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BLOCK-FINITE ORTHOMODULAR LATTICES
GUNTER BRUNS

Introduction. Every orthomodular lattice (abbreviated: OML) is the
union of its maximal Boolean subalgebras (blocks). The question thus arises
how conversely Boolean algebras can be amalgamated in order to obtain an
OML of which the given Boolean algebras are the blocks. This question we
deal with in the present paper.

The problem was first investigated by Greechie [6, 7, 8, 9]. His technique of
pasting [6] will also play an important role in this paper. A case solved com-
pletely by Greechie [9] is the case that any two blocks intersect either in the
bounds only or have the bounds, an atom and its complement in common.
This is, of course, a very special situation. The more surprising it is that
Greechie's methods, if skillfully applied, yield considerable insight into the
structure of ONMLs and provide a seemingly unexhaustible source for counter-
examples.

A closely related problem was considered by G. Kalmbach [11]. Her notion
of a bundle of Boolean algebras gives a necessary and sufficient condition for
the union of Boolean algebras to be an OML and has the interesting conse-
quence that every lattice is a sublattice of an OML. A drawback of her method
for our present purposes is that the ONL constructed from a bundle of Boolean
algebras may have ‘“‘hidden blocks”, i.e. blocks which do not occur in the
given bundle. For example, a totally non-atomic block may be hidden among
the atomic blocks of the lattice of all closed subspaces of an infinite-dimen-
sional Hilbert space. Thus a bundle of Boolean algebras may not directly
describe the block-structure of the OML obtained from it.

In this paper we start investigating the interaction of the blocks of an
arbitrary OML with finitely many blocks. Following a suggestion by B.
Banaschewski we call such OMLs block-finite. The restriction to block-finite
OMILs 1s essential since almost all our proofs proceed by induction on the
number of blocks, making use of techniques developed in [3]. The key notion
of this paper is that of a path (Section 4). This is a finite sequence of blocks
the union of any two consecutive members of which form a subalgebra and
hence intersect in a prescribed way. Depending on how ‘“‘good’ this inter-
section is we distinguish between proper and strictly proper paths. The main
results of the general theory (Section 4, statements 4.4, 4.5 and 4.8) can then
be described as follows: Any two blocks in a block-finite OML can be joined by
a proper path. The relation ‘““the blocks 4 and B can be joined by a strictly
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applied in this paper.
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1.1y H Lisan OML, 8 < Q(Lyand ¢ £ (N V) — U (AL} — B) then
Cla) = 'J 8. in particular U 8B is a subalgebra of L. The blocks of this
subalgebra are exactly the elements of 8.

(1.2} Every block-finite OML L is isomorphic with a direct product B X L;
S L X ... X L, {n > 0), where B isa Boolean algebra and L,, L., .. . L, are

irreducible OMLs with at least two blocks each.

These results in many cases provide the induction step in inductive proofs
on the number of blocks of a block-finite OML. The first relevant fact for this
is that the blocks of a product of two OMLs are the products of the blocks of
the factors. Thus, if in the factorization (1.2} of L the number »n is at least
two, each of the factors 7 ; has fewer blocks than L and (1.2} allows the induc-
tion step provided the property to be proved is preserved under the formation
of products. Boolean factors usually do not cause any difficulties. Thus if
# = 1 in the direct factorization (1.2) we may usually assume that L is irre-
ducible. The validity of the property to be proved then frequently depends on
a set B of blocks satisfying M B 5% 10, 1} only. As is easily seen every such set

H is contained in a set B’ £ Q(L). By {1.1) and irreducibility of L, U B’ isa
subalgebra with fewer blocks than L and this again allows an inductive argu-
ment.

A third useful observation is the following, which belongs to the folklore of
the subject.

{1.3) i a Boolean algebra B is the (set-theoretical} union of the sub-
algebras B; and B, then B = B; or B = B.-.

We will apply mainly the following consequence of {(1.3).

{1.4) H B is a Boolean subalgebra of an ONML L and L,, L. are arbitrary
subalgebras of L such that B C L;\J Ly, then B C Lyor B C L.

Finally, we will make use of the following main result of [3].

(1.3} Every finitely generated block-finite OML is finite.

2. Pasting. R. J. Greechie [6, 7, 8, 9] has given several constructions to
obtain OXLs by pasting simpler ones. Since his pasting construction (6],
p. 212 ff restricted to the principal sections also plays a role in our present
context we recall the main facts here. The construction presented here is, in
fact, somewhat more general in that it includes the pasting of arbitarily many
OX\ILs as opposed to Greechie's two. This requires some additional consider-
ation.

(2.1) Let L be an ONIL, (L) ic; a family of subalgebras of L and 0 # ¢ <
Micr L. Assume that the following two conditions are satisfied:

(1) Uv€l “f = L,
(2) foralli,j€ Twuhi#j: L, N\L,=10d\Ulc 1.
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Then the following five conditions are equivalent:
(@) ifa,b € Land « < b then there exists 1 € I such that a, b € L,
MYyef a, b € L and aCb then there exists 1 € I such that «, b € L,
(¢) 1f B € A(L) then there exists 1 € I such that B C L,
(d) for all 1,7 € I, L;\J L;is a subalgebra of L,
(e) for every mon-empty set J C I, \J e, L; s « subalgebre of L.

Proof. (a) =(d). It is obviously enough to show that « € L, — L, b€ L; —
Ly imply « Vbé L,\JL, By (a) there exist k, [ € I such that «, « V
b€ Lyand b, a V b € L, Assume first that 7 # k. Then we have by (2) that
a« £ orec =2 a Buta £ ¢ would by (2) imply that « € L, contrary to our
assumption. It follows that ¢ £ « < « V b, hence by (2) that

aVvVbe LML, CL\JL,

The case j # [ follows by symmetry. We may thus assume that i = %k and
7 = [ and hence that & ## [. But then « V b ¢ L, L, implies by (2) that
aVb=cdorcZa VDb, in both cases, again by (2), that « V b € L, N L,
CL,JUL,

(d) = (e). This is trivial since any two elements of U ;c; L; belong to some
union L; U L; with 1,7 € J.

(e) = (c). If B C N, L; there is nothing to prove. If not there exists
« ¢ B — Mie; Lyand it follows from (1) and (2) that there exists exactly one
index 7 € I with ¢ € L,. Since

B C L, \JU{L)j # 1
and since by (c), \U{L |7 # 1} is a subalgebra, it follows from (1.4) that
BCL, or BCVUI{LLj##i}.

But the second of these inclusions is impossible since « € B and « ¢ L, for all
7 # 1. We thus have B C L.

The implications (c) = (b) = (a) are obvious, which finishes the proof of
(2.1).

Note that if the family (L) ;¢; in (2.1) consists of two subalgebras only then
the condition (¢) follows immediately from (1.4) and hence by what we have
proved all five conditions are automatically fulfilled. On the other hand it is
easy to give an example showing that even if (L ;);c; consists of three sub-
algebras only, the last five conditions above are not a consequence of the first
two.

Definition. An OML L is said to be obtained by pasting a family (L),
along the section [0, ¢'] U [¢, 1] if and only if all the conditions of (2.1) are
satisfied.

[’xtending Greechie’s construction slightly we want to show now that a
family (L) :c; of OMLs can under certain conditions be pasted in the above
sense. Assume for this that the following conditions are satisfied.
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(P1) (Ly)ie; 18 a non-empty family of OMLs,

(P2) foralls,j € I, L, M L,is a subalgebra of both L ;and L,
(PP3)0 # ¢ € MNier Ly,

(P4) foralli,j € ITwithi# 7. L, L; =10,c],Y |, 1].

Note that from (P2) it follows in particular that all L, have the same bounds
so that we don't have to specify in (P3) and (P4) the algebras 7.; in which the
bounds are taken. For the same reason we don't have to specify in (P4) in
which L; we take the orthocomplement; the result is always the same. The in-
dex 7 in (’4) refers to the OML 7L ; in which the intervals are taken. Thus, if
<, is the partial ordering of L, then |0, ¢'}, = {xv € Ljx £ 'V and ¢, 1]; =
lx € Lic £ ;x}.

(2.2) Under the assumptions (P1), (PP2), (P3), (P4) define . = U e, L,
and let £ e the union of the partial orderings = ; of the L. Then = 1s « partial
ordering of L and with this partial ordering und the obviows definition of ortho-
complementation, L is an ONIL. It 1s obtained by pusting the fumily (L.)e;
along the section [0, ¢'1 \J [¢, 1].

The proof of this requires only minor modifications of Greechie's proof and
there is no need to give it here.

The special case ¢ = 1 in the above definition of pasting was considered
earlier by MacLaren [12]. The OML L is in this case called the horizontal sum
of the family (L)) ;.

We arc especially interested here in a construction which is more restricted
than the general pasting as defined above but slightly more general than the
horizontal sum. Assume for this that the ONML L is obtained by pasting the
family (L,) ;¢; along the section [0, ¢’} \J [¢, 1] and let B be an arbitrary OML.
It is then obvious that the product B X L is obtained by pasting the family
(B X L), along the section [(0,0), (1,¢)]\J [(0,¢), (1,1)]. The special
case of this is the case where L is actually the horizontal sum of the family
(L) :e; and B is a Boolean algebra. This gives rise to the following definition.

Definition. An OML L is said to be the weak horizontal sum of a family
(L) of subalgebras if and only if there exists an isomorphism [ of L onto a
product of B X L’ of a Boolean algebra B and an OML L’ such that the sub-
algebras L, of L correspond via f to subalgebras of the form B X L, and L'
is the horizontal sum of the family (L)) ;.

The following statement describes internally those pastings which are weak
horizontal sums.

(2.3) Let L. be an ONL obtained by pasting the family (L;) ;c; along the section

10, T\ [¢, 1. Then L s the weak horizontal sum of the fumily (I..)cr if and
only if the following three conditions are salisfied:
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1.c < C(L),
2,70, ¢ U e, 1] is ¢ Boolean subalgebra of L,
B.forall 1,7 ¢ Twithi # 7, cisan atomof L; (M L,

The simple proof of this is left to the reader.

3. Orthomodular lattices with two blocks. As an immediate consequence
of (1.2} we obtain a simple description of all OMLs with two blocks. Their
structure is essentially known (see [81, p. 10), but since it is the starting point
of all the following considerations we give here a detailed analysis of OMLs
with two blocks.

(3.1Y Every ONL L wifh iwo blocks ts isomorphic with an ONIL of the form
B> {4, + Ao}, where B, Ay, A are Boolean algebras und A, 4+ As is the
horizonial sum of Ay and A.. In other words, every ONL L with twe blocks is the
weak hortzonial sum of its blocks.

Prooi. Bv (1.2} every OML with two blocks is isomorphic with a direct
product of a Boolean algebra and an irreducible OML with two Dblocks. Since
the irreductble OMLs with two blocks are obviously exactly the horizontal
sums of two Boolean algebras the claim follows.

The next theorem describes in more detail how the section along which the
blocks of an OML with two blocks are pasted can be explicitly calculated.

(3.2 If L 15 an OML with two blocks By, and Bs, ¢« © By — By and
b < By — By then

By Bs = [0,y {«, b), \J [yla, b}, 1.

If By By =10,c""\Jic, 1] then ¢ = v{a.b). L ts trreducible if and only if
yia, b} = 1.

Proof. By (3.1) we may assume that L is of theform B X (4, 4+ 4.) and that

i1 = B X Ay and B = B X 4. By the remark of the last chapter, B; and
B are then pasted along the section { (0, 0}, (1, 0)] U {(0, 1), (1, 1)]. But the
elements ¢ and & above are of the form ¢ = (@, ¢2) and & = (by, b)) with
i, 01 2 Bous A4y — As.and b &€ Ay — 44 The first claim thus follows from
the fact that y{uy, b} = 0 and (s, ba) = 1, so that y(¢,d) = (0,1). To
prove the second claim assume that B; N B, = [0, '] U (¢, 11. Clearly a V b
S BN Boandhencea« Vi 2 dorec £ a Vb Bute V b £ ¢ would imply
a € Bs, a contradiction. We thus have ¢ £ ¢« V b and hence also a V b;
a’" vV b.a" Vb = c, which gives ¢ < vy(q, b). But ¢ < v(a, by would because
of ¢ € By Bs imply ¢ < v (¢, b), hence ¢ = 0, hence L = B; M B», a con-
tradiction. We thus have ¢ = y{(a, b). The third claim is an immediate con-
sequence of the second.

The reader mayv find it instructive to apply (3.1) to prove the following
result, which follows from (2.1) and the fact that an n-generated Boolean
algebra has at most 2% elements.
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(3.3) An OML with fwo biocks which is genercied by an n-element set has at
most 22 (271 + 2 elemenis and this bound is dest possible for evervm = 2.

4. Paths. We start out with some definitions which will be the mam topic
of interest in the rest of the paper.

Definition. For blocks A, B of an OML L define

A~ Bifand only if A # B and 4 \U B is a subalgebra of L,

A~ Bifandonlyif A ~Band A M B # C(L}.
A link (strong link) in L is an unordered pair [ A, B of blocks of L satisfving
A~ B (A = B). Apath in L is a finite sequence By, By, ... B, (a = 0} in
N{L) satisfying B; ~ B, whenever 0 < 1 < n. The path is said to join the
blocks By and B,. The number n is said to be the lengif of the path. The path
issaid to be proper fandonlyif n = lor B; & B,.; holds whenever 0 < 1 < z.
The path is said to be siricily proper it and onlv f B, =~ 3., holds whenever
0 < 1 < n. The distance d{4, B) of blocks A4, B £ (L} 1s defined to be the
minimum of the lengths of all strictly proper paths joining 4 and B8 if such
path exists and to be w if there is no strictly proper path joining 4 and 5.

If A ~ B holds then by (3.2} there exists exactly one element ¢ £ 41 B
satisfying

AN B = (0,1 U fe, 1) N (4 U B).

We say that 4 and B are [inked (strongly linked if 4 ~ B} a1 ¢ and use the
notation 4 ~ ,Bor 4 ~ ,B.

If 4 ~ Band C € A{L) then {4 U B) M C s clearly a Boolean subalgebra
of Land (AU B)YM C C 4 B. It follows from (1.4} that {4 'J By (Cis
contained in either 1 or B. This gives the following simple hut verv useful
remark.

4.1) If A ~ B then for cvery C € W{(L) etther A C T Bor B C T 4
holds.

4.2) If Ly, Loawre OMLs, L = Ly X Lo. A, B = HiL) and €, D = YLy}
then 4 X C~ B X D holds in L if and only if cither 4 = B und C ~ D or
A~Buand C = D. If A and B are linked af « then A X C and B X C are
linked at {u, 0y If Cund D are linked at ¢ then 4 X Cund 4 X D are linked ut
(0, ¢).

We leave the simple proof of this to the reader.

Let again, L; and L. be OMLs, A, B £ A(L;) and D, E £ A(L.). Let
A=dg~ A1 ~...~4, = B be a path in L,. It then follows from (4.2)
that AX D =4 XD~ 4, XD~ ... ~4, XD =DBXD is a path in
L = Ly X L. If the first path is proper (strictly proper) then the second path
is proper (strictly proper). If, however, D ## C(L.), i.e. if L, has at least two
blocks, then the second path is strictly proper regardless of whether the first
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path is proper (strictly proper) or not. If L. has only one block then clearly the
second path is proper (strictly proper) if and only if the first path has this
property. Similarly, if D = Dy~ Dy~ ...~ D, = E is a path in L, then
BXD=BXDy~BXD ~...~BXD,=DBXEisapath in L and
the same remarks hold. Thus the composite of the two paths in L is again a
path in L. We thus obtain

(4.3) Let Ly, Lo be ONlLs and L = Ly X Ls. If each of Ly and L, has at least
two blocks, if uny two blocks in Ly can be joined by « puth of length at most n and
tf uny two blocks in Ly can be joined by « path of length «t most m then any two
blocks in L can be joined by « strictly proper path of length at most n + m. If one
of L1, Lo is Booleun then any two blocks in the other can be joined by « path
(proper puath, strictly proper puth) if and only if uny two blocks in L have this
property.

We are now in position to prove the first main theorem.

(4.4) Anv two Dlocks in a block-finite ONIL L can be joined by « proper path.

Proof. (By induction on the number 7 of blocks of L.) If # = 1 the claim is
trivial. Assume n = 2. By (1.2) L is either the direct product of two ONLs

with at least two blocks each or it is the direct product of a Boolean algebra
and an irreducible ONML. In the first case the claim follows from (4.3) by
induction hypothesis. In the second case we may, again by (4.3), restrict our
attention to the case that L is irreducible, i.e. C(L) = 10, 1}. Let 4, B < A(L)
and A M B C(L) = {0,1}. Then by the remarks following (1.2) there
exists 8 € Q(L) with 4, B¢ 8. By (1.1) U8 is a subalgebra with d(\UQY) =
B and since L is irreducible, \U®B has fewer blocks than L. By inductive
hypothesis 4 and B can be joined by a proper path in \U®8. Since C(\UY) =
MY = 10,1} = C(L), every such path in \UB is a strictly proper path in L
and hence we have even shown that 4 and B can be joined by a strictly
proper path in L. Assume finally that 4, B ¢ A(L) and 4 N\ B = {0, 1}. If
AU B is a subalgebra then A4 ~ B is a proper path and the claim is again
proved. If 4\U Bisnotasubalgebra then there exist € 4 — B and b & B — 4
such that « vV b2 4\U B. Since «,b <« V b there exist blocks C, D
such thata,a vV b € Cand b,,a« V b € D.Sincewa,b,a V b # 0, 1, each of the
intersections 4 M C, C M D and D M B is different from {0, 1}. By what we
have already shown any two consecutive blocks of the sequence 4, C, D, B
can be joined by a strictly proper path. It follows that 4 and B can be joined
by a strictly proper path, completing the proof.

We investigate next the question under which conditions any two blocks can
be joined by a strictly proper path.

Definition. For blocks A, B of an OML L define 4 = B if and only if 4 and B
can be joined by a strictly proper path.
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Clearly = is an equivalence relation in A (L).

(4.5) Let L be a block-fintte ONIL containing at least two blocks which cannot be
Jjoined by a strictly proper path. Let By, Bs, . ., B, be the equivalence classes of
A(L) modulo =. Then each \IB; (1 =1 = n) is « subalgebra of L with
ANIY,) = B, and L is the weak horizontal sum of the fumily (\JB)1< i<,

Proof. Since by (4.3) and (4.4) any two blocks in the product of two OMLs
with at least two blocks each can be joined by a strictly proper path the
assumptions of (4.5) imply by (1.2) that L is the direct product of a Boolean
algebra and an irreducible OML. By (4.3) it is thus enough to prove the claim
under the assumption that L is irreducible. To show that the sets \U%,; are
subalgebras it is obviously enough to show that «, b € \U®B,; implies ¢ V b €
U, For thisassume a« € 4 € B,and b € B V. If a« Vb AUB this
is clear. If « V b ¢ A\U B there exists C € A (L) such that a, « V b € C
andsince 0,1 # ¢ € A M Cwehaveby (4.4) that 4 = C,i.ec.a Vb € C€ B,
re.a Vb e UB, proving that UD, is a subalgebra. By (4.4) any two blocks
A, B with 4 M B 5 {0, 1} can be joined by a strictly proper path. It follows
from this that (UB,) N (UY;) = {0, 1} holds whenever 7 # j. Clearly
every block of L belongs to one of the 8, which implies that L is the horizontal
sum of the family (\U®,)1<i<, and that the blocks of \U9; are exactly the ele-
ments of B;, completing the proof.

The next simple observation will be used later on.

(4.6) Ifblocks A, B, C of an ONIL L satisfy A ~, B ~,Candif AN C L B
thene = faund A N B = BN C.

Proof. The assumptions imply by (4.1) that BN C C 4 and 4 N B C C,
which gives the second claim. To prove the first claim pick « € (A N\ C) — B
and b € B — (4 U (). Then by (3.2), ¢ = v(«, b) = f.

(4.7) Let Ly, Ly be ONLs, A, B € A(Ly), C, D € A(Ly) and
AXC~,BXC~,BXD.

Then this path is strictly proper and there exists exactly one block I in Ly X L,
namely FF'= A4 X D, such that

AXC~,F~,BXD.

Proof. It is obvious that the given path is strictly proper. By (4.1) the
assumptions imply 4 ~, B, C ~.D, e = (¢,0) and f = (0, ¢). It follows from
this immediately that ¥ = 4 X D has the desired property. To show uniquess
assume

AX C~,EXG~,BXD.
From (4.1) it follows that either 4 = E or C = G. But C = G would imply
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4 ~ E for some b # 0, which would give {4, 0} = f = (0, ¢}, a contradiction.
We thus obtain 4 = E and, by symmetry, G = D.

The following theorem seems rather technical. It describes, however, an
important feature of the interaction of blocks in a block-finite OML in that it
allows to single out certain subalgebras which admit a representation as a
non-trivial direct product.

{4.8) Let L be « block-fimite OML, 4, B, C € (L), 4 ~,B~,C and
¢ £ f'. Then ihe paik 4 ~ B ~ (C 1s sirictly proper and there exisis exactly one
block D such that A ~;D ~,C. This D is different from B. Furthermore,
A BUY CU D is ¢ subalgebre of L isomorphic with a direct product of two
OMLs with two blocks each.

Prooi. We show first that if the OMLs L, and L. satisfv {4.8) then the
product L = £; X L does. By symmetry and (4.1) we may assume that the
given path is either of the form

1) 4: X Ao~ 4 X Ba~ 4, X G
or of the form
{2y 4 X ds~,B: X Ada~; By X Ce.

In the case (2) the claim {follows from (4.7). In the first case there exist a, b £ L
such that A: ~, Bs ~, C» with ¢ < b. By assumption there exists exactly
one block Ds £ (L.} such that As ~, Ds ~, Cs. This clearly implies

d‘; X Az ~r A! X D-_) ~e Ax X Cz,

i.e. that the block D = 4, X D, has the desired property. It is easy to see that
it 1s the only one. We have thus shown that the property described in (4.8)
is preserved under the formation of the product of two OMlLs.

We now prove the general result by induction on the number 7 of blocks of
L. If n = 1 the claim is trivially true. Assume n = 2. By (1.2), inductive
hvpothesis and the result already proved we may assume that L is irreducible.
Assume inthiscase A ~, B~,Cand ¢e < f'. Sincee # 0 # fand ¢ < ' we
have 0, 1 # e & 4 M B M C, which implies in particular that the path is
strictly proper. By the remark following (1.2) it also implies that there exists
B £ QL) with A, B, C £ 8. By (1.1) U3 is a subalgebra of Z with fewer
blocks than L and hence by inductive hypothesis there exists a unique block
D £ 8 such that 4 ~,D ~, C. It thus only remains to show that no block
D < ¥(L) — Vsatisfies 4 ~, D ~_C. But D £ A(L) — B implies by defini-
tion of (L) that M B & D and hence that A M\ C &€ D. This together with
A ~;,D ~,B would by (4.6) imply that ¢ = f. Since also ¢ = f' we would
obtain ¢ = 0, a contradiction.

5. Line-like orthomeodular lattices. In this section we discuss OMLs of
a special type, which we call line-like and which are characterized by the fact
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that its blocks admit a certain natural ordering described in the following
definition.

Definition. A line-like ordering of the blocks of a block-finite OML L is a
sequence By, By, ..., B, containing every block of L exactly once and satisfy-
ing:

1.I{0 £ ¢ < j = nthen U,/ Byisasubalgebra of L;

2.H0=1<j<k=nthen BN\ B, T B,

A line-like OML is a block-finite OMNL the blocks of which admit a line-like
ordering.

(5.1) Let By, By, ..., B, be a line-like ordering of the blocks of an OMNL L.

Then:

1. If0 £ 1 < j = nthen the blocks of \ U~/ By are exactly the blocks By with
1=k =73

2. If B;and By are linked at e; (0 < 1 < n) then ¢; <€ ey holds whenever
0<:=<n-—2

=

g. L 1s the direct product of a Boolean algebra and un irreducible ONL.
Proof. Every block B of U, By satisfies
B C (Ui 'By) U B,

The first claim follows from this and (1.4) by induction on 7 — 7. If L was not
the direct product of a Boolean algebra and an irreducible OML we may
assume by (1.2) that it was the direct product of two OMLs L; and L, with at
least two blocks each. By (4.2) there would exist an index 7 and blocks A4,

B € A(L,), C, D € A(L:) such that
Bi=AXCBy1=BXC and B, = B X D.

But then B;\J B, \J B,;» would not be a subalgebra, contradicting the first
condition in the definition. By (4.8) we would arrive at the same contradiction
if e; < e’ would hold for some 7. (5.1) is thus proved.

If By, By, ..., B, is a line-like ordering of the blocks of an OML we assume
throughout this chapter that B, and B,.; are linked at ¢;.

(5.2) Under the assumption of (5.1), BiMN\ B,y = [0,e/]\J {e,, 1] holds
whenever 0 < 1 < n.

Proof. By the definition of a link we have
Bi\J By = (10,e/]\U [ey, 1]) M (B:\Y Biy)
<x

and it is by duality enough to show that [e;, 1] € B; U By, i.e. thate; £

implies x € B;\U Biy1. If e; £ x there exists a block B; containing both ¢;
and ¥ and we may by symmetry assume that 2 < 1. But e¢; £ B, "\ By,
implies by the definition of a line-like ordering that ¢; £ B; holds for 2 < 7
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<141 and hence that ¢; £ ¢/ or ¢; S ¢, holds for R 27 < 0. lf e, £ ¢
would hold for at least one such 7 there would be a largest j with this property
and, since ¢; € ¢/, we would have j < 1, hence ¢; £ ¢/ and ¢, < ¢y, le.
¢; £ e;41, contradicting (5.1). It thus follows that ¢; < ¢, and hence ¢; £ x
holds for £ < j < 4. Thisand x € 3, implies by induction that x € B holds for
alljwith 2 £ 7 < 4, in particular thatx € B, € B,\U B ;1.

From (5.2) and the second condition in the above definition we obtain:

(5.3) Under the assumption of (5.1)
ByJ...B)N (B J...UB, =10,¢/1Ule, 1]

holds whenever O < 1 < n; an particular L can be obtuined by pasting the sub-
algebras By\J .. .\JU B, and B, ,\J ... \J B, along « segment.

In the following two statements (5.4) and (5.5) we assume that
By, By, ..., B, is a line-like ordering of the blocks of L and that b, € B, —
U jw:i B Such b; exist since B, € U .; B, would by (1.4) imply B, C
Ui Bor B, © U s, B, both contradicting the first part of (5.1).

(5.4) If0 21 < j < nthen
e;NVe V..o Ve g =e, Ve, =y0450) =504, ..., 0.
Proof. Since B, By, . .., 3;1s a line-like ordering of the blocks of ;.7 By
we may assume, without loss of generality, that 7 = 0 and j = un. By (5.1) L
is the direct product of a Boolean algebra and an irreducible OMIL and it
follows from this easily that we may restrict our attention to the case that L is
irreducible. Since y(by, b,) < v(bo, by, ..., b,) it is then enough to show that
eo Ve, = v(by, b,) = 1. From
i)() ( 13() — U,[:]" ]37 2111(,1 b,, (j [g,, — U i,_;()"il ,B,;
it follows that
[)1) V /),,, /)(, V Il?,,], /)0/ Vv /),1, [)()/ \v4 [),,/ S 134) M Ig,, = {0, 1},
ie. y(bo, 0,) = 1. From (5.1) it follows that ¢y V ¢, € By M B,, hence also
[ V €p—1 — 1.
The following result is an immediate consequence of this.
(5.5 If0 21 <j = nthen
B:NB; =107, 0)]\J vy by), 1]
0,7 0ubir, .o 0TI Iy (Os b, oo, b)), 11
Our next aim is to prove that if an OML L with # 4+ 1 blocks contains
blocks with distance % then it is line-like.

(5.6) If an OML with n + 1 blocks is the direct product of two ONMLs with
at least two blocks euch then any lwo blocks 4, B of L have a distance d(A, B) < n.

I
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Proof. 1f the first of the factors has & + 1 and the second [ + 1 (&, 1 = 1)
blocks then it follows from (4.3) and (4.4) that any two blocks in L have a
distance £ k& + [. But

n+1=GCk+D0+1)=k+k+1+1,
hence & + 1 < n.

In the next three statements (5.7), (5.8), (5.9) we assume that L is an OML
with n + 1 = 1 blocks, that Byand B, are blocks of L with distance # and that
Bi~B ~...~xB,.

BT If0 = m = nthen \J =™ Byis a subalgebra of L with m + 1 blocks and
if m = 2the blocks By and B, have distance m in this subalgebra.

Proof. By (1.2), (4.3) and (5.6) we may assume that L is irreducible. Assume
now that for some m (0 < m < n),S,, = U =™ B, is not a subalgebra. Then
there would exist elements a, b € S,, with

a Vb € ( Ui=m+1n Bl) - Sm'

Define I = {70 £ 7 < #n, ¢ € By} and J = {j|0 £j < n, b € B,}. Since the
union of any two consecutive blocks is a subalgebra of L, it follows that
|7 — 1] = 2holdswhenever: € I, j € Jandi,j < m. It follows from this that at
least one of thesets I M {0, 1,...,m}, JM{0,1,...,m} consists of numbers
< m — 2 only and we may assume by symmetry that 7 M {0, 1,..., m} has
this property, i.e. that < € I and 7« < m implies 1 < m — 2. By definition of
we have

a € (NierB) — UserBy,

which by (1.1) implies that 7" = \U ¢, B, is a subalgebra of L with A(7") =
{B7 € I} and that the center C(T") = M ;c; B, contains « and hence is non-
trivial. Since @ and ¢ V b are comparable there exists a block B, containing
both @« and « V b and since ¢ V b ¢ S, B > m holds for every such k. By
(4.4) any two blocks in 7" can be joined by a proper path in 7". It would thus
follow from our assumption that | ,—y" B, was not a subalgebra that there
exist indices 7, £ € [ with 1 £m — 2, B =2 m + 1 and Bi ~ B,. Since also
B; N\ B, D C(T')D C(L) it would follow that By~ B, ~ ...~ B;,~ B,
] ... R~ B, was a strictly proper path in L contradicting d(B,, B,) = n. We
have thus shown that the sets .S,, = U =" .S; (0 £ m = n) are subalgebras
of L. Since every block of S,.¢11s by (1.4) either contained in S,, or in B,
it follows easily by induction on m that the blocks of S, are exactly B,
By, ..., B,. It remains to show that the distance of By and B,, in S,, is m
provided that m = 2. For every m the distance of Byand B, in L is m and every
strictly proper path in S, is also a strictly proper path in L. The distance of
By and B, in S, is therefore either m or c0 and it is thus enough to show that
if it is oo thenm =< 1. Assume that d(B,, B,) = o in S,. Then, in particular,
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Bo~ By~ ...~ B, is not a strictly proper path in §, and hence C{S..} #
{0, 1}. Furthermore, by (4.4}, B4 \U B, is a subalgebra of L and B. " B, =
CiS,) 5 10,1}, It follows that By~ B, ~ By.1~ ...~ B, is a strictly
proper path in L which, together with the assumption d{B. 8,} = n implies
m < 1.

BRI 01 < S n then ‘Ul By 1s a subalgehre with j — 1 + 1
blocks und if 7 — 1 2 2 the dlocks B; and B have distance j — i in this subd-
algebra.

202 i<j<hkZnthen B,\B, C B,
I'n particulur, Ba, B, ..., B, is a line-like ordering of A(L}.

e

Proof. The first claim follows easily by applving {5.7) twice. The second
claim we prove by induction on n. If n = 1 it is trivial. Assume n = 2. If
0 <1 or k < n the claim follows from the first part of (5.8) by inductive
hypothesis. We thus only have to show that B, ™\ B, € B, holds whenever
0<j<n By B, € B.would hold forall such j we would obtain by (1.4)
that

BiNB, &€ J""B.

which by (1.1) would imply 8y, & B, contradicting d(Bq, 8,} = n = 2. Thus
there exists k2, 0 < 2 < #n, such that By B, € B,, hence B, B, =
By By N\ B,. By inductive hypothesis we have Bo M B, T B, 0 < i< %
and B M B, © B, ifk < j < n,and in both cases B¢ N\ B, T B ., completing
the proof.

The definition of a line-like ordering and the second statement of [5.1)
completely describe how Boolean algebras have to interact in order to be the
blocks of a line-like OML. This is the content of the following statement.

(5.9) Let By, By, ..., B, be a sequence of Booleun algebras, <, the partial
ordering of B, ¢, < B, B (0 =1 < n) and assume that the following
conditions are satisfied:

By Y By is u subalgebra of both B, and B,.; (0 £ 1 < n),

28BN By =0,¢/,Ule, 1], =10,/ ;00 Mie, 11O 1 <0
3.B.MB,TCB,02i<j<kZmn),

e Lo (020 < n).

Define . = \J " B, and let < be the union of the puritiai ordering <. Then

i1

[

e

< is a partial ordering of L and with this pariial ordering und the obrious defini-
tion of orthocomplemeniation L. is a line-like OML and Beo, By, ... .B, is u
line-like ordering of its blocks.

Proof. This follows easily from (2.2) by induction on .
6. Orthomodular lattices with three blocks. We assume in this section

that L is an OML with three blocks. By {4.4) there exist 4, B = d{L) with
A ~ B. By {4.1) this implies that, if C is the remaining block, at least one of
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the intersections 4 (1} . B 7\ C equals the center of L. Thus it is not true that
everv two (distinet} blocks of L have distance 1 and it foliows that either there
exist biocks with distance 2 or there exist blocks which can not be joined by
a strictly proper path. In the first case L is line-like by (5.8}, and in the
second case L is by (4.5} the weak horizontal sum of a Boolean algebra and an
OML with two blocks. hence, as is easily seen, also line-like. We have thus
proved the following statement.

(6.1} Epery ONML L with fhree blocks is line-like.

Depimition. Let L be an OXL with three blocks. A block B £ (L) is said
to be a middle block of L if and only if A M € T F holds, where 4 and C are
the remaining blocks of L.

(6.2) Every ONL L with three blocks has a middle biock. IT B is « middle block

ef L end A, Care the remaming blocks then 4 'J B and B'\J C are subalgebres
of L.

Preof. The existence of a nrddle block follows immediately from {(6.1). If
there exists a strictly proper path 4 & B x~ € then B is obviously the only
middle block and the second claim s obvious. If no two blocks of L have
distance 2 then any two blocks have distance 1 or «0. In both cases the union
of the two blocks is a subaigebra, in the first case by definition and in the

second case by (4.4},

Still another way to formulate (6.1} is the foliowing. which follows from
(5.2).

(6.3} Fvery OML L with three blocks can be obiained by pasting ¢ Boolear
algebre und «n OXL with fwe blocks along « seciion.

The following observation will be needed in the next two sections.

(6.4} For am ONL with three blocks the following wre equivalent.
1. L has fwe muddic blocks:
2. The union of cny iwo blocks is ¢ subalgebra of L.

FProof. The second condition follows from the first by (6.2}. To prove the
converse assume that B is a middle block and 4, € are the remaining blocks.
I 4 U C1s a subalgebra, it follows from (4.1} that either A N B C C or
BN O C A4, ie. that one of 4 or ( is another middle block.

7. Orthomodular lattices with four blocks.

(7.1} Let L be an trreducible ONL with four blocks By, B, Bs, By satisfving

B,;y» M Bg ng (4 Bx, B; QB} and Bg M B:; ng UB}

Then By \J Bs is mot ¢ subalgebre.
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Proof. Pick u € (By M By) — (B2\J By), v € (B2 By) — (By U By) and
pute = y(u, ). Since B, \U By is a subalgebra we have by (3.2) that B, ~, B..
If By\U B; was also a subalgebra we would by the same argument have
By ~, Bs, hence

e € BN\ B, N By N\ By = C(L) = {0, 1},

hence ¢ = 0 or ¢ = 1. But B; ~, B, implies ¢ # 0 by an earlier remark and
e = 1 would imply B; N B, = {0, 1}, contradicting B, X B..

(7.2) If L is an 1rreducible ONIL with four blocks By, By, By, Bs und By =~
By~ By then By \J By \J By isa subalgebra (which clearly has three blocks only).

Proof. Assume By \U B; U B, is not a subalgebra. Then there would exist
a € BU - <B] UB)), b E Bz — (B()U]))l)

such that « V b € By — (By U By \U By). Since a and « V b are comparable
they both belong to some block and hence « € (By N B;) — (B, \U By),
which implies By N\ By & B; U B, By symmetry we obtain B, N\ By &
By \U By. But By N\ By € By U By would contradict (7.1) and we thus have
either By M By C By or Bo M By C By, The first of these conditions would
imply By M By = By M By M B, Since By U B, U B is not a subalgebra we
have by (1.1) that B N B; M By € Byand we would obtain By M B, = {0, 1},
contradicting By & B;. Thus By M B, C B, is impossible and hence we have
By M By © By Since B;\U B, is a subalgebra we have by (4.1) either
BiM By C Byor By By C By. The second of these conditions contradicts
By N\ By & By \J B,. We would thus obtain

By By =B\ B MN\By=B, BN\ BN\ By =10, 1},
contradicting By & B,. (7.2) is thus proved.

Definition. Let L be an OML with four blocks. A block B of L is said to be
a maddle block if and only if whenever 4 and C are two of the remaining blocks
then 4 \U B U (Cis a subalgebra with three blocks and middle block B.

Definition. The valence of a block B of a block-finite OML L is the number
of blocks 4 satisfying A ~ B.

(7.3) Let L be an OML with four blocks By, B1, Bs, By and assume that the
block By has valence 3. Then either By 1s « middle block of L or L us line-like.

Proof. Since no block in the direct product of two OMLs with two blocks
each has valance 3 we may by (1.2) assume that L is irreducible. By (7.2)
each of By\U B, \U By, ByU B, U Bzand B, \J B, \U Bjis a subalgebra with
three blocks. If B, is a middle block of each of these, it isa middle block of L and
there is nothing left to prove. If this is not the case we may assume without
loss of generality that B, is not a middle block of By \J B, \U B.. It then follows
from (6.2) that By\U B. is a subalgebra and that By/M B; € B, and

https://doi.org/10.4153/CJM-1979-090-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-090-6

ORTHOMODULAR LATTICES 977

B, M By, C By. Since By \U By is a subalgebra we obtain from (4.1) that either
BoM\ By € By or BoM By € By and we may by symmetry assume that
By M By C By. Since By \U By is a subalgebra we obtain by the same argument
that either By M B; C B, or By B, C Bs. The second of these conditions
would imply BN By = {0, 1}, contradicting B, ~ B;. We thus have
B¢ M By € By and hence By M By = {0, 1}. We claim that By~ B, & B;
=~ By is a line-like ordering in this case. The only thing left to prove to estab-
lish this is By M By € By. But Bo M By & B, would as before imply B, M B»
C Bs, hence B; M B, = {0, 1}, contradicting B; & Bo.

(7.4) Let L be an OML with four blocks By, Bi, B», Bs satisfying
By~ By~ By &~ By &~ By and having no other strong links. Then L 1s 1somor-
phic with the direct product of two OMLs with two blocks each.

Proof. Assume that L was not a direct product of the described kind. We
may then assume that L was irreducible. By (7.2), By U B, \U B, would be a
subalgebra and since By % B. we would have B, M By C B; and, by sym-
metry, Bo /M By € By and hence By M By = {0, 1}. Again by symmetry we
would obtain B; M By = {0, 1}. We would thus obtain B; N\ By & Biye
U B (1= 0,1, 2,3, indices modulo 4), contradicting (7.1).

(7.5) Every ONIL with four blocks satisfies one of the following conditions:

1. It is the direct product of « Booleun algebra and two irreducible ONLs with
two blocks each,

2. It 1s line-like;

3. It has a middle block.

Proof. From (4.5) and the structure theorems for OMLs with at most three
blocks it follows easily that L is line-like if there exist blocks which can not be
joined by a strictly proper path. Hence we may assume that L is connected. If
it has a block of valence 3 the claim follows from (7.3). If every block has
valence at most two then it either satisfies the assumption (7.4) and hence
the first condition of (7.5) or, with suitable enumeration of the blocks, we
have By~ B1 &~ B, = B3 and these are the only strong links. But then
d(By, B3) = 3 and, by (5.8), L is line-like.

(7.6) Every ONL L with four blocks is cither the direct product of two OMLs
with two blocks each or can be obtuined by pusting a Boolean algebra and an OML
with three blocks along a segment.

Proof. By (5.2) and (7.5) it is enough to show that every ONML L with four
blocks which has a middle block can be obtained by pasting in the described
way. Let By, Bi, By, By be the blocks of L, assume that B; is a middle block
and By ~, B;. We then have by (5.1) and (6.1):

]3(,[\ (B] U]ﬁg U]gq) = B(]m ]31 = ([O, (’,] U [(’, IJ) N (,B[)U ]31 Y 132)
= ([0,e1\U e, 1)) N (By Y B, U By) = ([0, ¢'7\U [e, 1])
M (Bo U ]31 U ]5}_ U153) = [0, (’./] V) [6‘, 1],

https://doi.org/10.4153/CJM-1979-090-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-090-6

978 GUNTER BRUNS

by pasting B, and B, U B, B; along the segment

>

8. Orthomodular lattices with five blocks. Whereas all OMLs with vp
to four blocks could be obtained by either taking direct products or pasting
ONiLs with fewer blocks, a new phenomenon appears if the ONL has five
blocks, namely the existence of “loops”. We deal with this case first.

(8.1} Let L be an OXNL with five blocks By, By, Bs, By, B, Mmﬁz that By ~ B,
=~ Bs X By x B, = B holds and such thai there cre ne oiher sirong links. Then

E‘:Uw (o) QBV_A b,,’n }ﬂ;ﬁgﬁfﬂ‘fﬂd’Bg!?ﬁ\‘iEHj ;F‘g
holds for ali 1 and for no 115 B, \J B,.s a subalgebre. (Indices modulo 5).

Proof. By (1.2} we may assume that L 15 irreducible. We show first that for
ne 1is B, B, a subalgebra. If it were a subalgebra for some ¢ then bv
{64 B, U B, UB,» would be a subalgebra with at least two muddle
blocks and hence one of

)}J’\‘ it k—Z)“% f;ﬂ-g. ¥ }g_:? gﬁ

would hold. Since B, % B ... we would also have B,/ B,... = !, 1] and we
would obtain either B, M\ B, = {0, 1] or B,/ B = 10, 1}, both con-
tradicting the assumptions. We have thus proved that none of the unions
B\ B, s s a subalgebra. To prove the rest of the claim it is by symmetry
enough 10 assume ¢ = (. If B, 'U B, U B, is a subalgebra, then, as we have
seen, By 1s the only maddie block of it and the claim follows trivially. We may
thus assume for the rest of the proof that B, \J B; ' B: is not a subalgebra.
From (1.1} then follows that

Buj, i Bg ™y Bg ; B; i B{,
which bv (1.4} gives either
By B, M Bs T Bsor BeMy By f s © B,
By symmetrv we may assume that B,/ B, /M B, © B, Assume now that

Then, by (1.1}, By U B; U B:'J By would be a subalgebra with four blocks.
Since B, 3¢ B; it can not be the product of two OMMLs with two blocks each.
Thus, by (7.3}, it would be either line-like or have a middie block. Since both
By \J B: and B\ B; are not subalgebras, it can not have a middle block.
Since none of By'\J B, By\J By, B, U Bs, By\J B, U B is a subalgebra it
cannot be hine-like either. It thus follows that

Bs’/’\iB;mBgmgz gB,
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and hence
BeN\ By Bs = 10, 11,
With this B¢/ By € Bs would imply 8,7 B8, = 10,1} and B, "\ B, T By

would imply B, ™ B, = |0, 1!, both contradictions. We thus have B, "\ B,
& By and By M Boa & Be. Since B; \J B. is a subalgebra, the first of these
inequalities implies 8, 7 By € B, by (4.1), proving (8.1}.

{8.2) Under the assumption of (8.1) the following stulements hoid.

1. The union of three or four-blocks of L is never a subalgebru;

2. The oniy unions of two blocks which are subalgebras are the unions B;\J B..,
(indices mod 3);

3. BiM By & B \J By \J By, helds for all  {indices mod 5);

4. B Boo = C{L) hold for &li 1 {indices mod 3).

Proof. By (8.1) we have B,/ By & Biio, Bivw. But B,V By € Bys
would by (8.1) imply

B,-(."EBL-H = fjg{.\\By_x(’\ Bg,z ; ]3,'v;,

a contradiction. We thus have that B,M B,.( is contained in neither of
B, Biia, By, hence by {1.4),

Bim Bitl g [{i‘r? U 35*3 (o Bi«»iv

proving the third claim. If the union of two blocks with non-consecutive
indices (mod 5) were a subalgebra it would be of the form B;\U B,.». But this
would make B, U B .., U B..sa subalgebra with three blocks and two middle
blocks, contradicting (8.1) and proving the second claim. We show next that
none of the unions 8, B, \U B,.,isa subalgebra. By {1.2) we mayv assume
that L is irreducible. By symmetry it is enough to show that Bo\J B, \U B is
not a subalgebra. If it were it would clearly have three blocks and by (8.1) B,
would be the only middle block. By condition 3 we mayv pick

a i (Bu ."\ B:) — (Bl U B-g U 1‘3'{} and b _j (B_) {\ B:;)
— {By\J B U By).
Since By \J B, s a subalgebra we have e %/ b € B3 /M By Since by assumption

Be\J By \UB,is asubalgebra we havea WV b £ By By Bo, hencea vV b £
C{L) =10, 1!, hence« Vv & = 1. Bv svmmetrv we also obtain

[AANGR

aVY =adVvVi=ad Vv =1,

hence, if we put ¢ = y{a, #) we have ¢ = 1. But by {3.2) we have B; ~, B,.
We would thus obtain B3 ™ B. = {0, 1| contradicting B; =~ B.. If a union
B \J B, U B;; were a subalgebra it would clearly have three blocks, and it
would follow that at least one of B;\J B,,; 0or B;.; 'J B,.; was a subalgebra,
contrary to what we have already shown. Thus the union of no three blocks
of L is a subalgebra. Every union of four blocks is of the form B, \U B,
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U Bo\J By If it were a subalgebra it would clearly have four blocks. If it
were line-like or had a middle block the union of three blocks would be a
subalgebra, which is not the case as we have already seen. If it were a sub-
algebra, it would by (7.5) be the direct product of two OMLs with two blocks,
which again is impossible because of a missing strong link. We have thus
proved the first claim. Since B, \J B \JU By, is not a subalgebra we obtain
from (1.1) and (8.1) that

BiNBys= B0 By N\ Biys C Bos\J By
and we may by (1.4) and symmetry assume that
BiN\ Bipn N\ Biys C B
Since B, \U B, U B \J B, ;is not asubalgebra we have
BN BN BaoaMN By, C By,
hence
BiMN B = M=o B; = C(L),
proving the last claim.
(8.3) Let L be un ONIL with five blocks B, (0 = ¢ < 4) satisfying
By~ By~ By~ By~ By, Bo\ By & By\J Bsand By N By & By
Then BoM By M By M\ By & By holds, and in particular By\J B, \J B, \J B

1s a subalgebra with four blocks.

Proof. By (1.2) we may assume that L is irreducible. If the claim were not
true we would then have By M B, M By M By = {0, 1}. We show that this
leads to a contradiction. The assumptions

15() f\ ]31 g lgg, 13() ~ B;;, Bl f\ Bz g ]ﬁ;g and ]52 ~~ B;;

imply by (4.1) that By By € By and BN By € By, hence B, M B, =
{0, 1}. Since Bo M\ By & Bs, By~ By and By ~ By we obtain by the same
argument that By, M By € B, and one of ByM By C By or By By C By
holds. The second of these inclusions would imply

]3() f\ 133 = ]5() f\ ]gz f\ ]3‘; _g ]31,

hence By M By = {0, 1}, contradicting By ~ Bj;. We thus have By M By C B,
and we obtain:

*) BoM\ By = Bi N By = {0, 1}.

Choose a, b, d such that By ~, By ~, By, By ~y Bs. Since a V b = a, b and
aVbée By we obtain « V b € By/\ By, hence, by (¥), a Vb=1 and
a’ £ b. By the same argument we obtain ¢’ < d. Since b £ 0, 1 and b € B,
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M B, we obtain from (*) that
b e (BiM By) — (By\U By).
By the same argument we obtain
d & (BoM\ By) — (B1\U By).
Since By~ By and By ~ Bj this implies
W <DADE (BoN\ BN (BaN\ By) = 10,11,
hence @’ = 0, contradicting By ~ B;.

(8.4) If at least one block of un ONL L with five blocks has valence at least 3 then
there exist four blocks in L the union of which is « subalgebra of L with four
blocks.

Proof. We may assume that L is irreducible and that the blocks are enumer-
ated in such a way that By~ B, & B» and By &~ Bj hold and that B, is the
remaining block. Assume first that B, \JU B, \U B, \U Bj is not a subalgebra.
Then by symmetry, we may assume that there exist elements « € By —
(B,\JU By)and b € By — (By\J B;) such that

vV [') E ]51 —_ ([3() U [31 \J f;-g U 13,;)

It follows from this that « and b are both in B,. Since not both of them are in
Bj it can either happen that none of them or one of them, say 0, is in Bj. It
follows that either

ByMN By & B,\U By\J Byand B: N\ By € By\J By \U By
or
]30 ﬂ B.; g ]51 U 132 U B,; an(l Bg f\ 13'; f\ 131 g 130 U Bl

holds. In the first case the assumptions of (8.3) are satisfied (with suitable
permutation of the indices) and the claim is proved. In the second case
By \U B3 \J B, is a subalgebra with three blocks and hence one of By ~ B, or
By ~ By holds. Since we have By M By & By and By M B, € B, the assump-
tions of (8.3) are satisfied in both cases and there is nothing left to prove. We
may thus assume that B, \J B, \U By \J By is a subalgebra. If Bo\U B, \U B,
is a subalgebra then B, \U B;\U B,\U By has by (1.4) four blocks and the
proof is again complete. If not there exist

a 6 ]5() - (]gl U 13;) and ]) E Bg - (B() U 131)

with « Vb € (B3\J B,) — (ByYU B;\U By) and we obtain by the usual
argument that

B() f\ (B;; U B|> g Hl U ]52 an(l Bg ﬂ (B‘g U B;) z ,B(J U ]31
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hold. This implies that one of the conditions

BoN\ By & By\U By\U By, BoN\ By & By\U By U By,
BoN\BsN\ By & B\ B,

and one of the conditions

BsMN\ By & By\J By\U By, B\ By & By\J B, \U By,

ByN\BsN\ By & By\J B,
is satisfied. If By N By € B, \J B, U B, then By\U Bj; is a subalgebra and
By\J B;1\U By U B; has four blocks. The same conclusion is obtained if
BgmBg SZBUU31UB4 If BomB4 Q31U32U33 and B2f\B4 ¢_
By \U By U Bj; the desired conclusion follows again from (8.3). Using symmetry
it is thus enough to consider the cases

BiN B, & B,\U By,U Byand Bo\ By \ B, & ByU B,
or

By By By & By\J Byand By N By N By & By\U By,
[n the first of these cases we have

By By & By, By By & By

and one of By~ By or By ~ By, so that we may apply (8.3) again. If in the
second case either By ~ B or By ~ Bj the subalgebra B, \U B;\U By, \U B;
has four blocks. In the remaining case we have

50%34,32%]34,130034 g BIUBgand Bsz4 ¢_ B()U Bl
and (8.3) applies again, completing the proof.

(8.5) Let L be an OML with five blocks By, By, Bs, B3, Bi and assume that
By\J B1\JU By \J By 1s @ subalgebra with four blocks. Then L 1is obtained by
pasting By \J B, \J By \J Bj and B, along a segment.

Proof. We may assume without loss of generality that L is irreducible. Since
(Bo\J B1\U By \J By) N\ By € By\J BiU By\J By

it follows from (1.4) and (7.5) that there exists an index 7, 0 < 7 < 3 satisfying
(Bo\U B1\U B, \U By) M By C B,. It is easy to see that then B,\U By is a
subalgebra of L and, if B; ~ B; holds for some j % 4, then B;\U B,;\U By is
a subalgebra of L with three blocks and middle block B;. Furthermore, there
exists e € B; M B, such that
(BOUB1UB«ZUB;;)AB4 = BimB4

= ([0, ¢TI [e, 1]) M (B:\J By).
We now have to distinguish various cases. If By\J B \U B, \U By is line-like
we may assume that By ~ By ~ Bs ~ B3 is a line-like ordering of the blocks
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and it is by symmetry enough to consider the cases7 = 3and 1 = 2. If 1 = 3
it is easy to see that By ~ By ~ Ba ~ B3 ~ B, is a line-like ordering of the
blocks of L and the claim follows from (5.2). If 1 = 2 it is easy to see that
By\U B; U B, U By is a subalgebra of L and that By~ By~ By~ B, is a

line-like ordering of its blocks. It follows from (5.2) that
BN\ By = ([0,e'] Ufe, 1]) N (Bo\J B, U B,\U By)
= (0,1 U e, 1]) N\ (B,\J B2U By) = [0,¢'1U [e, 1],

which again proves the claim. If By\U B, \U B, U B; has a middle block we
may assume that B, is a middle block and it is by symmetry enough to con-
sider thecases1 =2and1=1.lf 1 =2, B; U B;,U B,U B, and B, U B,
U B, \U B, are line-like subalgebras and the given orderings are line-like
orderings of their blocks. The claim then follows from (5.2) as before. If
1=1,ByU B;\J By, By\U B, U Byand By\J B, U B, are subalgebras with
three blocks and middle block B; and the claim follows as before using (6.1).
It remains the case that By\U B; U B, \U Bj; is isomorphic with the direct
product of two OMLs with two blocks each and we may by symmetry assume
that

B() ~ Bl ~ B2 ~ B3 and (B1 U ]52 |V B‘g) M B4 g ]5(),

i.e. 2 = 0. In this case B, \J By\JU By and B, U By U B, are subalgebras with
middle block By and we obtain as before

BN By = ([0,e1\U e, 1]) N (Bo Y B, U B; U By).

Bute < x € Bo — (ByY B U B; U By) would imply
e € BoMN Ba= BN\ BN B.NB;MN By, = {0, 1},

i.e. ¢ = 1, in which case the claim is trivially true. If ¢ 5 1 we thus obtain
BeM\ B, = 1[0,¢']U [e, 1]

and the claim is again proved.
We are now in a position to describe all OMLs with five blocks completely.

(8.6) Ewery ONL L with five blocks either salisfies the assumplion of (8.1) or
can be obtained by pasting an OML with four blocks and a Boolean algebra along
a segmenl.

Proof. 1f at least one block of L has valence at least three the claim follows
from (8.4) and (8.5). If there exist blocks which can not be joined by a strictly
proper path the claim follows easily from (4.5), (6.1) and (7.5). We may thus
assume that any two blocks can be joined by a strictly proper path and that
every block has valence at most two. It is then easy to see that with suitable
enumeration of the blocks the only strong links are either

130 ~ ]31 ~ BQ ~ ]33 ~ B.| or ,B() ~ B] ~ [33 ~ ]53 ~ ]34 ~ Bu.
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In the second case the assumptions of (8.1) are satisfied. In the first case we
have d(By, B:) = 4 and the claim follows from (5.8) and (5.2). The theorem
is thus proved.

Since it is not dithcult to prove that any five Boolean algebras satisfying the
conditions of (8.1) and (8.2) can be amalgamated to give an OML with five
blocks, the last result describes all OMLs with five blocks completely.

9. Two related results. The two results of this chapter are not directly
related to the methods developed in this paper; they are both consequences of
(1.5). But since both of them concern block-finite ONLs we present them here.

Let MOn (n = 2) be the modular OL consisting of 2» pairwise incomparable
elements and bounds 0, 1. It is well known that the only finite irreducible
modular OLs are the lattices M On. (See [2], proof of (4.4). The result with a
different proof was known much earlier among the lattice theorists at the
University of Massachusetts, where [ learned of it in 1970). We show here
that the result remains true for block-finite modular OLs.

(9.1) The only block-finite, irreducible, modular OLs are the luttices MOn and
2. The variety of «ll modular OLs is not generated by the block-finite members.

The equation v (x, v (v, 2)) = 0 holds for ull block-finite modular OLs but does not
hold in «ll modular OLs.

Proof. Let L be a block-finite, irreducible modular OL. To prove the first
result it is obviously enough to show that for all «, b € L, « < b implies
@« =0 or b =1. Assume that « < b. Let By, By, ..., B, be the blocks of L
and let A7 be a finite subset of L which contains «, b and an element of each of
the differences B; — B; (1 # 7, 0 =1, 7 < n). Let S be the subalgebra of L
generated by M. By (1.5), Sis finite. Since .S contains an element of each of the
differences B; — B the blocks of S are exactly the sets SN B, (0 =1 = n).
Since L is irreducible S is also irreducible. By what is known it follows that .S is
MO+ 1),ie. that « = 0 or b = 1, proving the first part. The rest is a con-
sequence of (4.4) of [2].

The second application of (1.5) concerns varieties of ONLs. In [4] it was
shown that every finite ONL L which does not belong to the variety [1702]
generated by A/02 contains one of the lattices of figures 2 to 5 of [4] as a homo-
morphic image of a subalgebra. This can be generalized as follows:

(9.2) Every block-fintte OML L which is not in [ MO?2] contains onc of the
OMLs of figures 2 to 5 of [4] as a homomorphic itmage of « subalgebra.

This follows from the fact that if a block-finite ONMIL. L does not belong to
[ MO2] then a finitely generated subalgebra .S of L does not belong to [M02].
Since by (1.5) every such S is finite we may apply the quoted result of [4] to
obtain (9.2).
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