.4 1.8 2.2 2.6 Wx: –2.0 –1.2 –0.4 0.4 1.2 2.0

(a) (b) (c) (d) (e) ( f )

Figure 6. Comparing the flow fields around the squirmer and the cargo with |β| = 3 at Re = 25: (a–c) velocity
magnitude contours; (d–f ) vorticity contours. The green sphere denotes the squirmer and the grey one denotes
the cargo. (a,d) Puller-cargo model; (b,c,e, f ) pusher-cargo model. (a,b,d,e) ds = 2a; (c, f ) ds = 3a. The velocity
magnitude is normalized with 2B1/3.

velocity decay, in front of the assembly is seen with ds = 2a than ds = 3a). Meanwhile, the
pusher-cargo model with a larger ds yields a slower speed. This is because the vorticity
adheres to the body with ds = 3a (see figure 6f ) more than ds = 2a (see figure 6e). It
is seen that the puller-cargo model induces a significantly smaller velocity magnitude in
front of the body than the pusher-cargo model (see figures 6a and 6b), corresponding to
the apparent swimming speed difference between them (see figure 4). For the pusher-cargo
model, it is also seen that a smaller cargo results in a faster speed as the smaller cargo size
corresponds to a smaller frontal area and mass.

Figures 7(a) and 7(b) show an individual inertial squirmer swimming in an infinite fluid,
in which a pusher (puller) is ‘pushed’ (‘pulled’) to swim faster (slower) by the flow field
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Puller Pusher Pusher-cargoPuller-cargo Cargo-puller Cargo-pusher

(a) (b) (c) (d) (e) ( f )

Figure 7. Schematic to compare the swimming mechanisms between an individual inertial squirmer and a
squirmer carrying a cargo (ds = 2a) in an infinite fluid field: (a) a puller; (b) a pusher; (c) a puller-cargo model;
(d) a pusher-cargo model; (e) a cargo-puller model; ( f ) a cargo-pusher model. The dashed and solid squirmers
and squirmers carrying a cargo are respectively represented at the previous and current instants. The dashed
boundary lines represent the periodic conditions. All the blue arrows indicate the flows induced at the previous
instant, and the solid ones denote the flows affecting the squirmers and squirmers with a cargo at the current
instant.

induced at an earlier time (denoted by the solid arrows) (Li et al. 2016). This illustration
can be broadened to the case of a squirmer carrying a cargo. It is seen that, with the
pusher being arranged at the rear of the assembly, in the pusher-cargo model, the flow
speeds up the body (see figure 7d, the solid arrows). By comparison, the cargo-pusher
model is subject to the action of the flow in the opposite directions (the effect of the solid
arrows of figure 7f is weaker in speeding up the assembly than that of figure 7d), because
the pusher is arranged in the front of the assembly. Hence, the pusher-cargo model can
swim faster than the cargo-pusher model (see figure 4). On a puller carrying a cargo, it is
seen that the cargo-puller model swims faster than the puller-cargo model at Re ≤ 25 (see
figure 4). This result could be explained by the fact that the cargo-puller model is subject
to a weaker effect of the inertial flows in hindering its swimming than the puller-cargo
model (comparing the solid arrows in figures 7c and 7e). By increasing Re, nevertheless,
the speed of the puller-cargo gradually exceeds that of the cargo-puller. Recall the pattern
of an individual puller’s speed (β > 1) with Re – while the puller is ‘pulled’ to swim
slower with Re at the first stage, and this trend fails beyond a critical Re (depends on β).
Note that the trailing vortical wake bubble of a puller here with β > 1 resembles a Hill’s
spherical vortex (Chisholm et al. 2016) and Fornberg (1988) indicated the presence of
a Hill’s vortex-like wake structure behind a sphere held fixed in a uniform flow, within
which W/ρ (the maximum vorticity to the distance from the z-axis) is nearly constant once
Re is sufficiently large. This leads to the convection downstream of the vorticity (More
& Ardekani 2020) and hence restores its speed. Accordingly, the cargo at the rear of the
assembly (cargo-puller) may hinder the convection downstream of the vorticity. Hence,
it has a larger carried vorticity than the cargo in the front of the assembly (puller-cargo).
Consequently, the puller-cargo model may have less vorticity adhering to the body (hence,
the puller-cargo model swims faster because the vorticity hinders the swimming speed)
than the cargo-puller model when increasing Re (Re > 25).

We would like to consider the contribution of the hydrodynamic forces on the surface of
the assemblies to illustrate the possible mechanism for why the speed of the puller-cargo
configuration gradually exceeds the cargo-puller configuration as Re increases. For a
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Re = 5 Re = 100

Fpres
z Fvisc

z Fpres
z Fvisc

z

Puller-cargo (β = 3) −0.61 0.61 −0.33 0.32
Cargo-puller (β = 3) −0.49 0.51 −0.41 0.39

Table 1. Force contribution on the assemblies in the swimming direction (z-axis).

steady swimming squirmer (assembly) in a Newtonian fluid, the net force on the body can
be decomposed into pressure and viscous contributions, and in the swimming direction
(z-axis), it has Fz = Fpres

z + Fvisc
z = 0. Note that the pressure force and the viscous force

have the following forms:

Fpres
z = −

∫
∂S

p · nz dS, (4.1)

Fvisc
z = ηs

∫
∂S

[
2nz

∂uz

∂z
+ nx

(
∂uz

∂x
+ ∂ux

∂z

)
+ ny

(
∂uz

∂y
+ ∂uy

∂z

)]
dS, (4.2)

where ηs denotes the viscosity of the fluid and n is the unit normal outward from the
surface S of the assembly (nz denotes the component of n in the z-axis). The force
contribution of the assemblies is shown in table 1, in which the forces are normalized
with 0.5ρU2

0πa2, and the gap ds = 2a for the assemblies is considered here. It is seen that
the total forces Fz slightly deviate from zero. We would like to explain that it is challenging
to accurately calculate the integrals on the boundary of assemblies numerically ((4.1)
and (4.2)), because there is an extraordinary gradient of the physical quantity near the
boundary, and a higher resolution of the mesh requires a significantly increased calculating
cost (our code is based on the uniform mesh for the whole calculating domain). We expect
that our results can broadly reflect the contribution of these forces. It is seen that the
viscous force has a positive contribution in driving the assemblies, in contrast to the
pressures. For the puller carrying a cargo (the identical propeller), we find a larger viscous
force corresponds to a slower assembly. This may be because a greater viscous force leads
to more dissipated energy in the flow field (for a specified propeller, it may swim slower
as more energy is dissipated).

4.2. Oblate spheroid-shaped cargo benefits in hastening the pusher-type assemblies
This section considers the cargo geometry on the assembly’s swimming. We will compare
the swimming behaviour of three different assemblies, namely, the spherical, oblate and
prolate cargoes carried by a pusher, expecting to obtain the most efficient assembly.
Note that these cargoes are set to be an identical volume 3/4πa3, and we hence adopt
the radii of rotational axis ap = 1.2a and 0.8a, the aspect ratios (ar = cp/ap, cp denotes
the length of the symmetric axis) ar = 0.5787 and 1.9531 respectively for the oblate and
prolate cargoes. In the simulations, the distance between the squirmer’s and cargo’s mass
centre is set to ds = 3a. The main finding in this section is that, as shown in figure 8, both
the pusher-cargo and cargo-pusher assemblies with an oblate cargo swim faster than the
corresponding assemblies with a spherical or prolate cargo. At Re = 25 (100), for example,
the cargo-pusher assembly with an oblate cargo can swim approximately 12 % (24 %)
faster than that with a spherical cargo. The corresponding increased ratios of the speed for
the pusher-cargo assemblies are respectively 31 % at Re = 25 and 28 % at Re = 100.
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Pusher-cargo model (β = –3, ds = 3a)

Pusher-cargo model 2 (β = –3, ds = 3a)

Pusher-cargo model 1 (β = –3, ds = 3a)

Cargo-pusher model (β = –3, ds = 3a)

Cargo-pusher model 2 (β = –3, ds = 3a)

Cargo-pusher model 1 (β = –3, ds = 3a)

200

1

2

3

40 60 80 100

U
/U

0

Re
Figure 8. Steady swimming speed for a pusher carrying a cargo with different geometries in an infinite fluid
field at different Re. Model, model 1 and model 2 denote the spherical, prolate and oblate cargo, respectively.

Figures 9(a) and 9(b) show the flow fields around the cargo-pusher assemblies with
β = −3 at Re = 25. It is seen that the velocity magnitude around the oblate cargo is
generally greater than that around the prolate one, indicating that the former benefits
in the swimming of the front pusher (the gap between the oblate cargo and the pusher
is larger than that of the case with the prolate cargo). Figures 9(c) and 9(d) show the
vorticity contours around these cargo-pusher assemblies. Since the geometries of these
assemblies are significantly different, it is not easy to illustrate the mechanisms for the
different swimming speeds by analysing the convection downstream of the vorticity. It
seems that the cargo-pusher assembly with an oblate cargo generates more vorticity than
a prolate one, but a larger gap (oblate cargo case) helps in the flowing at the rear of the
pusher. Figure 10 shows the flow fields around the pusher-cargo assemblies with β =−3
at Re = 25. Similar to the cargo-pusher assemblies, the oblate cargo induces a greater
velocity magnitude and vorticity than the prolate one. Note that Figures 9(e, f ) and 10(e, f )
show the top views in the z-axis direction.

The velocity decay of the flows in front of the assemblies may explain the cause of the
different speeds. In an infinite fluid field with Re = 0, the velocity in front of an individual
squirmer decays as |u| ≈ O(r−2). This is because the two terms on the right-hand side
of (2.10) represent a potential dipole which decays as |u| ≈ O(r−3) and a stresslet which
decays as |u| ≈ O(r−2), respectively. In contrast, numerical simulations show that this
velocity decays as |u| ≈ O(r−3) for a squirmer at a finite Re (Li et al. 2016; More &
Ardekani 2020). Figure 11 shows the velocity decay with r0 from the centre of the squirmer
or the cargo, and the velocity |u| and the distance r0 are respectively normalized with the
characteristic swimming speed 2B1/3 and the radius a of a squirmer. It is seen that the
velocity of the cargo-pusher assembly with an oblate cargo (|u| ≈ O(r−5)) decays faster
than that with a prolate cargo (|u| ≈ O(r−4)) at Re = 25. This pattern is different from that
of an individual squirmer because the carried cargoes change the structure of the flow
field for these assemblies. However, this result indicates that a more rapid decay leads
to larger efficiency (Zhu et al. 2011; Ouyang et al. 2022). The pusher-cargo assemblies
with different-shaped cargoes maintain the same decay as |u| ≈ O(r−4) at the first stage
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(a) (b) (c) (d) (e)

( f )

u∗: 0.2 0.6 1.0 1.4 1.8 2.2 2.6 Wx: –2.0 –1.2 –0.4 0.4 1.2 2.0

Figure 9. Comparing the flow fields around the cargo-pusher model with β =−3 at Re = 25: (a,b) velocity
magnitude contours; (c,d) vorticity contours; (e, f ) top views in the z-axis direction for panels (a,b), respectively.
(a,c) Cargo-pusher model 2; (b,d) cargo-pusher model 1. The green sphere denotes the squirmer and the grey
one denotes the cargo. (a,c) Oblate cargo; (b,d) prolate cargo. The velocity magnitude is normalized with
2B1/3.

(a) (b) (c) (d) (e)

( f )

u∗: 0.2 0.6 1.0 1.4 1.8 2.2 2.6 Wx: –2.0 –1.2 –0.4 0.4 1.2 2.0

Figure 10. Comparing the flow fields around the pusher-cargo model with β =−3 at Re = 25: (a,b) velocity
magnitude contours; (c,d) vorticity contours; (e, f ) top views in the z-axis direction for panels (a,b), respectively.
(a,c) Pusher-cargo model 2; (b,d) pusher-cargo model 1. The green sphere denotes the squirmer and the grey
one denotes the cargo. (a,c) Oblate cargo; (b,d) prolate cargo. The velocity magnitude is normalized with
2B1/3.

(r/a < 2.5); by further increasing r/a, the velocity decay for the pusher-cargo model 2 is
faster than that for the pusher-cargo model 1. It seems difficult to conclude by comparing
our results with those for an individual squirmer because the existence of these cargoes
completely changes the front swimming characteristics induced by an individual squirmer.

As the cargo may be acquired accidentally by a squirmer, the orientation of the cargo
can affect the swimming speed of the assembly. Figure 12 presents the steady speeds for
the pusher-cargo and cargo-pusher assemblies (β =−3) with their cargoes maintaining
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–8.5 –12 –4

–4

–4

Pusher-cargo model 1 (β = –3, d = 3a)
Pusher-cargo model 2 (β = –3, d = 3a)
Cargo-pusher model 1 (β = –3, d = 3a)
Cargo-pusher model 2 (β = –3, d = 3a)
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0
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10–2

10–1

100

101

Figure 11. Effects of the different cargoes and the assemblies on the far-field flow structure at Re = 25. Here,
r0/a gives the location in front of the pusher or cargo in the direction of the z-axis (as shown in Figure 1,
r0/a = 1 is the location at the surface and in front of the pusher or cargo).

different orientations (0 ≤α ≤ 90°; the cases in figures 9 and 10 indicate α = 0). Note
that the breaking of the axisymmetric assembly may lead to a lateral displacement; we
hence restrict the translations in the y- and x-axes here. The pusher-cargo assembly with
a prolate cargo maintains a slower speed than that with the oblate cargo when increasing
α, and the former (latter) decreases (increases) monotonically by 20 % (18 %) at Re = 25.
This pattern (the variation with α) is also applicable to the cargo-pusher assemblies. This
is because a larger α contributes to the convection downstream of the vorticity induced by
a pusher more efficiently for the oblate cargo, but more difficult for the prolate one. We
find the increase (decrease) rate usually occurs at 30° ≤ α ≤ 60°, indicating a violent rate
of change for the assembly’s carrying ability of the vorticity here. In addition, figure 12
also presents the frontal area SA for these different cargoes with α (the incoming is in the
z-axis direction). It is seen that a larger SA corresponds to a smaller swimming speed for
the assembly, in agreement with the hydrodynamic mechanism of navigation.

4.3. Energy expenditure and carrying hydrodynamic efficiency
For a squirmer carrying a cargo in a Newtonian fluid, the rate of work P can be written as
(More & Ardekani 2020)

P = −
∫

∂S
(u · σ ) · n dS =

∫
Ω−S0

2μE : E dΩ, (4.3)

where n is the unit normal outward from the surface S of the assembly; σ , E and
S0 are respectively the stress tensor, the strain rate tensor and the solid body domain.
In this paper, we define a carrying hydrodynamic efficiency η = P*/P, in which P*
denotes the power necessary to move the spherical cargo (P∗ = 0.5ρU3πa2Cd with the
drag coefficient Cd = 0.29238 × (1 + 9.06/(2Re)0.5)2; Abraham 1970) at the assembly’s
swimming speed U. Figure 13 shows the energy expenditure for the steady swimming of
a squirmer carrying a cargo in an infinite fluid. Note that P0 denotes the normalized P
with 4B2

1μa/9. It is seen in figure 13(a) that P for a squirmer carrying a cargo increases
monotonically with Re, similar to the pattern of P for an individual squirmer swimming
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Pusher-cargo model 1 (β = –3, d = 3a)
Pusher-cargo model 2 (β = –3, d = 3a)
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Cargo-pusher model 2 (β = –3, d = 3a)
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Figure 12. Steady swimming speeds for the pusher-cargo and cargo-pusher models with different cargo shapes
and orientations at Re = 25 (left tick label); frontal area for the cargos with different orientations (right tick
label).

in an infinite fluid field (Chisholm et al. 2016). This energy is generated by the second
term on the right of (2.10) (self-propelling) and the hydrodynamic interaction between
the squirmer and the cargo, and is dissipated by the viscous fluid. A greater ds results
in expending less energy on the assembly. This may be because a greater ds weakens
the hydrodynamic interaction between the squirmer and the cargo more than a smaller
ds, leading to less viscous dissipation. The pusher-cargo (cargo-pusher) model expends
more energy than the puller-cargo (cargo-puller) model. This result seems difficult to
be explained as the contribution of the self-propelling and the hydrodynamic interaction
with the cargo cannot be clarified. The effect of the cargo’s geometry on P is shown
in figure 13(b). The pusher-cargo (cargo-pusher) model with a spherical cargo expends
the least energy, followed by that with a prolate one and then that with an oblate one.
Figure 14 shows the carrying hydrodynamic efficiency η with Re. The pusher-cargo model
is significantly more efficient than the other models, and a larger ds yields a smaller η for
the pusher-cargo model, but a greater η for the cargo-pusher model (see figure 14a). This
pattern is similar to that of the speed for these assemblies as in § 4.1, and the monotonic
increase agrees with the result for an individual squirmer swimming in a bulk fluid
(Chisholm et al. 2016). Figure 14(b) reproduces the efficient pusher-cargo models carrying
different shaped cargo. The prolate cargo yields the highest efficiency in the cargo-pusher
models than the other cargos. This may be because the prolate cargo has the smallest
frontal area (the minimum possible resistance) in the swimming direction (z-axis).

4.4. Fluid inertia destabilizes swimming
Chisholm et al. (2016) report that fluid inertia induces unstable swimming for an individual
puller because the body perturbed from the original trajectory is pushed to deviate from
the trajectory due to the flow induced earlier (Li et al. 2016; More & Ardekani 2020).
This critical Reynolds number is approximately Re ∼ O(40) for the puller with β = 3.
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(a) (b)Cargo-pusher model (β = –3, ds = 2a)

Cargo-pusher model (β = –3, ds = 3a)

Cargo-puller model (β = 3, ds = 2a)

Pusher-cargo model (β = –3, ds = 2a)
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Puller-cargo model (β = 3, ds = 2a)
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Figure 13. Energy expenditure for the steady swimming of a squirmer carrying a cargo in an infinite fluid
with different Re: (a) squirmer carrying a spherical cargo; (b) squirmer carrying a cargo with different
geometry.
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Pusher-cargo model (β = –3, ds = 2a)

Pusher-cargo model (β = –3, ds = 3a)

Puller-cargo model (β = 3, ds = 2a)

Cargo-pusher model (β = –3, ds = 3a)
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Cargo-pusher model 2 (β = –3, ds = 3a)
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Pusher-cargo model 2 (β = –3, ds = 3a)

Figure 14. Hydrodynamic efficiency for the steady swimming of a squirmer carrying a cargo in an infinite
fluid with different Re: (a) squirmer carrying a spherical cargo; (b) squirmer carrying a cargo with different
geometry.

Note that we consider a motion off the original orbit as unstable (lateral displacement)
and the aforementioned restriction in the lateral direction is removed in this section.

Figure 15 summarizes the stable and unstable motion of a squirmer carrying a cargo
across Re. The main finding in this section is that the puller-cargo model is more
stable than the cargo-puller model, in which the critical Re is approximately O(60) for
the puller-spherical cargo model (ds = 2a) but approximately O(50) for the spherical
cargo-puller model (ds = 2a). To illustrate the possible mechanism of the unstable
swimming, we plot a schematic as shown in figure 16. The assembly initially swims along
a straight line (see the centreline and the induced flows). A random perturbation results in a
departure from the original orbit, and the induced flows by the assembly will determine its
swimming stability. For an individual squirmer in a bulk fluid, an inertial puller (pusher)
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Cargo-pusher(β = –3) Re
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Pusher(β = –3)-Cargo Puller(β = 3)-Cargo

Figure 15. A polar phase diagram indicating the stable and unstable assemblies. Here, Ss, Se and So denote
the spherical, prolate and oblate cargo, respectively; ds1 = 2a, ds2 = 3a.

perturbed from its straight-line trajectory is pushed away (pulled towards) the original
trajectory due to the flow induced earlier, making it unstable (stable) with increasing Re
(Li et al. 2016; More & Ardekani 2020). This mechanism applies to the assemblies (see
figure 15, the pusher-cargo and cargo-pusher models are stable with increasing Re, but
the corresponding puller-type models become unstable with Re). The cargo-puller model
off the original trajectory suffers the effect of the flows in pushing it departing from the
centreline more than that for the puller-cargo model (see figures 16a and 16c, the sum of
the solid blue arrows applied to the cargo-puller model is more significant than that to the
puller-cargo model).

In addition, the assemblies with a larger ds (ds = 3a) tend to become unstable more
easily, similar to the pattern of the stability for a puller dumbbell (two pullers assembled
in tandem). This is because the body with a larger ds suffers the effect of the flows it
induced in pushing away from the original orbit more significantly than that with a smaller
ds (Ouyang & Lin 2021; Ouyang et al. 2022). This mechanism may also cause the stability
of a squirmer carrying a cargo with different geometries – an assembly with an oblate
cargo is more stable than that with prolate cargo, because the former (as the case with a
larger ds) is more slender than the latter one.

To strengthen the possible mechanism of the unstable swimming for a squirmer carrying
a cargo, we also consider the distribution of the pressure near an individual squirmer at
Re = 25 for simplicity, as shown in figure 17. This is because the instability mechanism for
a squirmer carrying a solid cargo is generally determined by the squirmer’s self-propelling
mode. We have mentioned above the flows affecting the squirmer which is deviated from
the original orbit. Accordingly, when a puller is perturbed from its straight-line trajectory
(see figure 17a, the solid circle), the net pressure around the body tends to push it away
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Puller-cargo Pusher-cargo Cargo-pusherCargo-puller

(a) (b) (c) (d )

Figure 16. Schematic to reveal and compare the swimming stability between the squirmer-cargo and
cargo-squirmer in an infinite fluid field. The dashed and solid squirmers respectively denote them at the
previous and current instants. The solid and dashed blue arrows respectively denote the flows induced at
the previous and current instants. (a) Puller-cargo model; (b) pusher-cargo model; (c) cargo-puller model;
(d) cargo-pusher model.

from the original trajectory (the net pressure directs towards the left side). In contrast, for
the pusher perturbed from its straight-line trajectory (see figure 17b, the solid circle), the
net pressure around the body tends to pull it returning to the original trajectory (the net
pressure here directs towards the right side). Hence, the inertial pusher (puller) presents a
stable (unstable) swimming pattern in an infinite fluid field. In other words, the puller is
at the high-pressure area where the pressure on both sides decreases outward, and hence
it is easy to be unstable when disturbed with a deviation; in contrast, the pusher is at the
low-pressure area laterally, so it is relatively stable. Note that we display the pressure inside
the squirmer for a better exhibition of the pressure around the body.

4.5. Carry force
From the perspective of manufacturing microswimming devices for cargo carrying, a
greater force may result in a more difficult assembly to construct due to risk of breakage
of the bond between swimmer and cargo. Hence, the drag coefficient Cs (the drag force
normalized with 0.5ρU2

0πa2) when carrying the cargoes in an infinite fluid field at
different Re is obtained, as shown in figure 18. It is seen that Cs decreases monotonically
with Re, similar to the pattern of dragging a sphere (Re < 100). The drag coefficient of
pusher-cargo model 2 is significantly larger than that of the other models, corresponding
to a faster swimming speed of pusher-cargo model 2 (see figure 8). This hydrodynamic
mechanism is also subtle to illustrate because the complex fluid fields around the
assemblies are difficult to compare quantitatively here, and systematically considering the
dynamics of a passive particle (squirmer) in the wake of a squirmer (sphere) is required in
our future work.
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–0.5

Swimming direction

Total

pressure

(a) (b)

Total

pressure

Swimming direction

p: –0.3 –0.2 0 0.2 0.4 0.5 0.7

Figure 17. Pressure distribution around the squirmer in the infinite fluid field at Re = 25: (a) a puller with
β = 3; (b) a pusher with β =−3. The dotted and the solid circulars respectively represent the squirmer at its
original trajectory and the perturbed position. The arrows point in the direction of net pressure.

Cargo-pusher model (β = –3, ds = 3a)

3.2

2.8

2.4

2.0

1.6

1.2
Cs

0.8

0 20 40 60

Re
80 100

Pusher-cargo model (β = –3, ds = 3a)

Pusher-cargo model 1 (β = –3, ds = 3a)

Pusher-cargo model 2 (β = –3, ds = 3a)

Figure 18. Drag coefficient for a pusher carrying a cargo with different geometries in an infinite fluid field at
different Re. Model, model 1 and model 2 denote the spherical, prolate and oblate cargo, respectively.

5. Conclusion

An interface-resolved simulation on the hydrodynamics of a spherical squirmer carrying
a cargo in an infinite fluid field is conducted in this paper. A given tangential velocity
(squirmer model) is employed at the surface of a spherical propeller for self-propelling,
and a cargo is linked to the propeller by a phantom rigid rod to form the assembly.
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The effects of the fluid inertia, the cargo shapes, the assembled models and the relative
distances (ds) between the squirmer and the cargo on the hydrodynamics of the assembly
are studied. Therefore, the assemblies’ speed, swimming stability, energy expenditure and
carrying hydrodynamic efficiency (η) are considered.

The results show that the pusher-cargo model swims significantly faster than the
remaining three models at a finite Re. The cargo-pusher model, nevertheless, has not
shown the advantage of the ‘pushed-type’ propeller. This is because the pusher-cargo
model is similar to an individual pusher which ‘pushes’ the vorticity (generated by the
pusher) downstream hence increasing its speed. The cargo-pusher model’s speed, however,
is suppressed as the cargo behind the pusher hinders the convection downstream of the
vorticity.

It is also found that both the pusher-cargo and cargo-pusher assemblies with an oblate
cargo swim faster than the corresponding assemblies with a spherical or prolate cargo.
This may be because the velocity magnitude around the oblate cargo is generally greater
than that around the prolate one (the former benefits in the swimming of the front pusher).
Regarding the case that the cargo is acquired accidentally, the pusher-cargo assembly with
a prolate cargo maintains a slower speed than that with an oblate cargo when increasing
the included angle α, and the former (latter) decreases (increases) monotonically by
20 % (18 %) at Re = 25. This may be because a larger α contributes to the convection
downstream of the vorticity induced by a pusher more efficiently for the oblate cargo, but
less efficiently for the prolate one.

We find a greater ds results in expending less energy on the assembly. This may be
because a greater ds weakens the hydrodynamic interaction between the squirmer and
the cargo more than a smaller ds, leading to less viscous dissipation. The pusher-cargo
(cargo-pusher) model with a spherical cargo expends the least energy, followed by that
with a prolate one and then that with an oblate one. The pusher-cargo model is significantly
more efficient than the other models, and a larger ds yields a smaller η for the pusher-cargo
model, but a greater η for the cargo-pusher one.

Additionally, we find the puller-cargo model is more stable than the cargo-puller model,
in which the critical Re is approximately O(60) for the puller-spherical cargo model
(ds = 2a) but approximately O(50) for the spherical cargo-puller model (ds = 2a). This
is because the cargo-puller model off the original trajectory suffers the effect of the flows
in pushing it away from the centreline more than that for the puller-cargo model.
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