Appendix B

SU(N) generators

SU(N) is the group of special (unit determinant), unitary, $N \times N$ complex matrices.¹ By considering the various constraints on the $2N^2$ real components of the matrix owing to the special and unitary conditions, we can see that the matrix has $N^2 - 1$ independent degrees of freedom. Then, if $g \in SU(N)$, we can write

$$g = \exp(i\alpha_a T^a) \tag{B.1}$$

where a sum over $a = 1, ..., N^2 - 1$ is implicit, α_a are real constants, and T^a are the "generators" of the group. The T^a satisfy the SU(N) Lie algebra and can be represented by matrices of various dimensions. In the N = 2 (SU(2)) case, the two-dimensional representation is in terms of Pauli spin matrices, $T^a = \sigma^a/2$, or explicitly

$$T^{1} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad T^{2} = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad T^{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(B.2)

The Lie algebra is

$$[T^a, T^b] = i\epsilon^{abc}T^c \tag{B.3}$$

where ϵ^{abc} is the totally antisymmetric tensor. One can also easily construct the higher dimensional representations. It is conventional to normalize the generators to satisfy

$$\operatorname{Tr}(T^{a}T^{b}) = \frac{1}{2}\delta^{ab} \tag{B.4}$$

where δ^{ab} is the Kronecker delta.

To get a set of generators for SU(N), it is simplest to build on the SU(2) generators in Eq. (B.2). First, one puts the Pauli spin matrices in the upper left-hand corner and obtains three SU(N) generators

$$T^{a} = \frac{1}{2} \begin{pmatrix} \sigma^{a} & 0 & \dots \\ 0 & 0 & \dots \end{pmatrix}, \quad a = 1, 2, 3$$
(B.5)

Then one puts the off-diagonal Pauli spin matrices in the off-diagonal positions. Since there are N(N-1)/2 off-diagonal positions of which two have already been filled by the a = 1, 2 generators, we can construct N(N-1) - 2 more generators by filling each

¹ For a review of group theory in particle physics, see [62].

remaining position by either 1 (as in σ^1) or by $\pm i$ (as in σ^2). These look like

$$\frac{1}{2} \begin{pmatrix} 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots \\ \vdots & & \dots & 1_{jk} & \\ 0 & \dots & 1_{kj} & & \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}, \qquad \frac{1}{2} \begin{pmatrix} 0 & 0 & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots \\ \vdots & & \dots & \dots & \dots \\ 0 & \dots & i_{kj} & \dots & \dots \\ \dots & \dots & 0 & \dots & \dots \end{pmatrix}$$
(B.6)

where the subscripts j, k denote the position in the matrix.

Finally we construct the diagonal generators. These are written by putting a series of 1s in say, n, successive diagonal positions, and then entering -n in the nn entry of the matrix. This scheme ensures that the generator is traceless and the resulting matrix is

diag
$$(1, ..., 1_n, -n, 0, ..., 0)$$
 (B.7)

where 1_n denotes 1 in the *nn* entry. The normalization is then fixed using the convention in Eq. (B.4) to get the generator

$$\frac{1}{\sqrt{2n(n+1)}} \operatorname{diag}(1, \dots, 1_n, -n, 0, \dots, 0)$$
(B.8)

In this way we construct N - 1 diagonal generators, one for each value of n. The third Pauli matrix is already included as the a = 3 generator.

As a check, we find that the total number of generators constructed is $3 + (N(N-1)-2) + (N-2) = N^2 - 1$ and this agrees with the degrees of freedom in SU(N).

In the SU(5) Grand Unified model discussed in Chapter 2 an alternate set of diagonal generators is useful.

$$\begin{split} \lambda_3 &= \frac{1}{2} \text{diag}(1, -1, 0, 0, 0) \\ \lambda_8 &= \frac{1}{2\sqrt{3}} \text{diag}(1, 1, -2, 0, 0) \\ \tau_3 &= \frac{1}{2} \text{diag}(0, 0, 0, 1, -1) \\ Y &= \frac{1}{2\sqrt{15}} \text{diag}(2, 2, 2, -3, -3) \end{split}$$

After the SU(5) symmetry is broken by the canonical vacuum expectation value of Φ (Eq. (2.6)), λ_3 and λ_8 are generators of the unbroken SU(3), τ_3 of SU(2), and Y of U(1).