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APPROXIMATION WITH ERGODIC PROCESSES AND TESTABILITY

ISAAC LOH ,∗ UNC Wilmington

Abstract

We show that stationary time series can be uniformly approximated over all finite time
intervals by mixing, non-ergodic, non-mean-ergodic, and periodic processes, and by
codings of aperiodic processes. A corollary is that the ergodic hypothesis—that time
averages will converge to their statistical counterparts—and several adjacent hypotheses
are not testable in the non-parametric case. Further Baire category implications are also
explored.
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1. Introduction

This paper establishes uniform approximation results which state that any time series tak-
ing on values in a Polish space can be approximated in a strong sense by stationary ergodic (in
fact, mixing) time series. This theorem is proved by applying results on the uniform approxima-
tion of measure-preserving transformations to their time series analogues. The approximation
results also hold very generally with non-ergodic processes, mean-ergodic processes, and
periodic series, as well as for codings of arbitrary aperiodic time series.

An immediate corollary of our approximation result is that, in our non-parametric setting,
the power of any test for ergodicity (or alternately mixing, non-ergodicity, mean-ergodicity,
non-mean-ergodicity, periodicity) cannot exceed its size, despite the number of time periods
or the number of observations available. In other words, the ergodic hypothesis, and several
related hypotheses, are not testable. This finding contrasts with the tests for ergodicity which
are proposed in [11, 13, 14] for series that are Markovian in nature. It also contrasts with con-
sistent estimation schemes that exist when the space of time series is restricted appropriately
(e.g., [34] considers the space of B-processes). Recent applications of non-parametric tests
for ergodicity occur in settings arising from economics and the physical sciences [19, 21, 32,
36, 45].

Our approximation results complement some well-known results for stationary processes.
[20, 31] show the existence of stationary processes with a finite state space arising from
measure-preserving, ergodic, and aperiodic transformations that have a certain prescribed
marginal distribution. Similarly, [3, 4, 30] study the problem of mapping (coding) a station-
ary process onto another process with a given marginal distribution when the target stochastic
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Ergodic approximation and testability 1041

process takes on values in a countable set. Our findings on approximations and codings of ape-
riodic processes especially parallel those of [29], which shows that marginal distributions for
stationary processes on a finite state space can be matched with periodic measures and closely
approximated with ergodic measures.

Approximation and Baire category results have generated considerable interest in ergodic
theory (cf. [9, 10, 17] for surveys), and have been extended to the study of stochastic processes.
[35] shows that the set of ergodic measures for stationary time series is a generic set in the set
of stationary measures endowed with the weak topology, whereas the set of mixing measures
is meagre. [17] extends these results to general transformations, and [9] to a range of measure-
theoretic properties on Polish spaces. We apply our results to provide a similar treatment in a
metric space of stationary time series. In this space, we show that weak mixing is the strongest
of a range of mixing conditions which hold for a topologically large set of time series.

2. Main result

Fix a Polish space X . Let XZ denote
∏

t∈Z X , and let T : XZ →XZ be the left shift map.
We begin by defining some properties of time series (see, e.g., [28]). An X -valued time series
X = (Xt(ω))t∈Z : (�, F, P) →XZ is stationary if its finite-dimensional distributions are shift
invariant, i.e. for every cylinder set A ⊂XZ, P(TtX ∈ A) is invariant with respect to t. A time
series is ergodic if, for all cylinder sets A ⊂XZ,

lim
t→∞

1

t

t∑
j=1

1A(TjX)
a.s.= P(X ∈ A).

We follow the convention of dynamical systems and say that a stationary process is weakly
mixing if, for all Borel measurable A, B ⊂XZ,

lim
t→∞, t �∈I0

E[1A(TtX)1B(X)] = P(A)P(B), (1)

where I0 is some zero-density subset of N (recall that I0 ⊂N is said to have zero density if
limt→∞ 1/t

∑t
j=1 1j∈I0 = 0). Weak mixing implies ergodicity. A process is mixing if it satisfies

(1) with I0 = ∅. This version of mixing is far weaker than some common notions of mixing in
time series, such as α-, β-, ϕ-, and ψ-mixing.

In the particular case where X =R, we call a stationary time series mean ergodic if

lim
t→∞

1

t

t∑
j=1

Xj
a.s.= E[X0],

provided that the integral on the right exists. X is aperiodic if the probability that
. . . , X−1, X0, X1, . . . is a periodic sequence is zero. A time series is periodic, with period
p, if Xt+p

a.s.= Xt for all t ∈Z. Recall that a probability space is called a standard probability
space if it is isomorphic to a regular probability measure on the unit interval and a countable
number of atoms (c.f. [26, §2.4] or [7, §9.4]). We say that a random variable is non-degenerate
if it does not almost surely (a.s.) equal one fixed constant.

If X is supported on a standard probability space (�, F, P), then we construct sequences(
Xk

)
approximating X on an extended sample space (�×�′, F⊗ F′, P× P′), where

(�′, F′, P′) is again standard. The introduction of additional randomness to the sample
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1042 I. LOH

space via �′ is a necessary step in even approximating periodic processes with aperiodic
ones (Remark 1). Whenever this is the case, we regard X as a random variable defined on
�×�′ which simply does not depend on its second coordinate. In particular, we make the
identification

X ∼ X ◦ π1 :�×�′ →XZ, (2)

where π1 is the projection onto the first coordinate, and with abuse of notation refer to the
product measure P× P′ by P. This technical imposition ensures that P indeed describes the
joint distribution of X and

(
Xk

)
, and affords some economy of notation. The expression in (2)

is a formal way of adopting the convention that probabilistic concepts must be preserved under
extension of the underlying sample space (cf. [43, §1]). All of our results are equally valid if
one regards the right side of (2) as merely a distributional copy of X defined on �×�′.

Our first theorem shows that X can be approximated over all finite time intervals by
aperiodic time series having mixing and non-mixing characteristics.

Theorem 1. Let X be a Polish space satisfying |X | ≥ 2. Then, for any stationary X -valued
time series X on a probability space (�, F, P), and any standard non-atomic probability space
(�′, F′, P′), there is a sequence

(
Xk

)
of stationary, aperiodic, and mixing X -valued time series

on (�×�′, F⊗ F′, P× P′) such that, for all t ∈N,

lim
k→∞ P

(
X−t = Xk−t, . . . , Xt = Xk

t

)
= 1, (3)

and, moreover, if X is non-degenerate, X0
d= Xk

0 for all k ∈N. The same is true if, instead of
mixing,

(
Xk

)
is specified to be non-ergodic. If X is in addition an integrable R-valued time

series, the same is true if, instead of mixing,
(
Xk

)
is specified to be mean-ergodic or non-

mean-ergodic.

The proof of Theorem 1 proceeds in two steps. The first step identifies each time series with
a measure-preserving (m.p.) transformation on a standard probability space (Proposition 3).
The second step approximates these transformations in a uniform sense with, say, mix-
ing transformations, and converts the approximating transformations back into time series
(Proposition 4). Proofs of the main results are given in Section 4.

The proof of Theorem 1 and its implications for non-testability also resemble the findings
of [1], which applies the cutting-and-stacking method of ergodic theory [16] to show that it is
impossible to guarantee consistent estimation of the one-dimensional marginal densities for a
stationary ergodic process. There is related literature on learnability under stationary ergodicity
which makes use of ergodic approximations to establish impossibility results (see [24, 39] and
references therein), although the discernability of processes fulfilling various mixing properties
from non-ergodic processes has not been well studied. It would be interesting to see if the
dynamical system approximation results of [16], which are quite strong and used in the proof
of Theorem 1, have any applications in this direction.

The conclusion of Theorem 1 fails if the probability space�′ is not introduced to the domain
of the approximating time series via, e.g., (2).

Remark 1. We can show that if X0 :�→X is an injection, and X fails to be aperiodic, the
approximation in Theorem 1 cannot occur even with aperiodic time series without extend-
ing the sample space �. Indeed, let X be such a series, so that for some period p ≥ 0,
P(X0 = Xtp)> 0 for all t ∈Z.
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Let X′ :�→XZ be a stationary and aperiodic time series for which X′
0

d= X0, as in
Theorem 1. Let �1 = {ω : X′

0 = X0 = Xp = X′
p} and �2 =� \�1. By assumption, P(X′

0 ∈
X0(�2)) = P(X0 ∈ X0(�2)) = P(�2). Moreover, X′

0(ω) ∈ X0(�2) only if ω ∈�2. Hence,
(X′

0)−1(X0(�2)) =�2 (mod P), and (X′
0)−1(X0(�1)) =�1 (mod P). Arguing similarly for X′

p,
it follows that X′

p is in X0(�1) if and only if X′
0 is.

Suppose that P(�1)> 0, which must eventually happen for X′
k if (3) holds. From

the above, we have P
(

X′
p ∈ X0(�1) | X′

0 ∈ X0(�1)
)

= P
(

X′
p(ω) ∈ X0(�1) |ω ∈�1

)
= 1, and

P
(

X′
p ∈ X0(�2) | X′

0 ∈ X0(�2)
)

= P
(

X′
p(ω) ∈ X0(�2) |ω ∈�2

)
= 1. Induction and stationarity

then imply that P
(

X′
tp ∈ X0(�1) | X′

0 ∈ X0(�1)
)

= 1 for all t ∈Z. In fact, because X′
p = X′

0 on

X0(�1), the inductive argument also implies that P
(

X′
tp = X′

0 for all t ∈Z | X′
0 ∈ X0(�1)

)
= 1.

Thus, X′ is not even aperiodic.

The distributional result Xk
0

d= X0 of Theorem 1 holds only if X is non-degenerate. To
see why this is the case, note that if X is degenerate and equals some x ∈XZ almost
surely, then X0 is also degenerate and equals x0, which is the zeroth coordinate of x. Then,

if Xk
0

d= X0, Xk
0

a.s.= x0, and stationarity requires Xk
t = x0 for all t, so Xk cannot be aperi-

odic. It is also non-negligible to assume that �′ is non-atomic. For instance, in the worst
case, �′ is just a single point mass, and the preceding example shows that Theorem 1 no
longer holds. If �′ consists of a finite number of atoms ω′

1, . . . , ω
′
M , we can take �1 ={

ω ∈� : X′
0(ω, ω′) = X0(ω) = X′

p(ω, ω′) = Xp(ω) for all ω′ ∈�′
}

, and argue similarly to the

example above.
The problem of coding a stationary stochastic processes to achieve certain marginal distribu-

tions has received attention in information theory (cf. [3, 4, 20, 30, 31]). While Theorem 1 does
not exactly replicate the marginal distributions of X, it does build an approximating sequence
for X itself, and not just its marginal distributions. It also has the additional ability to construct
the approximating series as mixing, non-ergodic, or non-mean ergodic processes over arbitrary
Polish spaces.

A slight variation on the proof of Theorem 1 establishes a similar approximation result for
codings of time series taking on values in any Polish space. For a given time series Y :�→YZ,
where Y is a Polish space, a coding X of Y is a time series X :�→XZ satisfying

Xt = χ̃ (StY), (4)

where S : YZ →YZ is the left shift map, and χ̃ : YZ →X is called the time-zero coder [40]. A
finite coding is a special case where there is some window length w<∞ such that, if y and y′
agree on their −wth through wth coordinates, then X̃ (y) = X̃ (y′).

In the proofs of Theorems 2 and 3, we continue to identify X with the time series supported
on �×�′, where �′ is a standard non-atomic probability space, using (2).

Theorem 2. Let X and Y be Polish spaces and X any X -valued time series on �. Let Q be the
law of any stationary and aperiodic Y-valued time series, and �′ be a standard non-atomic
probability space. Then there is a sequence (Yk) of time series Yk :�×�′ →YZ with law Q

and codings Xk of the Yk such that (3) holds for all t ∈N, and X0
d= Xk

0 for all k ∈N.
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As properties such as mixing and ergodicity are preserved under coding, Theorem 2 implies
the mixing result of Theorem 1 as long as the approximating time series are not required to be
aperiodic. Theorem 2 makes use of a uniform approximation result for m.p. transformations. If
the assumption of stationarity is also dropped, similar approximation results for non-singular
transformations may be applied in a similar fashion [16, §7].

Aperiodicity of Q is a non-negligible assumption in Theorem 2, and was also used in [3]
(consider, for instance, the worst case where Q is deterministic). However, it may also be
dropped when the approximating series are themselves periodic.

Theorem 3. Let X be Polish, X any X -valued time series on�, and�′ a standard non-atomic
probability space. Then there is a sequence of stationary and periodic time series Xk :�×
�′ →XZ such that (3) holds for all t ∈N, and X0

d= Xk
0 for all k ∈N.

2.1. Relation to joinings and entropy

Theorems 1–3 produce examples of jointly distributed stochastic processes (X, Xk) on XZ ×
XZ, where Xk approximates X arbitrarily closely on its finite-dimensional marginals. The joint
distribution is a coupling of the distribution of X and that of Xk. If this distribution were itself
stationary, it would be termed a joining [40]. Such joinings have been studied extensively
in optimal transport, where they define the well-known d̄-distance [33] and generalizations
yielding optimal joining costs with different metrics [18, 38].

The couplings provided by Theorems 1 and 2 are not in general stationary, nor indeed can
they always be stationary for ergodic (mixing) approximations of non-ergodic (non-mixing)
time series. In the simple case where X is a finite alphabet, this follows because the optimal
joining cost between ergodic and non-ergodic processes must be bounded away from zero.
Suppose that the joint distirbution of (Xk, X) was a joining for all k. Then, letting

(
Xk

)
be

ergodic (mixing) in the statement of Theorem 1 or 2, we must have d̄(μk, μ) → 0, where μk

is the law of Xk and μ is the law of X (see, e.g., [40, Theorem I.9.7]). [40, Theorems I.9.15
and I.9.17] would then imply that X was ergodic (mixing), which is impossible, because X is
arbitrary in Theorems 1 and 2. This argument can be extended to non-discrete sample paths
via the following simple lemma.

Lemma 1. For any non-ergodic (non-mixing) Y-valued stationary time series Y, there exists a
finite X and X -valued time-zero coder χ̃ such that the associated coding X of Y is finite and
non-ergodic (non-mixing).

Proof. Consider the non-mixing case. By approximation with cylinder sets, there exist cylin-
der sets A, B such that, say, lim supt→∞ E[1A(StY)1B(Y)]> P(A)P(B), where S : YZ →YZ

is the left shift. Define the time-zero coder χ̃ : y �→ 1y∈A + 21y∈B (here, X = {0, 1, 2, 3}),
and let X be the corresponding coding of Y . Let C ⊂XZ be the cylinder set defined as
the preimage of {1, 3} under the projection x �→ x0, and D the preimage of {2, 3}. Then, if
T : XZ →XZ is the left shift, 1C(TtX) = 1{1,3}χ̃(StY) = 1A(StY), and similarly 1D(X) = 1B(Y).
Hence, lim supt→∞ E[1C(TtX)1D(Y)]> P(C)P(D), and X cannot be mixing. The proof with
non-ergodicity is similar. �

Convergence of the form (3) is preserved under finite codings of time series, which depend
on only finitely many coordinates. Mixing and ergodicity are also preserved. Therefore, in light
of the previous discussion, Lemma 1 has the following corollary, which states that (3) cannot
generally hold with joinings.
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Corollary 1. Let X :�→XZ be stationary and non-mixing (non-ergodic), and let Y denote
the set of random variables Y :�→XZ which are stationary and mixing (ergodic), and
such that the joint distribution (X,Y) is a joining. Then there exist t ∈N and ε > 0 such that
supY∈Y P(X−t = Y−t, . . . , Xt = Yt)< 1 − ε.

Although the convergence supplied by Theorems 1–3 does not generally imply convergence
in the d̄-metric, it does imply weak convergence of the law of Xk to X. Entropy is upper semi-
continuous with respect to the weak topology when X is finite [40, Theorem I.9.16], which
is not generally true in non-compact settings (see [44, p. 184], [25], and references therein).
However, upper semicontinuity of entropy does hold with greater generality when (3) is the
mode of convergence.

The calculation of the joint entropy of a collection of random variables (X1, . . . , Xt) takes
on different forms depending on whether the variables are discrete or continuous, so we write
a general form of joint entropy as

H(X1, . . . , Xt) = −
∫
X t

f (x1, . . . , xt) log f (x1, . . . , xt) dμt, (5)

where f is a density with respect to a Borel product measure μt on X t (e.g. the counting mea-
sure or Lebesgue measure [12]) and by convention 0 log 0 = 0. The entropy rate of a time series
X = (Xt)t∈Z is then defined by H(X) = limt→∞ t−1H(X1, . . . , Xt). Provided that X0 has finite
entropy, we can show that entropy is upper semicontinuous with respect to the approximations
provided by our results. Therefore, any collection of time series whose entropy is bounded
away from 0 cannot approximate every time series in the sense of Theorems 1–3.

Lemma 2. Let entropy H be given by (5). If X is Polish and
(
Xk

)
and X are stationary X -

valued time series such that X0
d= Xk

0 for all k, H(X0)<∞, and (3) holds for all t ∈N, then
lim supk→∞ H

(
Xk

)≤ H(X).

Proof. By stationarity, H(X) is the decreasing limit of H(X0 | X−1, . . . , X−t) [12], so
just as in [40, Theorem I.9.1], it is sufficient to show that H

(
Xk

0 | Xk
−1, . . . , Xk−t

)→ H(X0 |
X−1, . . . , X−t) for all t. To show convergence of the conditional entropies, it is enough to show
convergence of the unconditional entropies H

(
Xk

1, . . . , Xk
t

)
(cf. [12]). Fix a particular t.

Let �k
0 ⊂� be the set of ω such that Xk

j (ω) = Xj(ω) for all j,−t ≤ j ≤ t. Let �k
1 =� \�k

0.

Suppose that P
(
�k

1

)
> 0 (if not, there is nothing to prove). Let Pk

ι be the restriction of P to �k
ι

for ι ∈ {0, 1}. Let f k
ι be the density on X t corresponding to the pushforward

(
Xk

1, . . . , Xk
t

)
∗P

k
ι ,

which exists by the Radon–Nikodym theorem, and let −Hι
(
Xk

1, . . . , Xk
t

)= ∫
X t f k

ι log f k
ι dμt

for ι ∈ {0, 1}. Then, by the subadditivity of the map x �→ −x log x,

H0
(
Xk

1, . . . , Xk
t

)− P
(
�k

1

)≤ −
∫
X t

(
f k
0 + f k

1

)
log

(
f k
0 + f k

1

)
dμt

︸ ︷︷ ︸
=H

(
Xk

1,...,X
k
t

)
≤ H0

(
Xk

1, . . . , Xk
t

)+ H1
(
Xk

1, . . . , Xk
t

)
.

A similar decomposition holds with H(X1, . . . , Xt), H0(X1, . . . , Xt) = H0
(
Xk

1, . . . , Xk
t

)
,

and H1(X1, . . . , Xt). By assumption, P
(
�k

1

)→ 0, so it is sufficient to handle the H1
terms. We show that any sequence of k contains a further subsequence kn for which
lim supn→∞ H1

(
Xkn

1 , . . . , Xkn
t
)≤ 0, which implies the desired convergence.
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Let αk = P
(
�k

1

)
, and let f k

1 (xj) denote the jth marginal of f k
t . By considering the probability

density f k
1 /αk and letting f (x) denote the density of X0, we have

H1
(
Xk

1, . . . , Xk
t

)≤ −
t∑

j=1

∫
X

f k
1 (xj) log f k

1 (xj) dμ+ (t − 1)αk log αk

≤ −
t∑

j=1

∫
X

f k
1 (xj) log f k

1 (xj)
(
1f (x)∈[0,e−1] + 1f (x)�∈[0,e−1]

)
dμ. (6)

The inequality f k
1 (xj) ≤ f (xj) holds, so −f k

1 (xj) log f k
1 (xj) ≤ −f (x) log f (x) when f ∈ [0, e−1].

Also,
∫
X 1f (x)�∈[0,e−1] dμ≤ e. Now, by passing to a subsequence if necessary, we can assume

that f k
1 (xj) converges pointwise to 0 by the fact that αk → 0. Thus, the dominated conver-

gence theorem implies that both pieces of (6) converge to 0. A similar argument applies to
H1(X1, . . . , Xt), which concludes the proof. �

2.2. Testability

Let us formalize a notion of statistical testing in our setting. Let X be an X -valued stationary
time series with law P ∈ P (where the set P is to be specified later) on the space XZ. We are
interested in hypothesis testing problems of the form [8]

H0 : P ∈ P0, H1 : P ∈ P1,

where P0 ⊂ P is the set of probability measures on � for which the null hypothesis is deemed
to hold, and P1 = P \ P0 is its complement. A possibly randomized statistical test will be
denoted by a map ϕt : X t → [0, 1], where t indicates the number of time periods observed.
The corresponding size of the test is given by

sup
P∈P0

E[ϕt(X1, . . . , Xt)] = sup
P∈P0

∫
�

ϕt(x1, . . . , xt) dP(x).

We will show that when P0, P1 are chosen to test the ergodicity (or non-ergodicity) of the time
series X, we have, under mild conditions,

sup
P∈P1

EP[ϕt] ≤ sup
P∈P0

EP[ϕt] (7)

for any test ϕt and any sample size t. In other words, the power of the test ϕt cannot exceed its
size, for any t. For this reason, we can say that the null hypothesis H0 is non-testable.

The definition of P and its constituent sets P0 and P1 clearly play a significant role in
establishing (7). We let P denote the set of stationary Borel measures on

(
XZ,B∞)

. We then
let PE ⊂ P denote the subset of distributions which correspond to X -valued time series which
are additionally ergodic, and PM those which are mixing. In the special case where X =R

and P contains only distributions induced by time series X which are integrable in the sense
that E[|X0|]<∞, we let PME ⊂ P denote the subset of distributions which correspond to mean
ergodic time series. By Corollary 2, PE ⊂ PME.

We consider several null hypotheses. The first sets P0 = PE. This is to say that the time
series in question is ergodic, under the null hypothesis. The other scenarios we consider are
that P0 = PM, Pc

E, PME, and Pc
ME. We show that (7) holds in all scenarios.
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The specific results that we use in the proof of Theorem 1 depend on the aperiodicity of the
underlying transformation, which by analogy might suggest that our results are valid only for
aperiodic time series. However, Theorem 1 shows not only that periodicity is not a hindrance
to ergodic approximation, but that the approximation can always be done with aperiodic series.
This has the added benefit of implying that all of our non-testability results still apply when we
restrict attention to only the set of aperiodic time series. As aperiodicity is a light assumption,
this negates what would otherwise be a straightforward workaround to our finding of non-
testability.

As a corollary to Theorem 1, we have our main testability result.

Corollary 2. Let X be a Polish space satisfying |X | ≥ 2. Then, for any t ∈N, (7) holds with
P0 = PE, PM, and Pc

E for all tests ϕt. If X ⊂R and P contains only integrable distributions
(corresponding to time series X satisfying E[|X0|]<∞), then (7) holds with P0 = PME and
P0 = Pc

ME.
The same is true if P, P0, and P1 are additionally restricted to the set of aperiodic

distributions.

Proof. We deal with the case P0 = PE; the other cases are similar. Let ϕt be a test func-
ton. By Theorem 1 there exists a sequence

(
Xk

)
of stationary and ergodic processes such that

limk→∞ P
(
X1 = Xk

1, . . . , Xt = Xk
t

)= 1. Let Pk denote the specific probability law of
(
Xk

)
, and

P the law of X. Then, by the boundedness of ϕt,

sup
P∈PE

EP[ϕt] ≥ lim
k→∞ EPk [ϕt] = lim

k→∞ E
[
ϕt
(
Xk

1, . . . , Xk
t

)]=E[ϕt(X1, . . . , Xt)] =EP[ϕt].

As ϕt and X, whence P, were arbitrary, (7) is proved. �

The union bound can be applied to show that the non-testability result holds even if ϕt

is allowed to depend not only on X1, . . . , Xt, but an independent and identically distributed
(i.i.d.) sample

(
Xi

1, . . . , Xi
t

)n
i=1 of size n, where n is arbitrarily large. The approximation in

Theorem 1 is quite strong, so the non-testability result can be extended via the union bound to
other situations in which the sample is not necessarily i.i.d. This contrasts with, say, [13, 14],
which consider Markovian time series and construct tests for stationary ergodicity that depend
upon the user’s ability to ‘draw’ several i.i.d. observations of the series.

If aperiodicity of the approximating time series is dropped, Theorem 2 shows that any prop-
erty of an aperiodic time series that is preserved under coding (e.g. ergodicity, mixing) of a
time series must be dense in the sense of (3). Therefore, the null hypothesis that such a prop-
erty holds is not testable. By contrapositive, any property for which a consistent statistical test
is available must not be preserved under coding of a time series. Theorem 3 implies a similar
failure for the testability of periodicity.

3. The category of stationary series

We now parallel, and invoke, results on the approximation and genericity of m.p. trans-
formations possessing certain mixing properties (especially [16, 22]) to show the genericity
of weak mixing in a large space of time series. We also find that the set of mixing processes
is meagre, which augments analogous results [17, 35] that the set of mixing and stationary
measures (or transformations, cf. [37]) is meagre in the weak topology. This supports the plau-
sibility of the ergodic assumption and weak mixing for non-parametric time series but suggests
that more restrictive settings are better suited to invoking mixing or even stronger notions.
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In brief, we show that classical Baire category characterizations of mixing measures [17, 35]
and transformations [15, 22, 37] carry over to a large metric space X of time series:

i.i.d. =⇒ ϕ, β, ρ, α mixing =⇒ mixing︸ ︷︷ ︸
meagre: Proposition 2

=⇒ weak mixing =⇒ ergodic =⇒ mean ergodic︸ ︷︷ ︸
generic: Proposition 1

. (8)

It will be necessary to define a structure for the time series under consideration so that we
may properly define, e.g., their joint distributions. The space of processes that we define is
quite large, consisting of maps from countable products of standard probability spaces into a
sequence space. The space is closed under extensions of the underlying probability space, as in
(2). If this accommodation is not made, then even density results in the sense of Theorem 1 are
not possible; Remark 1 implies that the aperiodic processes, viewed as a subset of time series
mapping �→XZ, fail to be dense so long as there exists an injection from � to X .

As before, let X be a Polish space with its Borel σ -algebra and, for all z ∈R, let(
�z, Fz, Pz

)
be a standard probability space. We consider stationary time series X that

map either a finite or countably infinite collection, indexed by V(X), of these probability
spaces into XZ. Accordingly, let X̃ denote the set of stationary time series X :

(∏
z∈V(X) �z,∏

z∈V(X) Fz,
∏

z∈V(X) Pz
)→XZ, where V(X) ⊂R indexes the domain

∏
z∈V(X) �z of X and

is either finite or countable. The requirement V(X) �R is to ensure that, given X ∈X, there
always exists a time series Y ∈X independent of X.

With the convention established in (2), we can define any two elements of X̃ to lie on
a common probability space as follows. Given elements X and Y of X̃ and any � ∈N, define
πX

X,Y :
∏

z∈V(X)∪V(Y) �z →∏
z∈V(X) �z to be the projection onto the�z, z ∈ V(X), which appear

in the domain
∏

z∈V(X) �z of X, and define πY
X,Y similarly. We may define a pseudometric d�

on the space X̃ by

d�(X, Y) = P
(

(X−�, . . . , X�) ◦ πX
X,Y �= (Y−�, . . . , Y�) ◦ πY

X,Y

)
,

where P is used to denote the product measure
∏

z∈V(X)∪V(Y) Pz on
∏

z∈V(X)∪V(Y) �z. These

pseudometrics may be combined to form a pseudometric d on the space X̃ that metrizes (3):
d(X, Y) =∑∞

�=1 2−�d�(X, Y). Finally, let ∼ denote the equivalence relation induced by the d
pseudometric, and let X= X̃/∼ denote the resulting quotient space. This is the quotient space
obtained by imposing the relation indicated in (2) on X̃. We refer to equivalence classes [X] ∈X

by writing simply X. The resulting space is Baire.

Lemma 3. (X, d) is a complete metric space.

Proof. The only difficulty in verifying that d is a pseudometric on X̃ lies in checking the
triangle inequality. Pick (X, V), (Y, V ′), (Z, V ′′) ∈ X̃ arbitrarily and note that

d�((X, V), (Y, V ′)) = P
(

(X−�, . . . , X�) ◦ πV
V∪V ′∪V ′′ �= (Y−�, . . . , Y�) ◦ πV ′

V∪V ′∪V ′′
)

≤ P
(

(X−�, . . . , X�) ◦ πV
V∪V ′∪V ′′ �= (Z−�, . . . , Z�) ◦ πV ′′

V∪V ′∪V ′′
)

+ P
(

(Y−�, . . . , Y�) ◦ πV ′
V∪V ′∪V ′′ �= (Z−�, . . . , Z�) ◦ πV ′′

V∪V ′∪V ′′
)

= d�((X, V), (Z, V ′′)) + d�((Y, V), (Z, V ′′)).
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It remains to show completeness. Let
(
Xk, Vk

)
be a d-Cauchy sequence of equivalence classes

in X. Choose a subsequence (kn)n∈N such that, for all �,

∞∑
n=1

d�
((

Xkn+1, Vkn+1
)(

Xkn , Vkn
))
<∞.

Then the Borel–Cantelli lemma implies that, for each � ∈N,

P

(
lim sup

n→∞

{(
Xkn+1

−� , . . . , Xkn+1
�

)
◦ πVkn+1

∪i∈NVi
�=

(
Xkn−�, . . . , Xkn

�

)
◦ πVkn∪i∈NVi

})
= 0,

so that, almost surely, limn→∞
(
Xkn−�, . . . , Xkn

�

) ◦ πVkn∪i∈NVi
exists as a random variable defined

on
∏

z∈∪i∈NVi
�z. Define Xt = limn→∞ Xkn

t ◦ πVkn

∪i∈NVi
for all t ∈Z and let X denote the resulting

time series defined on V =⋃
i∈N Vi, so that in X the convergence

(
Xk, Vk

)→ (X, V) holds.
Because the convergence

(
Xkn

)→ X holds in the product topology of XZ, and XZ is Polish
with this topology, X is measurable. Stationarity of X follows from stationarity of

(
Xk

t

)
. �

Now let XWM denote the subset of X consisting of only weakly mixing transformations.
Then, XWM is Gδ . The following lemma adapts the strategy of [22] to time series.

Lemma 4. XWM is a Gδ subset of (X, d).

Proof. For each � ∈N let C� =X 2�+1 with its product Borel σ -algebra, and let π� : XZ →
C� denote the projection ( . . . , x−�, . . . , x�, . . . ) �→ (x−�, . . . , x�). C� is a separable metric
space, so it is second countable with a basis which we can denote as

{
B�i

}
i∈N. The collection{

π−1
�

(
B�i

)}
i,�∈N then constitutes a basis for the product topology on XZ. Let A denote the

algebra which is generated by the family of sets
{
π−1
�

(
B�i

)}
i,�∈N, which is again countable

(as the family of sets obtained from the countable basis sets by iterating complementation and
finite unions finitely many times). The σ -algebra generated by A contains all of the open sets of
the product topology in XZ, so it is the Borel σ -algebra B on XZ. Furthermore, by the density
of algebras in the σ -algebras they generate, for any Borel set D ⊂XZ, constant ε > 0, and finite
Borel measure μ on XZ, there exists a set B ∈A satisfying μ(A�B) =μ(A\B) +μ(B\A)< ε.
Hence, letting � denote the countable set of finite linear combinations of functions {1B}B∈A
with coefficients in Q+ iQ, � is dense in L2

(
XZ, μ

)
. Let f1, f2, . . . be an enumeration of �.

Now, using the notation of [22], for all i, j, m, t, define

E(i, j,m, n) = {
X ∈X :

∣∣E[fi(Sn(X))fj(X)
]−E[fi(X)]E

[
fj(X)

]∣∣< 1/m
}
,

where S : XZ →XZ is the left shift map.
First, we argue that E(i, j, m, n) is open in (X, d). Define the function γi,j,n : X→C by

γi,j,n : X �→E
[
fi(S

n(X))fj(X)
]−E[fi(X)]E

[
fj(X)

]
.

By the construction of �, the function fi only depends on the finite-dimensional distribution
of π�X = (X−�, . . . , X�) for some � sufficiently large. Let Xk converge to X in X; then the
distribution of π�

(
Xk

)
converges to that of π�(X) in the total variation norm. In particular,

E
[
fi
(
Xk

)]→E[fi(X)], so E[fi( · )] : X→C is d-continuous. Similarly, γi,j,n is d-continuous, so

that E(i, j,m, n) = γ−1
i,j,n{z ∈C : |z|< 1/m} is open.
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We claim that XWM =⋂
i,j,m∈N

⋃
n∈N E(i, j,m, n). By expressing fi and fj as sums over

indicator functions of cylinder sets of the form π−1
�

(
B�i

)
, it is clear that (1) implies containment

in the forward direction. Conversely, suppose that X is not weakly mixing, so that (1) does not
hold. Let P̃ denote the pushforward measure induced on XZ by X so that, by applying [41,
Proposition 6.2.2] with the roles of A and B reversed, in conjunction with the stationarity of
X, the left shift S is not weakly mixing on

(
XZ,B, P̃

)
. Because � is dense in L2

(
XZ, P̃

)
, it

follows as in [22] that there exists an fi ∈� such that

γi,i,n(X) =
∣∣∣∣
∫
XZ

fi(S
nω̃)fi(ω̃) dP̃−

∫
fi(ω̃) dP̃

∫
fi(ω̃) dP̃

∣∣∣∣> 1

2

for all n, which concludes the proof. �

As Theorem 1 implies the density of XWM in X, we immediately have the following result.

Proposition 1. XWM is a residual subset of (X, d).

Now let XM denote the set of mixing processes in X. Let M denote the set of stationary
measures on XZ equipped with the weak topology, and let MM ⊂M be the subset of measures
which are mixing. M is a separable metric space under this topology, and [35, Theorem 3.4]
establishes that MM is of the first Baire category in M. Note that the mapping ψ : X→M
given by ψ : (X, V) �→ X∗

∏
z∈V Pz is continuous with respect to the d-metric and the weak

topology on M, and that XM =ψ−1
(
MM

)
, Xc

M =ψ−1
(
Mc

M

)
(by definition). It follows that

Xc
M is a Gδ subset of X, and Theorem 1 implies that it is dense (as are, in fact, the set of

non-ergodic processes), giving the following result.

Proposition 2. XM is meagre in (X, d).

Remark 2. In the same way, Theorem 1 can be applied to establish (8) for stronger topolo-
gies on the space M

(
XZ

)
of stationary measures on XZ (existing work has largely focused

on the weak topology). For instance, consider the weakest topology T on M
(
XZ

)
that

makes the map μ �→ ∫
f dμ continuous for every bounded f . Let f : XZ →R be bounded,

and let Xk → X in X. Let μk be the law of Xk and μ the law of X. Inasmuch as f can be
approximated above and below with simple functions constructed over cylinder sets, we have∫
XZ f dμk =E

[
f
(
Xk

)]→E[f (X)] = ∫
XZ f dμ. Therefore, the map which sends points in X to

their distributions in
(
M

(
XZ

)
, T

)
is a continuous surjection. We conclude that the image of

any dense subset of X under this map is itself dense. In conjunction with existing genericity
results [17, 35], this implies that (8) holds for

(
M

(
XZ

)
, T

)
.

4. Proofs of main results

Here, we give proofs for Theorems 1–3. Additional proofs are gathered in the supplemen-
tary appendix.

Proof of Theorem 1. Let B be the Borel σ -algebra on a Polish space X . Define the product
space XZ ≡∏

t∈Z X with the corresponding product Borel σ -algebra
⊗

t∈Z B. Note that this
σ -algebra, which we denote B∞, is also the Borel σ -algebra on XZ [27, Lemma 1.2] equipped
with its product topology. Let X :�→XZ be Borel measurable, where the projection of X onto
its tth component is denoted Xt :�→X for all t ∈Z. Then we have the following result.
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Lemma 5. Let (�, F, P) be a probability space and X :�→XZ be Borel measurable, and
let P̃ denote the pushforward measure X∗P. Then

(
XZ,B∞, P̃

)
is a standard probability

space, and if P(X = x) = 0 for every element x ∈XZ,
(
XZ,B∞, P̃

)
is isomorphic to Lebesgue

measure on the unit interval [0, 1].

Proof. Note that XZ is a countable product of Polish spaces with the product topology, and
thus is itself Polish [42, §2.2]. By [7, Theorem 7.1.7], P̃ is regular. Hence, [26, Theorem 2.4.1]
implies that

(
XZ,B∞, P̃

)
is also a standard probability space, using again the fact that XZ is

Polish with its product topology.
As (XZ,B∞, P̃) is standard, [7, Theorem 9.4.7] implies that it is isomorphic to the unit

interval equipped with its Borel σ -algebra and Lebesgue measure, and a countable number of
atoms (call this space Y). Let f : XZ → Y be an isomorphism of these measure spaces. If the
pushforward f∗P has an atom A ∈ Y , then X(f −1(A)) is an atom for the Borel measure P̃ on XZ,
and must be a singleton. So if P assigns no singletons positive measure then XZ is isomorphic
to Lebesgue measure on the unit interval. �

We now discuss some measure-theoretical preliminaries following [5, 41]. Let (�, F, P)
be a probability space. Whenever two sets A and B are equal up to a set of measure zero, i.e.
P(A� B) = 0, we write A = B (mod P). A transformation is a measurable map T : (�, F, P) →
(�, F, P). In this paper, we only consider transformations with measurable inverses. T is non-
singular if P(A) = 0 if and only if P

(
T−1(A)

)= 0. We say that T is measure-preserving (m.p.)
if P

(
T−1(A)

)= P(A) for all measurable A. T is ergodic if, for all A with P(A)> 0 such that
T−1(A) = A (mod P) we have μ(A) = 1 or μ(Ac) = 0 [41, Lemma 3.7.1]. An m.p. transforma-
tion is weakly mixing if, for each pair of measurable sets A and B, there exists some zero-density
set I0 ⊂N such that

lim
t→∞, t �∈I0

P(T−j(A) ∩ B) = P(A)P(B). (9)

[41, Proposition 6.2.2] provides a number of equivalent characterizations of weak mixing. T is
mixing if (9) holds with I0 = ∅. Evidently, mixing implies weak mixing, which in turn implies
ergodicity.

Let (�, F, P) denote a non-atomic measure space, and let G(�, P) denote the group of all
non-singular transformations on it; furthermore, let M(�, P) ⊂ G(�, P) denote the subgroup
of m.p. transformations on � (see the introduction of [2]). The uniform topology on G(�, P)
is induced by the metric d(T, S) = P(ω : T(ω) �= S(ω)). This topology is complete and includes
M(�, P) as a closed subset of G(�, P), so G(�, P) and M(�, P) are complete metric spaces
and hence Baire spaces.

Say that a point ω ∈� is a periodic point of period t for T if Ttx = x and Tjx �= x for
j = 1, . . . , t − 1. A transformation T is called aperiodic if the set of its periodic points has
P-measure 0. We use Ap to denote the set of aperiodic transformations in M(�, P).

Using Lemma 5, we have the following equivalence, which is given in the case X =R in
[28] and can be proved with the π–λ theorem [6].

Proposition 3. Let (�, F, P) be a probability space and X :�→XZ be Borel measurable and
non-atomic in the sense of Lemma 5. Then

(
XZ,B∞, P̃

)
(where P̃ is the pushforward X∗P) is

a standard non-atomic probability space, and X is stationary if and only if the left shift map
T : XZ →XZ is an m.p. transformation thereon. In this case,

Xt(ω) = χ (Tt ◦ X(ω)), (10)
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where χ : XZ →X is the projection onto the zeroth coordinate. Moreover, under stationarity
of X, this T satisfies:

(i) The series is mixing (ergodic) if and only if T is a mixing (ergodic) transformation.

(ii) The series is aperiodic if and only if T ∈Ap.

Proposition 3 applies to the left shift map on XZ. It is not generally true that the time series
χ (Tt ◦ω) is non-mixing (non-ergodic) if T is non-mixing (non-ergodic), although the converse
is true. As P̃= X∗P, we have the following corollary.

Corollary 3. In the setting of Proposition 3, a stationary time series (Xt(ω))t∈Z is ergodic if
and only if, for all g ∈ L1

(
XZ, P̃

)
,

lim
n→∞

1

t

t∑
j=1

g
((
. . . , X−1+j, Xj, X1+j, . . .

)) a.s.= EP[g(( . . . , X−1(ω), X0(ω), X1(ω), . . . ))] =E
P̃

[g].

(11)

The next lemma demonstrates that convergence in the uniform topology implies conver-
gence of a joint distribution.

Lemma 6. Let Tk → T in G(�, P) equipped with the uniform topology. Then

P
((

T−t
k ω, . . . , Tt

kω
)= (

T−tω, . . . , Ttω
))→ 1. (12)

Proof. We claim that
⋂t−1

j=0 Tj(Ak) ⊂
{
ω : Tj

kω= Tjω for all j = 1, . . . , t
}

, where Ak =
{ω : Tk(ω) = T(ω}. Indeed, if ω ∈⋂t−1

j=0 T−j(Ak) then we have Tjω ∈ Ak for all j = 0, . . . , t − 1,

which is to say that Tk(ω) = Tω, Tk(Tω) = T2ω, . . ., Tk
(
Tt−1ω

)= Ttω, which, by substitu-

tion, implies that Tj
k(ω) = Tjω for j = 1, . . . , t. Now note that P

(
TjAk

)= P(Ak) → 1 for all j,
so that P

((
Tkω, . . . , Tt

kω
)= (

Tω, . . . , Ttω
))→ 1. To finish, note that, because T and Tk are

invertible and m.p.,

P
(
Tω= Tkω

)= P
(
ω= T−1Tkω

)= P
(
Tkω :ω= T−1Tkω

)= P
(
ω′ : T−1

k ω′ = T−1ω′),
so that also T−1

k → T−1 uniformly; now apply the same argument for j = −1, . . . ,−t and
apply the union bound. �

It is also useful to have the following lemma in hand, which assures us that we may replace
the assumption that X follows a non-atomic distribution with the slightly stronger assumption
that it is aperiodic.

Lemma 7. An aperiodic X -valued time series X is also non-atomic in the sense of Lemma 5.

Proof. We prove the contrapositive. Let P be the measure induced by X on XZ. Suppose
that P has an atom x ∈XZ so that P(x) = P(Xt = xt for all t ∈Z)> 0. As Xt is stationary, for all
s ∈Z we have P(Tsx) = P(Xt = xt+s for all t ∈Z) = P(Xt = xt for all t ∈Z)> 0. If Tsx �= Ts′x
whenever s �= s′ then this contradicts that P is a probability (finite) measure, so that for some
s �= s′ we have Ts−s′x = x. Assuming without loss of generality that s> s′, x is periodic with
period s − s′ and X is not aperiodic. �

Proposition 4. Let (�, F, P) be a probability space and X a Polish space. Then, for any t ∈N

and stationary, aperiodic X -valued time series X on (�, F, P), there is a sequence
(
Xk

)
of
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stationary, aperiodic, and mixing X -valued time series supported on (�, F, P) such that Xk
0 =

X0 for all k ∈N and

lim
k→∞ P

(
X−t = Xk−t, . . . , Xt = Xk

t

)
= 1.

The same is true if, instead of mixing,
(
Xk

)
is specified to be non-ergodic. If X is, in addition,

an integrable R-valued time series, the same is true if instead of mixing,
(
Xk

)
is specified to be

mean-ergodic or non-mean-ergodic.

Proof. Fix t ∈N. We break the proof into four cases.

Case 1: Approximation with mixing processes. Fix the law P corresponding to the X -
valued time series X which is stationary and aperiodic, as well as non-atomic by Lemma 7.
Proposition 3 holds, and so Xt = χ (Tt ◦ X(ω)) with T the left shift map and χ the projection
onto the 0th coordinate. For brevity, we will typically write ω̃ in place of X(ω). Let P̃ denote the
pushforward X∗P. Lemmas 7 and 5 imply that

(
XZ,B∞, P̃

)
is a standard non-atomic measure

space, and Proposition 3 guarantees that T ∈Ap ⊂ M
(
XZ, P̃

)
.

In [16, Theorem 7.14], it is shown that the conjugacy class of any mixing transformation
S ∈Ap ∩ M

(
XZ, P̃

)
is dense in Ap, which is to say that there is a sequence of P̃-m.p. trans-

formations (ηk)k∈N such that Tk ≡ η−1
k Sηk → T (uniform topology). Mixing is an isomorphic

invariant [44, Theorem 2.13], so Tk is mixing.
Consider for each k the time series Xk defined by Xk

t ≡ χ (Tt
k ◦ X(ω)) for t ∈Z. We immedi-

ately have Xk
0 = X0 for all k. Because Tk : XZ →XZ is a Borel map, Xk measurably maps �

to X . Moreover, Xk is a stationary time series by Proposition 3, and the process is mixing by
application of (9) to the definition of mixing given in (1) (with I0 = ∅).

We now wish to show that Xk is aperiodic. Suppose for the sake of contradiction that the
time series is not aperiodic, so that on some positive P̃-measure set A ⊂XZ, ω̃ ∈ A implies that
χ
(
Tt

kω̃
)

is periodic. By partitioning A into a countable number of subsets, there must exist a
positive measure subset Pm ⊂ A on which Xk is periodic with period m ∈N, i.e. ω̃ ∈ Pm =⇒
χ
(
Tt

kω̃
)= χ

(
Tt+m

k ω̃
)

for all t ∈Z.
Note that Xk

0(ω̃) = χ (ω̃) has the same distribution as X0. We claim that this implies the exis-
tence of two disjoint sets B1, B2 ⊂X such that P̃

(
χ−1(B1) ∩ Pm

)
> 0 and P̃

(
χ−1(B2)

)
> 0.

In fact, this follows from the separability of X ; for all ε > 0 there is a pairwise-disjoint
cover

(
Cε�

)
�∈N of X such that

(
Cε�

)
is contained in an ε-ball of X and X =⊔

�∈N Cε� .

Letting ε tend towards 0, there must eventually exist two sets Cε�,Cε
�′ satisfying P̃

(
χ−1

(
Cε�

))
,

P̃
(
χ−1

(
Cε
�′
))
> 0, or else because X is Polish, the pushforward measure χ∗P̃ is a point

mass at some x0 ∈X . This would then imply that P(X0 = x0) = P
(
ω : χ (ω) = x0

)= 1, and

then by the stationarity of X that P(Xt = x0 for all t ∈Z) = 1, contradicting that P̃ is non-
atomic. As we may choose Cε� satisfying P̃

(
χ−1

(
Cε�

)∩ Pm
)
> 0, it suffices to take B1 = Cε� and

B2 = Cε
�′ .

Now, for ω̃ ∈ χ−1(B1) ∩ Pm it must be the case that χ (ω̃) ∈ B1 and hence also that
χ
(
T�mk ω

) ∈ B1 for all � ∈N. In particular, T�mk ω̃ ∈ χ−1(B1) for all � ∈N. However, χ−1(B1) ∩
χ−1(B2) = ∅, so

P̃
(
T�mk

(
χ−1(B1) ∩ Pm

)∩ χ−1(B2)
)= 0< P̃

(
χ−1(B1) ∩ Pm

)
P
(
χ−1(B2)

)
.
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As Tk is mixing on
(
XZ,B∞, P̃

)
and {�m : � ∈N} is a set of strictly positive upper density,

this is a contradiction. Lemma 6 concludes the proof for this case, as

P
(
X−t = Xk−t, . . . , Xt = Xk

t

)= P
(
χ
(
T−t

k X(ω)
)= χ

(
T−tX(ω)

)
, . . . , χ

(
Tt

kX(ω)
)= χ

(
TtX(ω)

))
≥ P

(
T−t

k X(ω) = T−tX(ω), . . . , TtX(ω) = TtX(ω)
)

= P̃
(
T−t

k ω̃= Ttω̃, . . . , Tt
kω̃= Ttω̃

)
.

Case 2: Approximation with non-ergodic processes. Let T :
(
XZ, P̃

)→ (
XZ, P̃

)
continue

to be the left shift map associated with X. As in Case 1, we may approximate T by a sequence
of mixing transformations

(
T ′

k

)
k∈N satisfying T ′

k → T (uniform topology). We take the fur-
ther step of approximating each T ′

k with a transformation Tk which is not ergodic. As we
have seen, the fact that P̃ is non-atomic implies that there exist two disjoint sets B1, B2 ⊂
X such that P̃

(
χ−1(B1)

)
, P̃

(
χ−1(B2)

)
> 0. We may pick a subset Ak ⊂ χ−1(B1) � χ−1(B2)

such that P̃
(
Ak ∩ χ−1(B1)

)
, P̃

(
Ak ∩ χ−1(B2)

)
, P̃

(
Ac

k ∩ χ−1(B1)
)
, P̃

(
Ac

k ∩ χ−1(B2)
)
> 0, 0<

P̃(Ak)< 1/k, and

E
P̃

[
1ω̃∈χ−1(B1) | ω̃ ∈ Ak

]≡ P̃(Ak)−1
∫

Ak

1ω̃∈χ−1(B1) dP̃<E
P̃

[
1ω̃∈χ−1(B1)

]
.

T ′
k induces a transformation on both Ak and Ac

k (cf. [41, §3.11]). In particular, for any ω̃ ∈
XZ and B ∈B∞ let tB,k(ω̃) = min{t> 0 :

(
T ′

k

)n(ω̃) ∈ B}. Then, the induced transformations
TAk : Ak → Ak and TAc

k
: Ac

k → Ac
k defined by

TAk (ω̃) = (T ′
k)tAk ,k(ω̃)(ω̃), TAc

k
(ω̃) = (

T ′
k

)tAc
k ,k

(ω̃)
(ω̃)

are ergodic m.p. transformations on Ak and Ac
k, respectively. Define

Tk(ω̃) ≡
{

TAk (ω̃) if ω̃ ∈ Ak,

TAc
k
(ω̃) if ω̃ ∈ Ac

k.

Then Tk is invertible, and for all B ∈B∞

P̃
(

T−1
k (B)

)
= P̃

(
T−1

Ak

(
B ∩ Ak

)∪ T−1
Ac

k

(
B ∩ Ac

k

))= P̃(B ∩ Ak) + P̃
(
B ∩ Ac

k

)= P̃(B),

so Tk ∈ M
(
XZ, P̃

)
. Note that Tk is not ergodic because it fixes the sets Ak and Ac

k. However,
application of [41, Theorem 6.4.2 and Lemma 3.11.2] shows that Tk is weakly mixing on its
restrictions to Ak and Ac

k, with respect to the conditional probabilities P̃|Ak and P̃|Ac
k
.

We again consider the stationary time series Xk
t ≡ χ

(
Tt

k ◦ X(ω)
)

for t ∈Z, which has a
standard probability distribution on (XZ,B∞). As in the first case we must show that Xk is
aperiodic. We again appeal to a proof by contradiction. Suppose that Xk is periodic with some
positive probability, so that there is some m ∈N and positive measure set Pm = {

ω̃ : χ
(
Tt

kω̃
)=

χ
(
Tt+m

k ω̃
)

for all t ∈Z
}
; then Pm ∩ Ak or Pm ∩ Ac

k has positive measure. Suppose, without loss
of generality, that the former is true (the same proof applies to both cases). Then, as in the
preceding part, for all � ∈N we have

T�mk

(
χ−1(B1) ∩ Pm ∩ Ak

)∩ (
χ−1(B2) ∩ Ak

)= ∅,
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which is a contradiction to the fact that the restriction Tk|Ak = TAk is at least weakly mixing on
Ak. Therefore

(
Xk

)
is aperiodic.

Now we argue that the time series Xk
t is not ergodic. By the ergodicity of TAk and the

construction of Ak, for ω ∈ X−1(Ak) we have

lim
n→∞

1

t

t∑
j=1

1B1

(
Xk

j (ω)
)= lim

n→∞
1

t

t∑
j=1

1χ−1(B1)

(
Tj

Ak
X(ω)

)
a.s.= E

[
1ω̃∈χ−1(B1) | ω̃ ∈ Ak

]
<E

[
1ω̃∈χ−1(B1)

]= P(X0 ∈ B1).

As P(X0 ∈ B1) = P
(
Xk

0 ∈ B1
)
, this implies that

(
Xk

t

)
is not ergodic.

Finally, we argue that Tk → T (uniform topology). By the definition of Tk we
have d

(
T ′

k, Tk
)= P̃

(
T ′

k �= Tk
)≤ 1 − P̃

(
Ac

k ∩ {
tAc

k
= 1

})
. Moreover,

{
tAc

k
= 1

}= (
T ′

k

)−1(
Ac

k

)
and

P̃
((

T ′
k

)−1(
Ac

k

))= P̃
(
Ac

k

)
> 1 − k−1. So P̃

(
Ac

k ∩ {
tAc

k
= 1

})
> 1 − 2/k, and we have

lim inf
k→∞ d(Tk, T) ≤ lim inf

k→∞ d
(
Tk, T ′

k

)+ lim inf
k→∞ d(T ′

k, T) = 0.

Lemma 6 then implies the desired convergence result, as in Case 1.

Case 3: Approximation with mean-ergodic processes. Every ergodic process is also mean-
ergodic, so this follows directly from Case 1.

Case 4: Approximation with non-mean-ergodic processes. By Case 1 it suffices to consider
the case where X is ergodic, so fix such a process and its law P̃ on XZ. Let g = χ , the projection
of ω̃ ∈XZ onto its 0th coordinate. By assumption, g ∈ L1

(
XZ, P̃

)
. Because P̃ is non-atomic,

there exist disjoint sets B1, B2 ⊂R such that P̃
(
χ−1(B1)

)
, P

(
χ−1(B2)

)
> 0, B2 = Bc

1, and y ∈
B1 =⇒ y>E[X0]. As in the proof of Case 2, there exists a positive measure set Ak ∈B∞
and a P̃-preserving transformation Tk such that P̃(Ak) → 0, Tk → T (uniform topology), and
Tk fixes Ak and Ac

k and is measure-preserving and weakly mixing on each piece. Moreover,
by choosing Ak so that P̃(Ak ∩ B2) is sufficiently small relative to P̃(Ak ∩ B1), we may clearly
guarantee that E[χ (ω̃) | ω̃ ∈ Ak]>E

P̃
[χ (ω̃)] =E

[
Xk

0

]
.

Again letting Xk
t (ω) = χ

(
Tt

k ◦ X(ω)
)
, we can quickly verify that

(
Xk

)
is stationary, aperiodic,

and integrable by the method of Case 2. Hence, for all t, E
[|Xk

t |
]=E[|X0|]<∞. However, for

ω ∈ Ak, ergodicity of Tk on Ak implies

lim
n→∞

1

t

t∑
j=1

Xk
j (ω) = lim

n→∞
1

t

t∑
j=1

χ
(
Tj

k(X(ω))
) a.s.= E

P̃
[χ (ω̃) | ω̃ ∈ Ak] dP>E

P̃
[X0(ω̃)] =E

[
Xk

0

]
,

which also implies that
(
Xk

t

)
t∈Z is not mean-ergodic. As in Case 1, Lemma 6 concludes the

proof. �

In the following lemma we use the convention from (2) of enriching sample spaces. In
particular, given a random variable X with law P supported on a probability space (�, F, P),
we identify X with the random variable (Xt ◦ π1)t∈Z supported on the product space (�×
�′, F× F′, P× P′) and use P to denote the product measure P× P′.

Lemma 8. Let (�, F, P) be a probability space and X a Polish space satisfying |X | ≥ 2.
Then, for any stationary X -valued time series X on (�, F, P) and any standard non-atomic
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probability space (�′, F′, P′), there is a sequence
(
Xk

)
of stationary and aperiodic X -

valued time series on (�×�′, F⊗ F′, P× P′) satisfying (3) for all t. Moreover, if X is

non-degenerate,
(
Xk

)
can be chosen to satisfy X0

d= Xk
0 for all k ∈N.

Proof. For all t ∈Z let Yt be i.i.d. copies of the random variable X0 which are independent of
X if X is non-degenerate, and otherwise i.i.d. copies of some non-degenerate X -valued random
variable. Let Ck

t be i.i.d. random variables satisfying

Ck
t =

{
0 with probability 1 − 1/k,

1 with probability 1/k,

chosen independently of all other random variables. The random vector
(
Ck, Y

)
can be

constructed over the (standard) product probability space �̃′ = �̃Z × (
XZ

)Z by invoking
Lemma 5, where �̃ is just the unit interval with Lebesgue measure and XZ is equipped with the
pushforward measure induced by X.

(
Ck, Y

)
can thus also be constructed over the unit interval

(say) using intervals instead of �̃′, so by isomorphism it can be constructed over �′. Make
this construction, so that

(
X,Ck, Y

)
has domain �×�′ with appropriate product σ -algebra

and measure P× P′. According to our convention, let P indicate this extension of our original
measure to the product space. For all t ∈Z, k ∈N let

Xk
t ≡

{
Xt if Ct = 0,
Yt if Ct = 1;

Xk
t (ω, ω′) can be written in the form γ ◦ (

T × S1 × S2
)t ◦ ξ , where T is the m.p. shift of (10),

S1 and S2 are m.p. left shifts on {0, 1}Z and XZ, respectively, and ξ is the map from �×�′
to the product space XZ × {0, 1}Z ×XZ with coordinates (X,Ck, Y). As products of m.p.
transformations are m.p., a standard proof along the lines of Proposition 3 implies that

(
Xk

)
is

a stationary process, for all k. Clearly,
(
Xk

)
satisfies X0

d= Xk
0 in the non-degenerate case. Also,

P
(
X−t = Xk−t, . . . , Xt = Xk

t

)≥ P(C−t = · · · = Ct = 0) ≥ 1 − (2t + 1)/k → 1. It remains only to
show that

(
Xk

)
is aperiodic. This follows if we can show that, for all m ∈N, P

(
Xk

0 = Xk
�m for

all � ∈Z
)= 0. Fix such an m. Let the random subset S ⊂Z be given by S ≡ {t : Ct = 1} and let

A denote the subset of �×�′ on which |S ∩ mZ| = ∞. Note that, by independence, P(A) = 1,
and

P
(

Xk
0 = Xk

�m for all � ∈Z
)

= P
(

Xk
0 = Xk

�m for all � ∈Z | A
)

≤ P
(

Xk
0 = Xk

t for all t ∈ S ∩ mZ | A
)

= P
(

Xk
0 = Yt for all t ∈ S ∩ mZ | A

)
=E

[
P
(

Xk
0 = Yt for all t ∈ S ∩ mZ | Xk

0, S, A
)

| A
]
= 0,

where the last line follows by the independence of Y from the other variables and the non-
degeneracy of Yt for all t. �

In conjunction with Proposition 4, Lemma 8 implies the approximation result of Theorem 1
(note that in Lemma 8, if X0 is taken to be integrable, then so is Xk

0 for all k). �
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The proof of Theorem 2 is straightforward, and depends upon a connection between the
conjugacy class of a left shift map associated with a time series and the set of codings of that
time series.

Proof of Theorem 2. The theorem clearly follows if X is a singleton, so suppose this is
not the case. Lemma 8 implies that we may assume that X is aperiodic (write an element of
�×�′ as ω). By Lemmas 5 and 7, the probability spaces (XZ, X∗P) and (YZ,Q) (with their
respective Borel σ -algebras) are isomorphic. Let ϕ : XZ →YZ be an isomorphism between
the measure spaces, and let S : YZ →YZ be the left shift.

The map ϕ−1Sϕ : XZ →XZ preserves X∗P. Hence, [16, Theorem 7.14] implies that there is
a sequence of m.p. transformations (ηk) each mapping XZ to XZ such that η−1

k ϕ−1Sϕηk → T
(uniform topology), where T is the left shift map on XZ. Define an X -valued time series
Xk by

Xk
t (ω) = χ

((
η−1

k ϕ−1Sϕηk
)t

X(ω)
)= χ

(
η−1

k ϕ−1StϕηkX(ω)
)
,

where χ : XZ →X is the projection onto the zeroth coordinate. Then, (3) holds by Lemma 6.
Moreover, Xk is a coding of the time series Yk(ω) = ϕηkX(ω), which has law Q, where (4)

holds with χ̃ = χ ◦ η−1
k ϕ−1. It is also clear that X0

d= Xk
0, which concludes the proof. �

Proof of Theorem 3. By Rohlin’s theorem [23], any aperiodic transformation T can be
approximated in the uniform sense by strictly periodic transformations (see, e.g., [16, §7],
and especially Corollary 7.12). As in Theorems 1 and 2, we can define Xk

t (ω) = χ
(
Tt

kω
)
, using

Lemma 8 if X is not itself aperiodic. �

5. Conclusion

By identifying Polish-space-valued time series with measure-preserving transformations
and applying uniform approximation results from ergodic theory, we have demonstrated that
time series can be approximated in a strong sense by other series having mixing and non-
mixing characteristics, and codings of aperiodic processes. One of the corollaries of this
approximation result is that the non-parametric ergodic hypothesis, among other hypotheses,
is non-testable. There are also Baire category implications for mixing conditions.

It would be interesting to apply other approximation results from ergodic theory to time
series. For instance, [16] also shows that a dense set of m.p. transformations can be embedded
into measurable flows, which suggests an embedding of time series into continuous stochastic
processes. There are also approximation results for non-singular transformations (see, e.g.,
[10]) that might be applied to non-stationary time series.
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