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Abstract. In this note we study a counterpart in predicate logic of the notion of logical
friendliness, introduced into propositional logic in [15]. The result is a new consequence
relation for predicate languages with equality using first-order models. While compactness,
interpolation and axiomatizability fail dramatically, several other properties are preserved from
the propositional case. Divergence is diminished when the language does not contain equality
with its standard interpretation.

§1. Introduction and definition. The relation of logical friendliness, introduced in
the propositional context in [15], has a very straightforward definition as a ∀∃ version
of the fundamental ∀∀ notion of consequence. The ∀∀ formulation is expressed as
follows, where Γ is any set of formulae of classical propositional logic, φ is a formula
of the same, and |= is the satisfaction relation between valuations and sets of sentences:

Γ � φ iff for every classical valuation v on propositional variables occurring in
formulae of Γ, if v |= Γ then v′ |= φ for every extension v′ of v to cover any
remaining variables in φ.

Friendliness is defined by replacing the universal quantifier in that definition by an
existential one:

Γ is said to be friendly to φ iff for every classical valuation v on propositional
variables occurring in formulae of Γ, if v |= Γ then v′ |= φ for some extension
v′ of v to cover any remaining variables in φ.

So defined, friendliness has a number of interesting features, examined in detail in [15].
But if we seek to extend it to the first-order context, options arise due to the greater
complexity of first-order models compared to propositional valuations. Instead of just
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2 GUILLERMO BADIA AND DAVID MAKINSON

one natural ∀∀ formulation of classical consequence, there are several. Let L be a
predicate language (in the sense of a vocabulary of non-logical symbols) with equality
(taken as a predicate having the fixed interpretation of ‘true identity’ in all models),
function, relation, and constant symbols. As usual in the presence of equality, we can
treat function and individual constant symbols as additional predicate letters, so we
may assume the language is purely relational for simplicity. Let Γ be a set of sentences
and φ a sentence from L. Write LΓ for the language of Γ, LΓ,φ for the language of
Γ ∪ {φ}, and |= for the satisfaction relation between models and sets of sentences.
Then each of the four bulleted conditions characterizes Γ � φ.

For every model A for the language LΓ, if A |= Γ then:

• A′ |= φ for every model A′ that expands A to the language LΓ,φ .
• A′′ |= φ for every model A′′ that expands to the language LΓ,φ some model A′

for LΓ that is isomorphic to A.
• A′′ |= φ for every model A′′ that expands to the language LΓ,φ some model A′

for LΓ within which A can be elementarily embedded.
• A′′ |= φ for every model A′′ that expands to the language LΓ,φ some model A′

for LΓ to which A is elementary equivalent.

Each of these ∀∀ formulations of consequence gives rise to a corresponding ∀∃
notion of friendliness, obtained by replacing the universal quantifier by an existential
one.

For every model A for the language LΓ, if A |= Γ then:

• A′ |= φ for some model A′ that expands A to the language LΓ,φ .
• A′′ |= φ for some model A′′ that expands to the language LΓ,φ some model A′

for LΓ that is isomorphic to A.
• A′′ |= φ for some model A′′ that expands to the language LΓ,φ some model A′

for LΓ within which A can be elementarily embedded.
• A′′ |= φ for some model A′′ that expands to the language LΓ,φ some model A′

for LΓ to which A is elementary equivalent.

Clearly, these are in increasing order of generality, but they are not all distinct. As
will be shown in the Appendix to this paper, the first is equivalent to the second while
the third is equivalent to the fourth, leaving two distinct notions. We will work with the
more general one, which turns out to be better behaved and exhibit greater continuity
with the propositional case. We prefer, however, to define it in the third rather than
the fourth manner, because that formulation facilitates our proofs using Robinson
diagrams (Propositions 4 and 7).

Definition 1. Let Γ be a set of sentences and φ a sentence of first-order logic. We say
that Γ is friendly to φ (in symbols, Γ �∼ φ) iff for every model A for the language LΓ, if
A |= Γ then A′′ |= φ for some model A′′ that expands (to the language LΓ,φ) some model
A′ for LΓ within which A can be elementarily embedded.

For memory, we recall the definitions and usual notations for elementary embedding
and expansion. If A and B are structures for any language LΓ, we write A �LΓ B to
mean that there is an injectionf : A −→ B such that for any formula� of the language
LΓ, A |= �[a] iff B |= �[f(a)] (this is an elementary embedding with respect to the
language LΓ). Given a structure A for a language L, an expansion of A to a language
L′ ⊇ L is any model A′ for L′ with the same domain as A, interpreting the symbols of
L as in A, and specifying interpretations for the new predicate symbols in L′.
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FIRST-ORDER FRIENDLINESS 3

Using this notation, Definition 1 can be reformulated briefly as follows:

Definition 1 (Equivalent formulation). Let Γ be a set of sentences and φ a sentence
from L. We say that Γ is friendly to φ (in symbols, Γ �∼ φ) iff for every model A |= Γ
for the language LΓ, there is a model A′ for the same language such that A �LΓ A′ and,
furthermore, A′ can be expanded to a model A′′ for the language LΓ,φ for which A′′ |= φ.

We end this introduction with three remarks that may help the reader appreciate the
boundaries of the definition.

Example 1. A simple example taken from [12], where it is used for a different purpose,
shows that �∼ is not a trivial relation. Suppose (G,+) is a six-element group. Then
Th(G,+), the complete first-order theory of the structure (G,+), is not friendly to the
sentence φField, the conjunction of the axioms for fields. This is because every elementary
extension of (G,+) still has exactly six elements, and all finite fields are of order pn

for some n ≥ 1 and p prime. Similarly, considering now infinite structures, the complete
first-order theory of (Z,+) is not friendly to φField as we have that φField � (1 + 1 =
0) ∨ ∃x(x + x = 1) but (1 + 1 = 0) ∨ ∃x(x + x = 1) is false in the structure (Z,+).

1.1. Upper bound to generality. If we seek to increase the generality of the definition
of friendliness further, by replacing the notion of expansion by a more general
relation that also allows the addition of new elements to the domain, then the
desired relationship to classical consequence breaks down: the ∀∀ counterpart of
such a definition no longer coincides with classical consequence. This is shown in
the Appendix.

1.2. Irregularities. While Definition 1 provides the most regular notion of
friendliness in the first-order context that we have been able to construct, it will be
shown in the text that it is still not as regular as is the corresponding relation in the
propositional context. Specifically, both compactness and interpolation fail (although a
Beth property holds). Such irregularities diminish when the language does not contain
equality, as will be shown in the Appendix.

§2. Continuities with the propositional case. This section extends to the first-order
context a number of properties established in [15] for the propositional one and
introduces some properties new to the first-order context. Properties that do not extend
to the first-order context are considered in Section 3.

The first proposition (supraclassicality) is trivial but worth stating as it is repeatedly
applied:

Proposition 2 (Supraclassicality). Γ � φ only if Γ �∼ φ.

Proof. Suppose that Γ � φ. Consider a model A |= Γ for the language LΓ. Then any
model A′ for the same language such that A �LΓ A′ is a model of Γ so, since Γ � φ,
in whatever way one expands A′ to a model A′′ for the language LΓ,φ we must have
A′′ |= φ.

Next we identify four contexts in which �∼ reduces to �. In some of them, we use
Robinson diagrams. The reader can consult [9] for an exposition of the technique. For
any structure B for a language L, we will let eldiag(B) denote the elementary diagram
of the structure B. Importantly, eldiag(B) is a theory in the language resulting from
adding to L new constants for all the elements in the domain of B and containing all
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4 GUILLERMO BADIA AND DAVID MAKINSON

the first-order sentences true in the expansion B′ of B where each constant has been
interpreted as its corresponding element in the domain of B. The useful feature of
eldiag(B) is that whenever a model satisfies it, B can be elementarily embedded into
its restriction to language L [9, lemma 2.5.3].

Proposition 3 (First Reduction Case). If Lφ ⊆ LΓ, then Γ �∼ φ iff Γ � φ.

Proof. Right to left holds directly by supraclassicality. Left to right: Suppose that
Γ �∼ φ and A |= Γ where A is a model for the language LΓ,φ ; we need to show that
A |= φ. By the hypothesis, there is a modelA′ for the same language such thatA �LΓ A′

and, furthermore, A′ can be expanded to a model A′′ for the language LΓ,φ for which
A′′ |= φ. However, sinceLφ ⊆ LΓ,A′′ = A′, soA′ |= φ and sinceA �LΓ A′, alsoA |= φ
as desired.

Proposition 4 (Second Reduction Case). Let Γ be a consistent and complete theory
in a language LΓ. Then for any sentence φ of L, Γ �∼ φ iff Γ 
� ¬φ.

Proof. Let Γ �∼ φ. Since Γ is consistent, we have a model A |= Γ for the language
LΓ, but given that Γ �∼ φ, there is a model A′ for the same language such that A �LΓ A′

and, furthermore, A′ can be expanded to a model A′′ for the language LΓ,φ for which
A′′ |= φ. But if Γ � ¬φ, then each of A,A′,A′′ |= ¬φ. Consequently, Γ 
� ¬φ.

For the converse, assume that Γ 
� ¬φ. Then we have a model B for the language
LΓ,φ such that B |= Γ and B 
|= ¬φ, i.e., B |= φ, and clearly, (B � LΓ) |= Γ. We need
to show that Γ �∼ φ. Let A be a model for the language LΓ with A |= Γ. We need
to find a model A′ for the same language such that A �LΓ A′ and an expansion A′′

of A′ to the language LΓ,φ for which A′′ |= φ. To find a suitable A′, first observe
that B ≡LΓ A (the structures are elementarily equivalent in the language LΓ) since
Γ is complete. This implies that ThLΓ(A) ∪ {φ} = ThLΓ(B) ∪ {φ} is consistent. By
a routine compactness argument using Robinson diagrams, there is a model A′ with
the properties that we need. We briefly sketch the argument. All we need to do is
show that eldiag(A) ∪ {φ} is consistent and therefore has a model C for then we can
let A′′ = (C � LΓ,φ) and A′ = (C � LΓ). Suppose otherwise, that is, for some finite
T ⊆ eldiag(A), the theory T ∪ {φ} is not consistent. Then φ � ¬

∧
T , but then since

the diagram constants in T are all new to LΓ,φ , φ � ∀x¬
∧
T ∗ by [9, lemma 2.3.2]

where T ∗ is the result of replacing in every sentence in T the new constants by new
variables. But then B |= ∀x¬

∧
T ∗ and since A ≡LΓ B, we have that A |= ∀x¬

∧
T ∗

which is a contradiction since A |= ∃x
∧
T ∗.

The following two reduction cases concern the case where Γ is empty and may appear
less interesting in themselves, but turn out to be useful in proving results on recursive
enumerability (Proposition 19 and Remark 21).

Proposition 5 (Third Reduction Case). For any sentence φ of L not involving the
equality symbol, �∼ φ iff φ is satisfiable.

Proof. Left to right holds by Proposition 2. For the converse, suppose that φ is
satisfiable, so there is a model A in the language Lφ with A |= φ. Since φ is equality-
free, Lemma [5, lemma 2.24] tells us that there is an infinite model A′′ with |A′′| > |A|
with A′′ |= φ. Choose A′ to be the restriction of A′′ to the empty language. Since
A,A′ are both models for the empty language without negation, they are elementary
equivalent; A′ extends to A′′; and A′′ |= φ. Thus the right-hand side of the proposition
holds.
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FIRST-ORDER FRIENDLINESS 5

Proposition 6 (Fourth Reduction Case). For any sentence φ of L not involving any
other predicate than the equality symbol ‘=’, �∼ φ iff � φ.

Proof. We start by observing that φ has models of all sizes only if �∼ φ. Suppose first
that φ has models of all sizes. Then let A be a model for the empty language, so that A
may be identified with a set. But then surely it can be expanded to a model of φ by the
hypothesis that φ has models of all sizes. Now we claim that �∼ φ iff φ has models of
all finite sizes. If �∼ φ then any finite set can be expanded to a model of φ because any
elementary extension of a structure of n elements satisfies a first-order formula saying
‘there are n elements’. Hence, φ has models of all finite cardinalities. If the latter, on
the other hand, given any finite set we can find a model of φ of the same cardinality
as the original set and when seen as a model in the empty language it will be trivially
isomorphic to the original set. Moreover, by the compactness theorem, any formula
φ has models of all cardinalities if it has models of all finite cardinalities. (If φ has
models of all finite cardinalities then the theory T formed by φ and the set of sentences
‘there are at least n elements’ for every n, is finitely satisfiable and by compactness,
satisfiable in an infinite model, so, using the Löwenheim–Skolem theorem, in models
of any infinite cardinality.) Assume that φ has models of all finite sizes. Since the
language only has equality this means that φ is true in all finite models, as they are
just sets. Suppose for contradiction that � φ, that is, ¬φ has a model, but then by [2,
theorem 1] it must have a finite model, which by hypothesis must also be a model of φ.
Thus φ has models of all finite sizes iff � φ.

A simple consequence of Proposition 6 is that, in contrast to the propositional case
[15], here we do not always get ∅ �∼ φ if φ is consistent. In particular, if φ is any pure
equality sentence such that 
� φ we will also have ∅ 
 �∼ φ.

Proposition 7 (Characterization in terms of consistency). Let Γ be a set of sentences
and φ a sentence from L. Then the following are equivalent:

(i) Γ �∼ φ.
(ii) φ is consistent with every set Δ of sentences in the language LΓ that is consistent

with Γ.

Proof. (i) =⇒ (ii): Suppose Γ �∼ φ and Δ is a set of sentences in the language
LΓ consistent with Γ, so that there is a model A |= Γ ∪ Δ for the language LΓ. But
then, since Γ �∼ φ, there is a model A′ for the same language such that A �LΓ A′ (and
thus A′ |= Δ) and A′ can be expanded to a model A′′ for the language LΓ,φ for which
A′′ |= φ. Consequently, φ is consistent with Δ.

(ii) =⇒ (i): Assume that Γ 
 �∼ φ, that is, there is a model A for the language LΓ

such that A |= Γ and for any A′ with A �LΓ A′, any expansion A′′ of A′ to the language
LΓ,φ is such that A′′ 
|= φ, i.e., A′′ |= ¬φ. Take now Δ = ThLΓ(A) (the complete first-
order theory ofA inLΓ). We show that φ is not consistent with Δ (clearly Δ is consistent
with Γ by construction). Suppose for a contradiction that Δ ∪ {φ} is consistent; then
one can show using Robinson diagrams as before that there is a model A′′ |= φ for
the language LΓ,φ such that A �LΓ (A′′ � LΓ) (where (A′′ � LΓ) is the restriction of A′′

to the language LΓ). Choosing A′ as A′′ restricted to LΓ, and noting that A′′ is an
expansion of A′ to the language L�,φ we also have A′′ does not satisfy φ, giving the
desired contradiction.

The characterization in terms of consistency can then be refined as follows, with
the same verifications as in [15]. Observe that those verifications made use of Craig’s
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6 GUILLERMO BADIA AND DAVID MAKINSON

interpolation [6] for classical consequence and hence needed the presence of a falsum
or verum connective in the language (in the presence of equality these are definable).

Proposition 8 (Refinement). Let Γ be a set of sentences and φ a sentence from L.
Then the following are equivalent:

(i) Γ �∼ φ.
(ii) Γ � � for every sentence � of the language LΓ with φ � �.
(iii) Γ � � for every sentence � of the language LΓ ∩ Lφ with φ � �.

Remark 9. The characterization in terms of consistency and its refinements all fail
for the variation of Definition 1 where A′ = A (although the direction (i) =⇒ (ii) in
the characterization in terms of consistency still holds). This corresponding friendliness
relation is denoted by �∼R1

S1
in the Appendix. If one works in a language L– without

equality, it is possible to use the counterexample in [15, p. 6] to see this (there Γ is the set
of all first-order consequences of ∀xPx and φ is the sentence ∃x∃y(Rxy ∧ ¬Ryx)). If
on the other hand, we are working in full L, that example no longer does the trick because
∃x∃y(Rxy ∧ ¬Ryx) is not consistent with ∃x∀y(x = y) while ∀xPx is, and we need to
appeal to a more subtle one. The answer is given using non-resplendent structures. (For
the theory of resplendent structures the reader can consult [4, 9, 12].) A structure A is
resplendent if all existential second-order formulas, that is, formulas of the form ∃Rφ(R)
where φ is a first-order formula, that are true in some elementary extensions of A, are
already true in A. We will borrow the following nice example from [12]: Th(Z,+,×), the
complete theory of the structure (Z,+,×), is not friendly to the sentence

φ(I ) := ∃xI (x) ∧ ∃x¬I (x) ∧ ∀x∀y(x + 1 = y → (I (x) ↔ I (y))),

as the structure (Z,+,×) does not have any proper subset of its universe closed under
successors and predecessors. On the other hand, every set of sentences of the language of
Th(Z,+,×) consistent with Th(Z,+,×) is also consistent with φ(I ) as one can see by
taking any proper elementary extension of (Z,+,×).

Remark 10. However, if one restricts attention to resplendent models only, the version
of �∼ introduced in Definition 1 and �∼R1

S1
, which simply states the existence of an expansion,

become equivalent. Clearly, if Γ �∼R1
S1
φ in the second sense, then Γ �∼ φ in the sense of

Definition 1 (any model is trivially an elementary extension of itself ). On the other
hand if Γ �∼ φ in the sense of Definition 1 then, for any resplendent model of Γ, if the
elementary extension that witnesses this fact can be expanded to a model of φ, then, by
resplendence, the original model already can be expanded in such a way. A useful feature
of resplendent structures is that any model can be elementarily embedded in a resplendent
structure of the same cardinality [4, claim (i), p. 534]. Now let us show that if Γ 
 �∼ φ
when considering all models then Γ 
 �∼ φ when restricting to resplendent models. Assume
the sense of Definition 1 again that Γ 
 �∼ φ and take a model A |= Γ witnessing this fact,
so no elementary extension of it can be expanded to a model of φ. But then there must be
a resplendent elementary extension B of A such that the same occurs ( for otherwise, B
itself could already be expanded to a model of φ contradicting our choice of A). Hence, if
the �∼ relation is defined on resplendent models alone, one can makeA = A′ in Definition 1
without loss of generality.
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Remark 11. �∼R1
S1

is roughly the complement of a relation that was articulated by de
Bouvère [7] in the context of the theory of definition, to serve as a tool for showing the
non-definability of a predicate P in a first-order theory. To bring out the connection, we
state a certain instance of de Bouvère’s Lemma 1 in our notation. Let Δ be a first-order
theory and P a predicate of its language L = LΔ. Write L \ P for that language less P.
Then a sufficient condition for P to be undefinable in CnL\P(Δ) (where this is the set of
consequences of Δ in the language L \ P) is that there is a model of CnL\P(Δ) for the
language L \ P that cannot be extended to a model of Δ by giving an interpretation of P.
In the case that Δ is a singleton {φ} the condition becomes: there is a model of CnL\P(φ)
that cannot be extended to a model of φ by giving an interpretation of P; in other words, it
requires that CnL\P(φ) 
 �∼R1

S1
φ. In this way, a special case of de Bouvère’s condition (the

one where Δ is a singleton) requires that a certain pair is not in the relation �∼R1
S1

.

Next we mention some more properties that carry over from the propositional case:

Proposition 12. Let Γ,Δ be sets of sentences and φ,� sentences from L. Then:

(i) (Right weakening): Γ �∼ φ � � only if Γ �∼ �.
(ii) (Singleton cumulative transitivity): Whenever Γ �∼ φ and Γ, φ �∼ � we have

that Γ �∼ �.
(iii) (Local left strengthening): Suppose that LΔ ⊆ LΓ. Then Δ � Γ �∼ φ only if

Δ �∼ φ.
(iv) (Local left equivalence): Suppose that LΔ ⊆ LΓ. Then Γ �∼ φ and Γ �� Δ only

if Δ �∼ φ.
(v) (Local monotony): Suppose that LΔ ⊆ LΓ, Γ �∼ φ and Γ ⊆ Δ only if Δ �∼ φ.
(vi) (Local disjunction in the premisses): SupposeL� ⊆ LΓ,φ andLφ ⊆ LΓ,�. Then

Γ, φ �∼ � and Γ, � �∼ � together imply Γ, φ ∨ � �∼ �.
(vii) (Proof by exhaustion): Γ, φ �∼ � and Γ,¬φ �∼ � together imply Γ �∼ �.

Proof. (i) follows from the definition, while (iv) and (v) are immediate consequences
of (iii) and (vii) is immediate from (vi). The verifications for the remainder are
essentially the same as for the propositional case, as set out in [15], but we run through
them for the reader’s convenience. Suppose that Γ �∼ φ and Γ, φ �∼ �. Take any model
A |= Γ for the language LΓ. By hypothesis, there is a model A′ for the same language
such that both A �LΓ A′ and A′ can be expanded to a model A′′ for the language LΓ,φ

for which A′′ |= φ. But now, by hypothesis again, one may find A′′′ with A′′ �LΓ,φ A
′′′

(and hence A �LΓ (A′′′ � LΓ)) such that A′′′ (and hence (A′′′ � LΓ)) can be expanded
to a model A′′′′ |= �.

(iii): Assume that LΔ ⊆ LΓ and Δ � Γ �∼ φ. Take any model A |= Δ for the language
LΔ. By hypothesis, since Δ � Γ, any expansion A′ of A toLΓ must be such that A′ |= Γ.
But then, since Γ �∼ φ, we have that there is a model A′′ for the same language such
that A′ �LΓ A′′ and, furthermore, A′′ can be expanded to a model A′′′ for the language
LΓ,φ for which A′′′ |= φ. So A = (A′ � LΔ) �LΔ (A′′ � LΔ), and we have that Δ �∼ φ as
desired.

(vi): Suppose that Γ, φ ∨ � 
 �∼ �, so there is a model A for the language LΓ,φ,� such
that A |= Γ and A |= φ ∨ � such that there is no model A′ for LΓ,φ,� such that both
A �LΓ,φ,� A′ and A′ can be expanded to a model A′′ for the language LΓ,φ,�,� for which
A′′ |= �. By the hypotheses,LΓ,φ,� = LΓ,φ = LΓ,�, so eitherA |= φ orA |= �, and thus
either Γ, φ 
 �∼ � or Γ, � 
 �∼ � as desired.
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8 GUILLERMO BADIA AND DAVID MAKINSON

§3. First-order discontinuities. We know from [15] that compactness holds in quite
a strong form in the propositional context. But it fails in the first-order case because
we are requiring, in Definition 1 of first-order friendliness, that the model A′′ has the
same domain as the model A′ (which in turn is elementarily equivalent to A). This
permits the construction of a counterexample to compactness as follows.

Proposition 13 (Compactness fails for �∼). There is a set Γ of sentences such that
Γ �∼ φ but for no finite set Γ0 ⊆ Γ do we have that Γ0 �∼ φ.

Proof. Consider the first-order theory and sentence

Γ := {‘there are at least n elements’ | n > 0}

φ := ‘the relation R is an injective but not surjective total mapping on the domain’.

It is easy to see that Γ �∼ φ: any model A |= Γ has to be infinite, so it can clearly be
expanded to a model of φ (which simply restates Dedekind’s definition of infinity).
Assume that Γ0 ⊆ Γ is finite, and suppose for a contradiction that Γ0 �∼ φ, so there
is a model A′ for the language LΓ0 such that A �LΓ0

A′ (observe that since A is finite
and we are assuming that the language contains equality, A′ must be the same size)
and, furthermore, A′ can be expanded to a model A′′ for the language LΓ0,φ for which
A′′ |= φ, but this is a contradiction as it would imply that A′ is infinite.

Remark 14. The argument for Proposition 13 works equally well for the variant of
Definition 1 where A = A′. On the other hand it does not work when the language lacks
equality; indeed, in that case we have a quite trivial (and rather uninteresting) form of
compactness. Let φ be a sentence and Γ a set of sentences in a language L– where the
superscript means that the language does not contain equality. If Γ �∼ φ, either φ is
inconsistent or not. If the first, Γ itself must be inconsistent, so by compactness for �,
there is a finite subset Γ0 ⊆ Γ that is inconsistent. Trivially, Γ0 �∼ φ in this case. If, on
the other hand, φ is consistent we have that ∅ �∼ φ. To see this take any model A of
∅, that is, any set A, since ∅ is a theory in the empty language, and consider a model
B |= φ. Either |B | ≤ |A| or |A| ≤ |B |. If the former, then by a known result of first-order
logic without equality [5, lemma 2.24] or [1, chap. IV, sec. 1] (stated more generally in
[3, lemma 3]), there is a model A′′ |= φ such that |B | ≤ |A′′| = |A|. Hence, letting the
set A′′ be considered as a model A′ for ∅ we have that it is a trivial (since the language
is empty) elementary extension of A, so we are done. If, on the other hand, we have the
latter possibility, then there is an injection from A into B, and hence letting A′ = A and
A′′ = B we get the models needed to witness ∅ �∼ φ. Incidentally, this is a simple and
naturally arising example of proof by cases using an undecidable criterion (whether φ is
consistent or not) for the two cases (cf.[11]).

We can also construct a counter-example to interpolation.

Proposition 15 (Interpolation fails for the relation �∼). There is a set of sentences Γ
and sentence φ such that Γ �∼ φ, but there is no interpolant � in the language LΓ ∩ Lφ
such that Γ �∼ � and � �∼ φ.

Proof. Consider the theory Γ and sentence φ in the proof of Proposition 13. We
know that Γ �∼ φ and Γ is consistent. However, if there is an interpolant � which uses
equality in the languageLΓ ∩ Lφ (which is just the pure language of equality) such that
Γ �∼ � and � �∼ φ, this means that � only has infinite models. To see this, suppose that
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� �∼ φ and A |= � where A is a model for the pure language of equality. It follows that
there is a model A′ for the same language such that A �L� A′ and that, furthermore,
A′ can be expanded to a model A′′ for the language L�,φ for which A′′ |= φ, and hence
A′ has to be infinite (and then A is infinite too as the pure-equality sentences ‘there
are at least n elements’ are all true in A′ and thus in A since A �L� A′). Since Γ is
consistent and Γ �∼�, then� clearly has a model, and hence we obtain a contradiction
with [2, theorem 1] which implies that � has a finite model since it is a sentence in the
pure language of equality.

Remark 16. This counterexample to interpolation also works for the variant of
Definition 1 where A = A′. We note that if the language lacks equality but has a zero-ary
⊥ connective, then the counter-example in Proposition 15 is no longer available and in
fact interpolation then holds in a rather trivial way, as can be shown by essentially the
same kind of argument as in Remark 14 (putting ⊥ in place of Γ0 in the case that Γ is
inconsistent, and putting � in place of the empty set when φ is consistent).

We have seen the failure of interpolation, so what about the Beth definability
theorem? As it is well-known, interpolation gives Beth definability in first-order logic
(the other direction is false [10] in general when considering abstract logics in the sense
of Lindström [13]). Thus even though we have disproved the former it is still reasonable
to wonder about the latter—and it comes out true.

Proposition 17 (Beth definability property for �∼). Let P be an n-ary predicate
symbol not in language L (with or without equality), Γ a set of sentences where LΓ =
L ∪ {P} and A a model for L. Then the following are equivalent:

(i) If (A, B) |= Γ and (A, C ) |= Γ (where (A, B), (A, C ) are the expansions of
A obtained by interpreting the predicate P as the n-ary relations B and C,
respectively), then B = C .

(ii) There is a formula �(x) of L such that

Γ�∼∀x(�(x) ↔ P(x)).

(iii) There is a formula �(x) of L such that

Γ � ∀x(�(x) ↔ P(x)).

Proof. (i) is equivalent to (iii) by the Beth definability theorem, and (iii) is equivalent
to (ii) as an immediate consequence of Proposition 3 (which does not depend on the
presence of equality in the language).

Remark 18. The argument for the Beth definability property works as well for the
variant of Definition 1 where A = A′. On the other hand, for both definitions, if in the
version of Beth definability that we have given for �∼ we weaken the requirement to
LΓ ⊆ L ∪ {P}, the implication (ii) =⇒ (iii) fails. This is because if P does not appear
in Γ then (ii) holds trivially for any formula � of L whilst (iii) holds only when Γ is
inconsistent.

§4. Non-axiomatizability. Even though Proposition 13 implies that there can be no
strongly complete (and sound) finitary axiomatization of �∼ (as the existence of such an
axiomatization would imply compactness for the consequence relation), it still makes
sense to ask whether a weakly complete finitary axiomatization exists. It turns out that
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for predicate calculus this is not possible either. In Proposition 19 and its Corollary
it is assumed that the language has countably many predicates and function letters of
whatever arities are needed for the Church–Turing theorem to hold.

In what follows, as in the usual predicate calculus, we always assume that we have
as rich a vocabulary as necessary, that is, we have a countable list of predicate and
function symbols of whatever arity we might wish.

Proposition 19. The set of formulas φ in predicate calculus without equality for which
�∼ φ is not recursively enumerable.

Proof. First recall that the set of validities of predicate calculus without equality
is not recursive by the Church–Turing theorem [11, theorem 54 of sec. 76]. Thus the
set of formulas without equality that are satisfiable cannot be recursively enumerable
since the set of validities is recursively enumerable. We then use Proposition 5 to get
the result.

Corollary 20. The set of formulas φ in predicate calculus with equality for which
�∼ φ is not recursively enumerable.

Proof. Clearly, any effective enumeration of the formulae φ with equality such that
�∼ φ, can be transformed into an effective enumeration of those among them that lack
equality, contrary to Proposition 19.

Remark 21. It is natural to ask what happens if we have an empty vocabulary and
the pure language of equality. In this case, we have recursive enumerability thanks to
Proposition 6.

§5. Open questions. There are many directions for further research. One could look
for other relations between models that make sense as specifications of the relation
between A and A′; back-and-forth equivalence is mentioned in the Appendix as a
possibility. In the context of equality-free logic, one might also consider variants using
the relation of weak isomorphism from [3]. Finally, one might go beyond the context of
classical logic to explore intuitionistic or modal contexts, in which further specifications
of the relation between A and A′ are suggested by bisimulation and similar notions.

Appendix. A fairly general format for variants of Definition 1 in first-order contexts
is as follows:

Say that a set Γ of sentences is friendlyR
S (in symbols �∼R

S ) to a formula φ iff for
every model A for the language LΓ, if A satisfies Γ then there are models A′,
A′′ for languages LΓ, LΓ,φ , respectively with (A,A′) ∈ R, (A′,A′′) ∈ S and A′′

satisfies both Γ and φ.

Our guiding idea is that R is some kind of relation of being ‘...is essentially the same
as ...’, and S one of ‘...can be enlarged to ...’. Various definitions emerge from different
ways of specifying the two relations. There are at least four interesting ways of filling
in for R, and another three for S. We choose R to cover relations at least as strong
as elementary equivalence bearing in mind the remark of Angus Macintyre that in
the model theory of first-order logic ‘elementary equivalence is the most fundamental
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concept [...] It is the analogue of isomorphism in algebra’ [14, p. 140]. Here are some
options for R: (A,A′) ∈ R iff:

R1: A = A′.
R2: A is isomorphic to A′.
R3: A can be elementarily embedded into A′.
R4: A is elementarily equivalent to A′.

Clearly each option Ri implies Ri+1. Our Definition 1 uses R3. Another example, which
we have not discussed, is back-and-forth equivalence in terms of Ehrenfeucht–Fraı̈ssé
games [9, corollary 3.3.3] but for simplicity we will leave it out of our analysis, which
is by no means complete.

As regards ways of filling S, the situation is more subtle. One could think of S as a
being described by a triple 〈Di, C, Pj〉 where i, j ∈ {1, 2} where:

D1 says that A′ = A′′.
D2 says that A′ ⊆ A′′.
C says that for every constant symbol occurring in Γ, its value in A′′ is the same
as its value in A′.
P1 says that for every predicate symbol occurring in Γ, its value in A′′ is the
same as its value in A′.
P2 says that for every predicate symbol occurring in Γ, its value in A′′ intersected
with the appropriate power of A′, is the same as its value in A′.

Clearly, D1 implies D2 and when D1 holds then P1 is equivalent to P2. So we get three
ways of filling in for S: 〈D1, C, P1〉 is equivalent to 〈D1, C, P2〉 which in turn implies
〈D2, C, P1〉 which implies 〈D2, C, P2〉. That is, we are left with three possibilities:

S1 given by 〈D1, C, P1〉,
S2 given by 〈D2, C, P1〉, and
S3 given by 〈D2, C, P2〉.

Definition 1 uses specification S1, the strongest in this list, so the relation defined is
�∼R3

S1
while a variant of it that is mentioned from time to time in the main text is �∼R1

S1
.

Remark 22. Before continuing, we reflect on the three options Si . Clearly, S1 tells
us that A′ = (A′′ � LΓ). In contrast, S2 tells us that A′ ⊆ (A′′ � LΓ), that is, A′ is a
submodel of (A′′ � LΓ) and, furthermore, it is a pure submodel [9, p. 528] in the equality-
free language L–

Γ in the sense that any primitive positive existential formula of L–
Γ (i.e.,

formula of the form ∃yφ(y) where φ(y) is a conjunction of atomic formulas, excluding
identities) that is satisfied in (A′′ � LΓ) by a sequence of elements fromA′ must be satisfied
in A′ (equivalently, all negations of existential primitive positive formulas satisfied in A′

are satisfied in (A′′ � LΓ)). On the other hand, S3 only tells us that A′ ⊆ (A′′ � LΓ).

Proposition 23. Let Ri (i ∈ {1, 2, 3, 4}) and Sj (j ∈ {1, 2, 3}) be as above. Then:

(i) �∼R1
Sj = �∼R2

Sj ⊆ �∼R3
Sj ⊆ �∼R4

Sj for j ∈ {1, 2, 3}, �∼R3
S1

⊇ �∼R4
S1

, and

(ii) �∼Ri
S1

⊆ �∼Ri
S2

⊆ �∼Ri
S3

for i ∈ {1, 2, 3, 4}.

Proof. (i): Clearly, all left-in-right inclusions hold since each Ri ⊆ Ri+1. The
converse inclusion �∼R2

Sj ⊆ �∼R1
Sj is easy to see because we can isomorphically copyA′′ as

an expansion of A itself. Now we wish to show that �∼R4
S1

⊆ �∼R3
S1

. Suppose that Γ �∼R4
S1
φ;
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12 GUILLERMO BADIA AND DAVID MAKINSON

we want to show that Γ �∼R3
S1
φ (which is just what we have called Γ �∼ φ until now). Let

thenA |= Γ be an arbitrary model forLΓ, so by the assumption Γ �∼R4
S1
φ, there is a model

A′ ≡LΓ A which can be expanded to a model A′′ for the language LΓ,φ with A′′ |= φ.

In order to establish that Γ �∼R3
S1
φ it suffices to show that eldiag(A) ∪ {φ} is consistent.

Suppose otherwise, that is, for some finite T ⊆ eldiag(A), the theory T ∪ {φ} is not
consistent. Then φ � ¬

∧
T , but then since the diagram constants in T are all new

to LΓ,φ , φ � ∀x¬
∧
T ∗ by [9, Lemma 2.3.2] where T ∗ is the result of replacing in

every sentence in T the new constants by new variables. Then A′′ |= ∀x¬
∧
T ∗ so

A′ |= ∀x¬
∧
T ∗ and since A′ ≡LΓ A, we have that A |= ∀x¬

∧
T ∗. On the other hand,

since (A, a) |= T ⊆ eldiag(A) (where a is a list of fresh names for the elements of A),
we have A |= ∃x

∧
T ∗, giving us a contradiction.

(ii): This is immediate by the observations in Remark 22 on the connections between
S1, S2, and S3.

Thus it would be possible to reformulate Definition 1 equivalently with the
attractively symmetric R4 in place of the non-symmetric R3. As mentioned in the
Introduction, the reason is that our proofs using Robinson diagrams (for Propositions 4
and 7) are more easily carried out in terms of R3 than R4.

However, some of the relations that we have just introduced are, in a certain respect,
anomalous. For, as mentioned in the Introduction, in both propositional and first-order
contexts the friendliness relation is motivated by the idea that it is a ∀∃ counterpart of
a ∀∀ definition of classical consequence. However, in the first-order context, it turns
out that for the relations �∼Ri

Sj (j = 2, 3), the ∀∀ counterpart of the ∀∃ relation of �∼Ri
Sj

is not classical consequence. To be precise:

Proposition 24. For each choice of Ri (1 ≤ i ≤ 4), the following two conditions are
equivalent for every sentence φ and set Γ of sentences:

(1) Γ � φ.
(2) For every modelA for the languageLΓ, ifA satisfies Γ thenA′′ satisfies both Γ and
φ for all models A′, A′′ for languages LΓ, LΓ,φ , respectively with (A,A′) ∈ Ri ,
(A′,A′′) ∈ Sj for j = 1.

On the other hand, the implication (1) =⇒ (2) fails for all Ri (1 ≤ i ≤ 4), when
2 ≤ j ≤ 3.

Proof. We will split this proof in cases, depending on what �∼Ri
Sj is.

For the case �∼R3
S1

, assume that (1) and consider a model A for the language LΓ

such that A |= Γ. Furthermore, suppose that (A,A′) ∈ R3 and (A′,A′′) ∈ S1. Since
(A,A′) ∈ R3, also A′ |= Γ and thus A′′ |= Γ since (A′,A′′) ∈ S1. This immediately
entails that A′′ |= φ by the assumption (1). Conversely, assuming (2), we may let
A′, A′′ be A and any expansion of A to LΓ,φ , respectively, to get that Γ � φ. Cases

�∼R1
S1
, �∼R2

S1
, �∼R4

S1
are established similarly to �∼R3

S1
.

For the second part of the proposition, let us do the case of �∼R1
S3

as an example. Let
the vocabulary of the language be empty and consider a model A = A′ (in this case just
a set) of size 7 (any finite number will do the trick). Then let A′′ be simply an infinite
model. Now the sentence φ that says there are at most seven objects is true in A but
false in A′′. Trivially φ � φ, so this shows that (1) does not imply (2).
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Table 1. Summary of properties of friendliness and sub-friendliness

Supra Reduction Consistency Compactness Interpolation Beth

�∼R1
S1

= �∼R2
S1

+ [Rmk. 25] – [Rmk. 25] – [Rmk. 9] – [Rmk. 14] – [Rmk. 16] + [Rmk. 18]

�∼R3
S1

= �∼R4
S1

+ [Prop. 2] + [Prop. 3 & 4] + [Prop. 7] – [Prop. 13] – [Prop. 15] + [Prop. 17]

Table 2. Summary of properties for languages with ⊥ but without equality

Supra Reduction Consistency Compactness Interpolation Beth

�∼R1
S1

= �∼R2
S1

+ [Rmk. 25] ? – [Rmk. 9] + [Rmk. 14] + [Rmk. 16] + [Rmk. 18]

�∼R3
S1

= �∼R4
S1

+ [Prop. 2] + [Prop. 3 & 4] + [Prop. 7] + [Rmk. 14] + [Rmk. 16] + [Prop. 17]

Table 1 collects the main facts about the properties of those of the friendliness
relations that we have defined, that are not anomalous in the sense described above.
Almost all of the verifications have already been carried out in the text, as specified in
the table, with the remainder in Remark 25.

Remark 25. Supraclassicality (Proposition 2) trivially holds for all the inference
relations just defined because we can always take A = A′ = A′′. Furthermore, for
�∼R1

S1
= �∼R2

S1
we get the first reduction case but not the second. For the First Reduction

Case we simply use Proposition 23(i) and Proposition 3 itself. For the Second Reduction
Case, we have that Γ �∼R1

S1
φ only if Γ 
� ¬φ, but not the converse. If Γ �∼R1

S1
φ, then by

Proposition 23(i) and Proposition 4, Γ 
� ¬φ. To give a counterexample for the converse
let Γ be ‘true arithmetic’, that is, the theory of the structure of the natural numbers N. Γ
is complete and has a model A with a non-standard number c. Let φ be the sentence that
says ‘f is a non-surjective injection from the elements that come before c in the order <
into themselves’. Since c is a non-standard number it must have infinitely many elements
that come before it in A and hence A can be expanded to a model of φ. This tells us that
Γ 
� ¬φ. On the other hand, clearly the standard model of arithmetic (a model of Γ by
definition) cannot be expanded to a model of φ, and thus Γ 
 �∼R1

S1
φ.

Now let us conclude with some remarks on equality-free logic with a falsum
constant ⊥. Naturally, the expressive power of these languages is reduced at the level of
classes of models that one can axiomatize, but from the point of view of theories one
can introduce equality by special axioms as a congruence relation on the vocabulary
in question. In various places of the present paper (including Proposition 23) we used
the method of diagrams, but in the equality-free context one has to be more careful
[8]. Since the diagram in this setting does not contain equality formulas anymore, we
cannot guarantee the construction of an embedding as we cannot define the obvious
injective mapping. Thus it makes sense to replace the notion of elementary embedding
in the above discussion (including Definition 1) by that of an ‘elementary mapping’ in
the style of [8, proposition 2.8]. Once this modification is carried out, Table 2 collects
the main facts that we are aware of for variants of Definition 1 in an equality-free
context with the presence of falsum ⊥, as well as one open question denoted by a
question mark (observe that in this case the counterexample in Remark 25 does not
do the trick as it uses equality). The only thing we omit in Table 2 is the information in
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Proposition 19. We put as references the corresponding results for the original version
of Definition 1 because the proofs are essentially a verbatim repetition of what is
already presented.

On this topic of equality-free logic we wish to leave two questions to be tackled in
further research (as they do not seem to be easily answerable by the methods in the
present paper):

Problem 26. When equality is available, does Definition 1 yield the same result (in
terms of logical properties) with ‘elementary mapping’ (in the sense of equality-free logic)
in place of ‘elementary embedding’?

Problem 27. When equality is available, if the answer to Problem 26 is negative, does
Definition 1 with ‘elementary mapping’ remain a ∀∃ analogue of the ∀∀ definition of
consequence?
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