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BLOCK-FINITE ORTHOMODULAR LATTICES 

GUNTER BRUNS 

I n t r o d u c t i o n . Every orthomodular lattice (abbreviated : OML) is the 
union of its maximal Boolean subalgebras (blocks). The question thus arises 
how conversely Boolean algebras can be amalgamated in order to obtain an 
O M L of which the given Boolean algebras are the blocks. This question we 
deal with in the present paper. 

The problem wTas first investigated by Greechie [6, 7, 8, 9]. His technique of 
pasting [6] will also play an impor tant role in this paper. A case solved com
pletely by Greechie [9] is the case tha t any two blocks intersect either in the 
bounds only or have the bounds, an atom and its complement in common. 
This is, of course, a very special situation. The more surprising it is t ha t 
Greechie's methods, if skillfully applied, yield considerable insight into the 
s t ructure of OMLs and provide a seemingly unexhaustible source for counter
examples. 

A closely related problem was considered by G. Kalmbach [11]. Her notion 
of a bundle of Boolean algebras gives a necessary and sufficient condition for 
the union of Boolean algebras to be an O M L and has the interesting conse
quence tha t every lattice is a sublattice of an OML. A drawback of her method 
for our present purposes is tha t the O M L constructed from a bundle of Boolean 
algebras may have "hidden blocks", i.e. blocks which do not occur in the 
given bundle. For example, a totally non-atomic block may be hidden among 
the atomic blocks of the lattice of all closed subspaces of an infinite-dimen
sional Hilbert space. Thus a bundle of Boolean algebras may not directly 
describe the block-structure of the O M L obtained from it. 

In this paper we s tar t investigating the interaction of the blocks of an 
arbi t rary O M L with finitely many blocks. Following a suggestion by B. 
Banaschewski we call such OMLs block-finite. The restriction to block-finite 
O M L s is essential since almost all our proofs proceed by induction on the 
number of blocks, making use of techniques developed in [3]. The key notion 
of this paper is tha t of a path (Section 4) . This is a finite sequence of blocks 
the union of any two consecutive members of which form a subalgebra and 
hence intersect in a prescribed way. Depending on how "good" this inter
section is we distinguish between proper and strictly proper paths . The main 
results of the general theory (Section 4, s ta tements 4.4, 4.5 and 4.8) can then 
be described as follows: Any two blocks in a block-finite O M L can be joined by 
a proper path . The relation " the blocks A and B can be joined by a strictly 
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proper path'" spirts t i i e O M L hi to s;h i gei-ras whac^, -̂ p to a cor^r^oii: Bcoieaii 
:aetor, intersect t rh \a ih \ The t h i r t restai allows >;s to s;rigk r*.;i certain! -ub-
aJ^ebras i&hkh car. e represented as a n<m-trivial rhirect pr<xii:cî. 

The hrst three sections contain pre h n t i i a ry rnatrriaL T h e ^esiots cf these 
-crctiois are essentially kpowiï, h u t I found it bes i ra t ïe to 1 ne hide hheitt t<» 
pr^vi le ""he necessary fraise for îr.c iater results- The next îVnar sections s o k e 
tue hdtiady s ta ted pn'-Mer, J:~ spécial cases, Section ô for a spodal ïype- of 
U*)dLs which wr call hh;ohî^h a::<I Sections th 7 aria ^ ht the case of G M L s w ù h 
three. foi: r and dve i»fc<:ks ^esp«ee tr\ eb*\ T h e ihtai sec r on contahts two results 
a ï c i ï i hiock-nnire OMLs which are independent of the genera.1 technhorues 
developed ifi this paper ; they are ,<*th eosiseopeaces of ^ih 

1. G e n e r a l i t i e s . In t r i s ^ectk*n we tecah some oasre dehadtions arai sortie 

techniques we have developed in _3h 

An ^:holi::w-: ' abbrevia ted: OL. is a s alçebra i-l; Y . y , ', 0. l b where 
j k i » , ^ i sa iattice with boraihsbt l a n d where : —* h isancrthcKoro.piernen-

tanof]:, he. an ami-monotone complementat ion of period 11 A Ï : jr:kûw*3:tlicr 

><.::û~n ah: reviaied: ; b \ îL - h an 0 L satisfying" the ordioittocitbar ia\v: 

ïf '-! ^ ^ then * / ''* * M = \ 

For 1 asie information a :*ont H M L s see 1. p ô*" f t : 5 ; l ô b 
For an eiemertt ; of and Oh! L h define b' = ; and cL = . . Demie the com

muta to r -*• A1 of a d u h e subset A oi L by: 

We write 7 .o , ; > . . . . , .,, instead of 7 * ;_, c>, . . : t ' - T h e cléments /»'. > nf 
an O M L L are said to conmoite , in symbols: <;tb, if and only if 7 „\ :^ = 0. 
The relation L is reîîexîve. in fact satisfies ihe stronger condition tha t M g ^ 
implies a " , it is symmetric and for every element -. L the set ^ - : 1 of all 
elements commut ing with . is a siibaîgeL*ra of L. T h e center C\L\ = 
^ ; C c ' *: - L\ \< the set of ail element» of L which commute with every element 
of L. C L ! is a Boolean Suhaigehra of L. L is irreducible if and only û C- L} = 
iO. l\ and 0 ?*= 1. Irreducible in this paper always means directly irreducii*!e. * 

A hlock of an O M L L is a maximal Boolean snbalgebra of L. T h e blocks can 
also be characterized as the maximal sets of pairwise commut ing elements of 
L. H<L) is the set of ail blocks of L. Clearly ^ %iL\ = L a n d ^ a d J = C>L). 
L is said to be 'dock-iniie ' Banaschewski^ if and only if ?ttL) is finite. Q*L) 
is the set of all 53 ^ 2l<£) satisfying .^t 35 ^ '^' *?{*L) — 33). Here we define 
the union of the empty subset of 3itZ/J to be !0, l\ and the intersection of the 
empty sui>set of v?i(L) to be L% so tha t ?ltLî h iie'L^ if and only if C(L) 5^ 
'0 , 1 [. In particular, if L is irreducible then iULt '- 2<L). 

T h e following two results • hT. t*2.l) and Theorem 1; are the principal tools 
applied in this paper. 
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(1.1) If L is an O M L , * i ïl\L) and a t l H S t - U c ? M ) - $ j then 

Or ; ) = S-J 53, in part icular U S is a subalgebra of L. The blocks of this 

subalgebra are exactly the elements of $ . 

(1.2) Every block-finite OML L is isomorphic with a direct product B X i i 
X l î X . . . X I , (« è 0 ) , where 5 is a Boolean algebra and Liy L2f . . . Ln are 
irreducible O M L s with a t least two blocks each.. 

These' results In many cases provide the induction s tep in inductive proofs 
on the number of blocks of a block-finite O M L . T h e first relevant fact for this 
is t h a t the blocks of a product of two O M L s are the products of the blocks of 
the factors. T h u s , if in the factorization (1.2) of L the number n is a t least 
two, each of the factors Lf has fewer Hocks than L and (1.2) allows the induc
tion s tep provided the property to be proved is preserved under the formation 
of products . Boolean factors usually do not cause any difficulties. T h u s if 
n = 1 in the direct factorization (1.2) we may usually assume that. L is irre
ducible.. T h e validi ty of the property to be proved then frequently depends on 
a. set S of blocks satisfying A 33 # |0 f 1 f only. As is easily seen every such set 
S is contained in a. set W £ 0 ( L ) . By (1.1) and irreducibility of Lr KJ W is a. 
subalgebra with fewer blocks than L and this again allows an inductive argu
ment , 

A third useful observation is the following, which belongs to the folklore of 
the subject. 

(1.3) If a Boolean algebra B is the (set-theoretical) onion of the sub-
algebras Bi and B% then B = Rj or B = R*. 

W e will apply mainly the following consequence of (1.3). 

(1.4) If B is a Boolean subalgebra of an O M L L and Lu L* are. a rb i t ra ry 
subalgebras of L such t h a t R Ç Li VJ L2> then B ÇZ Lt or B ÇZ L2 . 

Finally, we will make ose of the following main result of [3]. 

(1.5) Every finitely generated block-finite O M L is finite. 

2 . P a s t i n g . R. J . Greechie [6, 7, 8, 9] has given several constructions to 
obtain O M L s by pasting simpler ones. Since his pasting construction [6], 
p . 212 ff restricted to the principal sections also plays a role in our present 
context we recall the main facts here. T h e construction presented here is, in 
fact, somewhat more general in t ha t it includes the pasting of arbi tar i ly many 
O M L s as opposed to Greechie's two. This requires some additional consider
ation. 

(2.1) Let L be an O M L , (Li)i€I a family of subalgebras of L and 0 ^ c Ç 
f l i c ; Lt. Assume that the following two conditions are satisfied: 

(1) U î € / L f = L, 

(2) for all i, j Ç I with i^j:LinLJ = [0, c'} \J [e, 1]. 
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Then the following five conditions are equivalent: 
(a) if a, b t L and a ^ b then there exists i £ I such that a, b £ Lu 

(b) if a, b G L and aCb then there exists i Ç I such that a, b £ Li} 

(c) if B Ç ?((L) //zen /Aere o m / s i Ç 7 swcfe / t o 5 C Lz , 
(d) /or a// i, j Ç 7, Lj VJ Lj is a sitbalgebra of L, 
(e) for every non-empty set J' ÇZ / , U /€ ^ L ; is a sitbalgebra of L. 

Proof, (a) =>(d). I t is obviously enough to show tha t a £ Lt — Lh b Ç L} — 

Li imply a V b Ç Lf\J Lj, By (a) there exist fe, / Ç I such tha t (/, <7 V 
b Ç LA and b, a V & f L, . Assume first t ha t i ^ k. Then we have by (2) tha t 
a S c' or c ^ rt. But (/ ^ c' would by (2) imply tha t a Ç 7.7, cont rary to our 
assumption. It follows tha t c ^ a rg (i V b, hence by (2) tha t 

a V b Ç Z,* r\ Lj C L{U Lj. 

The case j ^ / follows by symmetry . We may thus assume tha t i = k and 

j = / and hence tha t £ ^ /. But then a V & (: Lk H 7^ implies by (2) tha t 

a \J b ^ c/ or c ^ a V b, in both cases, again by (2), tha t a V 6 G LjHiLj 

QLt\JLj. 

(d) => (e). This is trivial since any two elements of U JÇ,/ Lj belong to some 

union L{ U Lj with i, j £ / . 
(e) =» (c). If 73 Ç Pi/ç/T.,; there is nothing to prove. If not there exists 

a U B — H i e / 7>i and it follows from (1) and (2) tha t there exists exactly one 
index i Ç 7 with « Ç Z,T-. Since 

B QLtyJU{LlJ *i\ 

and since by (c), \J\L.^j ^ i) is a subalgebra, it follows from (1.4) tha t 

73 Ç L?: or 73 C U jL y | j ^ i} . 

But the second of these inclusions is impossible since a £ B and a Ci L, for all 
j 9* i. We thus have B Ç L z . 

The implications (c) ==> (b) =» (a) are obvious, which finishes the proof of 
(2.1). 

Note tha t if the family (Lt) ieT in (2.1) consists of two subalgebras only then 
the condition (c) follows immediately from (1.4) and hence by what we have 
proved all live conditions are automatical ly fulfilled. On the other hand it is 
easy to give an example showing tha t even if ( L j ) , - a consists of three sub-
algebras only, the last five conditions above are not a consequence of the first 
two. 

Definition. An O M L L is said to be obtained by pasting a family (Lj)i£r 

along the section [0, c'] W [c, 1] if and only if all the conditions of (2.1) are 
satisfied. 

Extending Greechie's construction slightly we want to show now tha t a 
family (Lj)i€T of O M L s can under certain conditions be pasted in the above 
sense. Assume for this tha t the following conditions are satisfied. 
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( P I ) (Li) ta is a non-empty family of OAILs, 

(P2) for all i, j t / , Lt C\ L} is a subalgebra of both Lt and Lh 

(P3) 0^ c t DieiLu 

(P4) f o r a l H , / G / with i ^ j : Lir\L] = [ 0 , c ' ] f U [c, 1],. 

Note tha t from (P2) it follows in particular tha t all L{ have the same bounds 
so tha t we don ' t have to specify in (P3) and (P4) the algebras Lt in which the 
bounds are taken. For the same reason we don ' t have to specify in (P4) in 
which Li we take the orthocomplement; the result is always the same. The in
dex i in (P4) refers to the OAIL Lt in which the intervals are taken. Thus , if 
:g i is the partial ordering of Lf then [0, c'] { = {x £ Lt\x ^ ic') and [c, 1]7 = 
{x Ç L,|c g fx) . 

(2.2) f/wder /fe? assumptions ( P I ) , (P2) , (P3) , (P4) de/me L = U ^ / L , 
and /?/ ^ fo the union of the partial orderings ^ t of the Lt. Then ^ is a partial 
ordering of L and with this partial ordering and the obvious definition of ortho-
complementation, L is an OAIL. It is obtained by pasting the family ( P / : ) f € / 

along the section [0, c'} \J [c, 1]. 

The proof of this requires only minor modifications of Greechie's proof and 
there is no need to give it here. 

The special case c = 1 in the above definition of pasting was considered 
earlier by AlacLaren [12]. The OAIL L is in this case called the horizontal sum 
of the family (Lt) iei. 

We are especially interested here in a construction which is more restricted 
than the general pasting as defined above but slightly more general than the 
horizontal sum. Assume for this tha t the OAIL L is obtained by pasting the 
family (Li:)i(:T along the section [0, cr\ \J [c, 1] and let B be an arbi t rary OAIL. 
It is then obvious tha t the product B X L is obtained by pasting the family 
(B X Ldier along the section [(0, 0) , (1, c')} U [(0, c), (1, 1)]. The special 
case of this is the case where L is actually the horizontal sum of the family 
(Li)i£T and B is a Boolean algebra. This gives rise to the following definition. 

Definition. An OAIL L is said to be the weak horizontal sum of a family 
(Li)iei of subalgebras if and only if there exists an i somorphism/ of L onto a 
product of B X Lr of a Boolean algebra B and an OAIL L' such tha t the sub-
algebras Lt of L correspond v i a / to subalgebras of the form B X L/ and IJ 
is the horizontal sum of the family ( L / ) z € / . 

The following s ta tement describes internally those pastings which are weak 
horizontal sums. 

(2.3) Let L be an OAIL obtained by pasting the family (P?;) iei along the section 
[0, cf] VJ [c, 1]. Then L is the weak horizontal sum of the family (Li)iei if and 
only if the following three conditions are satisfied: 
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1. c € C(L), 
2. [0, c'] W {c, 1] ï5 « Boolean subalgebra of L, 
3. for ait i, j f I with i ^ j , c is an atom of L f C\ Lj. 

T h e simple proof of this is left to the reader. 

3 . O r t h o m o d u l a r l a t t i c e s w i t h t w o b l o c k s . As an immediate consequence 
of (1.2) we obtain a simple description of all O M L s with two blocks. Thei r 

s t ruc ture is essentially known (see [8], p . 10), bu t since it is the s ta r t ing point 
of all the following considerations we give here a detailed analysis of O M L s 
with two blocks. 

(3.1) Every O M L L with two Mocks is isomorphic with an O M L of the form 

B X {A i + .4 2) , where Br A\t A 2 are Boolean algebras and A\ + A 2 is the 
horizontal sum of Aj and A±. In oilier words, every O M L L with two blocks is the 
weak horizontal sum. of its blocks. 

Proof. By (1.2) every O M L with two blocks is isomorphic with a direct 

product of a Boolean algebra and an irreducible O M L with two blocks. Since 

the irreducible O M L s with two blocks are obviously exactly the horizontal 

sums of two Boolean algebras the claim follows. 

The next theorem describes in more detail how the section along which the 
blocks of an O M L with two blocks are pasted can be explicitly calculated. 

(3.2) If L is an O M L with two blocks Bx and B2, a t B2 — B2 and 
b € B*- BY then 

B,nB2 = [0, 7 ' (« , b)} U [y(a, ft), 1]. 

If Bj A B^ = {Q% cf\ KJ [ct I j then c = y (a, b). L is irreducible if and only if 

y(a, b) = 1. 

Proof, By (3.1 ) we m a y assume tha t L is of the form B X (A 1 + A 2) and tha t 
B\ = B X A1 and Bi = B X At. By the remark of the last chapter , B\ and 
B» are then pasted along the section [(0, 0 ) , (1 , 0)] VJ [(0, 1), (1 , 1)]. But the 
elements a and b above are of the form a = (O1T r/2) and b = (bu ft2) with 
i'îîf bi t B, a 2. t A j — A2 and ft2 G A« — Aj, T h e first claim thus follows from 
the fact t ha t yUtubi) = 0 and 7(«2, ft2) = 1, so tha t y(ayb) = (0, 1). T o 
prove the second claim assume tha t B\ C\ B2 = [0, c'\ \J [c, I j . Clearly a V b 
G Bi C\ B1 and hence a. V b rg cf or c S a V b. B u t a V b ^ c would imply 
a (z B«, a contradiction. We thus have c ^ a V b and hence also a V b; 
af V b, a1 V ft' ^ c, which gives c ^ 7(« , ft). Bu t c < 7 (a , ft) would because 
of c c i>\ r\ B« imply c ^ 7 / (« , ft), hence c = 0, hence L = B\C\ B2y a con
tradict ion. W e thus have c = y (a, ft). T h e third claim is an immediate con
sequence of the second. 

The reader may find it instructive to apply (3.1) to prove the following 
result, which follows from (2.1) and the fact tha t an n-generated Boolean 
algebra has a t most 2 2 ' elements. 
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(3.3) An O M L with two blocks which is generated by an n-elemeni set has -ai 

most 22m(22W~1 + 2) elements and- this bound is best possible for every » ^ 2 . 

4. Paths. We start out with some definitions which will be the main topic 
of interest in the rest of the paper. 

Définition. For blocks T , B of an O M L L define 
A ~ B if and only if A 9^ B and 4̂ U 5 i s a subalgebra of L, 
AttBil and only if A ~ B and AC\Bj£ C(L). 

A link (strong link) in L is an unordered pair \A, B\ of blocks of L satisfying 
A ~ B {A £z B). A pa th in L is a finite sequence B®, Bu . . . Bm (•» ^ 0) in 
2t(X) satisfying Z*,- ̂  Z? i+ i whenever 0 ^ i < ». T h e pa th is said to join the 
blocks B® and Z£„. T h e number n is said to be the length of the pa th . T h e pa th 
is said to be proper if and only if •# = 1 or B,- œ 12 f+1 holds whenever 0 ^ i < ». 
T h e pa th is said to be strictly proper if and only if Bt tt B ^i holds whenever 
0 ^ i < n. T h e distance d(A, B) of blocks A, B t %{L) is defined to be the 
minimum of the lengths of all str ictly proper pa ths joining A and B if such 
pa th exists and to be oo if there is no str ict ly proper path joining A and B. 

If A ^*- B holds then by (3.2) there exists exactly one element e ~ A A B 
satisfying 

A A B = f|0, c'] U [t\ 1 ]) A (A U B). 

W e say tha t .4 and B are linked {strongly linked- if A ^ B) at e and use the 
notat ion .4 ^ eZ2 or .4 ^ tfZ*. 

If .4 <̂< Z? and C Ç ^l(L) then (.4 VJ ZJ) A C is clearly a Boolean subalgebra 
of L and (A KJ B) C\ C ^ A U B, It follows from (1.4) tha t (A U £ ) A C is 
contained in either .4 or B. This gives the following simple bu t very useful 
remark. 

(4.1) If A~B then for every C £ %(L) either A C\ C ^ B or B C\ C ^ A 
holds, 

(4.2) If Lu Lt are O M L J T , L = Lx X L2, A, B £ ICL*) and C, D f %iL±) 

then A X C ^ B X Z> holds in L if and only if either A = B and C ^ D or 
A ^ Z2 A7«/ C = Z>. If 4̂ d«^ 5 are linked at a then A X C and- B X C «.n? 
linked at (a, 0) 7/ C and D are linked at c then A X C and A. X D are linked- at 
(0, *) . 

We leave the simple proof of this to the reader. 
Let again, Lx and L2 be OMLs, A, B £ %(Li) and Df E t ? ( (£ , ) . Let 

A = AQ ~ AI ~ . . . ~ An = B be a pa th in Li. I t then follows from (4.2) 
t ha t A X D ^ A Q X D ^ At X D ~ . . . ~AH. X D = B X Z) is a pa th in 
L = Li X Z-2- If the first pa th is proper (strictly proper) then the second pa th 
is proper (strictly proper) . If, however, D 7e C(Z 2 ) , i.e. if L2 has a t least two 
blocks, then the second path is strictly proper regardless of whether the first 
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path is proper (strictly proper) or not. If L2 has only one block then clearly the 
second pa th is proper (strictly proper) if and only if the first path has this 
property. Similarly, if D = D0 ~ Di ~ . . . ~ Dm — E is a pa th in L2 then 
BXD = BXD0~BXD1~...~BX Dm = B X E is a pa th in L and 
the same remarks hold. T h u s the composite of the two pa ths in L is again a 
path in L. We thus obtain 

(4.3) Let L\, L2 be OMLs and L = Lx X L2. If each of L\ and L2 has at least-

two blocks, if any two blocks in Lx can be joined by a path of length at most n and 

if any two blocks in L2 can be joined by a path of length at most m then any two 

blocks in L can be joined by a strictly proper path of length at most n + w. If one 

of Li, L2 is Boolean then any two blocks in the other can be joined by a path 

(proper path, strictly proper path) if and only if any two blocks in L have this 

property. 

We are now in position to prove the first main theorem. 

(4.4) Any two blocks in a block-finite O M L L can be joined by a proper path. 

Proof. (By induction on the number n of blocks of L.) Un = 1 the claim is 
trivial. Assume n ^ 2. By (1.2) L is either the direct product of two OMLs 
with a t least two blocks each or it is the direct product of a Boolean algebra 
and an irreducible O M L . In the first case the claim follows from (4.3) by 
induction hypothesis. In the second case we may, again by (4.3), restrict our 
a t tent ion to the case tha t L is irreducible, i.e. C(L) = {0,1}. Let A, B £ ?l(L) 
and AC\B ^ C(L) = {0,1}. Then by the remarks following (1.2) there 
exists 33 Ç fi(L) with A, B t 33. By (1.1) USB is a subalgebra with ?l(U33) = 
S and since L is irreducible, U53 has fewer blocks than L. By inductive 
hypothesis .4 and B can be joined by a proper pa th in VJ33. Since C(W93) = 
r\ 33 7̂  {0 ,1} = C(L) , every such path in W33 is a strictly proper path in L 
and hence we have even shown tha t A and B can be joined by a strictly 
proper path in L. Assume finally tha t ,4, B Ç ?[(£) and A C\ B = | 0 , 1}. If 
A VJ B is a subalgebra then A ^ B is a proper pa th and the claim is again 
proved. If A \J B is not a subalgebra then there exist a Ç A — B and /; £ B — A 
such tha t a V b # .4 U B. Since a, b ^ a V b there exist blocks C, D 
such tha t r/, a V /; f C and /;,, a V b £ D. Since a, b, a V /; 9^ 0, 1, each of the 
intersections A C\ C, C C\ D and D C\ B is different from {0, 1}. By what wTe 
have already shown any two consecutive blocks of the sequence A, C, D, B 
can be joined by a strictly proper pa th . I t follows tha t A and B can be joined 
by a strictly proper pa th , completing the proof. 

We investigate next the question under which conditions any two blocks can 
be joined by a strictly proper pa th . 

Definition. For blocks A, B of an O M L L define A = B if and only if A and B 
can be joined by a strictly proper path . 
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Clearly = is an equivalence relation in %{L). 

(4.5) Let L be a block-finite O M L containing at least two blocks which cannot be 

joined by a strictly proper path. Let 23i, 232, . . , 23* be the equivalence classes of 

21(1/) modulo = . Then each W232- (1 ^ i ^ n) is a subalgebra of L with 

2l(WS3i) = 23 z- awd L is the weak horizontal sum of the family (W23z-)i^^w. 

Proof. Since by (4.3) and (4.4) any two blocks in the product of two O M L s 
wTith a t least two blocks each can be joined by a strictly proper path the 
assumptions of (4.5) imply by (1.2) tha t L is the direct product of a Boolean 
algebra and an irreducible OML. By (4.3) it is thus enough to prove the claim 
under the assumption tha t L is irreducible. T o show tha t the sets W23z- are 
subalgebras it is obviously enough to show tha t a, b G U S j implies a V b G 
W23*. For this assume a G A G 23, and b G 5 G 93*. If a V & G A \J B this 
is clear, li a V b (1 A VJ B there exists C G ?I(L) such tha t a, a V b G C 
and since 0, 1 ^ a G A H C we have by (4.4) tha t A = C, i.e. a V b G C G 23, 
i.e. a V & G W93,, proving tha t W23* is a subalgebra. By (4.4) any two blocks 
A, B with A r\ B ^ {0, 1} can be joined by a strictly proper path . I t follows 
from this tha t (U23*) H (W23,) = {0,1) holds whenever î V j . Clearly 
every block of L belongs to one of the 93 *, which implies tha t L is the horizontal 
sum of the family ( U S f ) i ^ ^ and tha t the blocks of VJ93, are exactly the ele
ments of 23 i, completing the proof. 

The next simple observation w ill be used later on. 

(4.6) If blocks A, B, C of an O M L L satisfy A ~eB ~f C and if A H C £ B 
then e = f and A H B = B H C. 

Proof. The assumptions imply by (4.1) tha t B H C ÇI A and A H B Q C, 
which gives the second claim. T o prove the first claim pick a G (A C\ C) — B 
and b G B - (A \J C). Then by (3.2), e = 7 ^ , b) = / . 

(4.7) LetLuL2beOMLs,AJB G 3t(Li), C, D G îl(L2) and 

A X C~eB X C ~ 7 5 X D. 

Then this path is strictly proper and there exists exactly one block F in Lx X L2, 
namely F = A X D, such that 

A X C~fF~eB X D. 

Proof. I t is obvious tha t the given path is strictly proper. By (4.1) the 
assumptions imply A ~a B, C ^ c D, e = (a, 0) a n d / = (0, c). It follows from 
this immediately tha t F = A X D has the desired property. To show uniquess 
assume 

A X C~fE X G~eB X D. 

From (4.1) it follows tha t either A = E or C = G. But C = G would imply 
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A ^ë E for some h ¥-- 0, which would give {b, 0) = / = (0, r) t a contradiction. 
We thus obtain A = E and, by symmetry, G = D. 

The following' theorem seems rather technical. It describes, however, an 
important feature of the interaction of blocks in a block-finite OML in that it 
allows to single out certain subalgebras which admit a representation as a 
non-trivial direct product. 

(4.8) Lei L be a block-finite OML, A, B, C £ I ( L ) , A ~ e J ? ~ , C and 
e ^ / '. Then the path A ~ B <~- C is strictly proper and there exists exactly one 
Mock D such that A ™fD ~ f C. This D is different from B. Furthermore, 
A\J.B\J C\J D is a subalgebra of L isomorphic with a direct product of two 
OMLs with two blocks each. 

Proof, We show first that if the OMLs LY and L% satisfy (4.8) then the 
product L = L\ X L2 does. By symmetry and (4.1) we may assume that the 
given path is either of the form 

(1) Aj X A*~eAi X B«~fAi X C2 

or of the form 

(2) Aj x^2~rJB, x^ 2 ~/£ i x a 
In the case (2) the claim follows from (4.7). In the first case there exist ayb Ç L 
such that A 2 ™tt B« ™b C* with a S br. By assumption there exists exactly 
one block D* € ?f (L^) such that A* ~ f t D* ~ „ C*. This clearly implies 

Aj X A2.^fA1 X D2~eAl X C2f 

i.e. that the block D = i i X D^ has the desired property. It is easy to see that 
it is the only one. We have thus shown that the property described in (4.8) 
is preserved under the formation of the product of two OMLs. 

We now prove the general result by induction on the number n of blocks of 
L. If n = 1 the claim is trivially true. Assume n ^ 2. By (1-2), inductive 
hypothesis and the result already proved we may assume that L is irreducible. 
Assume in this case A ^ e B ~ r C and e ^ / '. Since c ^ O ^ / and e ^ / ' we 
have 0, Î ^ e 6 A C\ B C\ Ct which implies in particular that the path is 
strictly proper. By the remark following (1.2) it also implies that there exists 
m £ 0(X) with X B, C £ m. By (1.1) U S is a subalgebra of L with fewer 
blocks than L and hence by inductive hypothesis there exists a unique block 
Z> £ S such that A ~ /Z> ~ e C. It thus only remains to show that no block 
Z> £ 8(L) - » satisfies A ~fD —, C But D f »(! ,) - » implies by defini
tion of 0(L) that n $ g D and hence that ^ H C ^ a This together with 
A ^fB ^eB would by (4.6) imply that e = f. Since also e ^ / ' we would 
obtain e = 0, a contradiction. 

5. Line-l ike o r t h o m o d u l a r la t t ices . In this section we discuss OMLs of 
a. special type, which we call line-like and which are characterized by the fact 
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t ha t its blocks admi t a certain natural ordering described in the following 
definition. 

Definition, A line-like ordering of the blocks of a block-finite O M L L is a 
sequence BQ, Bu . . . , Bn containing every block of L exactly once and satisfy
ing: 

1. If 0 S i < j ~ n then \Jt=ij Bk is a subalgebra of L; 
2.H0Si<j<kSn then B{ C\ Bk ç Bj. 

A line-like O M L is a block-finite O M L the blocks of which admi t a line-like 
ordering, 

(5.1) Let BQ, BI, . . . , Bn be a line-like ordering of the blocks of an O M L L. 
Then: 

1. I/O S i < j S n then the blocks of UA-=I ; Bk are exactly the blocks Bk with 

i S k S j ; 
2. IfBtcindB f+i are linked at e* (0 S i < n) then ef ^ et+i holds whenever 

0 S i ^ n - 2; 
3. L is the direct product of a Boolean algebra and an irreducible O M L . 

Proof. Every block B of \Jk=ij Bk satisfies 

B C (LI*-!*-1**) W B,. 

T h e first claim follows from this and (1.4) by induction o n ; — i. If L was not 
the direct product of a Boolean algebra and an irreducible O M L we m a y 
assume by (1.2) tha t it was the direct product of two O M L s L\ and L2 with a t 
least two blocks each. By (4.2) there would exist an index i and blocks A, 
B Ç »(Z,i) , C,D £ » ( L 2 ) such tha t 

Bt = A X C Bi+i = B X C and Bi+2 = B X D. 

But then Bt \J Bi+1 KJ Bi+2 would not be a subalgebra, contradict ing the first 
condition in the definition. By (4.8) we would arrive a t the same contradict ion 
if et S ei+i would hold for some i. (5.1) is thus proved. 

If BQ, BU . . . , Bn is a line-like ordering of the blocks of an O M L we assume 
throughout this chapter tha t Bt and B i+i are linked a t et. 

(5.2) Under the assumption of (5.1), Btr\Bi+1 = [0, e{] \J \eif 1] holds 
whenever 0 ^ i < n. 

Proof. By the definition of a link we have 

B< U Bi+l = ([0, e/] U [eu 1]) C\ (Bt U £ f + 1 ) 

and it is by dual i ty enough to show tha t [eiy 1] Ç B{ U Bi+u i.e. t ha t e£ ^ x 
implies x c B tKJ Bi+i. If £,- ^ x there exists a block i?* containing both et 

and x and we m a y by symmet ry assume tha t k ^ i. But et £ BkC\ Bi+ï 

implies by the definition of a line-like ordering tha t £,- G # j holds for & ^ j 
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^ i + 1 and hence tha t eL ^ e/ or e -, ̂  ef holds for k ^ j ^ ?'. If e'?: ^ <?/ 
would hold for at least one such j there would be a largest j with this proper ty 
and, since e{ ^ e/, we would have j < i, hence et ^ e/ and ej+] ^ e,-, i.e. 
^i S Cj+ii contradict ing (5.1). I t thus follows tha t e, ^ et and hence Cj S x 
holds for k S j S i> This and x t iiA: implies by induction tha t x c Bj holds for 
all j with k ^ 7 ^ i, in part icular tha t # Ç 73/ Q 73 ^ U 73j+i. 

From (5.2) and the second condition in the above definition we obta in: 

(5.3) Under the assumption of (5.1) 

(Bo U . . . Bt) H CBf+1 U . . . U / i j = LO, t ' /] U [C/, 1] 

/ifl/ds whenever 0 ^ z' < w; m particular L can be obtained by pasting the sub-

algebras Bo U . . . U i i ?: ami /3 / +i \J . . .KJ Bn along a segment. 

In the following two s ta tements (5.4) and (ô.o) we assume tha t 

iio, .#i, . . . , Bn is a line-like ordering of the blocks of L and tha t bt Ç i$t- — 

\JJ9éiBj. Such /?f exist since Bt Ç \Ji7éiBj would by (1.4) imply 73 ;- Ç 

U./<? £>./> o r ^ ^ U./>/ Bj, both contradicting the first par t of (5.1). 

(5.4) If 0 ^ i < j ^ n then 

et V e.i+i V . . . V e.j-i = et V Cj-i = y(bu bj) = y(bh bi+u . . . , bj). 

Proof. Since 73,, 73 m , . . . , Bj is a line-like ordering of the blocks of U A : = / Bk 

we may assume, without loss of generality, t ha t i = 0 and j = ?z. By (5.1) L 
is the direct product of a Boolean algebra and an irreducible O M L and it 
follows from this easily tha t we may restrict our a t ten t ion to the case t ha t L is 
irreducible. Since 7(^0, bn) ^ y{b{), bi, . . . , bn) it is then enough to show tha t 
eo V en-i = y (bo, b„) = 1. From 

bo e Bo - Ui=inBt and bn (z Bn - U^o'^B, 

it follows tha t 

bo V bn, bo V />„', bo' V b„, bo V &/ t B0 H .#„ = {0 ,1} , 

i.e. y (bo, b„) = 1. From (5.1) it follows tha t Co V e„_i 6 730 P\ 73„, hence also 

e0 V ev-i = 1. 

The following result is an immediate consequence of this. 

(5.5) I f 0 ^ i < j S n then 

BtnB3 = [ 0 , y ( 6 * , M ] ^ [ 7 ( ^ , 6 ^ , 1 ] 

= [ 0 , T ' ( & < , bi+u . . . , &,)] U [7(&<, 6<+1, . . . , /;,•), 1]. 

Our next aim is to prove tha t if an O M L L with n + 1 blocks contains 
blocks with distance n then it is line-like. 

(5.6) If an O M L with n + 1 blocks is the direct product of two O M L with 
at least two blocks each then any two blocks A, B of L have a distance d(A, B) < n. 
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Proof. If the first of the factors has k + 1 and the second / + 1 (k, I ^ 1) 

blocks then it follows from (4.3) and (4.4) tha t any two blocks in L have a 

distance S k + /. But 

w + l = (k + l ) ( / + l ) = jfeZ + jfe + z + i, 

hence k + / < n. 

In the next three s ta tements (5.7), (5.8), (5.9) we assume tha t L is an O M L 

with n + 1 ^ 1 blocks, tha t i^o and Bn are blocks of L with distance w and tha t 

Bo œ ^ i œ . . . œ 2?„. 

(5.7) If 0 ^ w rg n then U i=om -B* is a subalgebra of L with m + 1 blocks and 
ifm^2 the blocks B0 and Bm have distance m in this subalgebra. 

Proof. By (1.2), (4.3) and (5.6) wre may assume tha t L is irreducible. Assume 
now tha t for some m (0 ^ m < n), Sm = Ui=om Bt is not a subalgebra. Then 
there would exist elements a, /; £ Sm with 

a V b e (Ut=m+inBt) - Sm. 

Define I = {i\0 S i è n, a £ Bt\ and / - {j|0 S j è n, b G £ , } . Since the 
union of any two consecutive blocks is a subalgebra of L, it follows tha t 
\j — i\ ^ 2 holds whenever i G I, j £ J and i j ' ^ w . It follows from this tha t a t 
least one of the sets I C\ {0, 1, . . . , m], J C\ {0, 1, . . . , m} consists of numbers 
:g m — 2 only and we may assume by symmetry tha t I C\ {0, 1, . . . , m\ has 
this property, i.e. tha t i £ I and i ^ m implies i ^ m — 2. By definition of I 
we have 

which by (1.1) implies tha t 7" = \Ji^i Bt is a subalgebra of L with 21(2") = 
\Bi\i G /} and tha t the center C(T) = DieiBi contains a and hence is non-
trivial. Since a and a V b are comparable there exists a block 2^ containing 
both a and a V b and since a V b (f_ Sm, k > m holds for every such k. By 
(4.4) any two blocks in T can be joined by a proper path in T. I t would thus 
follow from our assumption tha t [J j=i)

m B j was not a subalgebra tha t there 
exist indices i, k £ / with i S rn — 2, & ̂  m + 1 and i$i ^ J5A:. Since also 
Btr\Bk 3 C(7") 3 C(L) it would follow tha t BQ ^ B, ^ . . . ç^ B, &Bk 

tt . . . tt Bn was a strictly proper path in L contradicting d(B0, Bn) = n. We 
have thus shown tha t the sets Sm = Ui=om Si (0 ^ m ^ n) are subalgebras 
of L. Since every block of Sm+i is by (1.4) either contained in Sm or in Bm+1 

it follows easily by induction on m tha t the blocks of Sm are exactly B0, 
Bi, . . . , Bm. I t remains to show tha t the distance of BQ and Bm in 5 m is m 
provided tha t m ^ 2. For every m the distance of £>0 and i?m in L is m and every 
strictly proper path in Sm is also a strictly proper path in L. The distance of 
B0 and Bm in Sm is therefore either w o r c o and it is thus enough to show tha t 
if it is oo then m ^ 1. Assume tha t d(B0, Bm) = oo in Sm. Then, in particular, 
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BQ — Bi — ' . . . ^ Bm is not a strictiy proper pa th in Sm and hence C{S~J ^ 
!0, I j . Fur thermore , by (4,4), Bq \J Bm is a snbaigebra of L and B<, A Bm = 
C(Sm) ^ {0, 1}. It follows that B^ ~ Bm ~ Bm+l — . . . ~ B„ is a strictfy 
proper path in L which, together with the assumption d(BQ, Bn) = n implies 
m ^ 1. 

(5.S) 1. / / O g K j ^ / ! then J^,} B1: is a suhalgehn: with j — i -*- 1 
blocks and if j — i ^ 2 the blocks B> and B have distance j — / in this sun-
algebra. 

2. If 0 ^ i < j < k ^ a then B< A B, Ç / i ; . 
/ « particular, B ,. / i i , . . . , /i»; /V </• line-like ordering of ?i£L}. 

Proof. The first claim follows easily by applying ;5.7) twice. "The second 

claim we prove by induction on ?i. If n = 1 it is t r iv ia l Assume n ^ 2. If 

0 < i or k < w the claim follows from the first par t of (5.-M by inductive 

hypothesis. We thus only have to show tha t B,. A / j , Ç g ; holds whenever 

0 < j < w. If Bu H />\ ^ /J. would hold for all such j we would obtain by •: 1.4) 

t ha t 

which by \\.\) would imply Bt> ^ /$„ contradict ing d{Bu Bf) — n ^: 2. Thus 
there exists A, 0 < A < H. such that ^ H #ft Ç B,t hence 3,. P , /*„ = 
Bn A /i ; : A /*„. By inductive hypothesis we have II, r \ £, : Ç /j ; if () < j < k 
and #;- ^ / in ÇI / j , if k < j < w, and in both cases /i<> A / 1 ; CI # . completing 
the proof. 

The definition of a line-like ordering and the second s ta tement of (5.1) 
completely describe how Boolean algebras have to interact in order to be the 
blocks of a line-like O M L . This is the content of the following s ta tement . 

(5.9) Let Bu, Bu • - . , Bn he a sequence of Boolean algebras, g t the partial 
ordering of B7, e: £ 5 , ^ ^ ! T i (0 ^ i < n) and its su me thai the following 
conditions arc satisfied: 

1, Bi n B j ^ is a subalgebra of both B, ami B^ (0 ^ i < w). 
2. B.rxB^, = LG, e / \ W [el l ] f - 10, c / ] , _ , A [e:, 1 } (0 S i < n) 

;i B, r, Bk e Bi to ^ / < j < k s n). 
4. d S eM {Q ^ i < n). 

Define L = U , = / ' f̂  </«{/ let :§ *V //if union of the partial ordering ^ ,-. 77?e?j 
^ 25 /£ partial ordering of L and with this partial ordering arid the obvious defini
tion of orthocom plemeniation L is a line-like O M L and B$, Bln . . . . Bn is a 
line-like ordering of its blocks. 

Proof. This follows easily from î2.2) by induction on ?:. 

6. O r t h o m o d u l a r l a t t i c e s w i t h t h r e e b l o c k s . We assume in this section 
tha t L is an O M L with three blocks. By (4.4) there exist A* 3 -_ ?!<I> with 
.4 ~- B. By i'4.1) this implies tha t , if C is the remaining block, a t feast one of 
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the intersections A C> t\ B ^ C equals the renter of JL Thus it is not true that 
even" two (distinct} blocks of L have distance 1 and It follows that either there 
exist blocks with distance 2 or there exist blocks which can not be joined by 
a strictly proper path. IK the first case L Is fine-like by \5.8). and in the 
second case L is by '4.5} the weak horizontal sum of a Boolean algebra and an 
Û M L with two Hocks, hence, as is easily seen, also line-like. We have thus 

proved the following; s ta tement . 

(BA l Exery O M L L with 1hree blocks is line-like. 

Definition. Let X be an O M L with three blocks. A block B ^ %{L) is said 
t o be a middle block of L if and only if A H C ÇT B holds, where .4 and C are 
the remaining blocks of L. 

<0.2) Every O M L L with fhree blacks h:s u middle block. If B is <x middle block 
oj L tand À . C -CM ike remaining Mocks then A 'J B and B U C ts-re subtil gebr*: s 

4L, 

Proof. The existence of a middle block follows immediately from (C.l) . If 
there exists a strictly proper path A ^ B ^ C then B is obviously the only 
middle block and the second claim is obvious. If no two blocks of L have 
distance 2 then any two blocks have distance 1 or oo . In both cases the union 
of the two blocks is a subaigebra, in the first case by definition and in t he 
second case by (4.4). 

Still another wav to formulate s 6 .1 / is the following, which follows from 
(5.2). 

?6.3> Every O M L L with three blocks can be abhtined by pasting n Boolean 
riiçebrt: <tnd <tn Û M L with two blocks along a section. 

T h e following observation will lie needed in the next two sections, 

f 6.4 > far »in O M L with fhree blocks the following ûre équivale ni. 
L L hds îwo middle Mocks; 
2. Tke un ion of any two blocks is d sitbalgebrtt of L. 

Proof. The second condition follows from the first by (6.2). T o prove the 
converse assume tha t B is a middle block and .4, C are the remaining blocks. 
If .4 \J' C is a sulialgebra. it follows from (4.1) tha t either A .O B £ C or 
B ^ € C A, i.e. tha t one of .4 or C is another middle block. 

7. Orthomodiilar lattices with four blocks. 

(7.1) Lei L be an irreducible O M L with four blocks B&J Blf B2f B$ satisfying 

B® C\Bl ^B2 U B3, Bj œ B, and B*C\BZ<£B*\J B^ 

Then B& \J B$ is not a subalgebra. 
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Proof. Pick u g (73 0 r\ Bx) - (B2 W f t ) , ^ (B2 H Bz) - (B0 U 5 i ) and 
pu t £ = Y(Z/, Z/). Since B\ U 7>2 is a subalgebra we have by (3.2) tha t 73 x ~e B2. 

If BQ U 7>3 was also a subalgebra wre would by the same a rgument have 
Bo ~ e ^ 3 , hence 

e ç 5o n 5, n 52 n s3 = c(L) - {o, 1), 
hence c = 0 or <? = 1. But B\ ^eB2 implies e ^ 0 by an earlier remark and 

e = 1 would imply Bx C\ B2 = {0, 1}, contradict ing B\ œ 7?2. 

(7.2) 7/ L is an irreducible O M L with four blocks B0, B\, B2, 7>3 and B0 œ 

Bi œ J32 //^w 5 0 U BiU B2 is a subalgebra (which clearly has three blocks only). 

Proof. Assume i30 U J3I U B2 is not a subalgebra. Then there would exist 

a € Bo ~ (B, U B2), b g 5 2 - ( 5 0 W 5 0 

such that a V & £ 5 3 - (i30 U i>\ U i32). Since a and a V & are comparable 
they both belong to some block and hence a Ç (B0 H 53) — (B\\J B2), 
which implies ftHiJ^ 73T U 52 . By symmetry we obtain 5 2 H 53 $£ 
5 0 U 5i. But 5 0 H 5i £ B2 U 5 3 would contradict (7.1) and we thus have 
either #0 H 5i C B2 or 5 0 H 5i C 53 . The first of these conditions would 
imply 730 C\ Bi = Bo r\ Bi(~\ B2. Since B o W ^ i U B2 is not a subalgebra wre 

have by (1.1) tha t B 0 C\ B1 C\ B2 Ç Bz and we would obtain B0 H Bx = {0, 1}, 

contradict ing 7>() ̂  i^j. Thus 7J0 H B i Ç i j 2 is impossible and hence we have 

BoC^Bi Ç 733. Since 73x U 732 is a subalgebra we have by (4.1) either 

# i n ^ 3 Ç .62 or JB2 H 733 Ç BL The second of these conditions contradicts 

B2C\BZ g 5 0 VJ i?!. We would thus obtain 

B0nBi = i J f l H B i n i i a - Bor\Blr\B2r\B, = {0, 1}, 

contradict ing 7>0 ^ J3i. (7.2) is thus proved. 

Definition. Let 7> be an O M L with four blocks. A block B of L is said to be 
a middle block if and only if whenever .4 and C are two of the remaining blocks 
then A \J B U C is a subalgebra with three blocks and middle block B. 

Definition. The valence of a block 73 of a block-finite O M L 7> is the number 
of blocks A satisfying A tt B. 

(7.3) Let L be an O M L with four blocks Bo, Bu B2. B:i and assume that the 
block B\ has valence 3. Then either Bx is a middle block of L or L is line-like. 

Proof. Since no block in the direct product of two O M L s with two blocks 
each has valance 3 we may by (1.2) assume t h a t L is irreducible. By (7.2) 
each of i30 VJ BX\J 732f B0 U BY \J £ 3 and B2 W Bx VJ 733 is a subalgebra with 
three blocks. If Bx is a middle block of each of these, it is a middle block of L a n d 
there is nothing left to prove. If this is not the case we may assume without 
loss of generali ty t ha t B\ is not a middle block of Bo^J BX\J B2. I t then follows 
from (6.2) tha t Bo KJ B2 is a subalgebra and tha t B0 H Bi Q B2 and 
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B\ C\ ft Q BQ. Since ft U ft is a subalgebra we obtain from (4.1) that either 
BQC\ ft Q ft or ft H ft C ft and we may by symmetry assume that 
B$C\ Bz C ft. Since ft U 53 is a subalgebra we obtain by the same argument 
that either BQ PI BZ Q B\ or BQC\BI C 53, The second of these conditions 
would imply BQC\B1 = {0,1}, contradicting ft ^ ft. We thus have 
ft H ft C Bl and hence B0 H ft = {0,1}. We claim tha t ft ^ ft ^ B1 

tt ft is a line-like ordering in this case. The only thing left to prove to estab
lish this is ft H ft C ft. But ft H ft £ Bl would as before imply ft C\ B2 

C ft, hence 5 i H 5 2 = { 0 , l j , contradicting ft œ B2. 

(7.4) Let L be an O M L with four blocks ft, Bi, ft, ft satisfying 
B0 œ ft œ B2 ^ ft £^ ft and having no other strong links. Then L is isomor
phic with the direct product of two OMLs with two blocks each. 

Proof. Assume tha t L was not a direct product of the described kind. We 
may then assume tha t L was irreducible. By (7.2), ft W B\ \J B2 would be a 
subalgebra and since BQ 9^ B2 we would have ft H B2 Ç ft and, by sym
metry , BQ C\ B2 Ç ft and hence BQ H ft = {0, 1}. Again by symmetry we 
would obtain ft H 5 3 = {0,1}. Wre would thus obtain ft H ft+i ^ ft+2 

VJ ft+3 (i = 0, 1, 2, 3, indices modulo 4) , contradicting (7.1). 

(7.5) Every O M L with four blocks satisfies one of the following conditions: 
1. It is the direct product of a Boolean algebra and two irreducible O M L s with 

two blocks each; 
2. 27 is line-like; 
3. It has a middle block. 

Proof. From (4.5) and the structure theorems for OMLs with a t most three 
blocks it follows easily tha t L is line-like if there exist blocks which can not be 
joined by a strictly proper path. Hence we may assume tha t L is connected. If 
it has a block of valence 3 the claim follows from (7.3). If every block has 
valence a t most two then it either satisfies the assumption (7.4) and hence 
the first condition of (7.5) or, with suitable enumeration of the blocks, wre 
have BQ œ ft œ ft œ B% and these are the only strong links. But then 
d(B0, ft) = 3 and, by (5.8), L is line-like. 

(7.6) Every O M L L with four blocks is either the direct product of two OMLs 
with two blocks each or can be obtained by pasting a Boolean algebra and an O M L 
with three blocks along a segment. 

Proof. By (5.2) and (7.5) it is enough to show tha t every O M L L with four 
blocks which has a middle block can be obtained by pasting in the described 
way. Let Bo, ft, ft, ft be the blocks of L, assume tha t ft is a middle block 
and BQ ~e ft. We then have by (5.1) and (6.1): 

ft H ( f t W f t U f t ) = ftHft = ([0,ef] \J[e, 1]) H ( f t U ftU ft) 

= ([0, e'] U [e, 1]) H (Bo U ft U ft) = ([0, e'] U [e, 1]) 

H ( f t U ft U ft U f t ) - [0, e'] VJ [g, 1], 
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i.e. L is obtained by pasting B and Bi o ' i i - v, ' i>s along the segment 
,o. ^ 'v-' Lc r . 

8. Orthomodutar l a t t ices wi th five Mocks. Whereas al! UMLs with up 
to foor blocks could i c obtained by either taking direct products or pasting 
OMLs with fewer blocks, a new phenomenon appears if the OML has five 
Mocks, namely the existence of "loops'". We deal with this ca.se first. 

ibA s Lei L i*e <:n OML with nvc blocks E* Bu F*. B^ B, sxrk ihv />„ ^ B~L 

^ i>2 ^ B? ^ / > r ^ B ( I10M5 «wJ j ^ r l A:? fJr*w «rrt* *w? #*,cfr strong links. Then 

B.nB,^ £B~*.B^r>B^ g^B^imîB, 0 , 25 ,^ C / ? _ , 

holds fm all i ancfo* no i is 3, vJ i> _« « sufaiigfbrt:. ? I mitts modulo *> ». 

Prom» By '1.2* we may assume that JL is irreducible. We show first that lor 
no i is Br U i>s^; a siihalgebra. If it were a subalgebra for some i then by 
(6.4/ l s v ' l , , + i U ^ ? would be a swbalgebra with at least two middle 
blocks and hence one of 

B§H.Bm QB^B^niB^CBt 

would hold. Since B, qt B !t^ we would also have 22. ^ 2>..-« = 10, 1J and we 
would obtain either B.C^B^i = SO. 1! or B s | î n _£,_* = {0, l b both con
tradicting the assumptions. We have thus proved that none of the unions 
B L U' jBff_i is a subalgebra. To prove the res: of the claim it is by symmetry 
enough to assume i = 0. If J>. *J B\ W /U îs a subalgebra. then» as we have 
seen» 2>s is the only middle block of it and the claim follows trivially. We may 
thus assume for the rest of the proof that B* U! Hi *J i>: is not a subalgebra. 
From (1.1) then follows that 

B§ H J i A I I . C B* U B,t 

which by il.4* gives either 

B, r-, Bt ^ B~ e Bs or B* A B1 r, Bs C B+. 

By symmetry we may assume that 2>w , ° 2b /"̂  i>^ ^ 2b. Assume now that 

B ^Bz ~; ft,^^2 #-

Then, by f Î.1 b J5<, lb Hi W i>2 ^ 2><$ would i>e a subalgebra with four blocks, 
Since B,L ^ B: it can not i>e the product of two QMLs with two blocks each. 
Thus, by fT.ob it would be either line-like or have a middle block. Since both 
Bf \J i>2 and B^1 Bs are not subalgebras, it can not have a middle block. 
Since none of B> vj 2b. 2b \J B%. ib \J Bz, fb *<J 2b '<J 2>? is a subalgebra it 
cannot he line-like either. It thus follows that 

Bo n Bj n B* r\ B2 ÇZ B. 
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and hence 

BQnBlnBt = |0f 1|. 

With this B u n Si C JB- would imply B*f\ Bx = 10, 1{ and Bl A B2 C B0 

would imply Bi A ii-2 = JO. 1J, both contradictions. We thus have B§ A i?i 
^ if2 and Bi A B2 £ B&, Since Bi KJ 15^ is a subalgebra, the first of these 
inequalities implies B%> A B* Ç Z?i by (4.1), proving 18.1). 

(8.2) Under :he ass am pi ion of (8.1) the following statements hold. 
1. I7ir union of three or four-Mocks of L is never a subalgebra; 
2. ZTz** o?i/y unions of two blocks which are subalgebra s are ike unions Bf KJ B fHrl 

(indices mod o} ; 
3. Z?t- A 2?,-_n ^ i?fJ_- U ^ ^ 3 VJ i> t + 4 holds for all i {indices mod 5 ) ; 
4. B t A -#:_uo = C ( i ) hold for all i (indices mod 5) . 

Pro©/. By <S.l) we have Zi: A i i ^ i £ 5 | V 2 , BM. But 5 , A 5 £ + i C 5 ( + , 
would by (S.l) imply 

Bfn B^ = B,r\BMr\B^z ^ Biri, 

a contradiction. We thus have tha t B, A Z?f+i is contained in neither of 

B ^ B^Zt B1r.i, hence by i l . 4 ) . 

Bt A 5f4„i g B^* KJ B,^ KJ B^u 

proving the third claim. If the union of two blocks with non-consecutive 
indices ("mod 5) were a subalgebra it would be of the form B i KJ B ^9- But this 
would make B, KJ B :^i KJ B ^» a subalgebra with three blocks and two middle 
blocks, contradicting (8.1) and proving the second claim. We show next t h a t 
none of the unions Bt KJ BiJri KJ B^± is a subalgebra. By (1.2) we may assume 
tha t L is irreducible. By symmetry it is enough to show tha t B^ KJ B\_ KJ B* is 
not a subalgebra. If it were it would clearly have three blocks and by (8.1) B\ 
would be the only middle block. By condition 3 we may pick 

a £ (B9 A B,) - \Bi KJ B, \J B,) and b ~ (B2 A Bz) 

- (BoUBtKJBi). 

Since B$ KJ B4 is a subalgebra we have a V b xz B% A B\. Since by assumption 
BQ U Bi KJBt is a subalgebra we have a V b £ B® A Bt A J52, hence a V b € 
C(L) = 10, 1}, hence a V b — 1. By symmet ry we also obtain 

a V V = ar V b = a' V b' = 1, 

hence, if we pu t e — y (a, b) we have e = 1. But by (3.2) we have B% ^ e Bi. 
We would thus obtain B$ A B4 = }0, 1} contradict ing B$ P^ Bi, ïf a union 
Bt KJ Bi+i KJ Bj+z were a subalgebra it would clearly have three blocks, and it 
would follow t h a t a t least one of Bt \J Bj+$ or Bi+i KJ 5 f f 3 was a subalgebra, 
contrary to what we have already shown. T h u s the union of no three blocks 
of L is a subalgebra. Every union of four blocks is of the form BtKJ Bi+Ï 
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U B i+2 \J Bi+z. îf it were a subalgebra it would clearly have four blocks. If it 
were line-like or had a middle block the union of three blocks would be a 
subalgebra, which is not the case as we have already seen. If it were a sub-
algebra, it would by (7.5) be the direct product of two O M L s with two blocks, 
which again is impossible because of a missing strong link. We have thus 
proved the first claim. Since B t \J B t+i U B i+2 is not a subalgebra we obtain 
from (1.1) and (8.1) tha t 

Bt H Bi+2 = Bt H BiVl H Bi+2 Ç Bi+Z U Bi+A 

and we may by (1.4) and symmet ry assume tha t 

BtnBi+lr\Bl+2 QBm. 

Since B{ U Bi+i U B i+2 W B / + 3 is not a subalgebra we have 

BtnBi+1rM5i+2nBi+* QBi+i 

hence 

BtnBi+2 = n,i^Bj = c(L), 

proving the last claim. 

(8.3) Let L be an O M L with five blocks Bt (0 ^ i ^ 4) satisfying 

Bo tt Bx œ 7i2 œ 72 3 ^ 730, 730 H ^ g 73 2 U B, and Bl C\ B2 £ B,. 

Then B0 H Bl C\ B2 C\ 733 g 734 /w/ds, awi m particular 730 U 73i U 732 VJ 733 

is a subalgebra with four blocks. 

Proof. By (1.2) wre may assume tha t L is irreducible. If the claim wrere not 
true we would then have B0 H Bi H 732 C\ 7>3 = {0, 1}. We showT t h a t this 
leads to a contradiction. T h e assumptions 

7i0 C\ Bi g 723, 730 — .£3, # i H 732 g 733 and 7J2 — B 3 

imply by (4.1) tha t Bl H B, C 73 0 and BlC\Bz Q B2j hence 73 x C\ 73 3 = 
{0, 1}. Since 7*0 C\ Bi (£ B2, Bx ~ 732 and 732 ~ 733 we obtain by the same 
argument tha t B{) C\ B2 ÇZ 73: and one of 730 H 732 ÇZ 733 or B0 C\ Bz Ç B2 

holds. The second of these inclusions wrould imply 

B0 H 7i3 = 730 P\ 732 H 733 C Bu 

hence 72 0 H 7?3 = {0, 1}, contradict ing 73 0 œ 723. We thus have B0 C\ B2 Ç 73 3 

and w7e obtain: 

(*) B0nB2 = Blr\Bz = {0, 1). 

Choose a, b, d such tha t B() ~(l Bx ~b B2, 73 0 ~d 733. Since a V b ^ a, b and 
a V b (i Bi we obtain a V b £ 73 0 Pi 732, hence, by (*), a V b = 1 and 
a' rg ft. By the same argument we obtain a' S d. Since b ^ 0, 1 and b (E 731 
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H S2 we obtain from (*) tha t 

b f ( ^ n ^ ) - ( 5 0 US 3 ) . 

By the same argument we obtain 

d G (B0r^Bz) - ( S i U S 2 ) . 

Since So ^ Bi and S 2 ^ S 3 this implies 

a' S b A d e (Bo H Bx) C\ (B2 H S 3 ) - {0, 1}, 

hence a' = 0, contradicting S 0 ^ Bx. 

(8.4) / / «/ /e«s£ one block of an O M L L with five blocks has valence at least 3 then 
there exist four blocks in L the union of which is a subalgebra of L with four 
blocks. 

Proof. We may assume tha t L is irreducible and tha t the blocks are enumer
ated in such a way tha t B0 ~ Bi tt B2 and S i ^ ' S 3 hold and tha t S 4 is the 
remaining block. Assume first tha t S 0 U Bi VJ B2 ^J S 3 is not a subalgebra. 
Then by symmetry , we may assume tha t there exist elements a t S 0 — 
(Sx U S 2 ) and b £ B2 - (S 0 U S i ) such tha t 

a V b e S4 - (So U Bl U S2 U S3). 

It follows from this tha t a and b are both in S 4 . Since not both of them are in 
S 3 it can either happen tha t none of them or one of them, say b, is in S3. I t 
follows tha t either 

So H S4 £ S i U S2 U S3 and S2 C\ S4 g S0 U Bl \J S3 

or 

So C\ S4 £ S i VJ S2 W S3 and S2 H S3 H S4 g S0 U S i 

holds. In the first case the assumptions of (8.3) are satisfied (with suitable 
permutat ion of the indices) and the claim is proved. In the second case 
B2VJ B-s^J B\ is a subalgebra with three blocks and hence one of S 2 ^ S 4 or 
S 3 r^> B4 holds. Since we have B2 C\ S 4 $£ S i and S 3 C\ S 4 $£ S i the assump
tions of (8.3) are satisfied in both cases and there is nothing left to prove. We 
may thus assume tha t S 0 W S i VJ S 2 \J S 3 is a subalgebra. If S 0 VJ S i VJ S 2 

is a subalgebra then S 0 U S i VJ S 2 U S 3 has by (1.4) four blocks and the 
proof is again complete. If not there exist 

a e So - (Si U S2) and b £ B2 - (S0 U SO 

with a V b e ( S 3 U 7?4) - (S 0 U S Î U S 2 ) and we obtain by the usual 
a rgument tha t 

So n (s3 u s4) g Si vj s2 and s2 n (s3 u s4) £ s0 vj Si 
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hold. This implies that one of the conditions 

B0 H B 3 £ B2 U B2 U B4, B,r\Bx g j B j U B2 W B3, 

B*r\Bzr\Bt g ^ U B2 

and one of the conditions 

B2r\B, £ B0 U Bx U B4, £<> H ^ ^ o U ^ U B3, 

B2r\BzC\BA £ B0KJ B1 

is satisfied. If B0 H B3 g Bx U B2 U B4 then B0 W 5 3 is a subalgebra and 
Bo U Bi U B2 U B3 has four blocks. The same conclusion is obtained if 
B2r\B3£B0U BXVBA. If BQniBA£Bi\JB2\JBi and B2C\BA<£ 
B0 \J B\ U B 3 the desired conclusion follows again from (8.3). Using symmetry 
it is thus enough to consider the cases 

Bo H B4 g Bi U B2 U £ 3 and B2 H B3 H 5 4 g 5 0 U B t 

or 

Bo H B3 n 5 4 £ 5i U B2 and 5 2 H B3 H B4 ^ 5 0 U BL 

In the first of these cases we have 

B2C\BA g B b B3 H B4 g J5i 

and one of B2 ~ B4 or B3 ^ B4, so that we may apply (8.3) again. If in the 
second case either B0 ~ B% or B2 ~ B3 the subalgebra BQ\J Bx KJ B2 W B3 

has four blocks. In the remaining case we have 

Bo œ BA, B2 œ B4, Bo H B4 g Bi W B2 and B2C\BA g B0 U Bx 

and (8.3) applies again, completing the proof. 

(8.5) Le/ L &e an OML with jive blocks B0, B4, B2, B3, B4 cm<i assume that 
Bo^J B\\J B 2 U B3 is a subalgebra with jour blocks. Then L is obtained by 
pasting B 0 W B\\J B2KJ B3 awd B4 a/ong a segment. 

Prooj. We may assume without loss of generality that L is irreducible. Since 

(Bo W B4 U B2 U B3) n ^ C ^ U ^ U B2 U B4 

it follows from (1.4) and (7.5) that there exists an index i, 0 ^ i ^ 3 satisfying 
(Bo \J BXVJ B2KJ B3) H B4 Ç B,. It is easy to see that then B , VJ B4 is a 
subalgebra of L and, if B^ ^ B7 holds for some j ^ 4, then BjVJ Bt\J BA is 
a subalgebra of L with three blocks and middle block B f . Furthermore, there 
exists e £ Btr\ BA such that 

(Bo VJ 5 i U B2 VJ B3) n ^ 4 = Bz Pi B4 

= ( [ 0 ^ ' ] U [ U ] ) n (B t -UB 4 ) . 

We now have to distinguish various cases. If B0VJ BiVJ B2\J B3 is line-like 
we may assume that B0 ^ B4 ^ B2 ^ B 3 is a line-like ordering of the blocks 
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and it is by symmetry enough to consider the cases i = 3 and i = 2. If i = 3 
it is easy to see that B0 ^ B\ ~ B2 ~ B% ^ B\ is a line-like ordering of the 
blocks of L and the claim follows from (5.2). If i = 2 it is easy to see that 
B® U Bi \J B% U Bi is a subalgebra of L and that 5 0 ~ B\ ~ B2~ B4 is a 
line-like ordering of its blocks. It follows from (5.2) that 

Bi C\B4 = ([0, e'} \J [e, 1]) H (5 0 U B, U £ 2 W 54) 

= ([0, e'] U [e, 1]) H (5 4 U 5 2 U 53) = [0, e'] \J [e, 1], 

which again proves the claim. H B0VJ Bx KJ B2VJ B% has a middle block we 
may assume that B\ is a middle block and it is by symmetry enough to con
sider the cases i = 2 and i = 1. If i = 2, Bz KJ Bx \J B2 U £ 4 and B0 U £ i 
W B2 \J B\ are line-like subalgebras and the given orderings are line-like 
orderings of their blocks. The claim then follows from (5.2) as before. If 
i = l , f t U 5 , W B2, Bd U Bx U £ 3 and B*KJ BY\J B4 are subalgebras with 
three blocks and middle block B\ and the claim follows as before using (6.1). 
It remains the case that BQVJ Bi\J B2KJ Bz is isomorphic with the direct 
product of two OMLs with two blocks each and we may by symmetry assume 
that 

B0~B1~B2~ B3 and (B, \J B2 U Bz) H B4 C B0, 

i.e. i = 0. In this case B4\J B0^J B4 and B4 \J B0VJ B2 are subalgebras with 
middle block Bo and we obtain as before 

B0nB4= ([0, e'} W k 1]) H (Bo KJBiVBzV B4). 

But e S x £ B2 - ftU BX\J BZ\J B4) would imply 

e £ B0 n B2 = Bo r\ Bi C\ B2 n Bz H B4 = {0, I j , 

i.e. e = 1, in which case the claim is trivially true. If e ^ 1 we thus obtain 

BGr^B4 = [0, O W [*, 1] 

and the claim is again proved. 
We are now in a position to describe all OMLs with five blocks completely. 

(8.6) Every OML L with five blocks either satisfies the assumption of (8.1) or 
can be obtained by pasting an OML with four blocks and a Boolean algebra along 
a segment. 

Proof. If at least one block of L has valence at least three the claim follows 
from (8.4) and (8.5). If there exist blocks which can not be joined by a strictly 
proper path the claim follows easily from (4.5), (6.1) and (7.5). We may thus 
assume that any two blocks can be joined by a strictly proper path and that 
every block has valence at most two. It is then easy to see that with suitable 
enumeration of the blocks the only strong links are either 

BQ œ Bx œ B2 œ Bz œ B4 or B0 œ B4 œ B2 tt Bs œ B4 œ B0. 
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In the second case the assumptions of (8.1) are satisfied. In the first case we 
have d(Bo, B\) = 4 and the claim follows from (5.8) and (5.2). T h e theorem 
is thus proved. 

Since it is not difficult to prove tha t any five Boolean algebras satisfying the 
conditions of (8.1) and (8.2) can be amalgamated to give an O M L with i\ve 
blocks, the last result describes all O M L s writh five blocks completely. 

9. T w o re lated r e s u l t s . The two results of this chapter are not directly 

related to the methods developed in this paper; they are both consequences of 

(1.5). But since both of them concern block-finite O M L s we present them here. 

Let MOn (n ^ 2) be the modular OL consisting of 2n pairwise incomparable 

elements and bounds 0, 1. It is wrell known tha t the only finite irreducible 

modular OLs are the lattices MOn. (See [2], proof of (4.4). The result with a 

different proof wras known much earlier among the latt ice theorists a t the 

Universi ty of Massachuset ts , where I learned of it in 1970). We show here 

t ha t the result remains true for block-finite modular OLs. 

(9.1) The only block-finite, irreducible, modular OLs are the lattices MOn and 

2. The variety of all modular OLs is not generated by the block-finite members. 

The equation y(x, y(y, z)) = 0 holds for all block-finite modular OLs but does not 

hold in all modular OLs. 

Proof. Let L be a block-finite, irreducible modular OL. T o prove the first 
result it is obviously enough to show tha t for all a, b Ç L, a < /; implies 
a = 0 or b = 1. Assume tha t a < b. Let B{), Bi, . . . , Bn be the blocks of L 
and let M be a finite subset of L which contains a, b and an element of each of 
the differences B t — B.} (i T^ j , 0 ^ i} j S n). Let 5 be the subalgebra of L 
generated by M. By (1.5), 5 is finite. Since 5 contains an element of each of the 
differences Bt — Bj the blocks of 5 are exactly the sets S Pi B { (0 ^ i S n). 
Since L is irreducible S is also irreducible. By wha t is known it follows tha t 5 is 
MO{n + 1), i.e. tha t a = 0 or b — 1, proving the first par t . The rest is a con
sequence of (4.4) of [2]. 

The second application of (1.5) concerns varieties of OMLs . In [4J it was 
shown tha t every finite O M L L which does not belong to the var ie ty [ I f02] 
generated by A/02 contains one of the lattices of figures 2 to 5 of [4] as a homo-
morphic image of a subalgebra. This can be generalized as follows: 

(9.2) Every block-finite O M L L which is not in [M02] contains one of the 
O M L s of figures 2 to 5 of [4] as a homom orphie image of a subalgebra. 

This follows from the fact t ha t if a block-finite O M L L does not belong to 
[M02] then a finitely generated subalgebra S of L does not belong to [A/02]. 
Since by (1.5) every such S is finite we may apply the quoted result of |4] to 
obtain (9.2). 
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