
1 Introduction

1.1 Course Topics

In the past 30 years, random graphs, and more generally, random discrete structures,
have become the focus of research of large groups of mathematicians, computer scien-
tists, physicists, and social scientists. All these groups contribute to this area differently:
mathematicians try to develop models and study their properties in a formal way while
physicists and computer scientists apply those models to study real-life networks and
systems and, through simulations, to develop interesting and fruitful intuitions as to
how to bring mathematical models closer to reality. The abrupt development of study in
the theory and applications of random graphs and networks is in a large part due to the
Internet and WWW revolution, which exploded at the end of the twentieth century and,
in consequence, the worldwide popularity of different social media such as Facebook
or Twitter, just to name the most influential ones.

Our textbook aims to give a gentle introduction to the mathematical foundations of
random graphs and to build a platform to understand the nature of real-life networks.

Although the application of probabilistic methods to prove deterministic results in
combinatorics, number theory, and in other areas of mathematics have a quite long his-
tory, dating back to results of Szele and Erdős in the 1940s, the crucial step was taken
by Erdős and Rényi in their seminal paper titled “On the evolution of random graphs” in
1960 (see [43]). They studied the basic properties of a large uniformly chosen random
graph and studied how it evolves through the process of adding random edges, one by
one. At roughly the same time, we have the important contribution of Gilbert (see [54])
in which he studied binomial random graphs where edges are inserted independently
with a fixed probability. The interest in random graphs grew significantly in the mid
1980s ignited by the publication of the book by Bollobás ([21]) and due to the tireless
efforts of Paul Erdős, one of the titans of twentieth-century mathematics, who was
promoting probabilistic combinatorics, cooperating with mathematicians all over the
world and is recognized as a founding father of the whole area. Random graphs, at the
beginning of the twenty-first century is recognized as a young but quickly maturing
area of mathematics, with strong connections to computer science and physics. Com-
puter science exploits various ways of applying probabilistic concepts in the analysis
of algorithms and in the construction of randomized algorithms. A common ground of
random graphs and physics is particularly visible in the analysis of phase transition phe-
nomena and in percolation. In the past 20 years, one can observe a veritable tsunami of
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publications dealing with various models of random graphs introduced to analyze very
large real-world networks: WWW linkage, social, neural, communication, information,
and transportation networks, as well as a wide range of large-scale systems.

Nowadays, research in random graphs and networks is thriving, and the subject is
included in the curriculum of many mathematics and computer science departments
across the world. Our textbook should help readers not only gain mathematical knowl-
edge about the basic results of the theory of random graphs but also allow them to
better understand how to model and explore real-world networks.

1.2 Course Outline

The text is divided into three parts and presents the basic elements of the theory of
random graphs and networks.

To help the reader navigate through the text and to be comfortable understanding
proofs, we have decided to start with describing in the preliminary part (see Chapter
2) three of the main technical tools used throughout the text. Since, in general, we
look at the typical properties of large, in terms of the number 𝑛 of vertices (nodes)
of random graphs, in the first section of Chapter 2, we show how to deal with often
complicated expressions of their numerical characteristics (random variables), in terms
of their rate of growth or decline as 𝑛 → ∞. We next turn our attention to bounds
and asymptotic approximations for factorials and binomials, frequent ingredients of
the mathematical expressions found in the book. Finally, we finish this introductory,
purely technical, chapter with basic information about the probabilistic tools needed to
study tail bounds, i.e., probabilities that a random variable exceeds (or is smaller than)
some real value. In this context, we introduce and discuss the Markov, Chebyshev,
and Chernoff–Hoeffding inequalities leaving the introduction of other, more advanced,
probabilistic tools to the following chapters, where they are applied for the first time.

Part II of the text is devoted to the classic Erdős–Rényi–Gilbert uniform and binomial
random graphs. In Chapter 3, we formally introduce these models and discuss their
relationships. We also define and study the basic features of the asymptotic behavior
of random graphs, i.e., the existence of thresholds for monotone properties.

In Chapter 4, we turn our attention to the process known as the evolution of a
random graph, exploring how its typical component structure evolves as the number of
the edges increases one by one. We describe this process in three phases: the subcritical
phase where a random graph is sparse and is a collection of small tree components and
components with exactly one cycle; the phase transition, where the giant component, of
order comparable with the order of random graphs, emerges; the super-critical phase,
where the giant component “absorbs” smaller ones, and a random graph becomes
closer and closer to the moment when it gets fully connected.

Vertex degrees, one of the most important features of random graphs, are studied in
Chapter 5 in two cases: when a random graph is sparse and when it is dense. We study
not only the expected values of the number of vertices of a given degree but also their
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asymptotic distributions, as well as applications to the notoriously difficult problem of
graph isomorphism.

Chapter 6 studies the connectivity and 𝑘-connectivity of a random graph, while
Chapter 7 discusses the existence in a random graph of a fixed small subgraph, whose
size (the number of vertices) does not depend on the size of the random graph itself, and
studies the asymptotic distribution of the number of such subgraphs in a random graph.

Large subgraphs are considered in Chapter 8. Here, the thresholds for the existence
of a perfect matching are established, first for a bipartite random graph, and next, for
a general random graph. These results are proved using the well-known graph theory
theorems of Hall and a weakening of the corresponding theorem of Tutte, respectively.
After this, long paths and cycles in sparse random graphs are studied and the proof of
the celebrated result discovering the threshold for the existence of the Hamilton cycle
in a random graph is given. The chapter closes with a short section on the existence of
isomorphic copies of certain spanning subgraphs of random graphs.

The last chapter, in Part II, Chapter 9, is devoted to the extremes of certain graph
parameters. We look first at the diameter of random graphs, i.e., the extreme value of
the shortest distance between a pair of vertices. Next, we look at the size of the largest
independent set and the related value of the chromatic number of a random graph.

Part III concentrates on generalizations of the Erdős–Rényi–Gilbert models of ran-
dom graphs whose features better reflect some characteristic properties of real-world
networks such as edge dependence, global sparseness and local clustering, small di-
ameter, and scale-free distribution of the number of vertices of a given degree. In
the first section of Chapter 10, we consider a generalization of the binomial random
graph where edge probabilities, although still independent, are different for each pair
of endpoints, and study conditions for its connectedness. Next, a special case of a
generalized binomial random graph is introduced, where the edge probability is a
function of weights of the endpoints. This is known in the literature as the Chung–Lu
model. Section 12.1 provides information about the volume and uniqueness of the gi-
ant component and the sizes of other components, with respect to the expected degree
sequence. The final section of Chapter 10 introduces a tool, called the configuration
model, to generate a close approximation to a random graph with a fixed degree se-
quence. Although promoted by Bollobás, this class of random graphs is often called
the Molloy–Reed model.

In Chapter 11, the “small-world” phenomenon is discussed. This name bears the
observation that large real-world networks are connected by relatively short paths
although being globally sparse, in the sense that the number of edges is a bounded
multiple of the number of vertices, their nodes/vertices. There are two random graph
models presented in this chapter: the first due to Watts and Strogatz and the second due
to Kleinberg illustrate this property. In particular, finding short paths in the Kleinberg
model is amenable to a particularly simple algorithm.

In general, real-world networks have a dynamic character in terms of the continual
addition/deletion of vertices/edges and so we are inclined to model them via random
graph processes. This is the topic of Chapter 12. There we study the properties of
a wide class of preferential attachment models, which share with real networks the
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property that their degree sequence exhibits a tail that decays polynomially (power
law), as opposed to classical random graphs, whose tails decay exponentially. We give
a detailed analysis and formal description of the so-called Barabási–Albert model, as
well its generalization: spatial preferential attachment.

Chapter 13 introduces the reader to the binomial and geometric random intersection
graphs. Those random graphs are very useful in modeling communities with similar
preferences and communication systems.

Finally, Chapter 14 is devoted to a different aspect of graph randomness. Namely,
we start with a graph and equip its edges with random weights. In this chapter, we con-
sider three of the most basic combinatorial optimization problems, namely minimum-
weight spanning trees, shortest paths, and minimum weight matchings in bipartite
graphs.

Suggestions for Instructors and Self-Study

The textbook material is designed for a one-semester undergraduate/graduate course for
mathematics and computer science students. The course might also be recommended
for students of physics, interested in networks and the evolution of large systems as
well as engineering students, specializing in telecommunication. The book is almost
self-contained, there being few prerequisites, although a background in elementary
graph theory and probability will be helpful.

We suggest that instructors start with Chapter 2 and spend the first week with
students becoming familiar with the basic rules of asymptotic computation, finding
leading terms in combinatorial expressions, choosing suitable bounds for the binomials,
etc., as well as probabilistic tools for tail bounds.

The core of the course is Part II, which is devoted to studying the basic properties
of the classical Erdős–Rényi–Gilbert uniform and binomial random graphs. We
estimate that it will take between 8 and 10 weeks to cover the material from Part
II. Our suggestion for the second part of the course is to start with inhomogeneous
random graphs (Chapter 10), which covers the Chung–Lu and Molloy–Reed models,
continue with the “small world” (Chapter 11), and conclude with Section 12.1, i.e.,
the basic preferential attachment model. Any remaining time may be spent either on
one of the two sections on random intersection graphs (Chapter 13), especially for
those interested in social or information networks, or selected sections of Chapter 14,
especially for those interested in combinatorial optimization.

To help students develop their skills in asymptotic computations, as well as to give
a better understanding of the covered topics, each section of the book is concluded
with simple exercises mainly of a computational nature. We ask the reader to answer
rather simple questions related to the material presented in a given section. Quite
often however, in particular in the sections covering more advanced topics, we just ask
the reader to verify equations, developed through complicated computations, where
intermediate steps have been deliberately omitted. Finally, each chapter ends with an
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extensive set of problems of a different scale of complication, where more challenging
problems are accompanied by hints or references to the literature.

Suggestions for Further Readings

A list of possible references for books in the classical theory of random graphs is rather
short. There are two advanced books in this area, the first one by Béla Bollobás [21]
and the second by Svante Janson, Tomasz Łuczak, and Andrzej Ruciński [66]. Both
books give a panorama of the most important problems and methods of the theory of
random graphs. Since the current book is, in large part, a slimmed-down version of our
earlier book [52], we encourage the reader to consult it for natural extensions of several
of the topics we discuss here. Someone taking the course based on our textbook may
find it helpful to refer to a very nice and friendly introduction to the theoretical aspects
of random networks, in the book by Fan Chung and Linyuan Lu [32]. One may also
find interesting books by Remco van der Hofstad [60] and Rick Durrett [41], which
give a deep probabilistic perspective on random graphs and networks.

We may also point to an extensive literature on random networks which studies
their properties via simulations, simplified heuristic analysis, experiments, and testing.
Although, in general, those studies lack mathematical accuracy, they can give good
intuitions and insight that help understand the nature of real-life networks. From the
publications in this lively area, we would like to recommend to our reader the very
extensive coverage of its problems and results presented by Mark Newman [95].

Last but not least, we suggest, in particular to someone for whom random graphs
will become a favorite area of further, deeper study, reading the original paper [43] by
Paul Erdős and Alfred Rényi on the evolution of random graphs, the seed from which
the whole area of random graphs grew to what it is today.
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