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Abstract

Let G be a graph with m edges, minimum degree δ and containing no cycle of length 4. Answering a
question of Bollobás and Scott, Fan et al. [‘Bisections of graphs without short cycles’, Combinatorics,
Probability and Computing 27(1) (2018), 44–59] showed that if (i) G is 2-connected, or (ii) δ ≥ 3, or (iii)
δ ≥ 2 and the girth of G is at least 5, then G admits a bisection such that max{e(V1), e(V2)} ≤ (1/4 + o(1))m,
where e(Vi) denotes the number of edges of G with both ends in Vi. Let s ≥ 2 be an integer. In this note,
we prove that if δ ≥ 2s − 1 and G contains no K2,s as a subgraph, then G admits a bisection such that
max{e(V1), e(V2)} ≤ (1/4 + o(1))m.
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1. Introduction

Many classical partitioning problems in combinatorics seek a partition of a combi-
natorial object (for example, a graph, directed graph, hypergraph and so on) which
optimises a single quantity. For example, the well-known max-cut problem asks for a
bipartition (V1, V2) of G which maximises the size of the cut e(V1, V2), the number of
edges with one end in V1 and the other in V2. It is easy to see that every graph with m
edges has a cut of size at least m/2. Edwards [5, 6] proved the best possible result that
the max-cut of graphs with m edges is at least
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Judicious partitioning problems ask for partitions of graphs that maximise or
minimise several quantities simultaneously. Bollobás and Scott initiated a systematic
study of such problems. It was proved in [2] that every graph with m edges has a
bipartition satisfying (1.1) in which each vertex class contains at most
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edges. The extremal graphs are the complete graphs of odd order. For more such results
and problems, we refer the reader to [3, 11, 12].

In this paper, we focus on bisections of graphs. Let G be a graph. A bisection of
G is a bipartition (V1, V2) of its vertex set V(G) with ||V1| − |V2|| ≤ 1, and judicious
bisection problems usually ask for bisections in which both parts induce few edges.
Considering K1,n−1 shows that we cannot in general demand a bisection with fewer
than �m/2� edges in each part. To circumvent this issue, a natural idea is to add a
minimum degree condition for the graphs under consideration. Specifically, Bollobás
and Scott conjectured in [3] that every graph with m edges and minimum degree at
least 2 admits a bisection such that the number of edges in each part is at most m/3.
This problem was studied by several authors [4, 9, 13, 14], and the conjecture was
finally confirmed by Xu and Yu [15].

In [9], Lee et al. studied how the bound changes as the minimum degree condition
imposed on the graph grows. They proved that if δ is even, then every graph G with
m edges and minimum degree δ admits a bisection such that each part induces at
most ((δ + 2)/4(δ + 1) + o(1))m edges. One of their main contributions for analysing
bisections is the introduction of the notion of tight component in a graph. Let T be a
connected graph. We say that T is tight if it has the following properties:

(i) for every vertex v ∈ V(T), T − v contains a perfect matching; and
(ii) for every vertex v ∈ V(T) and every perfect matching M of T − v, no edge in M

has exactly one end adjacent to v.

If G is disconnected, the components which are tight are called tight components of G.
Answering a question of Lee et al. [9], Lu et al. [10] gave the following characterisation
of tight graphs.

LEMMA 1.1 (Lu et al. [10]). A connected graph G is tight if and only if every block of
G is an odd clique.

REMARK 1.2. Each tight graph has an odd number of vertices and the degree of each
vertex is even. Obviously, K1 is tight and we call it trivial.

Note that by taking a random bisection (V1, V2), one expects m/4 edges in each
part. However, e(V1) and e(V1) are dependent and the extremal graphs for the result of
Lee et al. [9] indicate that, in general, both V1 and V2 cannot simultaneously induce at
most (1/4 + o(1))m edges. This leads to the following problem, which was posed by
Bollobás and Scott [3].

PROBLEM 1.3. Under what conditions can we guarantee a bisection (V1, V2) of a graph
G of m edges such that max{e(V1), e(V2)} ≤ (1/4 + o(1))m?

This problem was studied by Fan et al. [7]. They proved the following result. Let G
be a graph with m edges, minimum degree δ and containing no cycle of length 4. If
(i) G is 2-connected, or (ii) δ ≥ 3, or (iii) δ ≥ 2 and the girth of G is at least 5, then G
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admits a bisection (V1, V2) such that max{e(V1), e(V2)} ≤ (1/4 + o(1))m. For a setH of
graphs, we say G isH-free if G contains no member ofH as a subgraph. IfH = {H},
we simply write H-free instead ofH-free. In [8], Hou and Wu improved property (iii)
by considering {K3, Kδ,l}-free graphs with minimum degree δ. In this note, we improve
property (ii).

THEOREM 1.4. For any fixed integer s ≥ 2, if G is K2,s-free and δ(G) ≥ 2s − 1, then G
admits a bisection (V1, V2) such that max{e(V1), e(V2)} ≤ (1/4 + o(1))m.

We end this section with some notation and definitions. All graphs considered here
are finite, undirected, and have no loops and no parallel edges. Let G be a graph with
edge set E(G) and vertex set V(G). The set of neighbours of a vertex v ∈ V(G) is
denoted by NG(v) and d(v) = |NG(v)| is the degree of v in G. Let Δ(G) and δ(G) be
the maximum and minimum degree of G, respectively. For disjoint subsets X, Y of
V(G), we denote by E(X) the set of edges of G with both ends in X, and by E(X, Y)
the set of edges of G with one end in X and the other end in Y. The cardinalities of
E(X) and E(X, Y) are e(X) and e(X, Y), respectively. When X = {v}, we write e(v, Y)
instead of e({v}, Y) for simplicity. Let NY (v) denote the set of neighbours of v in Y and
dY (v) = |NY (v)| the Y-degree of v in G. Clearly, dY (v) = e(v, Y).

2. Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. Let G be a K2,s-free graph with n
vertices, m edges and δ(G) ≥ 2s − 1. It suffices to show that for any small real ε > 0,
there exists an integer n0 > 0 such that if n ≥ n0, then G has a bisection (V1, V2) such
that e(Vi) ≤ (1/4 + ε)m for i = 1, 2. Throughout the proof, we tacitly assume that the
number of vertices n is large enough. Since δ(G) ≥ 2s − 1, we have m ≥ (2s − 1)n/2,
which indicates that m is also large enough.

As a starting point for Problem 1.3, Bollobás and Scott [3] (see also [11]) suggested
that one of Δ(G) = o(n) or δ(G)→ ∞might suffice. This was confirmed independently
by several authors [9, 14, 16]. We use the following result of Lee et al. [9].

LEMMA 2.1 (Lee et al. [9]). Let ε be a fixed positive constant and let G be a graph with
n vertices and m edges such that (i) m ≥ n/ε2 or (ii) Δ(G) ≤ ε2n/2. If n is sufficiently
large, then G admits a bisection (V1, V2) such that max{e(V1), e(V2)} ≤ (1/4 + ε)m.

It follows from Lemma 2.1 that to prove Theorem 1.4, we need only consider sparse
graphs with large maximum degree. More formally, we may assume that

m <
n
ε2 and Δ(G) >

ε2n
2

.

In fact, for sparse graphs with small maximum degree, Lee et al. [9] gave the
following strengthening of Lemma 2.1. The key benefit is its parametrisation in terms
of the number of tight components.
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LEMMA 2.2 (Lee et al. [9]). Given any real constants C, ε > 0, there exist γ, n0 > 0
for which the following holds. Every graph G with n ≥ n0 vertices, m ≤ Cn edges,
maximum degree at most γn and τ tight components admits a bisection (V1, V2) such
that max{e(V1), e(V2)} ≤ m/4 − (n − τ)/8 + εn.

Combining Lemmas 2.1 and 2.2, we see that the main obstacle for Problem 1.3 is
the maximum degree condition. To work around this, we use the natural idea of Lee
et al. [9], which was first used by Bollobás and Scott [1] and then by several others.
First, partition V(G) into A and A, where A consists of certain high degree vertices;
then partition A into A1 and A2 with certain properties and partition A by Lemma 2.2;
finally appropriately combine the vertex subsets of the two partitions. This leads to the
following result.

LEMMA 2.3 (Lee et al. [9]). Given any real constants C, ε > 0, there exist γ, n0 > 0 for
which the following holds. Let G be a given graph with n ≥ n0 vertices and at most Cn
edges, and let A ⊆ V(G) be a set of ≤ γn vertices which has already been partitioned
into A1 and A2. Let A = V(G) \ A, and suppose that every vertex in A has degree at
most γn (with respect to the full G). Let τ be the number of tight components in G[A].
Then there is a bisection (V1, V2) with A1 ⊆ V1 and A2 ⊆ V2, such that for i = 1, 2,

e(Vi) ≤ e(Ai) +
e(Ai, A)

2
+

e(A)
4
− n − τ

8
+ εn.

Now we use Lemma 2.3 and some additional ideas to prove Theorem 1.4. Let

A = {v ∈ V(G) : dG(v) ≥ n3/4} and A = V(G) \ A.

Suppose A � ∅, otherwise we are already done by Lemma 2.2. Note that

2m =
∑

v∈V(G)

d(v) ≥
∑
v∈A

d(v) ≥ |A|n3/4,

which, together with m < n/ε2, yields

|A| < 2n1/4

ε2 , (2.1)

and hence

e(A) ≤
(
|A|
2

)
= O(n1/2).

Partition A into (A1, A2) such that e(A1, A) ≥ e(A2, A) and, subject to this,

θ := e(A1, A) − e(A2, A) (2.2)

is minimised. Since e(A1, A) + e(A2, A) = e(A, A), from (2.2), we see that

e(A2, A) ≤ e(A1, A) =
e(A, A) + θ

2
.
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By (2.1), |A| = O(n1/4). For each v ∈ A, we have dG(v) < n3/4. Since n is sufficiently
large (by choosing n0 large), it follows from Lemma 2.3 (with C = 1/ε2) that G has a
bisection (V1, V2) with A1 ⊆ V1 and A2 ⊆ V2, such that for i = 1, 2,

e(Vi) ≤ e(Ai) +
e(A, A) + θ

4
+

e(A)
4
− n − τ

8
+ εn ≤ 1

4

(
θ +
τ

2
− n

2

)
+

m
4
+

3ε
4

m,

where τ is the number of tight components in G[A]. The last inequality holds as
e(Ai) = O(n1/2) and m ≥ (2s − 1)n/2. Then, to prove e(Vi) ≤ (1/4 + ε)m, it suffices to
show

θ +
τ

2
≤ n

2
+ εm. (2.3)

Now we prove (2.3) through carefully bounding θ and τ. Consider the partition
(T , K) of A, where T consists of all vertices of the tight components in G[A] and
K := A \ T . Let T0 be the set of isolated vertices in G[A] and denote T1 = T \ T0. By
Lemma 1.1, each component of G[T1] has at least three vertices. Therefore,

τ ≤ |T0| +
|T1|
3

.

Let

S = {v ∈ A : dA(v) ≥ 2}.
Then T0 ⊂ S since δ(G) ≥ 2s − 1 ≥ 3. To give a reasonable bound for τ, we bound |S|
by using the condition that G is K2,s-free.

Claim 1. |S| = O(n1/2) and thus τ ≤ 1
3 |T1| + O(n1/2).

Since G is K2,s-free, any pair of vertices in A has at most s − 1 common neighbours
in G (and thus in S). Through (double) counting the number of K1,2 with the 2-degree
vertex in S and the two pendent vertices in A, we have

(s − 1)
(
|A|
2

)
≥

∑
v∈S

(
dA(v)

2

)
≥ |S|.

Since |A| = O(n1/4) by (2.1), we see that |S| = O(n1/2). This proves Claim 1.
For s ≥ 3, we give a better bound for τ.

Claim 2. For s ≥ 3, τ ≤ |S| = O(n1/2).

Clearly, each vertex in S falls in at most one tight component in G[A]. Now
we show that each tight component in G[A] has a vertex in S, which implies that
τ ≤ |S| = O(n1/2). Suppose in contrast that T ′ is a tight component in G[A] which does
not contain a vertex of S. This means each vertex of T ′ has at most one neighbour
in A. Considering one of the endblocks of T ′, by Lemma 1.1, it is an odd clique
with minimum degree at least 2s − 2, and hence contains a K2s−1. Since s ≥ 3, it also
contains a K2,s, which gives a contradiction. This proves Claim 2.

Now we bound θ. In the partition (A1, A2) of A, since A � ∅, we have A1 � ∅.
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Claim 3. For any v ∈ A1, we have dA(v) ≥ θ.

For otherwise, through moving v from A1 to A2,

θ′ = e(A1 \ {v}, A) − e(A2 ∪ {v}, A)

= e(A1, A) − dA(v) − e(A2, A) − dA(v)
= θ − 2dA(v)
> −θ.

However, θ′ = θ − 2dA(v) < θ. This implies that |θ′| < θ, which is a contradiction to the
optimality of the partition (A1, A2). This proves Claim 3.

For some fixed v0 ∈ A1, by Claim 3, θ ≤ dA(v0). We give a bound for dA(v0).

Claim 4. dA(v0) ≤ 1
2 |A| + |S|. Moreover, if s = 2, then dA(v0) ≤ |T0| + 1

3 |T1| + 1
2 |K| + |S|.

Denote X = NA(v0) \ S and Y = A \ X. We show that

|X| ≤ |Y |.

Then the claim follows immediately.
For any connected component B of G[A], no matter whether it belongs to G[T] or

G[K], let B ∩ X = C and B ∩ Y = D. To prove |X| ≤ |Y |, it suffices to show |C| ≤ |D|.
Summing up the degrees of all vertices in C,∑

v∈C
d(v) = 2e(C) + e(C, A) + e(C, D).

Since G contains no K2,s, the maximum degree of G[C] is no more than s − 1, which
implies

e(C) ≤ (s − 1)|C|
2

.

Note that (C ∩ S) ⊂ (X ∩ S) = ∅, so that e(C, A) ≤ |C|. Therefore, on the one hand,

e(C, D) =
∑
v∈C

d(v) − 2e(C) − e(C, A)

≥ (2s − 1)|C| − (s − 1)|C| − |C|
≥ (s − 1)|C|.

On the other hand, for any vertex y of D, if dC(y) ≥ s, then a K2,s can be found easily
in G[v0 ∪ y ∪ NC(y)]. Hence, y has at most s − 1 neighbours in C, which implies

e(C, D) ≤ (s − 1)|D|.

We conclude that

|C| ≤ |D|.
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For the second inequality, by Lemma 1.1, if G is K2,2-free, each block of a tight
component in G[A] has three vertices. Therefore, v0 has at most one neighbour in
each such block. It is easy to see dT (v0) ≤ |T0| + 1

3 |T1|. Through considering nontight
components B (restrict B in G[K]), our proof above implies that dK(v0) ≤ 1

2 |K| + |S|.
Thus, dA(v0) = dT (v0) + dK(v0) ≤ |T0| + 1

3 |T1| + 1
2 |K| + |S| when s = 2. This proves

Claim 4.
When s ≥ 3, combining Claims 2–4,

θ +
τ

2
≤ |A|

2
+ |S| + |S|

2
≤ n

2
+ εm.

When s = 2, by Claims 1 and 3 and the second inequality of Claim 4,

θ +
τ

2
≤ |T0| +

|T1|
3
+
|K|
2
+ |S| + |T1|/3 + O(n1/2)

2
≤ n

2
+ εm,

where the final inequality follows as T0 ⊂ S. This completes the proof of (2.3).
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