Proceedings of the Nutrition Society (2020), 79, 113-132 doi:10.1017/S0029665119000958

© The Authors 2019  First published online 28 June 2019
The Nutrition Society Winter Meeting was held at the Royal Society of Medicine, London on 4-5 December 2018

Conference on ‘Optimal diet and lifestyle strategies for the management
of cardio-metabolic risk’
International Early Research Championship

Maternal separation in rodents: a journey from gut to brain and
nutritional perspectives

Marion Rincel*t @ and Muriel Darnaudéry
Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France

The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life
adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders
such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge
interest in the gut-brain axis, especially as regards stress-related emotional behaviours.
Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, dem-
onstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of
MS on both systems with a focus on stress-related behaviours. In addition, we discuss more
recent findings showing the impact of gut-directed interventions, including nutrition with
pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term
effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and pre-
biotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on
the gut-brain axis. Further research is required to understand the complex mechanisms under-
lying gut-brain interaction dysfunctions after early-life stress as well as to determine the ben-
eficial impact of gut-directed strategies in a context of early-life adversity in human subjects.

Gut microbiota: Probiotics: Prebiotics: Intestinal permeability

Mounting evidence suggests a pivotal role of gut microbiota Early postnatal life is a critical period durin% which both
o190 Moreover,

in the aetiology of psychiatric symptoms in stress-related
diseases such as anxiety disorders and depression'?. The
mechanisms underlying this microbiota—gut-brain com-
munication are beginning to be unravelled (see®™> for
reviews). In particular, certain gut bacteria can have a
beneficial effect on mood and emotional behaviour and,
as such, have been proposed for potential therapeutic
interventions in psychiatry (concept of psychobiotics)®”.
The bidirectional interplay between gut and brain is illu-
strated in population survey studies revealing a strong
correlation between anxiety, depression and functional
gastrointestinal (GI) disorders. Furthermore, psycho-
logical distress can predict later onset of a functional
GI disorder and the converse is also true®.

brain and gut undergo important maturation
this maturation is greatly influenced by gut microbiota col-
onisation and diversification during the lactating period.
Exposure to stressful events during childhood has been
repeatedly associated with increased vulnerability to both
psychiatric and GI disorders such as the irritable bowel
syndrome (IBS)''"'¥ IBS is defined as a disorder of the
gut-brain interaction. According to Rome IV classifica-
tion, it is characterised by abdominal pain and altered
bowel habits'?), but also increased intestinal permeability
and gut dysbiosis. Chronic disruption of the mother—infant
relationship in rodents, best known as maternal separation
(MS), is a useful preclinical tool since it models the
co-morbidity between IBS and psychiatric disorders.
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Indeed, it induces a wide range of brain and gut alterations
in offspring"”. In the following, we concisely overview the
adverse consequences of MS, which is the most used model
of early adversity in gut-brain axis research. We then
discuss the effects of gut-directed interventions on the
microbiota—gut-brain axis, with a particular focus on
stress-related behaviours.

The maternal separation model

Pioneering work from Harlow in non-human primates
and Levine, Denenberg, Meaney and Plotsky in rodents
has shown that the early environment, in particular the
quality of maternal care, shapes emotional behaviour
as well as stress responsivity in adult life'®??. The
work of Hofer also revealed the deleterious impact of
early weaning on offspring physiology, including intes-
tinal physiology®". Since then, a vast body of literature
has documented the effects of early mother—infant
separations in rats during the first weeks of life (1-3
weeks). The most common MS paradigm consists in
daily 3 h separations between postnatal days (PND) 2
and 14%?. However, there are other models using different
separation durations (3-8 h daily) or an acute 24 h separ-
ation® 2%, MS results in different degrees of perceived
stress in dams and pups according to the protocol used
(litter isolated in the homecage without the mother or lit-
ter isolated in a novel environment; pups individually
separated or not; undisturbed control or ‘handling’ i.e.
short separation episode (15 min)). The different models
and their respective effects are reviewed in®’ 2%, In any
case, pups are deprived of maternal care during the sep-
aration period. Importantly, the absence of the dam
implies that the pups cannot benefit from dams’ heat
and milk. Temperature issues can be easily corrected by
maintaining the room at 28-29°C during separation ses-
sions. However, the lack of milk intake likely contributes
to the short and long-term effects of 24 h MS®*3D.
Mother—infant separation-based models have also been
developed in other rodents (e.g. guinea pigs and mice)
and in primates (rhesus macaques)®?, but the largest lit-
erature still involves rats, with mice being more and more
used; we will focus on these rodent species in the present
review. It appears that mice are less sensitive to early-life
stress than rats®? (see® for review). This might be
attributable to species specificities in neurodevelopment
and maternal care patterns. Another possible reason is
that mouse studies more often involve inbred strains
(while outbred strains are used in rats) as well as trans-
genic strains that exhibit different levels of sensitivity to
stress®?. To produce significant behavioural alterations
in mice, MS is often combined with others stressors
such as unpredictable stress in dams®>*), early wean-
ing®” or a combination of perinatal stressors®®.

Maternal separation and emotional vulnerability
Long-term psychoneuroendocrine alterations

Behaviour. The long-term consequences of MS on
emotional behaviour have been extensively documented.
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Available tools to evaluate emotionality are mostly
limited to tests with good predictive validity (i.e. sensitive
to anxiolytics or antidepressants) such as the elevated
plus maze, open-field or light—dark tests for anxiety and
the forced swimming test or tail suspension test for
depression. These tests have however a poor construct
validity contrary to other tests such as sucrose preference
or female urine sniffing tests used to assess reward
deficiency as index of anhedonia (see®*D).

Typically, MS leads to increased anxiety- and depres-
sive-like behaviours. Indeed, animals exposed to MS dur-
ing early-life display reduced exploration of the open
areas in the elevated plus maze, light-dark box and
open-field tests compared with non-separated con-
trols“*”7?. Moreover, it has been shown that exposure
to a novel stress at adulthood aggravates these anxiety-
like behaviours”’*’®. Numerous studies also report
increased depressive-like behaviours in the forced swim-
ming test or tail suspension test. Indeed, adult MS
rodents show greater immobility time in these tests com-
pared with controls*33:38:59:61.6266.759D) "\ S has been
associated with decreased sucrose preference!®’!75-77.79-
81.83.87.9296) and decreased social behaviour with a con-
specific®”">939799) The effects of MS are not limited to
the above alterations of emotional behaviours; numerous
studies also report that MS exacerbates motivation for
alcohol and drugs of abuse (see"” for review).

Finally, several studies have also shown deleterious
effects of MS on cognition (see''’" for review). Briefly,
these effects include impaired hi_gpocam})al-dependent
spatial learning and memorsy(‘”m’ 1027107 altered non-
spatial memory“**193197119 and impairments in pre-
frontal cortex (PFC)-dependent tasks (working memory,
extinction, cognitive flexibility)®%7%197:116-120) 1 ¢con-
trast, amygdala-dependent aversive memory (e.%. fear
conditioning) seems to be enhanced by MS!2!"127.

Endocrine response and neurobiological correlates. MS
exerts long-lasting effects on hypothalamic—pituitary—
adrenal (HPA) axis function, leading in most of the
studies to endocrine hyper-responsivity to a novel
stress! 247108128135 \Within the central nervous system,
this HPA axis hyper-reactivity is associated with an
up-regulation of corticotrophin-releasing hormone (CRF)
expression in the paraventricular nucleus (PVN) of the
hypothalamus and amygdala but also with high CRF
concentration and increased CRF recePtor density in the
locus coeruleus and raphe nucleus!?'3%131:136) (gee(137)
as well as altered oxytocin and vasopressin ex%)ression
(either up- or down-regulated) in the PVN (see''*® for
review). MS also decreases glucocorticoid rece[])tor
(GR) expression in the hippocampus and PFC!2!-139),
two main brain areas involved in HPA axis negative
feedback. Numerous neurotransmission systems are
affected by MS. MS decreases the number of type A
y-aminobutyric acid (GABA-A) receptors in noradrenergic
neurons of the locus coeruleus and in the nucleus
tractus solitarius“® and hippocampus®®. The gabaergic
system plays a role in CRF synthesis inhibition in
the central amygdala, allowing a buffering of the
noradrenergic response to stress. In addition, MS

k)
impairs glutamatergic'**'*?, serotonergic®®:6!:83:143-147),
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dopaminergic(®*143:148-133) " 5nioidergic!°*!°%  and

endocannabinoidergic®® transmission. In the central
nervous system, serotonin is involved in neuronal
development'*,  emotionality and also pain
modulation***” " Among other effects, MS reduces
the expression of the serotonin transporter in the raphe
nucleus"*. Interestingly, selective serotonin reuptake
inhibitor antidepressants such as paroxetine normalise HPA
axis function as well as emotional behaviour in MS rats.

MS induces both functional and structural changes in
several brain regions including the PFC, hippocampus,
amygdala and nucleus accumbens!>*!'*%169) " More
specifically, impaired synaptic long-term potentiation,
dendritic atrophy as well as reduced dendritic spine
density have been reported in the medial PFC and
hippocampus of adolescent and adult MS
rats©@68:97.104.116.140.153.158.164-171) By contrast, MS
induces dendritic hypertrophy in the amygdala®”. A
recent study reported that mice deficient for motopsin,
a serine protease secreted from neuronal cells to induce
filopodia, precursor structures of dendritic spines, are
resistant to MS-induced increase in anxiety in the open
field test''V. In addition, it has been shown that MS
leads to hypomyelination in the medial PFC?.

MS is also accompanied by decreased expression of
neurotrophins such as nerve growth factor and brain-
derived neurotrophic factor (BDNF), that are known
to play critical roles in dendrite growth and spinogen-
esis AT THEITZITI - (6ee179) for review). In addition,
MS leads to alterations of hippocampal neurogenesis
(either decreased or increased) at adulthood!'>!">-177,
Interestingly, decreased hippocampal BDNF and neuro-
genesis are consistent observations in post-mortem
brains of depressed subjects and there is mounting evi-
dence that BDNF is involved in emotional vulnerability
(see''”® for review).

Peripheral and central inflammation. There is
substantial evidence that MS activates inflammatory
processes both systemically and within the central nervous
system, although the underlying mechanisms remain to be
explored. Indeed, increased circulating levels of IL-1p"
and IL-6'" have been reported in MS animals. In
addition, MS offspring display neuroinflammatory marks
such as increased Tnfa, Il-1b and Tir4 expression or
increased reactive oxygen species levels and decreased
II-10  expression in the hippocampus’!-75-87-114)
PFCYY and PVNU8Y_ Recent studies have shown a
decrease in the levels of the astrocytic marker GFAP
(glial fibrillary acidic protein) in the PFC of MS
animals®? and the opposite effect in the locus
coeruleus of MS females only'®"-

Inconsistencies in the maternal separation literature

A number of studies did not replicate the abovemen-
tioned findings, reporting no alteration of certain emotional
behaviours®3-43-45:50,63,67.73,74,87,89,95,105,112,136,182-192)
cognitive function®-107-120-185193-190) 1 HPA axis signal-
ling®*""? in male or in female MS animals. In addition,
others studies reported opposite effects (g:. . lower anxiety or
lower depressive-like behaviour)*496-98.105.110.135.182,198-202)
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In some cases, these discrepancies may be attributed to
the use of different MS protocols (number of separated
pups, separation duration and control group), age of
investigation, animal strain and sex, housing conditions
(individual or collective cages, light-dark cycle, enrich-
ment), but also other testing protocol issues (e.g. habitu-
ation prior testing, brightness, sucrose concentration for
the sucrose preference test). Notably, the vast majority
of the findings were obtained using males only.
However, numerous recent studies report sex-specific
behavioural alterations in MS animals.

Nevertheless, differential effects of MS have also been
reported in studies using the same MS protocol, age, sex,
strain or type of stressor. A recent study suggests that the
effects of early adversity (maternal immune activation)
depend upon the gut microbiota profile of the dams, in
particular the presence of commensal segmented filamen-
tous bacteria (which differs across animal suppliers, i.e.
Jackson Laboratories and Taconic Biosciences)*?.
Therefore, the gut microbiota profile may also influence
the susceptibility to MS.

Possible early mechanisms at the origin of maternal
separation programming

The mechanisms underlying the long-term effects of
MS are not fully understood. Multiple, possibly synergis-
tic effects in both dams and pups have been reported
(see®® for review).

Mother—infant communication and maternal care.
Maternal care is thought to play an important role in
brain maturation and later vulnerability to stress. It has
been established that rodent pups vocalise in response
to isolation (30-90 Hz ultrasounds)**>?°® and MS has
been shown to increase the number of these
vocalisations compared with undisturbed pups in
several mouse strains®”. Because these isolation calls
elicit retrieval behaviour in the mother, they are
thought to serve mother-pup communication and
stimulate maternal care towards their pups®’’>°®. In
the MS model, pups are deprived of maternal care
during several consecutive hours, which may constitute
a mechanism for the adverse effects of this early-life
stress. Indeed, it has been demonstrated that the
long-term behavioural effects of acute 24 h MS can be
prevented by pup tactile stimulation®”. Nevertheless,
the role of maternal care in the long-term effects of MS
remains controversial.

MS also constitutes a potent stressor for the dams.
Indeed, it has been reported that this psychological stress
induces anxiety and depressive-like behaviours in
dams®”2!D. As a matter of fact, several studies suggest
that dam’s perceived stress plays an important role in the
effects of separation in the offspring. Interestingly,
MS-induced HPA hyper-response to stress in the off-
spring can be counteracted by providing a foster litter
to the dam while its own litter is being separated®'?.
Furthermore, it has been reported that the offspring of
dams with an experience of separation with a previous
litter exhibit MS-like fear behaviour without direct
exposure to the early stress®!¥.
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Endocrine, immune and neurobiological effects of
maternal separation in developing pups. The HPA
axis is almost silenced during a short window of early
postnatal development (i.e. from PND4 to 14?4217
This stress hypo-responsive period is characterised by
extremely low basal corticosterone levels in the plasma
as well as blunted adrenocorticotropic hormone and
corticosterone response to stress. Nevertheless, this
stress hypo-responsive period is not absolute, since a
potent stressor such as MS is able to induce HPA axis
activation®”2?”_ It has been proposed that stress and
immune activation result in a cross-sensitisation of both
systems that possibly creates a self-perpetuating cycle
contributing to the emergence of the alterations in
animals subjected to early stress. Bacterial translocation
into the liver and the spleen has been detected after MS
in juvenile PNDIO rats®*"”. In addition, altered
circulating pro-inflammatory IL-1B, IL-6 and TNFa
were observed in  MS  pups®e114118.179.222.223)
Furthermore, MS juveniles display increased activated
microglia in the PFC and hippocampus®® and
decreased number of astrocytes in the same
areas®!?2*?% along with increased I/-6, Il-1b and Tnfa
expression compared with controls®>**?. Increased
microglia numbers and activation patterns have also
been recently reported in the nucleus of the solitary
tract of MS juveniles®'***®. Interestingly, increased
cytokine expression and microglial density have also
been reported in the hippocampus of juvenile mice
submitted to short MS (15min) from PNDI1 to
PND21, which led to increased anxiety similar to
prolonged MS?#?7.

Both altered HPA axis activity and neuroinflammation
during development have been shown to be deleterious
for the immature brain. MS disrupts the normal course
of brain development and produces functional and struc-
tural alterations including dela?/ed GABA excitatory-
to-inhibitory functional switch!"'”, delayed synaptic
maturity®®, decreased spine densit?m” and increased
neuronal and glial cell death!’>?>*>3%_ Altered expression
of neurotrophins such as BDNF and nerve growth factor
in separated pups could contribute to these
effects®?*231232) I addition, MS disturbs the serotonergic
system during development. Indeed, reduced expression of
the serotonin receptor SHTr1A in the hip}(jocampus and
PFEC has been reported in 7-d-old pups ***. A recent
study demonstrates that transient juvenile, but not adult,
knockdown of orthodenticle homoeobox 2 in the ventral
tegmental area mimics early-life stress by increasing stress
susceptibility, whereas its overexpression reverses the
effects of early-life stress®?. Moreover, developmental
decrease of the transcription repressor Rest4 (RE-1 silen-
cing transcription factor 4) in the PFC of pups submitted
to MS may play a causal role in the long-term effects of
MS®"#) We recently demonstrated that exposure to a
high-fat diet (HFD) during the perinatal period can pre-
vent the long-term MS-associated neurobehavioural altera-
tions, possibly via a protective effect on gene expression in
the PFC®?. Indeed, perinatal HFD prevented the
MS-induced alterations of Rest4, Bdnf and SHTrlA
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expression in this brain area. A recent work demonstrated
that chemogenetic inhibition of MS-induced neuronal
hyperactivity in the lateral habenula of mice aged 35d
attenuates depressive-like behaviours®?.

Epigenetic changes in maternal-separation offspring.
Epigenetic marks are dynamic and highly sensitive to
environmental factors; furthermore they can last in
time and even be transferred across generations®*”. As
such, they represent a potential mechanism that could
underlie the long-term effects of early-life stress®*¢ 3%,
Indeed, a number of studies have reported persistent
epigenetic marks in the genome of animals submitted
to MS (see®? for review). In particular, changes in
DNA methylation of specific regulatory sites in key
genes for stress processing such as Crf, Avp, GR or
Bdnf in the PVN, hippocampus and PFC of maternally
separated animals, have been documented®’>*1-249 1t
has been shown that administration of a DNA
methyltransferase inhibitor prevents the decreased
prefrontal Bdnf mRNA expression induced by MSZ*.
Moreover, DNA methylation in the offspring has been
shown to be associated with the level of maternal
care®®. Nonetheless, the group of Mansuy provided
evidence for epigenetically-mediated transmission of
behavioural traits induced by early-life stress across
generations irrespective of cross fostering®*”).

Another major epigenetic process is histone modifica-
tion, especially acetylation by histone acetyltransferases
or deacetylation by histone deacetylases. Histone acetyl-
ation patterns as well as histone acetyltransferase and
histone deacet(ylase expressions in the brain are also
altered by MS“*®. For instance, MS leads to decreased
Bdnf and GR mRNA expressions in the hippocampus,
and these effects were accompanied by decreased levels
of histone acetylation at their respective promo-
ters®**>°”_ Furthermore, a recent study suggests that
there is a cross-talk between histone acetylation and
DNA methylation"””. Indeed, treatment with a histone
deacetylase inhibitor reversed the MS-induced increased
DNA methylation in the GR promoter region.

Finally, the possible role of brain miRNA in mediat-
ing the long-term effects of MS has been addressed in a
few studies. Uchida and colleagues were the first to
report changes in expression of several miRNA in the
PFC of MS rats®”. Another MS study reported an
increase in miR-16 in the hippocampus that was nega-
tively correlated with Bdnf expression in the same brain
area and also negatively correlated with sucrose
preference’”.

Maternal separation as a model of irritable bowel
syndrome: impact on the gastrointestinal tract

As mentioned earlier, MS is also widely used as a model
of IBS (see!'>212? for reviews). In addition to its effects
on stress vulnerability, it leads to several GI dysfunctions,
in particular increased visceral sensitivity to painful stim-
uli, and increases the vulnerability to experimental colitis.
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Effects of maternal separation on the enteric nervous
system, visceral sensitivity and motility. MS induces
dynamic structural and functional changes in the
enteric nervous system®>>>*?.  For instance, MS
increases nerve density and synaptogenesis in juveniles,
but these effects are no longer present at adulthood®>?.
In contrast, the levels of the neuronal marker PGP 9-5
(anti-protein gene product 9-5) in the colon are
increased in adult MS animals but not in juveniles.
Interestingly, early-life adversity has been shown to
affect enteric nervous system development in a
sex-dependent manner, with females being more
sensitive than males®>. MS also produces increased
intestinal motility in response to stress, as evidenced by
reduced total transit time and increased number of
faecal pellets®!->3¢29 1t has been extensively reported
that MS rats dis%ola visceral hy eralgesia during
colorectal distensiont-07-140:144.146,147.180.220,756,257,259-283)
A recent study demonstrated that MS-induced visceral
hypersensitivity is dependent on Paneth cell defects and
associated Escherichia coli expansion in the gut®®?.
MS-induced visceral hypersensitivity is lost in mice
deficient for Toll-like receptor 4 (TLR4)"*”. This study
suggests that TLR4 signalling in the PVN mediates
increased CRF  immunostaining and  visceral
hypersensitivity associated with MS. Interestingly,
multiple MS-induced intestinal phenotypes, including
visceral hyperalgesia and gut leakiness, can be prevented
bS?/ CRF receptor antagonist administration 822?85~
#D GR antagonists or agonists of the metabotropic
glutamate receptor type 7 (mGIuR7) also prevent
stress-induced visceral hyperalgesia®’8-28820),

The hyper-sensitivity to colorectal distension after MS
is larger in females than in males and visceral hyperalge-
sia is greater when all pups are separated from the dam
than when only half of littermates is removed, suggesting
that sex and dam’s perceived stress play a role in the
long-term effects of MS on visceral sensitivity®’”.
Indeed, it has been demonstrated that MS-induced
visceral hypersensitivity is transferred across generations
and that this effect likely depends upon maternal
care®?.

Effects of maternal separation on gut microbiota
composition. A growing number of studies have
reported altered gut microbiota composition in MS
animals. However, the use of different species, strains,
sex, MS protocols, nature of the sample, microbiota
analysis method and age of investigation renders
between-studies comparisons difficult, and yet, there is
no clear microbial pattern associated with MS.

The first study that has investigated the effects of MS on
the gut microbiota was carried out by Bailey and Coe in
rhesus monkeys®’?. The authors investigated the stability
of gut microbiota 3 d after separation and found a signifi-
cant decrease in faecal bacteria, in particular from the
Lactobacillus genus. A few years later, O’Mahony and col-
leagues reported overall reduced bacterial diversity in MS
rats v. controls®”®. This finding has been replicated in
more recent studies®*?*>. However, another recent
study reports no change in diversity®”. Qualitatively,
MS was shown to increase the Firmicutes:Bacteroidetes
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ratio at the phylum level in some studies®28¢-2952%9),

but again this finding is not consistent across studies as
some report opposite®” or no effects®>. A consistent
finding, however, is that the effects of MS on microbiota
composition vary both qualitatively and quantitatively
with respect to the age of investigation. Indeed, several
studies comparing at least two time points show
completely ~ different  patterns®*>2%2") " Qverall,
Bacteroides and Lachnospiraceae (including Clostridium
XIVa) species seem to be consistently altered (either
enriched or depleted) across several studies™’->>8:273-300),
Interestingly, it has been shown that changes in several
bacterial taxa after MS are abrogated by adrenalectomy,
suggesting that corticosterone signalling in response to
stress is responsible for at least part of its effects on the
microbiota®. More studies using global 16S-sequencing
approaches are needed to better document the effects of
MS on gut microbiota and potentially identify candidate
species or genera associated with the behavioural effects
of MS. Furthermore, considering the importance of sex
differences in both stress effects and basal gut microbiota
composition, more studies should be conducted in both
males and females®®%),

Effects of maternal separation on the gut mucosa. MS
has been associated with alterations in the differentiation
and distribution of enteroendocrine cells in the gut
epithelium®" and a defect in Paneth cells®’®*%.
Notably, the numbers of enterochromaffin cells in the
colon are increased in MS animals compared with
controls@**2%>279  Accordingly, MS animals exhibit
substantial increases in the levels of circulating and

colonic serotonin gmainly produced by enterochromaffin
cells)144147.264.265.275.252)

In addition, MS animals were shown to display
colonic tissue damage including decreased crypt length
and altered number of goblet cells and are more
engaged in epithelial cell proliferation®%>286:302-304)
Moreover, MS rats show more colonic damage after dex-
tran sulphate sodium or 2,4,6-trinitrobenzenesulphonic
acid-induced colitis than non-stressed animals and as a
result, they also lose more weight, indicating that they
are more sensitive to experimental colitis®*>*°”. There
is mounting evidence that MS produces long-term gut
paracellular and transcellular h7yper-})ermeabilit to
ions and macromolecules®!:262:272:276.299,302.306,308-311)
Remarkably, stress-induced intestinal  hyperper-
meability appears to be glucocorticoid-dependent, as
it is evoked by the synthetic glucocorticoid dexa-
methasone and prevented by administration of a GR
antagonist, similarly to an inhibitor of the myosin light
chain kinase controlling epithelial cytoskeleton contrac-
tion®>". In addition, exposure to a novel stress at adult-
hood potentiates %ut hyperpermeability in maternally
separated rats®>*'". Furthermore, it has been shown
that acute MS induces immediate passage of macromole-
cules across the colonic mucosa and can lead to increased
number of Dbacterial cells penetrating the gut
epithelium??!-262-312),

MS also produces several immune alterations in the
colon. Indeed, MS animals show an infiltration of immune
cells (i.e. polymorphonuclear neutrophils)®***°> and an
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increase in mucosal mast cell density®!-233-262271.308) g

also increases the expression of numerous cytokines includ-
ing IL-6, IL-1B, TNFa, IFNy, IL-4, IL-2 and IL-22 in the
colonic  mucosa“26% 262,268,276,278,286,303,305 313 pereased
IFNy and decreased IL-10 express1on were prevented by
mGluR7 agonist administration®”® in MS animals.

It has been previously shown that MS increases IFNy
and TNF secretion by mesenteric lymph node cells*’”.
In addition, increased mRNA expression of TLR3, 4
and 5 has been reported in the colonic mucosa of MS
adult rats®'?,

Impact of nutrition and microbiota-directed interventions
in maternal separation offspring

An early study using the 24 h maternal deprivation
paradigm suggested that feeding the pups during seP
aration could prevent its effects on the HPA axis®".
In the past decade, a growing number of studres
have demonstrated that nutrition can modulate the
long-term effects of early-life stress on brain and
behaviour, although the underlying mechanisms
remain unknown. Recent evidence suggests that the
direct impact of nutrition on gut physiology and
microbiota could counteract the stress-induced disrup-
tion of gut homoeostasis and promote a new state of
equilibrium.

Nutritional strategies and maternal separation
Choline and vitamins

Several studies demonstrate a preventive effect of
dietary choline and other vitamins in animals submit-
ted to MS, and suggest that early nutritional interven-
tions (before adulthood) have the strongest impact. In
one study, the maternal diet was enriched with a mix-
ture of essential C; metabolism-associated micronutri-
ents containing choline, betaine, methionine, folic acid,
zinc, vitamins B¢ and By, during the course of MS.
This treatment fully prevented the increased plasma

corticosterone levels in MS pups at PND9 and further
prevented later alterations of object recognition mem-
ory, but not spatial memory in adult MS mice®'¥. In
another study, dietary choline exposure from weaning to
adulthood attenuated object recognition impairments in
MS male rats"'¥. In contrast, supplementation with a cock-
tail of methyl donors (choline, betaine, folic acid and vitamin
Bi,) in adult maternally separated female rats failed to
reverse the deleterious effect of MS on object recognition
memory, but did ?revent depressive-like behaviour in the
forced swim test®

PUFA. Some evidence suggests that n-3 PUFA
deficiency potentiates the effects of MS. For instance,
dietary n-3 PUFA deficiency acts in synergy with MS
to increase sucrose consumption in adulthood, an effect
prevented by desipramine"**3!'®. It was further shown
that the same dretary intervention also exacerbates
MS-induced anxiety in the open-field test®
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Conversely, it has been reported that supplementation

with either n-3, folic acid or n-acetylcysteine during peri-
adolescence could prevent the MS-induced depressive-
like behaviour in the forced swim test, likely through
antioxidant effects within the brarnmg) Interestingly,
supplementation with a mixture of EPA and DHA
from adolescence onwards reverses MS-induced gut-
microbiota dysbiosis in adult female rats“’”. However,
there was no major effect of the same treatment on anx-
iety and depresswe like behaviours or cognition in MS
animals®'?, yet no effect of MS per se was observed in
this study. Nevertheless, in another study, dietary supple-
mentation with PUFA-rich tuna oil failed to affect long-
term visceral hypersensitivity in MS rats, but the diet was
only administered after the induction of visceral hyper-
sensitivity by acute stress®>”),
High-fat diet. Previous studies have shown that
palatable food consumption in adulthood can attenuate
the deleterious effects of MS on anxiety and
depressrve like behaviours and basal corticosterone
levels(®?

We reported that the long-term effects of MS on anx-
iety, social behaviour and stress endocrine response, but
also visceral sensitivity, can be prevented by eX};)osmg the
dams to HFD during gestation and lactation®”. In add-
ition to this protective effect of perinatal HFD in adult
animals, we found similar beneficial effects on the devel-
oping brain'®". Indeed, maternal HFD exposure attenu-
ated the stress-induced changes in mRNA expression of
key genes involved in neuronal maturation and structural
plasticity in the PFC of PND10 pups. The mechanisms
underlying this protective effect of maternal HFD are
elusive. We provided evidence that a comfort food effect
of HFD in stressed mothers but also a modulation of the
gut microbiota and/or gut barrier function by HFD in
pups could contribute to its effects on brain and emo-
tional behaviour®”-'°V,

Microbiota-directed interventions and maternal
separation

The gut microbiota is highly sensitive to the environment
and alterations of its composition (dysbiosis) have been
described under conditions rangrng from IBS and obesity
to depression and autism®?' 3**_ In particular, early-life
environment, including diet and stressful experience,
shapes the (%ut microbiota towards health and disease
later in life“*>. However, the mechanisms underlying
the ability of stress to modulate microbiota composition
remain to be unravelled. Moreover, it is unclear whether
dysbiosis is a causative factor in the aetiology of the
abovementioned pathologies. Interestingly, studies
using different, but complementary, gut microbiota-
directed interventions (germ-free (GF) rodents, antibio-
tics, faecal microbiota transplantation, probiotics and
prebiotics) have demonstrated that gut bacteria can
have a beneficial effect on emotional behaviours and,
as such, psychobiotics have been proposed for potential
therapeutic interventions®”.
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Germ-free animals and microbiota transplantation

experiments

Germ free. The study of GF (or axenic) animals served
as a proof of concept for the role of gut microbiota in
the regulation of brain function and behaviour. A
large number of studies have explored GF-associated
alterations both in the gut and the brain (see®*® for
review).

Interestingly, many of the GF phenotypes are normal-
ised by colonisation, although the effects largely depend
upon the age of colonisation and the animal species and
strain®> %) Accordingly, Sudo e al. reported the first
evidence that colonisation during early development,
but not at a later age, could attenuate the increased
HPA axis response to stress in GF mice®?®. In line
with this study, further showed that locomotor hyper-
activity in GF mice could be reversed by colonisation
early in life, whereas colonisation at adulthood had no
effect®*¥,

A landmark study by De Palma and colleagues using
GF mice exposed to MS revealed that the microbiota is
necessary for the long-term effects of MS. Indeed, early-
life stress fails to induce long-term endocrine and behav-
ioural alterations in GF mice compared with SPF
(specific-pathogen-free) controls“”. Interestingly, colon-
isation with the gut microbiota of a conventional SPF
control mouse unmasked the effects of early-life stress
in GF mice. However, colonisation with the microbiota
of an early-stressed animal did not transfer the
stress-associated behavioural phenotype in naive GF
mice, suggesting that gut bacteria are necessary but not
sufficient to mediate the behavioural effects of early-life
stress. Although the authors did not measure intestinal
permeability, gut leakiness associated with MS could
also contribute to the deleterious effects of MS on behav-
iour. An important limitation of the GF animal model is
that the GF status is not specific at all to intestinal
microbes. Previous studies suggest that maternal vaginal
microbiota also impacts offspring neurodevelop-
ment®*Y. Furthermore, GF animals are housed in isola-
tors with limited handling that constitutes a stressful
environment and in most of the study the control groups
are not housed in similar isolators and thus are not com-
parable. Together, these studies suggest that gut dysbiosis
may be responsible for some, but not all of the
MS-associated phenotypes later in life.

Faecal transplantation. The important role of gut
microbiota in the regulation of behaviour was further
confirmed by demonstrating the successful adoptive
transfer of host behavioural phenotype between mice of
different strains and with different behavioural profiles
(see® for review). In animals, faecal transplantation can
be achieved by oral gavage of fresh faecal content or by
transient co-housing with the donor. The stability of the
transplanted microbiota can vary depending upon several
factors (strain, sex, age, housing conditions). The first
evidence of gut-brain effects following faecal
transplantation in animals showed a critical role of gut
microbiota in host metabolism and energy balance™*®>*7.
Since then, accumulating data have demonstrated that

https://d®i.org/10.1017/50029665119000958 Published online by Cambridge University Press

faecal transplantation can affect brain and behaviour in
rodents. For instance, social deficits in offspring from
HFD-fed dams could be reversed by co-housing with
offspring from dams fed a regular diet™®, an effect
accompanied by restored synaptic plasticity in the brain
following social interaction.

Conversely, it has recently been shown that naive rats
receiving faecal microbiota from MS donors displayed
MS-like intestinal hypermotility®*. Interestingly, colon-
isation with the microbiota of IBS patients v. healthy
controls recapitulated several features of IBS in GF
mice, including faster GI transit, intestinal barrier dys-
function, innate immune activation, but also anxiety-like
behaviour®*?,

The faecal mycobiome of MS rats is altered relative to
control animals®**". Furthermore, fungicide treatment in
adult MS rats prevented the visceral hypersensitivity
induced by water avoidance stress. Strikingly, transplant-
ation of the microbiota from MS rats could re-establish
visceral hypersensitivity in the absence of water avoid-
ance stress, an effect that was absent when the donor
microbiota came from fungicide-treated rats. These
findings highlight the need of considering exhaustively
gut microbiota composition (i.e. bacteria but also viruses
and fungi) and of better understanding the complex inter-
actions between stress and gut microbes.

Overall, the potential clinical value of faecal trans-
plantation for the treatment of disorders of the gut-
brain axis is promising®****® and currently represents
an active area of research. To date, the only indication
for faecal transplantation in human subjects is the treat-
ment of severe infections with Clostridium difficile, result-
ing in high success rates®*¥. In the recent years, two
double-blind, placebo-controlled, randomised trials
have investigated the impact of faecal microbiota trans-
plantation in IBS patients®*>*  However, evidence
for clinical improvement of GI symptoms and psychiatric
symptoms is unclear and has to be further established in
larger studies.

Probiotics. The term probiotic, defined as ‘a live
microbial feed supplement, which beneficially affects
the host by improving its intestinal microbial balance’
was coined in 1953 by Werner Kollath to contrast with
antibiotics®*”. The use of probiotics in animal studies
has provided evidence that the gut microbiota posesses
psychobiotic properties gi.e. antidepressant and/or
anxiolytic-like activity) (see'®***3*? for reviews).

Probiotic interventions are generally restricted to one
or few bacterial species, thereby allowing the association
between a given bug and a particular behavioural effect.
The most used are members of the Bifidobacterium and
Lactobacillus genera. Beneficial effects of probiotics
have been reported in paradigms involving early-life
stress. Several studies have shown anti-nociceptive effects
of different probiotics (i.e. Faecalibacterium prausnitzii;
Bifidobacterium breve or VSL#3)?%%268272) "Moreover,
the probiotic Bifidobacterium infantis chronically admi-
nistered at adulthood (from PNDS50 to PND95) was
reported to exert antidepressant-like effects in animals
exposed to MS®. In addition, the increased peripheral
levels of the proinflammatory cytokine IL-6 as well as
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the increased CRF mRNA levels in the amygdala in
stressed animals were also normalised. Similarly, a lacto-
bacillus strain, Lactobacillus plantarum PSI128, has
antidepressant-like effects in MS mice treated from
weaning onwards in both the sucrose preference test
and forced-swim test, but has no effect on MS anx-
iety®”. Moreover, serum increase in corticosterone
(both at baseline and in response to stress), increase in
IL-6 and decrease in IL-10 were all reversed by the pro-
biotic. In addition to the beneficial effects of probiotics in
adult animals, an increasing body of evidence shows that
probiotics supplementation during early-life can have
long-term preventive effects. Indeed, it has been shown
that a mixture of Lactobacillus rhamnosus and
Lactobacillus helveticus could prevent the elevation in
basal plasma corticosterone observed in MS juvenile
rats (PND20), in addition to mitigating the associated
increased gut permeablhty 9 Similar findings have
been reported in a mouse model of MS where mice
received the probiotic Bzﬁdobacterlum pseudocatenulatum
during the perinatal period®”. Compared with their
placebo-fed stressed counterparts, probiotic-fed mice
exposed to early stress showed attenuated HPA axis
reactivity and intestinal inflammation at weaning, as
well as lower anxiety levels during adolescence. These
findings were extended to other probiotic strains belong-
ing to Bifidobacteria and Lactobacilli. Indeed, in juvenile
rats, MS-induced hypercorticosteronaemia, intestinal
hyper permeability and dysbiosis were all prevented by
neonatal treatment with Bifidobacterium  bifidum
G9-14°Y. Pretreatment with L. fermentum CECT 5716
was also able to attenuate the effects of a single 4
h- sepdratlon episode at PND10 (i.e. hypercorticostero-
naemia and intestinal hyperpermeability)*>?. In con-
trast, although maternal probiotics treatment with
Bifidobacterium animalis subsp. lactis BB-12H and
Propzombaclenum jensenii 702 was shown to prevent
the increase in plasma IFNy in adult MS offsprmgmg)
the same treatment increased plasma IL-6 in juveniles.
In line with the latter, Barouei and collaborators showed
that the maternal probiotic intervention induces MS-like
dysbiosis along with increased levels of circulating cor-
ticosterone and adrenocorticotropic hormone in non-
stressed developing offspring®®®. A recent study also
reports preventive effects of maternal treatment with
the probiotic Lacidofil® (L. rhamnosus R0011 and L. hel-
veticus R0052), via the maternal drinking-water durmg
the period of stress, on abnormal mPFC neural fear cir-
cuitry development in stressed pups(3 33 Interestingly, the
effects of neonatal probiotics in MS models are not
restricted to stress response and depressive-like beha-
viours. It has been reported that MS disturbs puberty
onset in a sex-dependent manner, but this effect is pre-
vented ;)robiotic neonatal administration with
sz101d0ﬁ1®(254 In another study, MS rats transmitted
their conditioned aversive memory to the next gener-
ation, but this effect was abolished if the FO fathers or
the F1 offspring was supplemented with Lacidofil >,

Notably, the majority of these findings were obtained
using males only. Since a consistent gender effect has
been reported in the prevalence of anxiety and depression,
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but also IBS, with higher rates in women than men®>%,

additional preclinical studies using female animals are
required. Moreover, the translational potential of these
findings is currently limited by methodological and tech-
nical issues. It is not clear whether probiotic strains sur-
vive under aerobic conditions and are able to efficiently
colonise the gut of the recipient. Future studies should
systematically assess post-treatment colonisation to
draw conclusions. In this regard, comparing heat-killed
v. live probiotics can also be helpful to better understand
their underlying mechanisms of action. Furthermore,
there is a need to improve the dosage, treatment duration
and route of administration. Indeed, only a few studies in
animal models addressed the dose-dependency of the
effects of probiotics. It is suggested that multi-strain pro-
biotic combinations may provide greater health benefits,
but this hypothesis has not been clearly tested. The sys-
tematic comparison of the effects of probiotics with that
of a clinical drug such as anxiolytics or antidepressants
appears critical to quantify the benefits.

It has been proposed that probiotics might represent
an adjuvant therapy in psychiatric disorders including
major depressive disorder, although well- des1gned clin-
ical trials are needed to make clear conclusions®>”. A
recent study reported that pregnant women supplemen-
ted with L. rhamnosus until 6 months postpartum had
significantly lower de&aresswn and anxiety scores in the
postpartum period®>®. To date, antldepressant effects
of probiotics have been reported in three double-blind
studies conducted in subjects d1agnosed with 51gn1ﬁcant
anxiety or depression symptoms“>>*? and in major
depressive disorder patients**". However, based on pre-
clinical data, psychotropic-like effects of probiotics on
mood and anxiety in subjects exposed to early- hfe adver-
sity still need to be confirmed in human trials®®?. One
study has explored the effects of probiotic strams L.
rhamnosus HNOO1 or B. animalis subsp. lactis HNO19
in 11-year-old children supplemented from fetal life to
age 2 years on neurodevelopment but found no major
effect of probiotics®®?; yet the impact on emotional
behaviours and especially in early-stressed patients
remain unknown.

Prebiotics and symbiotics. Prebiotics are nutrients
that can be fermented by microbes in the gut and thus
favour  the growth of  certain  microbial
communities®®®. In comparison with probiotics, a
much smaller number of studies have examined the
effects of prebiotics on behaviour (see®®> for review).
These include investigations of galacto-oligosaccharides
(GOS) and fructo-oligosaccharides (FOS), which are
sources of nutrition for Bifidobacteria and Lactobacilli.
The effects of FOS and GOS have been tested in
C57BL/6J male mice in basal and chronic stress
situations®®®. GOS of FOS alone showed some levels
of protective effects but to a much lower extent
compared with GOS and FOS. Conversely, human-
milk oligosaccharide prebiotics have been reported
to impact brain development and cognitive
functions®**”**®_ Mice supplemented with human-milk
ohgosacchandes in their diet (2 weeks) were protected
against stress-induced hyperanxiety®®”. Apart from


https://doi.org/10.1017/S0029665119000958

Maternal separation and the gut-brain axis 121

these effects on emotional behaviours, other studies have
reported improved learning and memory performance
in animals supplemented with different oligosaccharides
including human-milk oligosaccharides®’*7?,
Together, these findings suggest that combining several
probiotics and/or prebiotics can improve the treatment
outcome. For instance, increased intestinal permeability
in adolescent MS rats was prevented by a symbiotic
diet containing arachidonic acid and DHA, GOS and
FOS and Lactobacillus paracasei NCC2461%°7. In
another study, MS rats were treated with either the
prebiotics polydextrose and GOS, the probiotic L.
rhamnosus GG or the symbiotic combination from
weaning onwards®’?. Only the combination of pre-
and probiotics was able to normalise anxiety in the
open field test, although it impaired corticosterone
negative feedback following acute restraint stress. In
addition, expression of GABA receptor A2 (Gabra2) in
the hippocampus was restored only by the combination
of pre- and probiotics, whereas expression of GR
(Nr3cl) was restored by L. rhamnosus GG alone.

Conclusion

MS induces a variety of long-term alterations similar to
that observed in human subjects with a history of child-
hood adversity. In this review, we have outlined the
specific effects of MS on both the brain and the gut,
illustrating the validity of this model with respect to clin-
ical data. In addition, the pivotal role played by gut
microbiota in mediating the lasting imprinting by MS
is highlighted in numerous studies using microbiota-
directed interventions such as probiotics treatments.
Preclinical studies suggest that nutritional approaches
with pro- and prebiotics may constitute safe and efficient
strategies to attenuate the effects of early-life stress on
the gut-brain axis. However, it is still not clear whether
gut dysbiosis, leakiness or inflammation precede each
other and if they are the cause or consequence of
stress-induced alterations within the brain. In this
respect, studies are needed to understand how chronic
neonatal stress disrupts gut-brain homoeostasis during
development and which molecular mechanisms underlie
the subsequent long-term imprinting. Moreover, despite
widespread sex differences in both GI and neuropsychi-
atric vulnerability, there is still a gap to fill in the litera-
ture as regards the issue of sex. Meta-analyses on the
impact of probiotics on anxiety and depressive-like
symptoms exist, but the vast majority of the studies
are conducted in healthy subjects and recent findings
demonstrate that the effects of probiotics may differ
between stressed and unstressed subjects®’®. Future
studies should develop nutritional strategies combining
multiple prebiotics and probiotics, in addition to usual
pharmacological strategies, to examine their impact at
adult age on symptoms associated with early-life adver-
sity using randomised placebo-control trials, with an
effort to adapt these strategies according to sex®’®.
Furthermore, prebiotics and probiotics effects should

https://d®i.org/10.1017/50029665119000958 Published online by Cambridge University Press

also be examined during development in populations
exposed to stress. In human trials, it would be particu-
larly valuable to study the potential preventive effects
of prebiotics and probiotics after different stress experi-
ences such as early-life traumas, but also parental
depression, perinatal infections, premature birth or
low parental socioeconomic status. Finally, early-life
adversit;/ is associated with poor diet quality at adult-
hood®’?. In this context, it would be crucial to improve
health policies and to implement preventive interven-
tions with nutritional advices in populations exposed
to early-life adversity.
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