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THE DISCONTINUITY PROBLEM

VASCO BRATTKA

Abstract. Matthias Schröder has asked the question whether there is a weakest discontinuous problem

in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest

unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the

effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s

question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we

work in Zermelo–Fraenkel set theory with dependent choice and the axiom of determinacy AD. On the

other hand, using the full axiom of choice, one can construct problems which are discontinuous, but not

effectively so. Hence, the exact situation at the bottom of the Weihrauch lattice sensitively depends on the

axiomatic setting that we choose. We prove our result using a variant of Wadge games for mathematical

problems. While the existence of a winning strategy for Player II characterizes continuity of the problem

(as already shown by Nobrega and Pauly), the existence of a winning strategy for Player I characterizes

effective discontinuity of the problem. ByWeihrauch determinacy we understand the condition that every

problem is either continuous or effectively discontinuous. This notion of determinacy is a fairly strong

notion, as it is not only implied by the axiom of determinacy AD, but it also implies Wadge determinacy.

We close with a brief discussion of generalized notions of productivity.

§1. Introduction. The Weihrauch lattice has been used as a computability-
theoretic framework to analyze the uniform computational content of mathematical
problems from many different areas of mathematics, and it can also be seen as a
uniform variant of reverse mathematics (a recent survey on Weihrauch complexity
can be found in [9]). The notion of a mathematical problem has a very general
definition in this approach.

Definition 1.1 (Problems). A problem is a multi-valued function f :⊆ X ⇒ Y

on represented spaces X,Y that has a realizer.

We recall that by a realizer F :⊆ N
N → N

N of f, wemean a function F that satisfies
äYF (p) ∈ fäX (p) for all p ∈ dom(fäX ), where äX :⊆ N

N → X and äY :⊆ N
N → Y

are the representations of X and Y, respectively (i.e., partial surjective maps onto X
and Y, respectively).
Wenote thatwehave added the conditionhere that aproblemhas tohave a realizer,

since we want to prove all our results over the base theory of Zermelo–Fraenkel set
theory (ZF) together with the axiom of dependent choice (DC), if not otherwise
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1192 VASCO BRATTKA

mentioned. These axioms suffice to prove most results in Weihrauch complexity.
Typically, the full axiom of choice (AC) is freely used in Weihrauch complexity,
often just to guarantee the existence of some realizer. By 〈p, q〉 we denote the usual
pairing function on NN, defined by 〈p, q〉(2n) = p(n), 〈p, q〉(2n + 1) = q(n) for all
p, q ∈ N

N, n ∈ N. Weihrauch reducibility can now be defined as follows.

Definition 1.2 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆W ⇒ Z

be problems. Then f is calledWeihrauch reducible to g, in symbols f≤W g, if there
are computable H,K :⊆ N

N → N
N such that H 〈id, GK〉 is a realizer of f whenever

G is a realizer of g. Analogously, one says that f is strongly Weihrauch reducible
to g, in symbols f≤sW g, if the expression H 〈id, GK〉 can be replaced by HGK .
Both versions of the reducibility have topological counterparts, where one requires
H,K only to be continuous and these reducibilities are denoted by ≤∗

W and ≤∗
sW,

respectively.

The topological version of Weihrauch reducibility has always been studied
alongside the computable version, and all four reducibilities induce a lattice structure
(see [9] for references). Normally, theWeihrauch lattice refers to the lattice induced
by ≤W, but here we will freely use this term also for the lattice structure induced
by≤∗

W. If we want to bemore precise, we will call the latter the topologicalWeihrauch
lattice. Even though this lattice has been studied for about 30 years, very little is
known about the structure of the lattice closer towards the bottom. IndeedMatthias
Schröder has asked the following question1 [6, Question 5.9].

Question1.3 (Matthias Schröder, 2018). Does there exist a discontinuous problem
f such that f ≤∗

W g holds for any other discontinuous problem g?

Here a problem is called continuous if it has a continuous realizer and discontinuous
otherwise. It is clear that the degree 0 of the nowhere defined problems f is the bottom
degree of the (continuous) Weihrauch lattice. The second lowest degree, sometimes
called 1, is the degree of the identity id : NN → N

N that includes all somewhere
defined continuous problems.2 Essentially Schröder’s question is whether there is
a third degree 2 such that the topological Weihrauch lattice starts with the linear
ordered structure 0 < 1 < 2. We will prove that under certain conditions this is
indeed so, namely there is such a third degree given by the problem

DIS : NN
⇒ N

N, p 7→ {q ∈ N
N : U(p) 6= q}

that we call the discontinuity problem (see Definition 3.2). Here U :⊆ N
N → N

N is a
fixed universal computable function.
In Section 3 we prove that the discontinuity problem DIS characterizes effectively

discontinuous problems in the following sense (see Theorem 3.4).

Theorem 1.4 (Continuity and effective discontinuity). Let f :⊆ X ⇒ Y be a
problem. Then we obtain

1The original question is phrased slightly differently, but we interpret it in the intended way.
2For the computability-theoretic version and the strong topological version ofWeihrauch reducibility

the continuous problems with non-empty domain do not form a single equivalence class; however,
together with 0 they still form the cone below id.
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DIS

id

effectively discontinuous

continuous

?

Figure 1. Problems f :⊆ X ⇒ Y with respect to ≤∗
W and ≤

∗
sW.

(1) f ≤∗
W id ⇐⇒ f is continuous,

(2) DIS ≤∗
W f ⇐⇒ f is effectively discontinuous.

The diagram in Figure 1 illustrates the situation. Here effective discontinuity of a
problem f is defined in a very natural way (see Definition 3.1) using a continuous
discontinuity function D : NN → N

N that has to produce an input to every given
potential continuous realizer of f on which this realizer fails.
In some sense the notion of effective discontinuity is reminiscent of the notion

of productivity from classical computability theory, which can be regarded as the
property of being “effectively not c.e.” Indeed a well-known theorem of Myhill [18]
gives us the analog of Theorem 1.4 for subsetsA ⊆ N and many-one reducibility≤m
[25, Theorem 2.4.6], [29, Theorem 2.6.6]. Here the halting problem K ⊆ N plays the
counterpart of the identity and N \ K the counterpart of DIS.

Theorem 1.5 (Myhill, 1955). Let A ⊆ N. Then we obtain

(1) A≤m K ⇐⇒ A is c.e.,
(2) N \ K≤mA ⇐⇒ A is productive.

The diagram in Figure 2 illustrates the situation. In fact, Theorem 1.4 is proved
with the help of the recursion theorem, in a similar way as Theorem 1.5. However,
somewhat surprisingly, the recursion theorem is used for the implication “⇐=” in the
proof of Theorem 1.5(2) and for the direction “=⇒” in the proof of Theorem 1.4(2).
It is well known that Theorem 1.5 does not express a dichotomy, i.e., there are sets

which are neither c.e. nor productive. A set A ⊆ N is called immune if it is infinite,
but does not include an infinite c.e. set [25, 29]. By a classical construction of Post
immune sets exist [23], [25, Theorem 5.2.3], [29, Theorem 2.3.7] and they are clearly
neither c.e. nor productive, since any productive set contains an infinite c.e. subset
(see Figure 2).
Now a key question for us is whether there is a counterpart of immune sets in

our situation, i.e., whether there are problems f that are discontinuous, but not
effectively so (see the question mark in Figure 1). In fact, Post’s construction of a
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N \ KK

productive

computably enumerable

immune set

Figure 2. Sets A ⊆ N with respect to many-one reducibility ≤m.

simple set has some similarity to the construction of so-called Bernstein sets that
can actually be used to construct discontinuous problems that are not effectively
discontinuous (see Corollary 3.9). This leads to the following counterexample (see
Theorem 3.10).

Theorem 1.6. AssumingZFC there are problemsf : NN
⇒ N

N that are continuous,
but not effectively so.

In Section 4 we prove that the axiom of choice is actually required for such a
construction. This can be achieved with the help of a variant of Wadge games
for problems f :⊆ X ⇒ Y , originally considered by Nobrega and Pauly [20, 21].
In fact, we can prove the following result (see Theorem 4.3), part (1) of which is
already due to Nobrega and Pauly.

Theorem 1.7 (Wadge games). We consider the Wadge game of a given problem
f :⊆ X ⇒ Y . Then the following hold:

(1) f is continuous ⇐⇒ Player II has a winning strategy for f,
(2) f is effectively discontinuous ⇐⇒ Player I has a winning strategy for f.

This result implies that under the axiom of determinacy (AD), which states that
everyGale–Stewart game is determined, i.e., either Player I or Player II has awinning
strategy, we really obtain a dichotomy between continuity and effective discontinuity
(see Corollary 4.11).

Corollary 1.8. In ZF+ DC+ AD every problem f :⊆ X ⇒ Y is either continu-
ous or effectively discontinuous.

This can be proved by a suitable reduction of the Wadge game to a Gale–Stewart
game. By Weihrauch determinacy we understand the condition that every problem
f :⊆ X ⇒ Y is either continuous or effectively discontinuous. Then Corollary 1.8
can also be rephrased such that AD implies Weihrauch determinacy. On the other
hand, it is easy to see that Wadge games for problems f :⊆ X ⇒ Y generalize
Wadge games for subsets A,B ⊆ N

N as originally considered by Wadge and hence
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Axiom of Determinacy AD

Weihrauch Determinacy

Wadge Determinacy

Perfect Subset PropertyAxiom of Countable Choice

Figure 3. Determinacy properties in ZF+ DC.

Weihrauch determinacy impliesWadge determinacy, whichmeans that everyWadge
game for subsets A,B ⊆ N

N is determined (see Figure 3).
We leave it open how Weihrauch determinacy is exactly related to the other

given notions of determinacy. We just mention that it is not known whether Wadge
determinacy implies AD, and in fact there is the following conjecture attributed to
Solovay (by Andretta [1]3).

Conjecture 1.9 (Solovay). In ZF+ V = L(R)Wadge determinacy is equivalent
to the axiom of determinacy AD.

We have some partial results (see Proposition 4.15) that suggest that Weihrauch
determinacy is actually even closer related to AD than Wadge determinacy.
In any case, our results show that the exact situation at the bottom of the

topological Weihrauch lattice sensitively depends on the underlying axioms. Using
AD we obtain the following result (as a consequence of Corollary 1.8).

Theorem 1.10. In ZF+ DC+ AD the topological Weihrauch lattice starts with
three linearly ordered degrees, represented by 0 ≤∗

W id ≤
∗
W DIS.

If we replace AD by the axiom of choice AC, then the linear part of the order at
the bottom is just 0 ≤∗

W id and the situation becomes more complicated afterwards
(and by Theorem 3.10 this is even true if we move to the coarser parallelized version
of the Weihrauch lattice).
We briefly summarize the structure of this article. In Section 2 we provide the

version of the recursion theorem that we are going to use for the proof of our
characterization of effectively discontinuous problems via the discontinuity problem.
We also introduce the universal function U and other related concepts. In Section 3
we introduce the discontinuity problem, the notion of effective discontinuity, and we
prove related results. In Section 4 we characterize effective discontinuity using
Wadge games and we study the relation to determinacy of other games such
as Lipschitz games and Gale–Stewart games. In Section 5 we briefly discuss
computable discontinuity of characteristic functions and we indicate how this is

3Andretta also proved that Wadge determinacy implies the axiom of countable choice for Baire space
[1, Theorem 3], whereas Wadge proved that Wadge determinacy implies the perfect subset property for
Baire space [27, Theorem II.C.2].
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1196 VASCO BRATTKA

related to (suitable generalizations of) the notion of productivity. In the conclusions
(Section 6) we mention a number of open problems and suggestions for further
directions of research.

§2. The universal function and the recursion theorem. We recall that a function
F :⊆ N

N → N
N is computable, if there is some computable monotone word function

f : N∗ → N
∗ that approximates F in the sense that F (p) = supw⊑p f(w) holds

for all p ∈ dom(F ). Likewise, F is continuous if and only if an analogous
condition holds for an arbitrary monotone word function f. Hence, we can
define a representation Φ of the set of all continuous functions F :⊆ N

N → N
N

(with natural domains4) by encoding graphs of monotone word functions f into
names of F. In other words, if w : N → N

∗ is a standard bijective numbering
of N∗, then p = 〈n0, k0〉〈n1, k1〉 ... is a name of an extension Φp of F if F is
approximated by some monotone f : N∗ → N

∗ with f(wni ) = wki and for each
p ∈ dom(F ) and n ∈ N there is some i ∈ N with wni ⊑ p and |wni | > n. Here
〈n, k〉 := 1

2 (n + k)(n + k + 1) + k denotes the usual Cantor pairing function for
n, k ∈ N. Intuitively, F = Φp means that p is a listing of a sufficiently large portion
of the graph of a monotone function f : N∗ → N

∗ that approximates F. In order
to guarantee that Φ is a total representation, one still needs to clarify how to deal
with inconsistent names p, i.e., names for which there is no suitable word function f.
Inconsistency can be recognized (i.e., inconsistent names form an open set) and
hence one can just consider those p as names of the nowhere defined function. See
[29, Definition 3.2.9] for the technical details of such a construction of Φ.
Now we can define a computable universal function

U :⊆ N
N → N

N, 〈q, p〉 7→ Φq(p),

for all p, q ∈ N
N [29, Theorem 3.2.16(1)]. Weihrauch [28, Theorems 2.10 and 3.5

and Corollary 2.11] (see also [29, Theorem 3.2.16]) proved the following version of
the smn-theorem for the representation Φ that comes in a version for computable
and a version for continuous functions.

Theorem 2.1 (smn-Theorem). For every computable (continuous) partial function
F :⊆ N

N → N
N there exists a computable (continuous) total function S : NN → N

N

such that ΦS(q)(p) = F 〈q, p〉 for all p, q ∈ N
N.

Among other things this result implies that Φ is precomplete. We recall that in
general a representation ä :⊆ N

N → X of a set X is called precomplete, if for every
computable F :⊆ N

N → N
N there exists a total computable G : NN → N

N such that
äF (p) = äG(p) for all p ∈ dom(F ). In other words, precomplete representations
are exactly those under which partial computable functions can be extended to total
ones.
Using the smn-theorem one can prove the following uniform version of the

recursion theorem along the same lines as the classical recursion theorem. It is
an immediate corollary of a more general result due to Kreitz and Weihrauch [13,

4We note that for mere cardinality reasons there is no representation of all partial continuous F :⊆
NN → NN, but our representation Φ represents sufficiently many such functions in the sense that it
contains an extension of any continuous partial function on Baire space.
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Theorem 3.4] (see also [29, Theorem 3.3.20]), which characterizes precomplete
representations following Ershov’s characterization of precomplete numberings.

Theorem 2.2 (Uniform recursion theorem). There exists a total computable
function T : NN → N

N such that ΦT (p) = ΦΦpT (p) for all p ∈ N
N such that Φp is

total.

As a corollary of this theorem we obtain the following parameterized version of
the recursion theorem that also comes in a version for computable and a version for
continuous functions.

Corollary 2.3 (Parameterized recursion theorem). For every computable (con-
tinuous) functionF :⊆ N

N → N
N there exists a total computable (continuous) function

R : NN → N
N such that UR(q) = F 〈q,R(q)〉 for all q ∈ N

N.

Proof. We prove the version of the statement for continuous functions.
For computable functions one just has to replace the word “continuous” by
“computable” in all occurrences. Let F :⊆ N

N → N
N be continuous. Then by a

double application of the smn-theorem (Theorem 2.1) there is a total continuous
S : NN → N

N such that ΦΦS(q)(r)(p) = F 〈p, 〈r, q〉〉 for all p, q, r ∈ N
N. LetT : NN →

N
N be the computable function from the recursion theorem (Theorem 2.2). Then
R : NN → N

N with R(q) := 〈TS(q), q〉 for all q ∈ N
N is continuous and satisfies

UR(q) = ΦTS(q)(q) = ΦΦS(q)TS(q)(q) = F 〈q, 〈TS(q), q〉〉 = F 〈q,R(q)〉

for all q ∈ N
N. ⊣

In the next section we will use this parameterized version of the recursion theorem
to prove our characterization of effectively discontinuous functions.

§3. Effectively discontinuous problems. We now introduce a concept of com-
putable (and effective) discontinuity. These are strengthenings of the concept of
discontinuity in the sense that the discontinuity is witnessed by a continuous function
D : NN → N

N. A computably discontinuous problem f is supposed to have no
continuous realizer Φq and the computable discontinuity function D : N

N → N
N

computes for every candidate Φq a witnessing input D(q) that shows that the
candidate Φq fails to realize f on that particular input.

Definition 3.1 (Computable discontinuity). Let (X, äX ) and (Y, äY ) be rep-
resented spaces. A problem f :⊆ X ⇒ Y is called computably discontinuous
(effectively discontinuous) if there is a computable (continuous) D : NN → N

N such
that for all q ∈ N

N we obtain

D(q) ∈ dom(fäX ) and äYΦqD(q) 6∈ fäXD(q).

In this case the function D is called a discontinuity function of f.

We emphasize that we consider the condition äYΦqD(q) 6∈ fäXD(q) also as
satisfied when the left-hand side is undefined. If one does not apply this convention,
then one has to write out the condition somewhat more detailed as

D(q) ∈ dom(fäX ) and (D(q) ∈ dom(äYΦq) =⇒ äYΦqD(q) 6∈ fäXD(q)).
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Clearly, every computably discontinuous problem f is effectively discontinuous,
and every effectively discontinuous problem is discontinuous. The definition of
computable (effective) discontinuity is such that a problem f :⊆ X ⇒ Y has the
respective property if and only if its realizer version fr :⊆ N

N
⇒ N

N with fr :=
ä–1Y ◦ f ◦ äX has the property. This implies that it suffices to study the concepts
of computable and effective discontinuity on Baire space NN. We will prove that
effective and computable discontinuity can be both characterized in terms of the
following discontinuity problem.

Definition 3.2 (Discontinuity problem). We define the discontinuity problem by
DIS : NN

⇒ N
N, p 7→ {q ∈ N

N : U(p) 6= q}.

We note that DIS is total, i.e., for instances p 6∈ dom(U) the problem DIS can
provide arbitrary q ∈ N

N as solutions. It is a direct consequence of the parameterized
recursion theorem from Corollary 2.3 that DIS is computably discontinuous.

Proposition 3.3. DIS is computably discontinuous.

Proof. By Corollary 2.3 there is a computable function D : NN → N
N such

that UD(p) = U〈p,D(p)〉 = ΦpD(p) for all p ∈ N
N. This function D is hence a

computable discontinuity function for DIS. ⊣

We generalize this observation with the following result that is illustrated in the
diagram in Figure 1.

Theorem 3.4 (Effective discontinuity). Let f :⊆ X ⇒ Y be a problem. Then:

(1) DIS≤W f ⇐⇒ f is computably discontinuous,
(2) DIS ≤∗

W f ⇐⇒ f is effectively discontinuous.

In both cases one can replaceW by its strong counterpart sW.

Proof. Since f≡sW f
r and f is computably (effectively) discontinuous if and

only iffr is, it suffices to prove both statements for problems of typef :⊆ N
N
⇒ N

N.

(1) “=⇒” Let DIS≤W f hold via computable H,K :⊆ N
N → N

N, i.e.,
H 〈p, FK(p)〉 6= U(p) and H 〈p, FK(p)〉 defined for all p ∈ N

N and every realizer
F of f. In particular, K is total and K(p) ∈ dom(f) for every p ∈ N

N. By the
parameterized recursion theorem from Corollary 2.3 there is some computable
R : NN → N

N such that

H 〈R(q),U〈q,KR(q)〉〉 = UR(q),

for all q ∈ N
N. Then KR is a total computable function and KR(q) ∈ dom(f) for

all q ∈ N
N. Let q ∈ N

N be such that KR(q) ∈ dom(Φq) and let us assume that
U〈q,KR(q)〉 = ΦqKR(q) ∈ fKR(q). Since f is realizable, there is a realizer F of f
with FKR(q) = U〈q,KR(q)〉 and hence

H 〈R(q),U〈q,KR(q)〉〉 = H 〈R(q), FKR(q)〉 6= UR(q)

follows by the choice of H,K in contradiction to the choice of R. Hence
the assumption was wrong, i.e., ΦqKR(q) 6∈ fKR(q) and D := KR is a total
computable discontinuity function for f. “⇐=” Let f be computably discontinuous
with a corresponding computable discontinuity function D : NN → N

N. By the
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smn-theorem (Theorem 2.1) there is a total computable R : NN → N
N such that

U〈R(p), q〉 = U(p) for all p, q ∈ N
N. Now for every realizer F of f and p ∈ N

N we
obtain DR(p) ∈ dom(f) and FDR(p) ∈ fDR(p) and hence

U(p) = U〈R(p), DR(p)〉 = ΦR(p)DR(p) 6= FDR(p),

since D is a discontinuity function. Hence, DR is a computable function that
witnesses DIS≤sW f.

(2) The proof is literally the same as above, except that H,K,R, and D are
supposed to be continuous instead of computable. ⊣

We note that the proof of “⇐=” shows that we could replace the strong versions
of Weihrauch reducibility by an even stronger form of reducibility that only uses the
inner reduction function K and no outer reduction function H.
Now we can ask the question whether every discontinuous problem is automat-

ically computably discontinuous, i.e., whether the discontinuity problem DIS is the
smallest discontinuous problemwith respect to the computable versionofWeihrauch
reducibility. This is clearly not the case, as the following example shows. In fact, we
can infer this from the existence of immune sets. We recall that a set A ⊆ N is called
immune if it is infinite but does not contain any infinite c.e. subset.

Example 3.5. Let A ⊆ N and let fA :⊆ [0, 1]→ R be defined by dom(fA) :=
{2–n : n ∈ A} ∪ {0} and

fA(x) :=

{
1 if x = 0,
0 otherwise.

Then we obtain:

(1) fA discontinuous ⇐⇒ A infinite.
(2) fA computably discontinuous ⇐⇒ A contains an infinite c.e. subset.
(3) fA discontinuous and not computably discontinuous ⇐⇒ A is immune.

Proof. (1) is obvious and (3) follows from (1) and (2). For the proof of (2), we
note that given a computable discontinuity function D : NN → N

N for fA, we get
an infinite c.e. subset of A as follows. Given n ∈ N and An = {0, 1, 2, ... , n} we can
compute a name q of a realizer Φq of the continuous function fAn , and D(q) has
to provide a name of an input 2–k ∈ [0, 1] to fA on which the realizer Φq fails. But
this means that k ∈ A \ An. The collection of all those k for n = 0, 1, 2, ... forms
an infinite c.e. subset of A. On the other hand, given an infinite c.e. subset B ⊆ A
and a potential realizer Φq of fA, we can evaluate Φq successively on partial names
of inputs that correspond to the compact interval [0, 2–k] with k = 0, 1, 2, .... Then
either Φq eventually produces an output that excludes 0 or that excludes 1 or neither
of this ever happens. In the first case, we can find some m ∈ B with m > k and
produce a name of 2–m as output of D(q), since this is a value on which Φq fails to
realize fA(2

–m) = 0. In the second case, we produce a name of 0 as output ofD(q),
since this is then a value on which Φq fails to realize fA(0) = 1. As long as neither
the first nor the second case occurs, we produce the open interval (– 2–k , 2–k+1) as
approximation of an output of D(q). If the first and the second case never occurs,
then this produces a name of 0 as output of D(q), which is then not in the domain
of Φq . Altogether, D is a computable discontinuity function for fA. ⊣
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The following result shows that with respect to the computable version of
Weihrauch reducibility we can even get an infinite descending chain of discontinuous
problems that are not computably discontinuous. If we restrict the discontinuity
problem to the Turing cone [p] := {q ∈ N

N : p≤T q}, we obtain an effectively
discontinuous problem DIS|[p]. With increasing complexity of p these problems

get weaker. By p(n) we denote the n-th Turing jump of p ∈ N
N.

Proposition 3.6. DIS|[p(n+1)]<W DIS|[p(n)] andDIS|[p(n)] is effectively discontinuous

for all p ∈ N
N and n ∈ N, but not computably so for n ≥ 1.

Proof. It is clear that DIS|[p(n+1)]≤sW DIS|[p(n)] holds for all n ∈ N, as the former

problem is a restriction of the latter one. We have DIS|[p(n)] 6≤W DIS|[p(n+1)], as an

instance q≡T p
(n) of DIS|[p(n)] cannot be computably mapped to an instance of

DIS|[p(n+1)]. Hence, DIS|[p(n)] is not computably discontinuous for all p ∈ N
N and

n ≥ 1 by Theorem 3.4.
On the other hand, every function Φq has names of Turing degree above any

p ∈ N
N, and we can even continuously determine such names by adding redundant

information in the code q that encodes p (for instance by repeating the n-th entry of q
exactly p(n) times). In other words, for every p ∈ N

N there is a continuous function
Rp : N

N → N
N such that Φq = ΦRp(q) and p≤TRp(q). Hence DIS ≤∗

W DIS|[p] holds

for every p ∈ N
N. That is, DIS|[p] is effectively discontinuous by Theorem 3.4. ⊣

Hence, we even have an infinite descending chain of effectively discontinuous
problems below DIS with respect to the computable version of Weihrauch
reducibility. In particular, an effectively discontinuous problem does not need to
be computably discontinuous. The next question is whether there are discontinuous
problems, which are not even effectively discontinuous. The following proposition
provides a sufficient condition for such an example.

Proposition 3.7. Let é : NN → N
N be injective and B := range(é). We consider

the problem f :⊆ N
N
⇒ N

N with the domain dom(f) := B and

f(p) :=

{
N

N \ {Φé–1(p)(p)} if p ∈ dom(Φé–1(p)),
N

N otherwise,

for all p ∈ B . Then f is discontinuous. Moreover, if f is effectively discontinuous, then
there is a continuous embedding g : 2N →֒ B .

Proof. A function D : NN → N
N is a discontinuity function for f if and only if

range(D) ⊆ B and

D(q) ∈ dom(Φq) =⇒ ΦqD(q) = Φé–1D(q)D(q)

holds for all q ∈ N
N. Clearly, D = é is a discontinuity function for f, albeit not

necessarily a continuous one. Nevertheless, this shows that f is discontinuous.
Let us now assume that D : NN → N

N is a continuous function with the above
property.By the smn-theorem(Theorem2.1) there exists a computable total function
R : NN → N

N such that ΦR(q)(p) = q for all p, q ∈ N
N. Then we obtain

q = ΦR(q)DR(q) = Φé–1DR(q)DR(q),
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for all q ∈ N
N, which is only possible if DR : NN → N

N is injective. In particular,
DR|2N : 2

N → B is a continuous embedding of Cantor space into B. ⊣

Hence, the existence of an injective map é : NN → N
N with a range B = range(é)

into which Cantor space cannot be continuously embedded is sufficient to guarantee
the existence of a problem f that is discontinuous, but not effectively discontinuous.
For this purpose it is sufficient to show that there exists a setB ⊆ N

N of continuum
cardinality, which violates the perfect subset property. A set B satisfies the perfect
subset property if it is either countable or it contains a non-empty perfect subset,
which is a subset that is closed and has no isolated points. We recall that every
A ⊆ N

N into which Cantor space can be continuously embedded contains a perfect
subset. It is a well-known fact that there are so-calledBernstein sets [3], which violate
the perfect subset property, at least if we assume the axiom of choice [12, Exercise
8.24].

Fact 3.8 (Bernstein set). Assuming AC there exists a Bernstein setB ⊆ N
N, which

is a set B such that B as well as its complement NN \ B has non-empty intersection
with every uncountable closed set A ⊆ N

N.

The construction of a Bernstein set B ⊆ R provided in [12, Exercise 8.24] works
equally well forB ⊆ N

N and is by transfinite recursion. This construction necessarily
requires the axiom of choice. Indeed, if we assumeBP, i.e., that every subsetB ⊆ N

N

has the Baire property, then no Bernstein set can exist [12] (see also Question 4.19).
From the point of view of computability theory Bernstein sets play a similar rôle as
immune sets. Actually, together with Proposition 3.7 and Fact 3.8 we directly obtain
the following conclusion.

Corollary 3.9. If we assume AC, then there exists a problem f :⊆ N
N
⇒ N

N that
is discontinuous, but not effectively discontinuous.

Similarly as in the case of Proposition 3.6, one could object that the problem f
constructed here is not genuinely less discontinuous than DIS, but only “simpler”
as instances are artificially made harder. In other words, the problem f considered
here has a very complicated domain, which in the case of our proof of Corollary 3.9
is a Bernstein set.
With the next result we dispel this objection by constructing a total problem

f : NN
⇒ N

N that is discontinuous, but not effectively so. Again, the construction
is based on the axiom of choice, and we directly perform a transfinite recursion.
We can arrange this construction even such that f is parallelizable. We recall that
f :⊆ N

N
⇒ N

N is parallelizable if and only if f≡W〈f〉, where 〈f〉 is defined by
〈f〉 :⊆ N

N
⇒ N

N, 〈p0, p1, ...〉 7→ 〈f(p0), f(p1), ...〉. By |X |wedenote the cardinality
of a set X.

Theorem 3.10. Assuming AC, there exists a total parallelizable f : NN
⇒ N

N that
is discontinuous, but not effectively discontinuous.

Proof. It suffices to construct a total f : NN
⇒ N

N that is discontinuous
and such that 〈f〉 : NN

⇒ N
N, 〈p0, p1, ...〉 7→ 〈f(p0), f(p1), ...〉 is not effectively

discontinuous. Then 〈f〉 has the desired properties, since it is discontinuous
and parallelizable. We note that the set C(NN,NN) of total continuous functions
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g : NN → N
N has continuum cardinality. Hence, by the axiom of choice there is a

transfinite enumeration (rî)î<2ℵ0 of rî ∈ N
N such thatC(NN,NN) = {Φrî : î < 2

ℵ0}.

A problem f : NN
⇒ N

N is discontinuous and 〈f〉 is not effectively discontinuous if
the following two requirements are satisfied:

(1) (∀î < 2ℵ0)(∃q ∈ N
N)(ΦqΦrî (q) ∈ 〈f〉(Φrî (q)) and Φq total),

(2) (∀î < 2ℵ0)(∃p ∈ N
N) Φrî (p) 6∈ f(p).

The second condition guarantees that f has no continuous realizer Φrî , and the
first condition guarantees that no Φrî is a discontinuity function for 〈f〉. We build
f by transfinite recursion. For this purpose we construct two increasing sequences
(Nî)î<2ℵ0 and (Pî)î<2ℵ0 of sets Nî , Pî ⊆ N

N × N
N. The “negative list” Nî ensures

that f is discontinuous and the “positive list” Pî ensures that 〈f〉 is not effectively
discontinuous. The construction will be such that |Nî | = |î| and |Pî | ≤ |î| · ℵ0.
During the construction we frequently use the axiom of choice without further
mention. The transfinite recursion goes as follows. We start with N0 := P0 := ∅.
For each 0 < î < 2ℵ0 we first choose some p ∈ N

N that does not appear as a first
component inM :=

⋃
ë<î(Pë ∪Në) and we defineNî := {(p,Φrî (p))} ∪

⋃
ë<î Në.

Such a choice is possible, as |M | ≤ |î|+ |î| · ℵ0 = max(|î|,ℵ0) < 2
ℵ0 using the

usual rules of cardinal arithmetic [11, Corollary 3.7.8]. Secondly, we also choose
some q ∈ N

N such that Φq is total and such that no ðiΦqΦrî (q) with i ∈ N

appears in any second component of Nî . Here ði : N
N → N

N, 〈p0, p1, ...〉 7→ pi
denotes the projection on the i-th component. Such a choice is possible, as |Nî | ≤
|î| < 2ℵ0 and Φq for q ∈ N

N includes all the constant total functions. We define
Pî := {(ðiΦrî (q), ðiΦqΦrî (q)) : i ∈ N} ∪

⋃
ë<î Pë. The construction guarantees

that |Nî | = |î| and |Pî | ≤ |î| · ℵ0. This ends the transfinite recursion.We now define
P :=

⋃
î<2ℵ0

Pî and N :=
⋃
î<2ℵ0

Nî . The construction guarantees that P is the

graph of a partial problem f :⊆ N
N
⇒ N

N and N is the graph of a single-valued
function g :⊆ N

N → N
N with N ∩ P = ∅. Actually, P guarantees that f satisfies

condition (1) andN guarantees that f satisfies condition (2). We still need to extend
P to the graph of a total problem f : NN

⇒ N
N without affecting the conditions (1)

and (2). For this purpose, we choose for every p ∈ N
N that does not yet appear in a

first component of P, some s ∈ N
N such that (p, s) 6∈ N and we add (p, s) toP. This

is possible since N is the graph of a single-valued function g. Now P is the graph of
a suitable total problem f : NN

⇒ N
N. ⊣

In Corollary 4.11 we will see that without the axiom of choice (AC) we cannot
construct discontinuous problems that are not effectively discontinuous. We close
with mentioning that the example in Theorem 3.10 cannot be strengthened to a
single-valued function.

Proposition3.11 (Discontinuous functions). Every single-valuedf :⊆ N
N → N

N

is either continuous or effectively discontinuous.

Proof. By LPO : NN → {0, 1} we denote the characteristic function of {000 ...}.
It is well-known that every discontinuous f :⊆ N

N → N
N satisfies LPO ≤∗

W f [30,
Lemma 8.2.6]. It is easy to see that DIS≤sW LPO holds (given an input p ∈ N

N for
the universal function U, use LPO to determine whether U(p) = 000 ... or not). The
statement now follows with Theorem 3.4. ⊣
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This result can be extended to functions f : X → Y on admissibly represented
spaces X,Y (which can be proved similarly as [22, Theorem 4.13]).

§4. A game characterization. In this section we want to characterize continuity
and effective discontinuity using games. It is common in descriptive set theory and
computability theory to use games to characterize reducibilities and other properties
[12, 14, 25] (see [16, 26] for historical surveys).
Wadge [27] introduced games on subsetsA,B ⊆ N

N to characterize the reducibil-
ity that is named after him. Nobrega and Pauly [20, 21] have used a modification
of Wadge games for problems f :⊆ X ⇒ Y in order to characterize lower cones
in the Weihrauch lattice. We consider similar generalized5 versions of Wadge and
Lipschitz games, defined as follows. We recall that by fr :⊆ N

N
⇒ N

N we denote
the realizer version of a problem f :⊆ X ⇒ Y (see Section 3).

Definition 4.1 (Wadge game of problems). Let f :⊆ N
N
⇒ N

N be a problem.
In a Wadge game f two players I and II consecutively play words, with Player I
starting:

• Player I: x0 x1 x2 ... =: x,
• Player II: y0 y1 y2 ... =: y,

with xi , yi ∈ N
∗. The concatenated sequences (x, y) ∈ (NN ∪ N

∗)2 are called a run
of the game f. We say that Player II wins the run (x, y) of f, if (x, y) ∈ graph(f)
or x 6∈ dom(f). Otherwise Player I wins. A Wadge game is called a Lipschitz game
if xi , yi ∈ N. A Wadge or Lipschitz game of a general problem f :⊆ X ⇒ Y is
understood to be the corresponding game of the realizer version fr :⊆ N

N
⇒ N

N.

We allow both players to play arbitrary words, including the empty word. One
can see that Player I does not take any advantage of playing words and he could be
restricted to natural numbers in aWadge game, without loss of generality. Likewise,
Player II does not take any advantage of playing arbitrary words, it would suffice to
allow numbers and the empty word, where the empty word essentially corresponds
to skipping the corresponding move. This shows that our notion of a Wadge game
for problems corresponds to the one of Nobrega and Pauly [20, 21]. For simplicity
we have allowed arbitrary words for both players. This does not only lead to a more
symmetric definition, but it also simplifies the proof of Theorem 4.3 below. As usual
we define winning strategies for games to be word functions that determine moves
for one player depending on the moves of the other player.

Definition 4.2 (Winning strategy). Let f :⊆ X ⇒ Y be a problem and let
ó : N∗∗ → N

∗ be a function. We consider the Wadge game f.

(1) ó is called a winning strategy for Player II in the game f, if Player II wins every
run of f with her moves being determined by

yi := ó(x0, ... , xi),

while Player I plays x0, x1, ... ∈ N
∗.

5We warn the reader that the extension of the notion of a Wadge game from sets A,B ⊆ NN to
problems does not automatically mean that determinacy properties carry over.
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(2) ó is called a winning strategy for Player I in the game f, if Player I wins every
run of f with his moves being determined by

xi := ó(y0, ... , yi–1),

while Player II plays y0, y1, ... ∈ N
∗.

Winning strategies for Lipschitz games are defined analogously with functions of
type ó : N∗ → N.

Now our main observation on Wadge games is that winning of Player II char-
acterizes continuity of the problem and winning of Player I effective discontinuity.
Nobrega and Pauly have proved a general version of the first observation for lower
cones in the Weihrauch lattice [21, Theorem 3.3]. We use some bijective standard
numbering w : N → N

∗ and we use the notation v := w–1(v) for all v ∈ N
∗.

Theorem 4.3 (Wadge games). We consider the Wadge game of a given problem
f :⊆ X ⇒ Y . Then the following hold:

(1) f is continuous ⇐⇒ Player II has a winning strategy for f,
(2) f is effectively discontinuous ⇐⇒ Player I has a winning strategy for f.

Proof. Since the Wadge game of f is the Wadge game of fr and fr≡sW f, it
suffices by Theorem 1.4 to consider problems of type f :⊆ N

N
⇒ N

N.

(1) If f is continuous, then f has a continuous realizer F :⊆ N
N → N

N, which
is approximated by a monotone function h : N∗ → N

∗ in the sense that F (p) =
supw⊑p h(w) for all p ∈ dom(F ) ⊇ dom(f). Given the moves w0, w1, ... ∈ N

∗ of

Player I, we can inductively define the moves vi ∈ N
∗ by v0 ... vi := h(w0 ... wi) for

all i ∈ N, since h is monotone. Then ó(ε) := ε and ó(w0, ... , wi) := vi provides
a winning strategy ó : N∗∗ → N

∗ for Player II. This is because if r := w0w1 ... ∈
dom(f), then F (r) = v0v1 ... ∈ f(r).

Vice versa, let ó : N∗∗ → N
∗ be a winning strategy for Player II. Then we can define

h : N∗ → N
∗ by h(ε) := ε and h(a0 ... ai) := v0 ... vi for all a0, a1, ... ∈ N, where

we inductively choose vi := ó(a0, ... , ai). Let F :⊆ N
N → N

N be given by F (p) :=
supw⊑p h(w).Given an input r := a0a1 ... ∈ dom(f), we obtainF (r) = v0v1 ... such

that (r, F (r)) ∈ graph(f), since ó is a winning strategy for Player II. Hence F is a
continuous realizer for f.

(2) If f is effectively discontinuous, then there is a continuous D : NN → N
N

that witnesses the discontinuity of f in the sense that D(p) ∈ dom(f) and
ΦpD(p) 6∈ fD(p) for all p ∈ N

N. Let h : N∗ → N
∗ be a monotone function that

approximates D, in the sense that D(p) = supw⊑p h(w) for all p ∈ N
N. Given

the moves v0, v1, ... ∈ N
∗ of Player II, we can inductively define the moves wi

by w0 := h(ε) and w0 ... wi := h(〈w0, v0〉 ... 〈w0 ... wi–1, v0 ... vi–1〉). We note that
r := w0w1 ... is an infinite sequence r ∈ dom(f), since D is total and range(D) ⊆
dom(f). And p := 〈w0, v0〉〈w0w1, v0v1〉 ... ∈ N

N is the name of a function Φp
with D(p) = r. If q := v0v1 ... is finite, then clearly (r, q) 6∈ graph(f). Otherwise,
q = Φp(r) = ΦpD(p) 6∈ fD(p) = f(r) and hence also (r, q) 6∈ graph(f). This
means that ó : N∗∗ → N

∗ with ó(v0, ... , vi–1) := wi is a winning strategy for
Player I.
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Vice versa let ó : N∗∗ → N
∗ be a winning strategy for Player I. We need to

define a continuous discontinuity function D : NN → N
N for f. Given p ∈ N

N,
we can determine a monotone h : N∗ → N

∗ that approximates Φp, i.e., such that
Φp(q) = supw⊑q h(w) for all q ∈ dom(Φp). We let D(p) := w0w1 ... where the wi
are inductively given by wi := ó(v0, ... , vi–1) and v0 ... vi := h(w0 ... wi). Since ó is a
winning strategy for Player I, we haveD(p) ∈ dom(f). In particular,D is total and
continuous. Moreover, with q := v0v1 ... we have (D(p), q) 6∈ graph(f). This could
mean that q is finite and hence D(p) 6∈ dom(Φp) or otherwise ΦpD(p) = q. In any
case, ΦpD(p) 6∈ fD(p) holds and D is a discontinuity function for f. ⊣

In passing, we note that the proof is fully constructive in the sense that computable
winning strategies translate into computable functions and vice versa, as stated in
the following.

Corollary 4.4 (Wadge games). We consider the Wadge game of a given problem
f :⊆ X ⇒ Y . Then the following hold:

(1) f is computable ⇐⇒ Player II has a computable winning strategy for f,
(2) f is computably discontinuous ⇐⇒ Player I has a computable winning strategy
for f.

One reason why it is useful to have characterizations of continuity and effective
discontinuity in game form is that for certain games determinacy conditions
are known and well understood. The axiom of determinacy (AD), which was
introduced byMycielski and Steinhaus [15, 17] states that every Gale–Stewart game
is determined. We note that this axiom is inconsistent with the axiom of choice. We
recall the definition of Gale–Stewart games [25].6

Definition 4.5 (Gale–Stewart game). LetA ⊆ N
N. Then in aGale–Stewart game

A two players I and II consecutively play numbers

• Player I: x0 x1 x2 ... =: x,
• Player II: y0 y1 y2 ... =: y,

with xi , yi ∈ N. The concatenated sequence r = 〈x, y〉 ∈ N
N is called a run of the

game A. We say that Player II wins the run r of A, if r ∈ A. Otherwise Player I wins.

What we have described as the Gale–Stewart game of A is usually considered as
the Gale–Stewart game of the complement NN \ A. We prefer the complementary
version as it fits better to our definition of Wadge games.
Winning strategies for Gale–Stewart games can be defined analogously to

Lipschitz games. In fact, Lipschitz games of problems f are essentially Gale–Stewart
games on graph(f), at least for total problems on Baire space. For general problems,
the difference can be expressed using totalizations of problems, a concept that was
studied in [8, 19].

Definition 4.6 (Totalization). Let f :⊆ X ⇒ Y be a problem. Then the
totalization Tf : X ⇒ Y is defined by

Tf(x) :=

{
f(x) if x ∈ dom(f),
Y otherwise.

6Such games over binary digits were already considered by Ulam [26].
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For a subsetA ⊆ N
N × N

N we use the notation 〈A〉 := {〈p, q〉 : (p, q) ∈ A}. Now
we can express the relation between Lipschitz games and Gale–Stewart games on
graphs as follows.

Proposition 4.7 (Lipschitz games andGale–Stewart games). Letf :⊆ N
N
⇒ N

N

be a problem. Then the winning strategies for either player in the Lipschitz game f are
identical to the winning strategies of the corresponding player for the Gale–Stewart
game 〈graph(Tf)〉.

Proof. The proof follows from the easy observation that

graph(Tf) = graph(f) ∪
(
(NN \ dom(f))× N

N
)
,

and this is exactly the payoff set for Player II in the Lipschitz game f. ⊣

We note that f≤W Tf, but in general Tf is not Weihrauch equivalent to f [8].
For general Wadge games the situation is somewhat more subtle as players can

play empty words. We can, however, bridge the step between Wadge and Lipschitz
games by coding words in numbers. We consider a canonical bijective standard
numbering w : N → N

∗, i 7→ wi of words over natural numbers, which we lift to a
partial function

w :⊆ N
N → N

N, p 7→ wp(0)wp(1)wp(2) ...

that we also denote by w. Here dom(w) = {p ∈ N
N : wp(0)wp(1)wp(2) ... is infinite}

and hence w is not total (since there is a number n that encodes the empty word).
Now we can consider the problem fw := w–1 ◦ f ◦ w, which is f lifted to numbers
(that encode words). We note that fw is not total, even if f is total, since w is not
total. We mention that w :⊆ N

N → N
N can be seen as a precomplete representation

of NN (in fact, as an alternative way to define the precompletion of id : NN → N
N,

as studied in [7, 8]). Since w is computably equivalent to id as a representation, we
obtain f≡sW f

w. Now we can express our observation as follows.

Proposition 4.8 (Wadge games and Lipschitz games). Let f :⊆ N
N
⇒ N

N be a
problem and let P ∈ {I, II}. Then the following are equivalent.

(1) Player P has a winning strategy for the Wadge game f.
(2) Player P has a winning strategy for the Lipschitz game fw.

Proof. Given a winning strategy ó : N∗∗ → N
∗ for Player P of the Wadge game

f, we have to convert this strategy into a strategy ë : N∗ → N for Player P of the
Lipschitz gamefw. For this purposewe just have todefineë such thatë(n0, ... , nk) :=
w–1ó(wn0 , ... ,wnk ). Vice versa, if ë : N

∗ → N is a winning strategy for Player P of
the Lipschitz game fw, then ó(w0, ... , wk) := wë(w–1(w0),...,w

–1(wk ))
defines a winning

strategy ó : N∗∗ → N
∗ for Player P of the Wadge game f. ⊣

If we combine Propositions 4.7 and 4.8 then we obtain the following result.

Corollary 4.9 (Wadge games and Gale–Stewart games). Let f :⊆ X ⇒ Y be a
problem and let P ∈ {I, II}. Then the following are equivalent.

(1) Player P has a winning strategy for the Wadge game f.
(2) Player P has a winning strategy for the Lipschitz game frw.
(3) Player P has a winning strategy for the Gale–Stewart game 〈graph(T(frw))〉.
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We note thatT(frw)≡sW f, wheref denotes the so-called completion of f (see [8,
Lemma 4.9]). Hence, the operation of precompletion moves us from Wadge games
to Lipschitz games and the operation of completion to Gale–Stewart games.
In order to have some simple terminology at hand, we introduce the following

notions of determinacy.

Definition 4.10 (Determinacy). We call a problem f :⊆ X ⇒ Y determined, if
it is either continuous or effectively discontinuous. By Weihrauch determinacy we
understand the property that every problem f is determined.

Hence, by Theorem 3.4 f is determined if either f ≤∗
W id or DIS ≤∗

W f holds and
by Theorem 4.3 this is the case if and only if the Wadge game f is determined in the
sense that either Player I or Player II has a winning strategy.Weihrauch determinacy
means that every f satisfies the above dichotomies.
Since the axiom of determinacy AD states that every Gale–Stewart game is

determined, i.e., either Player I or Player II has a winning strategy, we immediately
get the following conclusion of Corollary 4.9 with the help of Theorem 3.4 (see also
[21, Corollary 3.7].

Corollary 4.11 (Determinacy). ZF+ DC+ AD implies Weihrauch determinacy.

We can conclude more from Corollary 4.9. Namely, in ZF+ AC it is known by a
Theorem of Martin [12, Theorem 20.5] that every Borel set A ⊆ N

N is determined,
i.e., either Player I or Player II has a winning strategy (see also [21, Corollary 3.6]).

Proposition 4.12 (Borel determinacy). In ZFC every problemf :⊆ X ⇒ Y , such
that graph(fr) ⊆ N

N × N
N and dom(fr) ⊆ N

N are Borel sets, is determined.

Proof. Firstly, for a problem f :⊆ N
N
⇒ N

N we note that

graph(fw) = graph(w–1 ◦ f ◦ w) = (w × w)–1(graph(f))

and dom(fw) = dom(f ◦ w) = w–1(dom(f)). Since w is continuous with a
Π02-domain dom(w), it follows that graph(f

w) and dom(fw) are Borel measurable,
if graph(f) and dom(f) are so. Hence, 〈graph(Tfw)〉 is Borel measurable in
this situation. For a general problem f :⊆ X ⇒ Y , we can apply the previous
considerations to fr :⊆ N

N
⇒ N

N and we obtain the claim using Borel determinacy
and Corollary 4.9. ⊣

That is even under the axiom of choice AC examples of problems that are
discontinuous but not effectively so have to be rather complicated. As Polish
spaces admit continuous and total versions of the Cauchy representation (see, e.g.,
[4, Corollary 4.4.12]), we also obtain the following version of the previous corollary.

Corollary 4.13 (Borel determinacy on Polish spaces). LetX,Y be Polish spaces.
In ZFC every problem f :⊆ X ⇒ Y , such that graph(f) ⊆ X × Y and dom(f) ⊆ X
are Borel sets, is determined.

Proof. ForPolish spacesX andY we can assume that theCauchy representations
äX : N

N → X and äY : N
N → Y are total [4, Corollary 4.4.12]. They are also

continuous maps. Since fr = ä–1Y ◦ f ◦ äX , this implies that graph(f
r) = (äX ×

äY )
–1(graph(f)) and dom(fr) = ä–1X (dom(f)) are Borel sets, if graph(f) and

dom(f) are Borel sets. Now the claim follows with Proposition 4.12. ⊣
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It is an interesting questions whether we get the inverse implication in
Corollary 4.11 in the following sense.

Question 4.14. Does AD follow from Weihrauch determinacy in ZF+ DC?

We note that a similar question, namely whetherWadge determinacy (in the usual
sense of Wadge games for sets A,B ⊆ N

N) implies AD is non-trivial and the answer
is not known [1, 2]. For our generalized Wadge games the situation seems to be
simpler and we can easily obtain AD from Lipschitz determinacy of problems (with
a non-constructive proof).

Proposition 4.15. In ZF+ DC the following are equivalent:

(1) The axiom of determinacy AD.
(2) Every Lipschitz gamef :⊆ X ⇒ Y is determined, i.e., either Player I or Player
II has a winning strategy.

Proof. That (1) implies (2) was proved in Proposition 4.7. We still need
to prove that (2) implies (1). For every set G ⊆ N

N we define the problem
fG :⊆ N

N
⇒ N

N with fG(p) := {q ∈ N
N : 〈p, q〉 ∈ G} and dom(fG) := {p ∈ N

N :
(∃q ∈ N

N) 〈p, q〉 ∈ G}. We call G total, if dom(fG) = N
N. It is clear that for non-

total G Player I in the Gale–Stewart game G always has a winning strategy, and
he just needs to play some p 6∈ dom(fG ). For total G we obtain 〈graph(TfG )〉 =
〈graph(fG )〉 = G . Hence, by Proposition 4.7 G is determined if the Lipschitz game
fG is so. This proves determinacy of G for every G ⊆ N

N. ⊣

In order to answer Question 4.14 positively one still needs to bridge the gap
between Lipschitz determinacy and Wadge determinacy for problems f (possibly
using the techniques from [1, 2] or a simpler argument).
We prove that Weihrauch determinacy implies at least Wadge determinacy, in the

original sense of Wadge games for sets A,B ⊆ N
N. We can simulate Wadge games

for sets A,B using a particular problem B
A
(which was introduced in [21]).

Definition 4.16 (Wadge game for sets). Let A,B ⊆ N
N. Then the Wadge game

(A,B) is the Wadge game of the problem B
A
: NN

⇒ N
N with

graph

(
B

A

)
:= (A× B) ∪

(
(NN \ A)× (NN \ B)

)
.

In the Wadge game B
A
Player II wins if the corresponding run (x, y) satisfies

x ∈ A ⇐⇒ y ∈ B and otherwise Player I wins. This shows that the Wadge game
(A,B) is the usual one and as usually, by Wadge determinacy we understand the
property that every Wadge game (A,B) is determined, i.e., either Player I or Player
II has a winning strategy. This immediately yields the following.

Corollary 4.17 (Wadge determinacy). In ZF+ DC Weihrauch determinacy
implies Wadge determinacy.

Another conclusion that we can either directly draw from Proposition 3.7 without
further ado or from Corollary 4.17 with the help of [27, Theorem II.C.2] is the
following.

Corollary 4.18 (Perfect subset property). In ZF+ DC Weihrauch determinacy
implies that every set A ⊆ N

N satisfies the perfect subset property.
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If Question 4.14 has a negative answer or cannot be answered easily, then one
could ask other questions such as the following.

Question 4.19. Does the Baire property BP follow from Weihrauch determinacy
in ZF+ DC?

By the Baire propertyBPwemean that statement that every subsetA ⊆ N
N can be

written as symmetric difference A = U∆M with an open set U ⊆ N
N and a meager

set M ⊆ N
N. If the answer to this question is also negative, then one can ask the

following modified version of Question 4.14.

Question 4.20. Does AD follow from Weihrauch determinacy in ZF+ DC+ BP?

A positive answer to this question is not completely unlikely in light of
Proposition 4.15, given that Wadge determinacy and Lipschitz determinacy (both
in the usual sense of games for sets A,B ⊆ N

N) have been proven to be equivalent
in ZF+ DC+ BP by Andretta [1, 2].

§5. Computable discontinuity and productivity. In this section we briefly want to
discuss the question what computable discontinuity means for subsets and how the
notion is linked to the notion of productivity. Here, for every subset A ⊆ X of some
fixed space X, we denote by

÷A : X → S, x 7→

{
1 if x ∈ A,
0 otherwise

the characteristic function of A. The codomain S = {0, 1} is Sierpiński space that
is equipped with the total representation äS with äS(p) = 0 :⇐⇒ p = 000 .... It is
well-known that for any represented space X and A ⊆ X the characteristic function
÷A is continuous if and only if A is open.
As a side remark we mention that the characteristic function in this form can

also nicely be used to embed Wadge reducibility and many-one reducibility into
the strong version of Weihrauch reducibility for non-trivial sets. We recall that for
A,B ⊆ N

N the set A is calledWadge reducible to B, in symbols A≤W B , if there is a
continuous f : NN → N

N with A = f–1(B). Likewise, we say for A,B ⊆ N that A is
many-one reducible toB, in symbolsA≤m B , if there is a computablef : N → N such
thatA = f–1(B). Since the only continuous functionsf : S → S are the identity and
the two constant functions, we directly get the following characterization of Wadge
and many-one reducibility in terms of the topological version of strong Weihrauch
reducibility.

Proposition 5.1 (Reducibilities). We obtain

(1) ÷A≤sW ÷B ⇐⇒ A≤m B for A,B ⊆ N with B 6∈ {∅,N}.
(2) ÷A ≤∗

sW ÷B ⇐⇒ A≤W B ⇐⇒ B
A
≤∗
W id forA,B ⊆ N

N with B 6∈ {∅,NN}.

Hence, the corresponding reducibility structures can be embedded into the
corresponding strong versions of the Weihrauch lattice for non-trivial sets. By
O(X ) we denote the set of open subsets of X equipped with the representation
äO(X ), defined by äO(X )(p) = U :⇐⇒ Φp is a realizer of ÷U . Now one can
ask what it means for ÷A to be computably discontinuous. The following result
answers this question for Baire space X = N

N using the symmetric difference
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problem ∆A :⊆ O(X )⇒ X,U 7→ A∆U . Here A∆U := (A \U ) ∪ (U \ A) denotes
the symmetric difference ofA,U ⊆ X . The problem∆A is total for non-openA ⊆ X .

Proposition 5.2 (Symmetric difference). Let A ⊆ N
N not be open. Then the

problem ∆A is computable if and only if ÷A is computably discontinuous.

Proof. If ÷A : N
N → S is computably discontinuous, then there is a computable

discontinuity function D : NN → N
N for ÷A. Given a name q of a realizer Φq of

the continuous function ÷U : N
N → S for any given U ∈ O(NN), the value D(q)

is a name for some point x ∈ X with ÷U (x) 6= ÷A(x), i.e., x ∈ A∆U . That is, ∆A
is realized by D and hence computable. On the other hand, let ∆A be computable
and A ⊆ N

N not open. Given a name q of some potential realizer Φq of ÷A, we
can convert q computably into a name r = G(q) of some total function Φr with
äSΦr = äSΦq , because äS is precomplete (the idea is that Φr produces zero output as
long as Φq makes no other information available). Let us denote by G : N

N → N
N

the corresponding computable function. Now there is some openU ⊆ N
N such that

Φr is a realizer of ÷U , namely U := Φ
–1
r (N

N \ {000 ...}) = Φ–1r ä
–1
S
({1}). Since A is

not open, ∆A(U ) is defined and non-empty. Let F be a computable realizer of ∆A
and D := FG . Then F (r) ∈ ∆A(U ) = (A \U ) ∪ (U \ A), i.e., ÷UD(q) 6= ÷AD(q).
This implies äSΦqD(q) 6= ÷AD(q), since either D(q) 6∈ dom(Φq) or otherwise
äSΦqD(q) = äSΦrD(q) = ÷UD(q). That isD is a computable discontinuity function
of ÷A. ⊣

An analogous statement holds if we replace computable by continuous in both
occurrences. However, in this case the statement is void as any ÷A for non-open
A is effectively discontinuous by (a suitable extension of) Proposition 3.11 or by
observing that ∆A for non-open A is always continuous. We can also summarize
Proposition 5.2 as follows.

Corollary 5.3 (Symmetric difference). ∆A≤W id ⇐⇒ DIS≤W ÷A for non-open
A ⊆ N

N.

Proposition 5.2 shows that the notion of computable discontinuity is also formally
related to the notion of productivity. Weihrauch has introduced a topological and
a computability-theoretic notion of productivity for subsets A ⊆ N

N [28, Definition
4.4], [29, Definition 3.2.24]. If, in a similar way, we transfer the definition of
completely productive sets, as originally defined by Dekker [10], then we could
say that non-open A ⊆ N

N is completely productive if ∆A is computable. Using
this terminology, non-open A ⊆ N

N is completely productive if and only if ÷A is
computably discontinuous by Proposition 5.2. Myhill [18] proved that a set A ⊆ N

is productive if and only if A is completely productive (see also the proofs in
[24, Theorem VII, Section 11.3], [29, Corollary 2.6.8]). It is clear that complete
productivity for A ⊆ N

N implies productivity. We leave it as a task to the reader to
study whether productivity also implies complete productivity for Baire space NN

(or even more general spaces).

§6. Conclusions. We have introduced the discontinuity problem DIS and we have
provided some evidence that one can consider it as the simplest natural unsolvable
problem with respect to the topological version of Weihrauch reducibility. At least
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in ZF+ DC+ AD it turns out that it actually induces the minimal discontinuous
Weihrauch degree.
More results on the discontinuity problem will be provided in a forthcoming

article [5]. While the original definition of DIS is in terms of a universal function U,
it is useful to have a characterization in purely set-theoretic terms. In [5]we prove that
the discontinuity problem is equivalent to the range non-equality problem defined by
NRNG : NN

⇒ 2N, p 7→ {A ∈ 2N : A 6= range(p – 1)}. Here for p ∈ N
N the finite or

infinite sequence p – 1 ∈ N
N ∪ N

∗ is the sequence that is obtained as concatenation
of p(0) – 1, p(1) – 1, p(2) – 1, ..., where – 1 is identified with the empty word ε.

Proposition 6.1. DIS≡sW NRNG.

In [5] we also discuss algebraic properties of the discontinuity problem DIS and
one important property is that the parallelization D̂IS of the discontinuity problem
is equivalent to the non-computability problem NON.

Theorem 6.2 (Non-computability is parallelized discontinuity). NON≡sW D̂IS.

The non-computability problem is defined with the help of Turing reducibility
≤T by NON : NN

⇒ N
N, p 7→ {q ∈ N

N : q 6≤T p}. This result supports the slogan
that “non-computability is the parallelization of discontinuity” and underlines that
the discontinuity problem is a natural one. The discontinuity problem can itself be
obtained by stashing (a dual operation to parallelization introduced in [5]) starting
from other natural problems such as LPO, LLPO, etc. Hence, it is nicely related in
an algebraic way to other natural problems in the Weihrauch lattice.
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