## Appendix B

## $S U(N)$ generators

$S U(N)$ is the group of special (unit determinant), unitary, $N \times N$ complex matrices. ${ }^{1}$ By considering the various constraints on the $2 N^{2}$ real components of the matrix owing to the special and unitary conditions, we can see that the matrix has $N^{2}-1$ independent degrees of freedom. Then, if $g \in S U(N)$, we can write

$$
\begin{equation*}
g=\exp \left(\mathrm{i} \alpha_{a} T^{a}\right) \tag{B.1}
\end{equation*}
$$

where a sum over $a=1, \ldots, N^{2}-1$ is implicit, $\alpha_{a}$ are real constants, and $T^{a}$ are the "generators" of the group. The $T^{a}$ satisfy the $S U(N)$ Lie algebra and can be represented by matrices of various dimensions. In the $N=2(S U(2))$ case, the two-dimensional representation is in terms of Pauli spin matrices, $T^{a}=\sigma^{a} / 2$, or explicitly

$$
T^{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1  \tag{B.2}\\
1 & 0
\end{array}\right), \quad T^{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad T^{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The Lie algebra is

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=\mathrm{i} \epsilon^{a b c} T^{c} \tag{B.3}
\end{equation*}
$$

where $\epsilon^{a b c}$ is the totally antisymmetric tensor. One can also easily construct the higher dimensional representations. It is conventional to normalize the generators to satisfy

$$
\begin{equation*}
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} \tag{B.4}
\end{equation*}
$$

where $\delta^{a b}$ is the Kronecker delta.
To get a set of generators for $S U(N)$, it is simplest to build on the $S U(2)$ generators in Eq. (B.2). First, one puts the Pauli spin matrices in the upper left-hand corner and obtains three $S U(N)$ generators

$$
T^{a}=\frac{1}{2}\left(\begin{array}{ccc}
\sigma^{a} & 0 & \ldots  \tag{B.5}\\
0 & 0 & \ldots
\end{array}\right), \quad a=1,2,3
$$

Then one puts the off-diagonal Pauli spin matrices in the off-diagonal positions. Since there are $N(N-1) / 2$ off-diagonal positions of which two have already been filled by the $a=1,2$ generators, we can construct $N(N-1)-2$ more generators by filling each

[^0]remaining position by either 1 (as in $\sigma^{1}$ ) or by $\pm \mathrm{i}$ (as in $\sigma^{2}$ ). These look like
\[

\frac{1}{2}\left($$
\begin{array}{ccccc}
0 & 0 & \ldots & \ldots & \ldots  \tag{B.6}\\
0 & 0 & \ldots & \ldots & \ldots \\
. & & \ldots & 1_{j k} & \\
0 & \ldots & 1_{k j} & & \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$\right), \quad \frac{1}{2}\left($$
\begin{array}{ccccc}
0 & 0 & \ldots & & \ldots \\
0 & 0 & \ldots & \ldots & \ldots \\
. & & \ldots & -\mathrm{i}_{j k} & \\
0 & \ldots & \mathrm{i}_{k j} & \ldots & \\
\ldots & \ldots 0 & \ldots & & \ldots
\end{array}
$$\right)
\]

where the subscripts $j, k$ denote the position in the matrix.
Finally we construct the diagonal generators. These are written by putting a series of 1 s in say, $n$, successive diagonal positions, and then entering $-n$ in the $n n$ entry of the matrix. This scheme ensures that the generator is traceless and the resulting matrix is

$$
\begin{equation*}
\operatorname{diag}\left(1, \ldots, 1_{n},-n, 0, \ldots, 0\right) \tag{B.7}
\end{equation*}
$$

where $1_{n}$ denotes 1 in the $n n$ entry. The normalization is then fixed using the convention in Eq. (B.4) to get the generator

$$
\begin{equation*}
\frac{1}{\sqrt{2 n(n+1)}} \operatorname{diag}\left(1, \ldots, 1_{n},-n, 0, \ldots, 0\right) \tag{B.8}
\end{equation*}
$$

In this way we construct $N-1$ diagonal generators, one for each value of $n$. The third Pauli matrix is already included as the $a=3$ generator.

As a check, we find that the total number of generators constructed is $3+(N(N-1)-2)+(N-2)=N^{2}-1$ and this agrees with the degrees of freedom in $S U(N)$.

In the $S U(5)$ Grand Unified model discussed in Chapter 2 an alternate set of diagonal generators is useful.

$$
\begin{aligned}
\lambda_{3} & =\frac{1}{2} \operatorname{diag}(1,-1,0,0,0) \\
\lambda_{8} & =\frac{1}{2 \sqrt{3}} \operatorname{diag}(1,1,-2,0,0) \\
\tau_{3} & =\frac{1}{2} \operatorname{diag}(0,0,0,1,-1) \\
Y & =\frac{1}{2 \sqrt{15}} \operatorname{diag}(2,2,2,-3,-3)
\end{aligned}
$$

After the $S U(5)$ symmetry is broken by the canonical vacuum expectation value of $\Phi$ (Eq. (2.6)), $\lambda_{3}$ and $\lambda_{8}$ are generators of the unbroken $S U(3), \tau_{3}$ of $S U(2)$, and $Y$ of $U(1)$.


[^0]:    ${ }^{1}$ For a review of group theory in particle physics, see [62].

