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In 2020–2021, the world has been gripped by a pandemic that no living person has ever known. The
coronavirus pandemic is undoubtedly the greatest challenge the world has faced in over a generation. The
imperative of statistical modelling is not only to manage the short-run crisis for the health services, but also
to explain the pandemic’s course and establish the effectiveness of different policies, both non-
pharmaceutical and with vaccines. This difficult task has been undertaken by the epidemiologists and
others in the face of measurement data problems, behavioural complications and endogeneity issues. This
paper proposes a simple taxonomy of the alternative different models and suggests how they may be used
together to overcome limitations. This perspective may have important implications for how policy-makers
cope with future waves or strains in the current pandemic, or future pandemics.
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“…. it’s like trying to build the ship whilst sailing it”
Prof Jonathan Van Tam (Deputy Chief Medical Officer for England)

1. Introduction

The world has changed. Since the beginning of 2020 and well into 2021, nearly all countries have been in
the grip of a worldwide pandemic that no living person has ever experienced. To date (at the time of
writing), at least 4million people all over the world have died due to the pandemic andmanymoremight
still die before it is over. Many different academic communities have focussed their minds on modelling
all aspects of the fall-out from this pandemic. The initial priorities were obviously to attempt to predict what
the scale and spread of the epidemic in each country and help prioritise the resources of the health systems.
Epidemiologicalmodels have been extensively used to prescriptivelymodel the short-run effects of the virus,
advise policy-makers regarding lockdowns and other non-pharmaceutical interventions (NPIs). But other
statisticians, econometricians and scholars could have had a complementary role inmodelling the pandemic
in the longer run and framing the policies to combat it, and best prepare us for future such episodes.

One important feature of the modelling of this pandemic is that, unlike modelling elsewhere in, for
example, macro-economics, the emphasis is on the urgent need for prediction and advice in the
immediate short run to plan the allocation of resources in each nation’s health service and provide
direction on advisable restrictions on our daily lives whilst the emergency is in progress. Literally, we
have been in the business of ‘building the ship whilst sailing it’. But now it is time to take stock of how the
pandemic was modelled and whether we can do better in the future.
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This review will neither focus on themodelling of hospital numbers, the demand for beds or intensive
care unit (ICU) requirements, nor on behavioural issues or the controversy regarding the so-called
‘Health–Wealth’ trade-off be discussed as these subjects are treated in separate papers in this issue. Also,
the aim is not to review all the literature on modelling Covid or assess the timing and quality of
government decisions on the handling of COVID1. Rather, it is the intention that we explain the main
data modelling problems and the conceptual differences between some of the main methods being used.
We also seek to compare the strengths and limitations of these different tools.

The theme of this NIER issue is to explore the interface between economics and epidemiology. It is
apparent that some epidemiologists (e.g. Gog, 20202; Murray, 20203) suggest that economists (and other
subject specialists) are ill-equipped to examine the data relating to Covid and have attempted to model this
pandemicwithout understandingwhat the subject of epidemiology has produced over the last 100 years. To
a certain degree, they are right of course. But, notwithstanding, itmay also be possible that otherwell-known
statisticalmethodsmayprovide analternative perspective on certain aspects ofmodelling this pandemic and
that this should be subject to some scrutiny. Avery et al. (2020) described the susceptible, infected and
recovered (SIR) model to economists, at an earlier stage of the pandemic, but it is now timely to appraise
some of the plethora of contributions which have been made since this paper was published. After all, we
have an abundance of data available to us now (see e.g. Stock, 2020, and Harford, 2020). The aim of this
review is to take a fresh look at the underlying statisticalmodelling issues and put into a comparative context
which other tools may offer a complementary adjunct to extant epidemiological methods.

This review of the modelling approaches will begin by answering the question of why we need to
model this worldwide pandemic and its separate epidemics in each country. We will ask basic questions
about the nature of the data we have, how it is measured and why this throws up additional modelling
challenges. A basic taxonomy on the structure of the different models which have been used in
conjunction with these data will be suggested. The economist’s distinctive focus on the thorny problem
of the endogeneity of the impact of NPIs will be discussed. The simple taxonomy of different modelling
approaches and their characteristics permit a review their relative strengths and limitations. The possible
policy implications of different modelling strategies for data collection and impact evaluation are
contextualised.

2. Describing the essential trends and patterns

Figure 1a,b has become familiar in themedia. But economists and epidemiologists scrutinise it with some
trepidation in view of the modelling task. The examination of figure 1 graphing deaths in different
countries would immediately suggest that the course of this pandemic has been very heterogenous in
different countries. Countries such as the United States and the United Kingdom have experienced three
or four different peaks to the process, whereas countries like India have only experienced two peaks. The
scale of the absolute numbers of deaths has been particularly large in the United States and India, but
much lower in many other countries, for example, the United Kingdom. Of concern is not only the scale
of this pandemic, but also how unequal the impact has been in different countries. The second feature the
econometrician would notice would be that clearly the trend on this series is not stationary and has been
subject to exogenous and endogenous shocks. A central part of this concern would be the separating out
the endogenous interaction between the adoption of NPI’s and the extent to which the population, or
certain sectors of it, has adopted a behavioural adjustment in their social distancing decisions (see

1UK readers interested are directed to MacKenzie (2020), House of Commons (2021), Horton (2021) or Calvert and
Arbuthnott (2021), U.S. readers to Christakis (2020).

2Gog (2020), p. 274warns: ‘Although your instinctmay be to start your ownmodels from scratch…..’ doing so is unlikely to be a
practically useful contribution unless you already have some knowledge and experience in disease modelling.

3Murray (2020), p. 106 suggests: ‘….applying economics skills to evaluating epidemiology methods, as some more vocal
economists have been doing, is not likely the best use of economic expertise nor will it be the most helpful for bringing COVID-19
under control’.
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Figure 1. (Colour online) Daily new confirmed COVID-19 cases and cases per millions for Brazil, India, United Kingdom and United
States
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e.g. Makris, 2021; Toxvaerd, 2020). A third issue which would confront any analysis would be whether
this raw series of confirmed cases needs to be normalised by the size of the population in different
countries. If we do this, then the patterns in figure 1b for the same countries can be graphed.When we do
this, we can see that the heterogeneity of the pattern in different countries is remarkably different to the
series observed in figure 1a. Specifically, theUnitedKingdom and theUnited States nowhave large spikes
in their series at different times, whereas India’s latest wave due to the ‘Delta variant’ is now much less
dramatic. This poses many difficult questions about exactly what series should be modelled.

A more detailed scrutiny of the official daily pattern of cases and deaths in figure 2a,b in the United
Kingdom reveals other basic facts which need to be taken on board in any consideration of themodelling
challenges. Thesemodelling problems are also applicable to nearly all countries, but theUnitedKingdom
serves as a good exemplar which illustrates most of the issues we would wish to address.

A first question of importance is why the epidemic in the United Kingdom had four ‘waves’ in the
confirmed cases data? The first wave from March 2020 to June 2020, the second wave beginning in
October 2020. This appeared to be beginning to fall by December 2020, only to take off again in late
December 2020 and into January 2021. At the time of writing, we are in the middle of a fourth wave due
to the Delta variant from India. Most theories of epidemics do not easily model such ‘waves’. Indeed,
most epidemiological models do not easily accommodate second or third waves and are relatively silent
on why, for the same virus, this patternmay be so heterogenous across different countries. Clearly, much
of the answer lies in the lockdownwhich began inMarch 2020, the premature easing of the restrictions in
late November 2020 and the large-scale roll-out of the vaccination programme from early in 2021. This
means that much of the pattern we see in the data is due to the endogenous NPI and vaccination
responses of the government.

A second clear puzzle is why the numbers of cases in the ‘first wave’ were so low relative to the
numbers of deaths. In contrast, the case numbers in the ‘second (and subsequent) waves’were very high,
relative to the deaths. Indeed, the daily death numbers were quite comparable to two (three) waves. The
clear answer to this puzzle is that the amount of testing that was going on over the period fromMarch to
June 2020 was much lower than over the period October 2020 to March 2021. In addition, many
advances in the treatment, both pharmacological (e.g. Dexamethasone and Remdesivir) and non-
pharmacological, such as the use of ICU and ventilators, were made during the first wave, which we
later used to good effect in the second waves to minimise deaths.

A third clear feature of the data from the United Kingdom (and other countries) is that there is a
marked weekly pattern to the oscillations in cases and deaths. This is revealed by superimposing a 3-day
moving overage on the series. This is not surprising, and it is often reported in the media that deaths at
the weekend are lower than on weekdays. This is clearly an artifact of the way in which the data are
collected, recorded and reported. It is less commonly known that deaths and cases in the United
Kingdom are higher on Mondays. Again, this is a direct consequence of the administrative structure
which collates the data. This pattern is not the same in all countries which will have differentmethods for
collecting and reporting the data.

3. The rationale and requirements for modelling

To contextualise what follows, we need to understand why modelling of the pandemic (and its epidemic
course in each country) is important as this will set the scope for data requirements and their limitations.

3.1. Forecasting

A foremost consideration is the calculation of the numbers of cases and deaths and forecasting them.
Literally, seeing into the short-run future, to combat the crisis. Put crudely, we need to know who gets
Covid, who dies and who has long-term health conditions. Forecasting these numbers is necessary to
understand the practical needs of each health service, at each location, within a country. For example,
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howmany people, at any point of time, will need to be hospitalised and, of these, howmany of them will
be in ICU wards or need ventilators. These practical considerations demand that we can predict the
numbers of people who will be affected and exactly where these cases and deaths will occur. It is also
imperative that we can predict and forecast these trends into, at least the short-run future, to potentially

Figure 2. (Colour online) Daily new cases and new deaths in the United Kingdom
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avoid each country’s health service from being overrun. To predict the number of cases, hospitalisations,
and deaths it is necessary to facilitate the planning of medical resources to meet emergency and longer-
term requirements. This has been the essential goal of the epidemiological modelling effort from the very
beginning (see Ferguson et al., 2020). The collection of spatial incidence data at the local level will
facilitate the planning of regional hospital resources. But the goal of short-run forecasting has also been
the goal of the time series econometrics teams working at Oxford (see Doornik et al., 2020),4 Cambridge
and NIESR (see Harvey (2020), Harvey et al., 2021) and elsewhere across the globe.

3.2. Monitoring the epidemic’s course

It is also important to ascertain who in the population are most at risk of contracting the virus and who
are most at risk of serious health consequences, so that preventative measures can be most effectively
targeted. This is most effectively done with micro-individual level data at the patient level with
administrative data (see OpenSAFELY, 2020). Time series and epidemiological modelling are also
crucial to predict the likely longer-run course of the epidemic in terms of: how quickly it will spread;
when it will stop spreading so fast – that is when it will start to wane; how long will it last –when will it be
over; when exactly will turning point in the pandemic’s progress occur and whether there will be a
second, third (or subsequent) wave of the epidemic.

Underlying all these concerns is the choice of the appropriate theoretical mathematical model to
understand the pandemic process and its dynamic properties to better prepare for future mutations of
the virus, potential waves of the epidemic, or indeed, the next pandemic.

3.3. Understanding the effect of NPIs

An essential goal of government in fighting Covid is to introduce NPIs in a timely and effective manner to
combat the spread of the virus andminimise its consequences on the population at risk. It is then incumbent
on modellers to ascertain which NPIs have been effective and to predict the most effective measures to
counter the epidemic and ascertain the relative effectiveness of different policies (see e.g.Han et al., 2020;Qiu
et al., 2020; Acemoglu et al., 2020; Vokó and Pitter, 2020; Lai et al., 2020; Li et al., 2020; Meunier, 2020). But
understanding exactly what effect these different policies have and over what time horizon remains
problematic. This was, and remains, a very difficult task. To analyse the data to demonstrate that specific
NPI policies have a direct causal effect on the case numbers ormortality rates is a questionwhich can only be
tackled with statistical modelling. To appreciate exactly how long it takes for any policy to work on cases or
deaths which are themselves dynamically up to 6–21 days apart is difficult, as is the understanding of exactly
which policies are effective, and to what degree. Governments cannot conduct experiments in real time
when human lives are at stake. But at the same time, throwing a plethora of policies, (closing schools and
shops, social distancing, banning public gatherings and sporting events, etc.) all at the same time,means that
it is very hard to disentangle what exactly works and how effective each policy might be.

3.4. Prioritising resources

At each stage in the epidemic, it is important to be able to plan what resources need to be deployed and
where to, not only combat the short-run medical needs of those at risk of death, but also to marshal
resources for those individuals who have been furloughed or lost their jobs and families who have lost
their means of support. Knowing when and how to: stop live sports, live cinema and theatre attendance,
close schools, shops, colleges and prevent social gatherings and enforce social distancing are all
important and require a clear insight and up to date information about how the epidemic is progressing.

4Although, the extent to which central government released the available data to local and region level authorities in a timely
fashion has already been sharply criticised (see House of Commons, 2021).
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Further, longer-run planning is needed to combat inequality, poverty and destitution for those most
affected and awareness of the needs and problems of those with long-run symptoms and incapacities due
to ‘long Covid’.

3.5. Vaccination priorities

Detailed statistical modelling is also necessary to determine which groups of people have the highest
priority for vaccination, how effective it is and how this vaccination programme is to be rolled out. As the
vaccination is given to more andmore people than the number of cases and deaths should fall. This then
prompts the question of what NPI measures still need to be enforced and how we might disentangle the
effects of the vaccine from the effects of the NLPIs. Further complications arise if the vaccine was
designed to be administered in two doses 4 weeks apart. But the authorities have an incentive to delay the
second dose as it means thatmore people can obtain the first dose and so a basic level of immunity can be
given to many more people, which may have a much bigger effect on the control of the epidemic. The
trade-off is that those waiting for a second dose slowly become less immune and more likely to catch the
virus. Effective data collection and modelling should mitigate these concerns.

Recent concerns relating to the AstraZeneca vaccination and blood clot risk also suggest that itmay be
prudent to limit its use for those aged under 30. Such concerns require vigilance and remodelling as new
data become available.

3.6. Mutation and strain prediction with multiple waves

It is important for the health authorities to understand what new strains of the virus are coming out and
the general pattern of mutation of the virus and how this may change the rate of infection and feed
through into the numbers of cases and deaths. Ultimately, as the virus mutates, there will be many
different variants of the virus abroad and may have different strains in different countries. For example,
we have already seen the effects of the B.1.1.7 strain in the United Kingdom, the B.1.4.2.9 variant in the
United States, the B.1.3.5.1 and P1 variants in Brazil and the ‘Delta’ variant in India, and their knok-on
effects on other countries. There is some evidence that these newmutant variants of the virus have reaped
a toll in the United Kingdom, the United States and Brazil, respectively with evidence that they are now
responsible for the spread of (what is widely being called) the ‘second and third wave’ in Europe.
Modelling these trends within each country and the spread between countries and predicting how they
may affect each country is paramount to continued control of the pandemic in the future.

3.7. Behavioural responses

Many of the NPIs imposed by governments over the last year have themselves had unintended as well as
intended consequences. Locking down shops, pubs and restaurants, and banning public gatherings has
had clear knock-on effects on people’s behaviour. Observing social distancing rules and curtailing travel
and meeting-up has affected the way we conduct our lives. Not surprisingly, people have found ways of
circumventing these rules and changed their behaviour because of these law changes. It is also possible
that making the ‘Reproduction Number’, Rt , a part of daily briefings to the nation, has itself induced
changes in people’s behaviour. Ideally, these behavioural changes could be predicted from the appro-
priately configured statistical or theoreticalmodels. Suchmodellingmay help us tominimise the harmful
consequences (or enhance the beneficial side-effects) of these behavioural reactions.

It is clear that all the above requirements of amodelling strategy require elements of: statistical theory,
mathematical biology, epidemiology, time series and panel econometrics, as well as forecasting. By
marrying the insights and advances in all of these disciplines, the most rigorous predictions can be made
as to the likely spread of the pandemic and its consequences.
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4. Statistical data and measurement error

There is a remarkable amount of data relating to aspect of Covid across the countries of the world, much
of them are available on a daily basis.5 An extraordinary amount of effort has gone into its collection and
collation. Data on deaths and cases on a daily basis can be obtained from theOurWorld inData (OWID)
COVID-19 dataset. The OWID dataset is a comprehensive dataset that contains data on cases, deaths
and tests, as well as a OxCGRT stringency index variable (Hale et al., 2020) and 14 time-invariant
variables for 212 countries. The data for these variables can be obtained from various sources and the full
list of original sources is available from their website. Several other organisations report COVID-19
deaths and cases. The European Centre for Disease Prevention and Control (2020) reports daily
worldwide situation updates, but these data are based on the OWID. The John Hopkins University
(2020) dataset has the advantage that it also includes information on cases and deaths for smaller
geographical areas in some countries, although it does not include data on tests or any time-invariant
variables.

In common with other high frequency data issues, we need to be concerned about how they are
collected, what is missing, which variables are imperfectly measured and what biases this might induce,
what are the time lags in the dynamic relationships under scrutiny and if the units of observation are
related. But it is appropriate to start with exactly what it is we wish to model.

4.1. What is the dependent variable we should be modelling?

One of the most fundamental problems in anymodelling exercise is –what is the key dependent variable
which one wants to model. It could be one (or more) of many candidates:

1. Number of new cases or infections per day.
2. Number of new hospitalisations per day, or the total number of those still in hospital
3. Number of deaths per day, or another measure of fatalities.
4. Number of deaths per day per 100,000 (or per million) of the population.
5. Number of deaths per day moderated by the number of cases or hospitalisations.
6. Moving average (over 3 or 7 days) of deaths per day
7. The reproduction number, Rt .
8. Infections per 100,000 of population, or another measure of the infection rate.
9. The number of excess deaths over what might normally be expected based on what happened in

the same months in previous years.
10. The capacity utilisation rate in our hospitals.

Even this is not an exhaustive list, as we may consider the rate of change or cumulative versions of these
variables, but most of these have their proponents in the Covid literature. The reality is that we are, of
course, interested in all of these series to a greater or lesser degree, depending on our perspective. In
addition, our fundamental issue is that they are all inter-related. Some are more prone to measurement
error that others. Eyeballing the figures 1a–2b shows us that there is a major problem with any of these
variables. Namely, that they will be non-stationary and trended but with huge heterogeneity between
(or within) countries and therefore any regression with other non-stationary variables could lead us to
estimate spurious relationships with estimates of coefficients which could be biased. Many have chosen
the alternative of modelling the log of the daily numbers as the dependent variable. To see the problem,
compare figures 2a,b and 3, Panels A and B relating to the Rt number and the fatality rate (as a

5WHO, 2020. World Health Organisation [Online]. https://www.who.int/news-room/detail/29-06-2020-covidtimeline
Worldometer, 2020. Worldometer [Online]. https://www.worldometers.info/coronavirus/
Within the UK: ONS: https://coronavirus.data.gov.uk/
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percentage of cases) for the United Kingdom. Clearly, a simple visual inspection shows that they are
radically different in shape and may require quite different modelling.

4.2. Measurement error in official deaths and cases

Measurement error on any of the series we wish to quantify, and track can be an issue for many reasons.
Let us first consider the series on deaths. Obviously, deaths that are recorded as being due to COVID-19
may be incorrectly recorded. If a death is counted as a COVID-19 death because the individual tested
positive, this can lead to an over-reporting of deaths. In fact, it may be that the patient was about to die of
another primary cause and then contracted Covid in their final days. Hence, there may not be a clear link
between the infection and the death. (Williams et al., 2020) An individualmay have diedwithCOVID-19
and not ofCOVID-19.However, this argument can used to suggest that there could alternatively result in
an underreporting of deaths (Aron and Muellbauer, 2020). If deaths are only classified as COVID-19 if
the individual also tested positive, deaths will bemissed from the count for all those who died of COVID-
19 but were not tested (Leon et al., 2020).

There are also problems with the measurement and definition of cases. Spencer et al. (2020) collate
definitions for a COVID-19 case fromdifferent sources to highlight the lack of an international standard.
In most countries, a probable case is based on clinical symptoms and a confirmed case is based on a
positive laboratory result. Once a single positive test result is reached, clinical symptoms are discarded.
Spencer et al. (2020) argue that a positive result should be a combination of clinical symptoms and a test
result. In addition, the polymerase chain reaction test requires a standardised threshold level of detection.
Furthermore, the level of testing has been very different between countries, with some countries
employing rigorous testing regimes and others less so. In combination with missing data and imperfect
accuracy of tests, partial identification methods show that reported cases may be estimated to be lower
than actual cases (Manski and Molinari, 2020). The lack of testing in some countries will also impact on
the number of deaths that are reported, if a death classification is reliant on a positive test result.

This leads to another issue regarding the definition and recording of a COVID-19 death. As the
pandemic has evolved, some countries have changed the way that deaths are reported. For example, the
United Kingdom initially defined and reported a COVID-19 death only if the death occurred in a
hospital and the individual tested positive for COVID-19. (NHS England, 2020) From the 28 April 2020,
deaths that were documented as COVID-19 on the death certificate, but the individual had not been
tested, were also included in the reported figures. On the 12 August 2020, the death definition was
changed to only include deaths that happened within 28 days of a positive test (Hughes, 2020). The effect
of these differences in definition has been tracked by the Financial Times in figure 4. The classification of
a COVID-19 death has not only changedwithin countries, but there is also great variation in themethods

Figure 3. (Colour online) Alternative dependent variable for the United Kingdom
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of recording deaths between countries. This is problematic in an analysis of deaths between countries if
they are not measured the same way (Leon et al., 2020).

To compound these problems there may be endogeneity of reporting. For example, in March 2020, it
was being suggested, based on evidence from drones counting coffins, that there was reason to believe
that Iran was under-reporting the actual number of deaths per day. It has also been widely suggested that
the numbers of cases and deaths in India, because of the Delta variant, have been widely under-reported.
Clearly, governments may have an incentive to minimise the reporting of deaths in order to suppress
panic on the streets. These practical problems may be further compounded by the fact that official data
collection agencies coordinated by government departments may have an incentive to hide or manip-
ulate the data for political and media purposes. As a result, it is difficult (see Gibbons et al., 2014) to
always have complete faith in the numbers reported in different countries. Closer to home, it is clear that
the politicisation of the data collection, release and dissemination was also taking place in the United
Kingdom (see House of Commons, 2021).

4.3. Excess deaths

One possible solution to measurement error in COVID-19 deaths is to use data on excess deaths. Excess
deaths are defined as the difference between the number of total deaths observed in a month compared to
the expected number of deaths based on historic averages for the same month in previous years. Excess
deaths may be a better measure for three reasons (Krelle et al., 2020). Firstly, the excess deaths measure
captures indirect effects caused by COVID-19. Individuals who may have not died from COVID-19
directly but died from an alternative cause, for example, due to lack of access to healthcare (Griffin, 2020).
Secondly, excess deaths are independent of changes to the COVID-19 mortality definition. This means
changes in the way the government defines a death does not change the excess deaths figure. Thirdly, if
excess deaths are definitionally robust, it is a measure that can, more easily, be compared across countries.

Figure 5 tracks the position in the United Kingdom andmakes clear the large mortality spike in April
2020 compared to historical seasonal averages. Figure 6 shows that the United Kingdomwas not alone in
experiencing the worst of the pandemic during this period. The United States, Italy, France and Spain

Figure 4. (Colour online) Different FT definitions of deaths
Source: Financial Times.
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were also going through the worst of the pandemic at this time. In contrast, the figure shows that Brazil is
only now going through its worst spell.

4.4. Epidemic starting date heterogeneity

Most panel studies of the pandemic assume that the epidemic started on the same date in each country or
regionwithin a country. This is not correct as it took 15months to travel around the world. To get an idea
of the heterogeneity of these start dates consider that China had 5.373 cases per million on 30 January
2020. If we use this as a benchmark, we can examine the dates when other countries reached five cases per
million. This is graphed in figure 7. The United Kingdom reached this benchmark by 8 March and the
United States by 13 March. Figure 7 shows this heterogeneity in the start date distribution for most
countries. The majority of start dates are between 1st March and the end of April 2020. In the middle of
this, WHO declared Covid a pandemic. But notice that some countries did not start their own epidemic
until the beginning of 2021 and a few (Vanuatu, Bhutan and Cambodia) only in April 2021!! This
highlights the importance ofmodelling a different start date for each country rather than taking the same
date, as is assumed in much of the literature.

Figure 5. (Colour online) The measurement of excess deaths
Source: @ColinAngus.

Figure 6. (Colour online) Excess deaths across selected countries
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4.5. Problems with lags

One difficult issue is the nature of the dynamic relationship between our key times series of interest. An
enduring problem in modelling the link between cases and deaths is what the appropriate lag to use
is. The media consensus seems to be that deaths will follow cases with around a 10-day lag. To choose a
lag for new cases in a more rigorous way one can simply examine the regression coefficients for all
possible lags. If we perform such an analysis by regressing new deaths on all lags for new cases, up to a
22-day lag, controlling for country and day of the week fixed effects using data over the whole period
(from 12 March 2020 to 24 June 2021 for 175 countries) we find the size of the coefficients varies
markedly. Figure 8 plots them. We can see that the highest coefficients on the lags are at 21, 6, 7, 20 and
14 days in that order.

This pattern suggests that there may well be a 1-, 2- or 3-week lag between cases and deaths – but this
is likely to be related to hospital, clinical or administrative reporting cycles rather than the natural

Figure 7. (Colour online) The distribution of epidemic start dates across countries

Figure 8. (Colour online) Partial correlation coefficients of different lagged cases on deaths
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rhythm of the virus. Despite controlling and day of the week effects, the optimal cases lag varies hugely
from one country to another. This means that potentially one might ideally want to have different lag
lengths for different countries in the panel data, but this is not possible. One is then left with the only
pragmatic alternative of using the data from all countries and imposing the average lag structure across
the whole dataset. But it should be recognised that this could introduce some bias, notwithstanding the
country fixed effects controls.

4.6. The modelling of Covid is a complex spatial modelling exercise

It is self-evident that a single infected person on a flight from China in January 2020 was potentially
enough to start a world-wide pandemic. Therefore, in statistical modelling, we cannot treat all countries
‘as if’ they were autonomous units of observation which are cross sectionally independent. At the
beginning of the pandemic, it was clear that the countries where the epidemic took off most quickly after
China were the ones most immediately connected via international air travel. See figure 9 (see Chinazzi
et al., 2020; Inga et al., 2020; Li et al., 2020;Wells et al., 2020) which shows the direct flights available from
China in January 2020. Likewise, it is also clear that the boundaries of all countries are porous with
transmission across international boundaries taking place all the time. In this sense, irrespective of what
geographical unit we use in our data, it is clear that the data are not cross sectionally independent. Since
this means that the units of observation are related so we cannot assume a zero-covariance structure in
any panel regression type model.

A further problem which presents itself with data collected at spatially different locations arises when we
aggregate that data. If wewere to consider the pattern of cases or deaths in the 50differentU.S. states, wewould
see that they are all very distinct. When we aggregate these data to get the trends for the whole of the United
States, the series looks very different again. This leaves uswith the issue ofwhat is the right level of geography to
use for the analysis and raises the question of what biases may be induced by using spatially aggregated data.

Various articles have tackled this modelling issue. For example, Hortacşu et al. (2020) model the
arrival of travellers to the United States from known epicentre to estimate the fraction of unreported
cases. Themethod also allows for estimates for the infection fatality rate using data on reported COVID-
19 fatalities.

5. Exponential trends, log modelling and understanding turning points

A commonly used way of presenting pandemic time series data is to employ a linear vertical scale to trace
out the trend in new cases each day over time (as in figure 2a). An alternative way to plot time series

Figure 9. (Colour online) International flights from China in January 2020
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data – especially when that series rises dramatically and exhibits an exponential trend – is to use a
logarithmic scale on the vertical axis – this is a common practice in epidemiology due to the explosive
increases in numbers involved. On a log scale, the variable increases multiplicatively as it rises. In the
Panel B of figure 10, we see that the visual distance between 100 and 10 k is the same as that between 10 k
and 1 m, that is, a 10-fold increase. These figures should be compared to the number of new cases every
day in figure 2. The slope of a log-scaled graph measures the relative change in the variable of interest.
This makes it a powerful tool to assess growth rates, which are particularly meaningful when the
epidemic is an exponential process. The log-scale is appropriate for a visual representation – especially
when the epidemic is in a first wave. On a log-scale, this exponential increase appears as a straight line,
which only bends when the growth rate changes. These properties explain why this visualisation strategy
is so popular in epidemiology.

Another useful graphic capability is to plot the log of falling cases on a time axis. The slope of this line
then gives the percentage rate of change and deviations from the line exhibit less (below) ormore (above)
than linear decline. Many statisticians (including Oliver Johnson at Bristol and Colin Angus at Sheffield)
have been posting these meaningful graphs on Twitter throughout the epidemic in the United Kingdom.
For example, consider figure 11 from Colin Angus6 posted in January 2020 when the vaccination
programme had recently got underway for those older ages. Here, we clearly see that cases of those aged
above 60 are declining linearly, whereas cases amongst the three groups between 15 and 64 not yet
vaccinated are still increasing. One important point about these plots is how we choose to ‘fit’ the line
through the points. What is being done in this figure is to project the line of best fit from first six dates
forward to see how the daily data departs from this line, some 2months later. But should we take the first
6 days data or the first 14 days data, and should we compare this with a line fitted to the last 6 or 14 days
data. This is a substantive point as it will convey quite a different visual impression. There is no ‘right’
answer here, but we need to be aware of the impact of these distinctions on the visual impression it
creates.

A question of importance though is whether the use of logarithmic scales confuses the general public
or policy-makers and politicians.7 This is especially true when the epidemic has gone throughmore than
one wave as we saw from figure 10, where it is not so obvious which method is clearer in revealing the
pattern of the epidemic. In this figure, we plot the total cases for the United Kingdom over the same time
frame as in figure 2b using a linear scale on the left in Panel A and a log scale in Panel B. In Panel A, the
nonlinear kinks in the trend are the separate waves of the epidemic. In the log version of Panel B, the
waves are not evident. Rather, one’s eye is caught by the first wave peaking in April 2020. As a result, one

Panel A: Using a Linear Scale Panel B: Using a Log Scale

Figure 10. (Colour online) Total COVID-19 cases in the United Kingdom from Feb 2020 to March 2021

6See his twitter feed @VictimOfMaths.
7Sevi et al. (2020) examine this issue.
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does not notice the second wave which took place between September 2020 and peaked by the end of
January 2021.Nor is it easy to distinguishwhen the epidemic is slowing down in February 2021 on the log
graph. Whereas the lower slowdown in the linear graph from February 2021 is quite clear. The lesson of
these observations is that for a single wave of epidemic, a log scale series is appropriate but that for a
multi-wave epidemic caution is necessary.

When will the epidemic peak? When will it no longer being accelerating and getting worse? At any
given point in time, will it accelerate or diminish? These are crucial questions as it is important to locate
the turning points in any process. To see this, consider what the world did not know on the 23 January
2020. Looking at the graph of cases in Hubei, China in figure 12, we did not know whether we were on
the cusp of a world pandemic or not! The turning point problem has been analysed in Li and Linton
(2020) and Chudik et al. (2020). Li and Linton (2020) who analyse of the daily data on the number of
new cases and the number of new deaths in 191 countries using ECDC data up to June 2020. Their
benchmark model is a quadratic time trend model estimating the log of new cases for each country

Figure 11. (Colour online) Log plots of declining case numbers by age in the United Kingdom from January to February 2021
Source: Colin Angus.

Figure 12. (Colour online) Cases in Hubei, China from January to February 2020
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separately. They use theirmodel to predict when the peak of the epidemic will rise in terms of new cases
or new deaths in each country and the peak level. They also predict how long the number of new daily cases
in each countrywill fall by an order ofmagnitude and forecast the total number of cases and deaths for each
country. Unfortunately, this work was all done prior to the results of widespread second (and subsequent)
waves in most countries. They find that the course of the epidemic in each country is very heterogenous.
Thiswould point to the logical problemof estimating themodel and applying it to data as the epidemic is in
process in each country. Essentially the basic problem is that nonlinear processes normally require second-
order differential equations tomodel turning points (andpoints of inflexion) and basically, SIR typemodels
are only a system of first order differential equations.

One useful visual clue which may be adopted is a ‘phase portrait’ is a dynamic pairwise bivariate plot
of the levels of two variables which are changing daily. In figure 13, for example, the path traced out by the
pattern of daily admissions and the number of hospital beds that are full, produces a clear insight into
what is going on. The pattern of theWave 1 (from September 2020 to January 2021) dots, is dramatically
different from the much more severe, Wave 2 dots relating to the period from March to April 2021.

6. Endogeneity and behavioural responses

From the beginning of the COVID-19 pandemic, governments have been making decisions on what
policies to implement and how stringent these should be partially based on the data series they observe on
cases and deaths (and potentially other estimated epidemiological model parameters like the Rt

number). The implementation of policies and government responses has varied greatly. The responses
from the countries that implemented policies can be grouped into three main strategies. The first,
initially adopted by most Western countries, focuses on mitigating the spread of the virus (Qiu et al.,
2020). For example, on 12 March 2020, the UK government announced that the country would switch
from a strategy of attempting to contain the virus to one based on delaying its transmission, that is
‘flattening the curve’. This involved attempting to delay the peak of the outbreak to limit the strain that
the pandemic would place the NHS system. The second strategy, adopted by countries such as South

Figure 13. (Colour online) Phase portrait of admissions and beds in the United Kingdom during Waves 1 and 2
Source: Oliver Johnson (@BrisOliver).
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Korea, China and later on by some Western countries, seeks to suppress and prevent the spread of
COVID-19 cases and, by extension, reduce the number of deaths (Qiu et al., 2020). For example, by the
start of March 2020, South Korea had developed a rigorous testing regime to track and trace and isolate
cases to prevent the spread of the virus. Finally, some countries such as Sweden adopted a relaxed
approach by imposing very few restrictions on movement, with the possible aim of achieving herd
immunity. These countries were heavily criticised. This means that there is an endogeneity of policy
choices as each government is at least partially deciding which policy to be invoked determined by the
death figures and case numbers it is experiencing on a daily basis. At the same time the course of the
spread of the pandemic will also be at least partially determined by the strength of the lockdown policies
being employed. This poses inherent endogeneity modelling difficulties. Not least, there will be an
element of reverse causality – we would hope that the NPIs invoked will reduce the epidemic and lower
cases and deaths, but, at the same time, mounting cases and deaths will induce the government to invoke
more restrictive policies. The other cause of endogeneity relates tomeasurement error in the explanatory
variables. For example, if cases included as an explanatory variable inmodelling deaths, then there will be
a problem if the recording of cases exhibits any of the measurement errors discussed above. In the event
this may result in the estimated coefficients being biased and inconsistent.

One solution to endogeneity is the use of instrumental variables (IV). The chosen IV needs to be
highly correlated with the endogenous variable but uncorrelated with the error term to produce
consistent results. One example in this literature is the use of weather variables to instrument for the
government response indicator (Qiu et al., 2020). However, this variable is unlikely to be a valid IV due to
the effect of weather conditions may have on the spread of the virus cases or the unobserved
heterogeneity of this effect.

A related problem to that of endogeneity of the NPI variable is the possibility that there is a related
behavioural response by the public to measures like theRt which is widely reported in the media on an
almost daily basis. If the public change their behaviour as a result of the reportedRt that they see on their
television, then this adds a further source of possible endogeneity.

Notwithstanding the possible endogeneity of an NPI summary measure it is worth describing the
available data for understanding the policy response to Covid. Themost prominent source of data on the
use of NPIs is from the Oxford COVID-19 Government Response Tracker, OxCGRT (Hale et al., 2020).
The dataset contains data on 17 different sub-indicators regarding different government responses for
185 countries under three different categories: containment and closure policies, economic policies and
health system policies. Various combinations of these sub-indicators make up the four indices. These are
an economic support index, a containment and health index, a stringency index, and an overall
government response index – here graphed as OxCGRT Stringency Index. Overall, 173 countries are
included in the Oxford data, but the data are an unbalanced panel. These data have been used by many
papers most commonly aggregated into a Stringency Index which is graphed in figure 14 below for six
countries during the ‘first wave’. We can see quite clearly that many countries adopt more stringent
policies as the deaths rise, for example Italy, Iran, the United Kingdom and even Sweden. But some
countries do not seem to adopt this strategy, such as Brazil and the United States.

The data on the Stringency Index for eight countries is graphed in figure 15 over the course of the
pandemic. The series shows that the index has a value which has between 40 and 80 percentage point
difference between the most locked-down and the least locked-down country at different points in
time. The country which ismost locked-down changes frequently over the course of the last 16months.
One possible solution to the endogeneity of the NPI is to use a synthetic control strategy which
examines the difference between the ‘treated’ country with the maximal OxCGRT Stringency Index
employed and the ‘control country’ which employs the minimum possible Stringency Index of NPI
measures. The synthetic control method in this case would typically use a weighted average of other
countries to compare with the ‘treated’ country. A limited use of the synthetic control method to
model Covid has been explored by Harvey and Kattuman (2020a). But to exploit the idea of using a
different individual synthetic control for different time periods would involve an extension to its
conventional use.
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7. Simple taxonomy of different models

There are now thousands of academic papers which model the course of the COVID-19 pandemic.8 A
simplistic taxonomy is explored in this discussion. This is inevitably a gross simplification of the plethora

Figure 14. (Colour online) New (smoothed) daily deaths and the Stringency Index by selected countries

Figure 15. (Colour online) Stringency Index for selected countries

8We do not discuss papers which are based on cross section individual patient level data, such as OpenSAFELY, 2020 which
seek to explain who gets Covid and who dies from it.
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ofmodels which can be devised.We characterise them in their basic variants following a select few papers
published in high profile journals to present their main features and strengths, so that we may
compare them.

7.1. The SEIR and SEIDR Model

The majority of the modelling which has been done on the pandemic over the last 18 months has used
variants of the deterministic, compartmental SIR model.9 This is part of the epidemiologist’s toolkit and
it has dominated the modelling advice given to governments and technical committees like SAGE in the
United Kingdom. The so-called SIR model has been used as the basic building block of epidemiological
modelling (see Kermack and McKendrick, 1927; Ferguson et al., 2020; Kucharski et al., 2020 for its
application to the United Kingdom and IHME, and Kucharski et al., 2020 for its use on separate
U.S. states). This model has been extended to include a fourth category of person, those Exposed, to
create the SEIRwhich is the workhorsemodel which has been repeatedly extended. Each extension to the
model adds further complexity to the differential equations which model the dynamics of system.
Arguably, the most important extensions of most concern to the modelling of the COVID pandemic are
to add the number of fatalities, the Dead, D, and the number of those Vaccinated, V. In the first instance,
we follow themodel notation of Carcione et al. (2020) to set out themodel with Deaths, that is the SEIDR
model (see Keeling and Rohani, 2008).

The total (initial) population, P, is categorised in four groups, namely, the susceptible, S tð Þ, the
exposed, _E tð Þ, the infected, _I tð Þ and the recovered, _R tð Þ, where t is the time variable. The governing
differential equations of the SEIR model are:

_S¼Λ�μS�βS
I
P

_E¼ βS
I
P
� μþ ϵð ÞE

_I¼ ϵE� γþμþαð ÞI

_R¼ γI�μR,

where P = S + E + I + R in this case, and a dot above a variable denotes time differentiation. These
equations are subject to the initial conditions S(0), E(0), I(0) and R(0). The parameters of the model are
defined as:

Λ: Per-capita birth rate.
μ: Per-capita natural death rate.
α: Virus induced average fatality rate.
β: Probability of disease transmission per contact (dimensionless) times the number of contacts per

unit time.
ϵ: Rate of progression from exposed to infected (the reciprocal is the incubation period).
γ: Recovery rate of infected individuals (the reciprocal is the infection period).
The SEIDRmodel is a simple supplement to the above systemby adding the assumption that a specific

fraction of the infected die:
_D¼ αI :

9The SIR model is not without its critics, see for example Roberts et al. (2015) and Holmdahl and Buckee (2020).
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However, such an extension, may not be straightforward. For example, Korolev (2020) shows how the
identification and estimation of an SEIDR epidemic model for COVID-19 can be problematic and
indicates how various parameters which we might want to estimate cannot be identified.

The basic initial reproduction ratio,R0, is the classical epidemiological measure associated with the
reproductive power of the disease.10 For the SEIR model (see Diekmann et al., 2000), it is

R0 ¼ βϵ
ϵþμð Þ γþαþμð Þ :

This ratio gives the average number of new cases of infection generated by an infectious individual. The
real life effective (instantaneous) reproduction number, in practice, at any subsequent time period t,Rt ,
is time varying, and will depend on the fraction of the population which have become immune or been
vaccinated. Therefore, when it is used to estimate the growth of the virus outbreak. Rt provides a
threshold for the stability of the disease-free equilibrium point. WhenRt < 1, the disease dies out; when
Rt > 1, an epidemic accelerates.

The system of differential equations can be solved by using forward Euler finite-differences discretis-
ing the time variable to daily or weekly data to obtain estimates of the key parameters which can be used
to simulate the future levels of S, E, I, R and D by observing the base levels of each number in the
population and then estimating the parameters11:Λ, μ, α, β, ϵ and γ then simulating the future levels of S,
E, I,R andD in the population in future time periods. Not surprisingly, at the early stages on the epidemic
these numbers can vary wildly and be somewhat erratic. So, the starting point in this analysis is the fixed
assumptions of the form in the set of differential equations. In contrast to conventional econometric
models, this is not an ex postemodel and does not use the full nature of the data over all time periods to
model the dynamic course of the epidemic – since the model is usually being used as the epidemic is
progressing. Rather it is assumed that the future course of the epidemic unfolds according to the
prescribed dynamic relations with parameters determined by earlier real data or assumed changes in the
parameters. This deterministic model is not conducive to inference on the possible distribution of the
future outcome predictions or the modelling of measurement error in the data. The model can of course
be extended to a stochastic one at the cost of complexity. The model is most often used to model single
countries (or other specific geographies) under the assumption that there is no connection between
countries. Although there are papers which explicitly consider the spatial modelling issues of the spread
of COVID-19 between countries (see for example Hortacşu et al., 2020), there is limited scope for using
panel data in this model. This is a disadvantage as one would expect that the patterns of the diffusion of
the epidemic into each country have underlying features in common and may help us to understand the
pandemic spread and repeated waves across the world.

One considerable advantage of SEIR framework is that the structural model can be theoretically
augmented to address behavioural issues of direct interest to economists. For example, Chernozhukov
et al. (2020), examine a dynamic structuralmodel of Covid cases with the aim ofmaking causal predictions
and evaluation. They examine the impact of face masks, stay at home orders and school closures among
other mandated policies. Other prominent papers have also considered other aspects of the behavioural
role of social distancing in the context of an SIR model (see Makris, 2021; Toxvaerd, 2020).

Hence, the SEIR model is not commonly used to model repeated waves of the epidemic, although
there are recent theoretical advances of the model which seek to examine the conditions under which a
stochastic version of the model can generate repeated waves (Cacciapaglia et al., 2020; Faranda and
Alberti, 2020). So far, these models are not suitable for comprehensive use with cross country data.

The deterministic version of the SEIR model produces point estimates of predictions which does not
provide confidence intervals around these predictions. The Ferguson et al. (2020)model at an early stage

10To avoid confusion, we use R0 to denote the reproduction ratio, instead of R to distinguish it from the recovered level.
11Some SIR models use regressions to predict values of parameters, like β,prior to (or repeatedly in) the simulation of the

model. See IHME (2021) for an example.
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predicted for the United Kingdom that there would be 510,000 deaths without lockdown and 20,000
deaths with lockdown – but these predictions were based on different parameter assumptions in the basic
equations and not borne of the stochastic nature of the model. Another potential limitation of the most
SEIR models is that it does not routinely incorporate conditioning regressors. Specifically, the SEIR
model does not allow day of the week effects, observed country – based heterogeneity or the adoption of
NPI policies or the roll out of the vaccines.

7.2. Bayesian dynamic and hybrid models

There is a rich tradition of using Bayesianmodels in epidemiology. There are nowmany papers which use
these methods to model Covid, for example Anderson et al. (2020) and Wibbens et al. (2020). They
typically adapt the deterministic SIR type framework to a stochastic Bayesian framework. Here,
assumptions on the form of prior distribution of model parameters are made which determine the
updating of the model in the light of real time data to formulate posteriors which are used in a dynamic
setting to predict outcomes for key variables of interest. Typically, these models need to make assump-
tions about the priors of the parameters of interest (e.g. the reproduction rate in the case of Anderson
et al., 2020, or the growth rate of infections in the case of Wibbens et al., 2020) which have attractive
properties when combined with tractable conjugate likelihood distributions to derive the posterior of
interest. An important component of such compartmental models is typically the exploitation of real
time series data, assumptions regarding population dynamics and modelling of the transition probabil-
ities between states. The model is usually then simulated repeatedly, often using Markov Chain Monte
Carlo or Variance Inference methods and can be used to forecast the course of the epidemic.

There are also many papers on Bayesian dynamic models which augment the structure of SEIR type
models. (e.g. Bertozzia et al., 2020) Some of these may be termed ‘hybrid models’ as they use elements of
both the SEIR epidemiological models and dynamic Bayesian models. One prominent example recently
in themedia is the technically complexmodel of Friston et al. (2020). Themodel is one which augments a
SEIRmodel with other compartmental population dynamics using conditional dependencies to model a
richer set of interactions, such as social distancing. They model responses of neural ensembles to
perturbations using model inversion and comparison procedures. Specifically, the team have been
predicting the scale of a possible third wave the United Kingdom ‘bounce back’ now the second
lockdown is over.

7.3. Time series and error correction models

One of the leading epidemiology texts, Keeling and Rohani, 2008 suggest that time series analysis ‘can be
used to examine longitudinal data and to extract meaningful patterns such as periodic oscillations or density
dependence’, (p14). This suggests a recognition that the long run, maybe in an ex-poste explanation of the
course of the pandemic or its variation across different countries, can be achieved by the use of time series
models. Over the last year there have been scores of papers published using a whole array of time series
estimation techniques to model the course of different epidemics in many different countries (see
Finkenstadt et al., 2000). However, for the most part, time series analysis has not been much used by
epidemiologists to study Covid-19. We turn to a simple explanation of why this might be.

A straightforward visual inspection of the time series data on deaths or cases (like in figure 2,b) for any
country tells us that the data to be modelled is highly nonlinear, trended and/or non-stationary. This
means that any estimated relationship between, for example, cases and deaths may be subject to the
potential problem of spurious regressions which may bias the estimated coefficients and distort any
conclusions. A conventional approach to this problem in applied time series econometrics is to exploit
possible cointegrated relationships between the variables of interest whichmeans that we can use a vector
autoregression model (VECM). There are some case studies (Bhangu et al., 2021; Imai et al., 2015; Inga
et al., 2020; Vokó and Pitter, 2020) relating to epidemic research which use thesemethods.We follow the
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notation of one example, Turk et al. (2021), which uses this technique to study the relationship between
hospitalisation and community behaviour and activity as measured by Google Trends.

Specifically, let yt be an n � 1 vector of variables which are either difference-stationary or trend-
stationary. This vector is cointegrated if there exists an n� 1 (cointegrating) vector βi 6¼ 0ð Þ such that β0yt
is trend stationary. It is possible that there are r linearly independent vectors βi (i = 1, …, r). A vector
autoregression model of order K (VAR(K)) can be written as:

yt ¼
XK
i¼1

Πi yt�iþμþΦdtþ εt ,

where t = 1,…,T.Here, yt is an n� 1 vector of time series at time t,Πi (i = 1,…,K) is an n� nmatrix of
coefficients for the lagged time series, μ is an n � 1 vector of constants, dt is an p � 1 vector of
deterministic variables (e.g. day of the week dummies, time, etc.), andΦ is a corresponding n x pmatrix
of coefficients. We assume the εt are independent n � 1 multivariate white noise. To determine a value
forK in practice, one can sequentially fit a VARmodel, forK = 1,…, 20, to determine the appropriate lag
length (e.g. between cases and deaths), and compare Akaike’s Information Criterion (AIC) values.

The VAR model can be rewritten is as a vector error correction model (VECM):

Δyt ¼
XK
i¼1

ΓiΔyt�iþ1þΠyt�1þμþΦdt þ εt ,

where Δyt is a first difference, Γi = �(Πiþ1 + � + ΠK ), for i = 1, …, K � 1 and K ≥ 2, and
Π¼� I�Πi�… �ΠKð Þ for an identifying matrix I of order n. Hence, a VECM is a VAR model

(in the differences of the data) allowing for co-integration (in the levels of the data). The matrix Π
measures the long-run relationships among the elements of yt , while the Γi measure short-run effects.
yt�i is the ‘error correction term’ and it is assumed this term is (trend-)stationary.12 The separation of
long-run and short-run elements of epidemic data may prove to be insightful.

Fitting a VECM involves determining the number (r) of co-integrating relationships in the data. It can
be shown that the rank of the matrixΠK is equal to r.When r∈ (0, n), we can use a rank factorisation to
write,Π¼ αβ0,where both α and β are of size n� r. Therefore,Πyt�1 ¼αβ0yt�i is stationary since α is a
scale transformation and, β0yt�i is (trend-) stationary where β are the set of cointegrating vectors, which
specifies a ‘long-run relationship’ among the individual time series. Elements in the vector α are often
interpreted as ‘speed of adjustment coefficients’ (or short-run model) that modify the co-integrating
relationships. The number of co-integrating relationships can be formally determined using Johansen’s
procedure. Following Hamilton (1994) and Johansen and Juselius (1990), it is possible to specify the
deterministic terms in the VECM using AIC and a likelihood ratio test on linear trend.

The challenges of this procedure are: to find the co-integrating vectors, determine the appropriate
dynamic lag lengths, and account for the inherent nonlinearities of the epidemic process. The difficulties of
these tasks are compounded by the relationships in question being time varying, which maymean that the
potential co-integrating relationship breaks down. In addition, the possibility of including (endogenous)
controlling regressors like an indicator for the stringency of NPIs is potentially problematic. Although this
model is suited to making forecasts and estimating impulse functions it is not immediately possible to
estimate specific parameters like theRt rate. A further challenge is to use this model with panel data from
many countries in the same estimation framework (Pesaran and Smith, 1995). Ultimately, this type of
model is best employed after the pandemic is over, when all the data is in, and we can then determine out
which NPIs are effective, and which are not. In the light of these difficulties with the VECM it is likely that
its application to modelling Covid is limited to quite special circumstances.

12See Pfaff (2008) for a rigorous treatment of cointegration, the VAR model and the VECM.
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7.4. Forecasting models

There aremanyways of estimating short-run forecastingmodels whichmay be applicable to the prediction
of the COVID-19 pandemic (e.g. Liu et al., 2020, and Gecili et al., 2021). An innovative example is that of
Doornik et al. (2020). Using yt to denote the dependent variable that needs to be decomposed in an
unobserved trend term bμt , and residual or irregular bεt . For the logarithmic model, we have:

logyt ¼bμt þbεt:
The idea of this model is to split the data up into several discrete overlapping and moving windows,
fitting short-run time trends using a method the authors devising called local averaged time trend
estimation (LATTE). Let xt ¼ logyt denote the dependent variable. Then, a typical windoww runs from
observation iw to jw and provides estimates forbxw,t , t¼ iw,…, jw. After selection of the window, the final
model is:

bxw,t ¼bαFwþbβFwtþ
X
S∈Τw

bθw,s t� s�1ð ÞI t≤sf g, t¼ iw,…, jw:

For each window,bαFw,bβFw andbθw,s are estimated by ordinary least squares. The superscript F indicates that
terms are always in themodel, so selection is conducted only over the broken trend terms. The variants of
how to estimate this model are detailed in Doornik et al. (2020) and can involve the prescriptive use of
machine learning methods to determine the most appropriate specifications.

Doornik et al. (2020) use their short-term forecasting model to compare predictions from it with
those from the SIRmodel. Figure 16 above shows how their ownmodel tracks the actual UKdata over the
short run with greater accuracy as each segment of their average forecast line (in black) tracks the grey ♦
line of the actual trendmuch better than the green (x) line of longer-run predictions of the SIRmodel.We
see that the SIR predictions are very sensitive to perturbations in theRtnumber and can quickly deviate
from the actual path. Doornik et al. (2020) justifiably suggest that their forecasting model ‘can outper-
form several epidemiological models in the early stages, thereby providing an alternative complementary
approach to forecasting’.13 At the same time the authors are the first to acknowledge that theirmodel does
not estimate structural parameters which describe the whole of the pandemic process or have validity for
policy prescription or behavioural adaption of the population.

Figure 16. (Colour online) Forecasts of confirmed cases from Doornik et al. (2020)

13See Doornik et al. (2020), p. 11.
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There are, of course, many other forecasting techniques being suggested. For example, Lee et al.
(2020) develop a new trend filtering method that is a variant of the Hodrick–Prescott filter, constrained
by the number of possible kinks and apply it to data from five countries. Their models also fit the data
well and they propose using the model to monitor outbreaks of COVID-19. Being more specific, the
short-run forecasting model is most vulnerable to periods when the series being modelled is at a crucial
turning point, as by definition, what is being fitted is short-run linear piecewise segments to short time
intervals and this may not easily capture the nonlinearities inherent in exponential models when they
‘take off’ or accelerate quickly, in their sigmoid shape periods.

7.5. Growth curve models

Growth curve models have been known to statisticians for some time. They involve modelling the log of
daily new deaths (or cases). Such a model has convenient properties. Most importantly, that it can
routinely be used with series which rise (even exponentially) and then fall away, however large the
exponential growth of the epidemic. Such a series can, in principle, be fitted (like modelling a
cumulative distribution function) using any sigmoid function, but the most commonly used are the
Logistic or Gompertz. Such a function rises at an increasing rate then slows and reaches a turning point,
after which it rises at a slower rate before reaching amaximum and then falling away, so, just like a single
wave epidemic. Recently, economists have been using them to forecast the Covid epidemic. Li and
Linton (2020) use the model to forecast the peak of infections in the Covid pandemic in various
countries. This also leads to being able to forecast of the number of cases and deaths in any country.
Harvey andKattuman (2020) use amodel for a special case of a Gompertz growth curve. Following their
notation:

where Yt = cumulative cases or deaths up to time t, then the change in cases at t is:

yt ¼ΔYt ¼Yt �Yt�1:

Growth rate of cases is:

gt ¼
yt

Yt�1
¼ lnΔYt:

Then

lnyt ¼ lnYt þδ� γtþ ϵt

lngt ¼ δ� γtþ ϵt ,

where, δ and γ are estimable parameters.
Harvey and Kattuman (2020) show that within this model the trend is an Integrated RandomWalk.

This model also allows us to neatly sidestep the problem of non-stationarity in the underlying data.
The model can used to predict the Rt number. Figure 17 is from the NIESR Covid Tracker website

and is based on an application of this model to the UK data during the so called ‘second wave’. It shows a
comparison of the model with the SAGE estimates of the Rt number from their SEIR model. It seems
quite possible that the NEISR prediction is potentially more accurate for this period in February.

One further note of caution in the use of the growth curve approach is in order. This is that the
sigmoid function approach may not be appropriate for modelling multi-wave epidemics. To see this,
consider the position in the United Kingdom up to the beginning of May 2020 in the left-hand panel of
figure 18. During this time period, the time series shows a conventional unimodal epidemic and clearly
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the growth curve is a good approximation. In sharp contrast, the right-hand panel of figure 18 shows
what happens to the growth curve over themulti-wave period up to themiddle of April 2021. Clearly, the
growth model is much less appropriate for the whole time series.

7.6. Dynamic panel NPI regression models

Themost general form of a panel data regression frameworkmight be to explain the daily variation (t) in
deaths dit , in each country (or other location), i. Important explanatory variables would include some
function of the number of cases cit with an appropriate dynamic lag.

dit ¼ f τ,τ2,τ3,…:
� �þ g cit ,cit�?ð Þþh d1,…d6ð Þþk Xitð Þþ l Pimtð Þþ Iþ ϵit ,

where:

Figure 18. (Colour online) Comparing UK log daily cases. (a) 19 February to 3 May 2020. (b) 19 February 2020 to 21 June 2021

Figure 17. (Colour online) NIESR growth curve Rt estimates compared to SAGE estimates
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• f τ,τ2,τ3,…:ð Þ is polynomial in elapsed country specific epidemic time duration, τ.
• h d1,…d6ð Þ day of week dummies
• g cit ,cit�?ð Þ – lagged cases
• k Xitð Þ – country characteristics
• l Pimtð Þ – m NPI policy instruments
• I – country fixed effects

The use of τ and functions of τ is included to control for the underlying nonlinear nature of the pandemic –
rising, then falling and maybe over several waves. However, the pattern and shape of the pandemic varies
greatly between countries. This means, modelling time using τ and functions of τ may ideally need to be
specific to each country. In using panel data, we presently know how to include country fixed effects to
allow for country specific effects (or even country specific linear trends). However, including country
specific nonlinear trends is not presently feasible. By default, if we constrain the model with the same
nonlinear function of time and apply it to each country this will be a misspecification. One only needs to
look at how different the pattern of the epidemic is in each country to appreciate this problem.

Versions of this general panel model have been estimated bymany authors using data from sometimes
many countries. A small sample of the available papers is briefly summarised in table 1. This general
framework also has crucial estimation problems, some of which are addressed by the literature. But other
problems are more difficult to treat. Typically, all the key variables will likely be non-stationary which
immediately brings us back to using a panel version of VECMmodel outlined above. Carrero et al. (2020),
Derigiades et al. (2020), Hadjidemetriou et al. (2021), Jinjarak et al. (2020), and Voko and Pitter (2020)
attempt to address these problems by various difference or growth transformations. The second crucial
problem is the endogeneity of the use of NPIs as explained earlier, as the government response index is
inherently endogenous. Some authors (Bodenstein et al., 2021; Qiu et al., 2020) have used various IV
strategies in an attempt to circumvent this endogeneity problem. Considerable attention has been devoted
to these estimation technicalities to try to retrieve estimates of the effects of the crucially important NPIs.
Most of the studies listed in table 1 find real effects of the variousNPIs although there does not seem to be a
consensus of the relative importance of the different lockdown measures or their behavioural responses.

One advantage of the dynamic panel structure is that it does afford us the flexibility to estimation a
spatial model to control for cross section dependence due to the integrated network of countries and the
resulting speed with which the virus is passed more readily between more highly interconnected
geographies. Dynamic panel models can also be extended for other purposes. In another example, Liu
et al. (2020) estimate a model that is able to generate density forecasts for daily active COVID-19
infections by exploiting a flexible Bayesian specification which provides 1-week horizon forecasts that
are updated from week to week and are used for a group of countries.

8. Criteria for comparing models

There are many criteria one may wish to use in comparing and evaluating different statistical models of
epidemics and their usefulness. The most important characteristics of any statistical model used to explain
the epidemic and its course are numerous. They can be usefully subdivided into those which are technical
properties of the statistical model and those which are useful for predictive or practical policy reasons.

8.1. Technical Properties

1. Accurate short-run prediction. Reliable short-run prediction is one of the main purposes of
modelling. This is necessary to understand what the short-run future of the virus is and what
effect, if any, the NPIs are having on the course of the epidemic. Also, it must be stressed that this
modelling effort will, at the beginning, need to be based on relatively little data about the virus or
how the epidemic is progressing.
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Table 1. Selected literature summary of panel models of NPIs

Author(s) Estimation method
Dependent
variable

Geography of
data NPIs Focus

Dynamic
structure Findings

Jinjarak et al.
(2020)

Cross section limited
dependent
variable OLS

Change in log of
mortality rate
by week
smoothed

Panel of 59
countries

Oxford Stringency
Index (OSI)

Effect of Stringency Weekly lags,
i.e.: t-7, t-14,
t-21, t-28 and
t-35

Greater OSI causes lower
mortality growth rates

Carraro et al.
(2020)

Pooled panel OLS
correcting for
cross section
dependence

Log number of
Covid cases

166 countries OSI Difference between High-income
and Low-income countries

7- and 14-day
lags

Confinement measures,
school closures and
lockdowns are effective
in reducing the diffusion
of active cases

Vokó and Pitter
(2020)

Poisson regression Daily incidence
and ‘change
point’ date

28 European
countries

Distancing measures Effect of social distancing by use
of Google community mobility
reports

Not clear Social distancing ‘flattens
the curve’

Bonardi et al.
(2020)

FE, AR(1) and first
differences

Growth rates of
log of cases

184 countries Lockdown indicator Effects of lockdown policies and
differences between
developed and developing
countries

Autoregressive Reducing movement on
developed countries is
effective, but not in
developing ones.
Extreme lockdowns are
not effective

Hadjidemetriou
et al. (2020))

Nonlinear logistic
regression

Daily deaths as a
MA

United
Kingdom

Restrictions on human
mobility

Effect of restrictions on human
mobility

Moving
averages,
t-18

Reducing human mobility
reduces deaths

Williams et al.
(2020)

Poisson regression Deaths England and
Wales only

Lockdown policy
binary indicator
variables for
discrete periods

Explaining the course of the
epidemic in the United
Kingdom

Estimation in
discrete time
periods

Lockdown increased
mortality

Qiu et al. (2020) Dynamic panel
estimation with IV

New cases and
new cases
lagged

305 cities in
China

IVs for NPIs of
temperature, wind
speed and
precipitation

Effect of local public health
measures. Distinction
between within and between
city variation

Averages over
previous
2 weeks

Public health measures
reduced infections

Dergiades et al.
(2020)

Dynamic panel GLS
regression testing
for structural
breaks

Growth rate of
deaths

32 countries OSI of NPIs Effect of government
interventions on deaths

t-1 to t-14 Strength of early
government
interventions the more
effective these are in

(Continued)
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Table 1. Continued

Author(s) Estimation method
Dependent
variable

Geography of
data NPIs Focus

Dynamic
structure Findings

slowing down or
reversing the growth rate
of deaths

Bodenstein
et al. (2020)

IV Panel regressions R number 50 U.S. States
andDistrict
of
Columbia

Stay at home orders
issued by different
states

Spontaneous and mandating
social distancing and mobility

t-14 Both spontaneous and
mandated social
distancing and mobility

Chen et al.
(2020)

Panel regression R number 34–75
countries

OSI Stringency
Measure

Effect of different lockdown and
stay at home measures

3-day MA Lockdowns work but
gathering bans are more
effective than workplace
and school closures

Castex et al.
(2020)

Panel regression COVID-19
transmission
rate

59–135
countries

Oxford COVID-19
Government
Response Tracker
(OxCGRT)

Effectiveness of countries health
resources and NPI stringency

Not clear Effectiveness of policies
declines in health
resources

Chernozhukov
et al. (2020)

Panel regression Daily cases and
deaths growth

51 U.S. states Use of Google Mobility
Reports to measure
social interaction

Impact of face masks and other
social distancing policies on
growth of cases and deaths

14 and 21 days Mandating of masks and
stay at home policies are
effective, but
insignificant school
closure effects
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2. Conditioning regressors. In modelling, we will ideally be able to include many conditioning
regressors as we wish to be able to assess the extent to which different characteristics of the
population (e.g. age, gender and ethnicity) are most at risk are important in terms of its escalation
and duration. This will help to control for different geographies in the data and permit comparison
between them.We do not observe all the controls for the country level analysis that we would like.
Specifically, for example, in the determination of the number of cases we would like to know
reliably how many tests were conducted. In the determination of deaths, we would like to know
how well the hospitals were configured. A desirable property of the model would be that it
permitted the conditioning of regressors.14

3. Panel data capability. A good model would enable us to use panel data across countries (or other
geographies) over time to understand the generic nature of the pandemic and its properties. Many
models have mainly been run on single countries. It is desirable that we have more general models
which permit us to use data from many countries (or within country geographies) at the same
time, as we would wish to make the most of the heterogenous experiences of different countries.

4. Flexible dynamic structure. SEIR and related models are explicit about the nature of the dynamic
structure of an epidemic. Since the delayed effect of: infection on cases; tests on cases; cases on
deaths, and cases on recovery may all be heterogenous and difficult to determine then a desirable
modelling characteristic would be flexibility with respect to lagged dependent (and lagged
exogenous) variables.

5. Non-stationarity.Dealing effectively with high frequency time domain data is the province of time
series econometrics. Much effort has been devoted to the development of models which avoid the
non-stationarity problems and circumvent the possibility of spurious regression. These lessons
could and should be deployed effectively (or in combination with other models) in the estimation
of epidemic time series datamodels if wewish to predict the course of the epidemic in each country
in a flexible way.

6. Cross section dependence. It is desirable that themodel can handle spatial locational considerations
and cross section dependence, possibly by directly modelling the nature of the network like nature
of the degree of interconnectedness between different countries.

7. Endogeneity. Models which explicitly facilitated the modelling of the endogeneity of policy
interventions by the government would be desirable. Clearly, as described in Section 6, most
governments are more likely to invoke more restrictive NPIs when cases and deaths are highest or
look to be rising most quickly. The aspiration of dealing with endogeneity is a demanding
requirement in the context of regression-based models where the simple inclusion of stringency
measures, as if, they were valid exogenous regressors is problematic.

8. Parametric restrictions. We would also want the model used to not be over reliant on restrictive
parametric or distributional assumptions. Ideally, we would not want to have to invoke specific
assumptions to derive an estimable model. An example would be the use of a specific functional
form, like the Gompertz, to derive a Growthmodel – this is a necessary but undesirable restriction
which may be partly overcome in the dynamic Gompertz model where the deterministic trend is
replaced by a stochastic trend (see Harvey et al., 2021).

8.2. Predictive and policy practical characteristics

9. Policy parameters.A desirable feature of amodel is the possible retrieval of parameters which have
clear policy importance like the case fatality ratio (CFR) or the reproduction number, Rt . These
assume a special significance, if they have become part of the vocabulary of people trying to

14Using conditioning regressions on specific parameters of a SEIR type model prior to simulation is not the same as using
conditioning regressors directly in the estimation of an econometric model.
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understand the epidemic and what is happening. We would also want the model used to not be
subject to restrictive parametric or distributional assumptions

10. Facilitate imparting the policy message.One important dimension of comparison is the extent to
which the messages of: what stage the epidemic is at, what non-technical politicians and policy
makers can readily understand and communicate, what directives the authorities need to get
across to the public in terms of the best interests of dampening the worst effects of the spread of
the virus and maintaining public safety and order. At the same time, politicians are naturally
concerned with other issues which might mitigate against lockdown measures which are too
restrictive. Hence, all concerned need preferably single numbers they can understand. Cases
(or case rates per 100,000 of the population), deaths, hospitalisations, number of patients on
ventilators, and vaccinations administered are all readily understood in a comparative sense. It
also now seems that the Rt number is also understood by the majority. This is quite a subtle
concept which now seems to have become part of common parlance. It has the nice feature of
being scaled relative to 1 and so easily calibrated. This is convenient as it has an important role to
play in the SEIR type models. Hence, if possible, it would be a useful characteristic of any
alternative model – that it allowed us to also retrieve an estimate of this parameter directly from
the use of the model with data.

11. Graphical and visual representation: A related desirable property would be that the model used
had easily understandable graphical depictions. By this, I mean that we wish to have appropriate
ways of plotting how the course of the epidemic is advancing. Whether it is accelerating and at
what rate; is it waning; have we reached a turning point and are we at the height of the epidemic
yet; howmuch longer might it go on; whenmight it end, and what is the likelihood of a second or
third wave. Many statistical models are not easily represented with graphical answers or provide
visual responses to many of these questions. This leaves in the position of being able to judge the
answers from basic plots like figure 2a,b. One exception is the ‘Portrait Phase’ diagrams
promoted by Prof Johnson.15 These may provide visually appealing answers to some of these
questions.

12. NPI impact estimation.Wewould also wish to be able to evaluate the direct impact of parameters
relating to NPIs, which measures are effective and to what degree, and how long it takes for their
effects to be seen in terms of cases and deaths, for example. Establishing the nature of the lag
between the invoking of the NPIs and their effect is problematic.

13. Multiple waves. An important characteristic of the time trend of the epidemics which have
evolved in different countries is that some countries have had one wave, butmanymore have had
two, three or more waves. A desirable feature of a model would be that it could cope with flexibly
modelling this highly nonlinear from of the trends. This is a difficult task as coping with country
specific nonlinear trends in a panel dataset is not something which we routinely handle. 16

14. Virus mutation.A related desirable characteristic of a model would be the capacity to handle the
extension of the model to the appearance of new variants of the virus. Adaptability of the model
to be able to trackmutant variants and their consequences are now especially relevant is it is clear
that there are new strains of the virus developing in many different countries which are behind
the second, third and subsequent waves of the virus.

15. Behavioural modelling. A desirable feature of a model would be the capacity to explicitly
recognise the behavioural response induced in the population at risk by the advance of the virus
and the NPIs introduced by government to counteract it. For example, how do people react to a
policy of enforced social distancing and how might that reflect on the changing course of the
epidemic (see Makris, 2021; Toxvaerd, 2020).

15Prof Oliver Johnson is actively sharing and advocating his graphical methods on Twitter – see @BristOliver.
16Harvey et al. (2021) suggest that a stochastic Gompertzmodel would actually allows themodelling of a secondwave. This is

reflected in columns 8 and 13 in table 2 which reflect this stochastic model extension.
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Table 2. (Colour online) Modelling traffic lights
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Clearly it is not possible that any single model would have all the desirable properties outlined above.
Some statistical models are better designed to have one feature rather than another. No ranking on the
relative importance of these properties is implied by the order that they have been described in. But such
a list is worth keeping in mind if we wish to appraise the usefulness of one method rather than another
and what their relative comparative advantage is.

Since the dominant default method of statistical analysis of the epidemic in the United Kingdom and
many other countries has been the SEIRmodel and its variants it is perhaps appropriate to posit how this
genus of models is characterised by these desirable properties. Table 2 is the author’s personal subjective
summary of the features or possible limitations of the various models which have been discussed.
Glancing across the rows and down the columns we can see that where one model may have a limitation
there are alternative models which could be employed to good effect. This suggests that there is a
convenient complementarity of the available statistical and graphical methods we can use. These should
all potentially be exploited to best effect.

What might the prescriptive conclusion of this comparison be? Firstly, it has be acknowledged that
the prodigious development of the SEIR variants in response to the pandemic has been staggering. We
have now learnt so much about how this model may be extended to take account of the situation as it
changed over the course of 2020 and into 2021. A recent paper by Moore et al. (2021) solves a system of
16 differential equations which simultaneously take account of deaths, hospitalisations, vaccination rates
and is segmented by age group to make predictions about a post lockdown ‘bounce back’ infection rates.

The conclusion is that as a pandemic develops there is no substitute for the SEIR modelling to adapt to
changing circumstances and provide prescriptions and guidance for policy-makers. The essential feature of
thismodel is that it allows you to at least attempt to steer the boatwhilst building and repairing it. However,
it should be recognised that its sensitivity to assumptions relating to key parameters and its reliance of
rapidly moving data are a weakness which can provide erratic predictions. Many of these key parameters
could and should be the subject of separate statistical modelling in their own right (as in the IMHE, 2021
model). A second augmentation is to consider the short-run forecastingmethods being used to good effect
by the applied econometricians and others to provide the most accurate forecasts of the number of
infections. A third contributionwould be cross-validate themethods used for the prediction ofRt numbers
by the use of growth curve models especially within a given wave of the epidemic (notwithstanding the
caveats fromSection 5). One could regard these second and third remarks as being akin to keeping an open
mind about the necessary running repairs on the boat’s hull as you go along when it is letting in water, or
ways in which the boat’s helm may be a little less erratic and blow you off course.

A final area for supplementary analysis is to consider the use of detailed econometricmodels on all the
data, over all countries and other geographies, over all time periods and waves of the epidemic, to model
the precise effect of different NPIs as variously applied in different contexts. In this setting rigorous
methodsmay be used to counteract non-stationarity problems by the use of the latest VECMmodels, and
endogeneity problems by the use of synthetic controls. This would be akin to a post voyage overhaul in
the dry dock to understand not only howwe built the ship wrong as we went along, but how our running
repairs improved things or made matters worse.

9. Conclusion

In this paper, we have reviewed the problems involved inmodelling the Covid pandemic across the world
and how this has influenced the modelling of the epidemic in specific countries. The enduring issue is
how we can reconcile and compare the recent use of the epidemiological models with some modelling
alternatives which have been advocated from other subjects. All these models face the same challenges:
measurement error, endogeneity, stationarity, non-linearities with multiple waves, cross
section dependence with networks or spatial aggregation, and the implementation of NPIs when we
do not know and cannot test their effectiveness and many of them may have their own behavioral
responses.
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Notwithstanding the considerable advances that have beenmade in the last 18 months to understand
this pandemic we should acknowledge that the process of contagion is one which we do not really
understand very well. Unless we have data on the movements of all individuals and their interactions –
like they do in China and Korea – then any understanding of how this virus transmits itself from one
person to another is unknown. Why it is that one person may contract COVID by simply being in the
same room as an infected person for a very limited time and yet another who is living with and sharing a
house with an infected person does not contract the virus? In turn, conditional on being infected, why
does one person die quite quickly, and another suffers only mild symptoms or remains asymptomatic?
These questions remain largely unanswered. This must be a fundamental limitation to all the models we
have discussed. Although thismay explain, at least partially, the dominance of the epidemiologicalmodel
as it comes closest to positing how the epidemic actually works as a biological process. Forecasting
models, even at their best, have limited scope for revealing the mechanism of transmission and
escalation.

We do not know how to link the basic SEIR framework with the time series econometrics necessary to
model the pandemic. Clearly the epidemiologicalmodel, under certain conditions, is a satisfactory way of
approximating the dynamics of how the pandemic works. Its strongest suit is as an early warning of how
big a problem a specific epidemic might be, how many fatalities may occur and how long it might last.
The model’s aim is to estimate parameters to predict the short-run course of the epidemic. At the
beginning of any epidemic, we need to know what the scale of the problem might be and how quickly it
might escalate in order tomarshal hospital andmedical facilities. The epidemiological model allows us to
do this. It is less well suited to modelling the effectiveness of different NPIs, or the likelihood of a second
or subsequent wave. Arguably it is also less well suited to detailed forecasting, in the middle of the
epidemic, over the next few days or 2 weeks. This is a crucial issue as, on any given day early in the
epidemic, we need to knowwhere we are on the curve. Are we facing an increasing exponential growth or
are we through the worst and about to slow down?

Fundamentally the modelling of Covid involves complex non-linear heterogeneity. Definitionally,
data with turning points, and points of inflexion need second order and possibly higher order terms. In
summary, Kalman filters may be a useful common framework for such a process if we wish to model a
‘state equation’ which captures where we are now, and an ‘adaptation equation’ which governs how we
can predict the next step of the process. In general terms, we suggest that econometric and other
statistical models and graphical methods may have a complementary role to play to SEIR models.
Specifically, in terms of communicating the main messages of when an epidemic is accelerating, when it
is diminishing, and what the key turning points are. In these circumstances simple logarithmic plots and
‘portrait phase’ diagrams have a lot to commend them. It is possible that the general public and policy
makers are much more likely to understand these simple graphs – when they cannot understand the
complexmathematics behind the epidemiological models. Although there is a caution on the routine use
of these logarithmic scales graphs when we are trying to understand multiple waves of an epidemic.
Likewise, growth curve and other forecasting models can be used to predict more accurately the short-
run future of cases and deaths and the course of the Rt number. It is also the case that panel data
estimation methods may make a real contribution to understanding how the pandemic spread, why it is
so heterogenous across countries, and which NPIs are globally the most effective in combatting the
growth of the pandemic and getting it under control.

Cross section individual level patient data with regression (or logistic regression) may also be used to
better understand which patients are most likely to contract the virus and, given those who contract
Covid, who ismost likely to survive. In turn such estimation techniques can also be used to work out who
responds best to the vaccines and what the likely effectiveness of the vaccine is and over what time
horizon.

An important implication of the logic in this discussion is that there should be cross validation studies
employing all different models on the same data, at the same stage of the epidemic. Most specifically, to
conduct an evaluation of different models on a level playing field, one must not just compare the model
predictions from where we stand now. Rather we need to require the econometric model to be run to
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predict the course of the epidemic with the data available, circa March or April 2020, as the epidemi-
ological models were compelled to do. Such an exercise would be a valid test of the alternative
econometric and statistical models in comparison with the SIR/SEIR models which were used to guide
policy at this earlier stage in the epidemic. Could these alternative policies have told us anything? Either
way, even when the COVID-19 pandemic is over, we will still need to put in place a rigorous way of
comparing the models with the same data. For the future we need to know which of our modelling tools,
applied when, will give us the best chance of fighting any pandemic.

A further possible implication of our discussion is that the composition and scope of SAGE would be
improved if it had a complementary input from other statisticians, health professionals and applied
econometricians and economists. The decision making on the policies adopted and the timing of these
decisionsmaywell have been better if there had been a contribution fromothermodelers from awider set
of subject disciplines.
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