BLOGK-FINITE ORTHOMODULAR LATTICES

GÜNTER BRUNS

Introduction. Every orthomodular lattice (abbreviated: OMIL) is the union of its maximal Boolean subalgebras (blocks). The question thus arises how conversely Boolean algebras can be amalgamated in order to obtain an OML of which the given Boolean algebras are the blocks. This question we deal with in the present paper.

The problem was first investigated by Greechie $[\mathbf{6}, 7,8,9]$. His technique of pasting [6] will also play an important role in this paper. A case solved completely by Greechie [9] is the case that any two blocks intersect either in the bounds only or have the bounds, an atom and its complement in common. This is, of course, a very special situation. The more surprising it is that Greechie's methods, if skillfully applied, yield considerable insight into the structure of OMILs and provide a seemingly unexhaustible source for counterexamples.

A closely related problem was considered by G. Kalmbach [11]. Her notion of a bundle of Boolean algebras gives a necessary and sufficient condition for the union of Boolean algebras to be an OML and has the interesting consequence that every lattice is a sublattice of an OMIL. A drawback of her method for our present purposes is that the OMIL constructed from a bundle of Boolean algebras may have "hidden blocks", i.e. blocks which do not occur in the given bundle. For example, a totally non-atomic block may be hidden among the atomic blocks of the lattice of all closed subspaces of an infinite-dimensional Hilbert space. Thus a bundle of Boolean algebras may not directly describe the block-structure of the OMIL obtained from it.

In this paper we start investigating the interaction of the blocks of an arbitrary OMIL with finitely many blocks. Following a suggestion by B. Banaschewski we call such OMLs block-finite. The restriction to block-finite OMLs is essential since almost all our proofs proceed by induction on the number of blocks, making use of techniques developed in [3]. The key notion of this paper is that of a path (Section 4). This is a finite sequence of blocks the union of any two consecutive members of which form a sulalgebra and hence intersect in a prescribed way. Depending on how "good" this intersection is we distinguish between proper and strictly proper paths. The main results of the general theory (Section 4, statements 4.4, 4.5 and 4.8) can then be described as follows: Any two blocks in a block-finite OML can be joined by a proper path. The relation "the blocks A and B can be joined by a strictly

Received March 16, 1978. The author gratefully acknowledges financial support of this work by the National Research Council of Canada, Grant A 2985.
proper path" spliss the OML into subalgebras which, up to a conmon Bowiean factor, intersect trivially. The third result allows us to single out certain sulbalgebras which can be represented as anom-trivial direct prownct.

The furst three sections contain preliminary material. The resnlts of these sections are essentially known, but I found it desirable to inchude them to provide the necessary frame for the later results. The next four sections solva the initially stated problem in special cases, Section 5 for a spocial type of OMLs which we call hine-ite and Sections 6,7 and 8 in the case of OMLs with three, fon and five blocks respectively. The final section contains two results about block-finite OMLs which are independent of the general techniques developed in this paper; they are both consequences of 3 .

1. Generalities. In this section we recall some basic denintions and some techniques we have developed in [3].

An ortholuthce (abbreviated: OL) is an algebra ($L ; V, A,{ }^{\prime}, 0.1$, where $(L ; V, A)$ is a lattice with hounds 0,1 and where $d \rightarrow d$ is an orthocomplementation, i.e. an anti-monotone complementation of period 2. An arthowwdahur Inthe abbreviated: OML is an OL satisfying the orthomodular law:

$$
\text { if }: b \text { then } s y\left(a^{2} \wedge b\right)=b
$$

For basic infomation about OMLs see $1, p$. 5 ff $; \mathbf{5} ; \mathbf{1 0}$.
For an element a of and OML L define $a^{*}=n$ and $a^{2}=u^{2}$. Defme the conmutator $\gamma(A)$ of a finite sufset A of L by:

$$
\gamma(A)=\wedge_{\alpha \in 2^{2}} V_{a \in A}^{a} a^{\alpha, \alpha i} .
$$

 an OUL L are said to conmute, in symbols: aCb, if and only if $\gamma(a, b)=0$. The relation C is reflexive, in fact satisfies the stronger condition that a $\leqq b$ implies $a C h$. it is symmetric and for every element $a \in L$ the set $C(a)$ of all elements commuting with a is a subalgebra of L. The center $C(L)=$ N $C(A) \mid a \in L\}$ is the set of all elements of L which conmute with every element of $L . C(L)$ is a Boolean subalgebra of $L . L$ is irreducible if and only if $(\{L)=$ 0.1 and $0 \neq 1$. (Irreducible in this paper always means directly irreducible.)

A block of an OXIL L is a maximal Boolean subalgebra of L. The blocks can also be characterized as the maximal sets of pairwise commuting elements of L. $\mathbb{M}(L)$ is the set of all blocks of L. Clearly $\cup \mathscr{I}(L)=L$ and $\cap \mathbb{N}(L)=C(L)$. L is said to be block-finite (Banaschewski) if and only if $P(L)$ is finite. $Q(L)$ is the set of all $\mathfrak{B} \subseteq \mathfrak{P}(L)$ satisfying $\cap \mathfrak{B} \nsubseteq \cup(\mathscr{U}(L)-\mathcal{B})$. Here we define the union of the empty subset of $\mathfrak{Q}(L)$ to be $\{0,1\}$ and the intersection of the empty subset of (L) to be L, so that $\because(L) \in \Omega(L)$ if and only if $C(L) \neq$ $\{0,1\}$. In particular, if L is irreducible then $\mathfrak{N}(L)=\Omega(L)$.

The following two results (3]. (2.1) and Theorem 1) are the principal tools applied in this paper.
(1.1) If L is an OML, $\mathfrak{B} \in \Omega(L)$ and $a \in(\cap \mathfrak{B})-\cup(\mathcal{P}(L)-\mathcal{X})$ then $C(a)=\bigcup \mathfrak{B}$, in particular $\cup \mathfrak{B}$ is a subalgebra of L. The blocks of this subalgebra are exactly the elements of \mathfrak{B}.
(1.2) Every block-finite OMIL L is isomorphic with a direct product $B \times L_{1}$ $\times L_{2} \times \ldots \times L_{n}(n \geqq 0)$, where B is a Boolean algebra and $L_{1}, L_{2}, \ldots L_{n}$ are irreducible OMLs with at least two blocks each.

These results in many cases provide the induction step in inductive proofs on the number of blocks of a block-finite ONHL. The first relevant fact for this is that the blocks of a product of two OMLs are the products of the blocks of the factors. Thus, if in the factorization (1.2) of L the number n is at least two, each of the factors L_{i} has fewer blocks than L and (1.2) allows the induction step provided the property to be proved is preserved under the formation of products. Boolean factors usually do not cause any difficulties. Thus if $n=1$ in the direct factorization (1.2) we may usually assume that L is irreducible. The validity of the property to be proved then frequently depends on a set \mathfrak{B} of blocks satisfying $\cap \mathfrak{B} \neq\{0,1\}$ only. As is easily seen every such set \mathfrak{B} is contained in a set $\mathcal{H}^{\prime} \in \Omega(L)$. By (1.1) and irreducibility of $L, \cup \mathfrak{B}^{\prime}$ is a subalgebra with fewer blocks than L and this again allows an inductive argument.

A third useful observation is the following, which belongs to the folklore of the subject.
(1.3) If a Boolean algebra B is the (set-theoretical) union of the subalgebras B_{1} and B_{2} then $B=B_{1}$ or $B=B_{2}$.

We will apply mainly the following consequence of (1.3).
(1.4) If B is a Boolean subalgebra of an OML L and L_{2}, L_{2} are arbitrary subalgebras of L such that $B \subseteq L_{1} \cup L_{2}$, then $B \subseteq L_{1}$ or $B \subseteq L_{2}$.

Finally, we will make use of the following main result of [3].
(1.5) Every finitely generated block-finite OML is finite.
2. Pasting. R. J. Greechie $[6,7,8,9]$ has given several constructions to obtain OULs by pasting simpler ones. Since his pasting construction [6], p. 212 ff restricted to the principal sections also plays a role in our present context we recall the main facts here. The construction presented here is, in fact, somewhat more general in that it includes the pasting of arbitarily many OMLs as opposed to Greechie's two. This requires some additional consideration.
(2.1) Let L be an OMIL, $\left(L_{i}\right)_{i \in I}$ a family of subalgebras of L and $0 \neq c \in$ $\cap_{i \in I} L_{i}$. Assume that the following two conditions are satisfied:
(1) $\bigcup_{i \in I} L_{i}=L$,
(2) for all $i, j \in I$ with $i \neq j: L_{i} \cap L_{i}=\left[0, c^{\prime}\right] \cup[c, 1]$.

Then the following five conditions are equivalent:
(a) if $a, b \in L$ and $a \leqq b$ then there exists $i \in I$ such that $a, b \in L_{i}$,
(b) if $a, b \in L$ and $a C b$ then there exists $i \in I$ such that $a, b \in L_{i}$,
(c) if $B \in \mathfrak{Y}(L)$ then there exists $i \in I$ such that $B \subseteq L_{2}$,
(d) for all $i, j \in I, L_{i} \cup L_{j}$ is a subalgebra of L,
(e) for cvery non-empty set $J \subseteq I, \cup_{j \in J} L_{j}$ is a subalgebra of L.

Proof. (a) \Rightarrow (d). It is obviously enough to show that $a \in L_{i}-L_{j}, b \in L_{j}-$ L_{i} imply $a \vee b \in L_{i} \cup L_{j}$. By (a) there exist $k, l \in I$ such that $a, a \vee$ $b \in L_{k}$ and $b, a \vee b \in L_{l}$. Assume first that $i \neq k$. Then we have by (2) that $a \leqq c^{\prime}$ or $c \leqq a$. But $a \leqq c^{\prime}$ would by (2) imply that $a \in L_{j}$, contrary to our assumption. It follows that $c \leqq a \leqq a \vee b$, hence by (2) that

$$
a \vee b \in L_{i} \cap L_{j} \subseteq L_{i} \cup L_{j}
$$

The case $j \neq l$ follows by symmetry. We may thus assume that $i=k$ and $j=l$ and hence that $k \neq l$. But then $a \vee b \in L_{k} \cap L_{l}$ implies by (2) that $a \vee b \leqq c^{\prime}$ or $c \leqq a \vee b$, in both cases, again by (2), that $a \vee b \in L_{i} \cap L_{j}$ $\subseteq L_{i} \cup L_{j}$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$. This is trivial since any two elements of $\bigcup_{j \in J} L_{j}$ belong to some union $L_{i} \cup L_{j}$ with $i, j \in J$.
(e) \Rightarrow (c). If $B \subseteq \cap_{i \in I} L_{i}$ there is nothing to prove. If not there exists $a \in B-\bigcap_{i \in I} L_{i}$ and it follows from (1) and (2) that there exists exactly one index $i \in I$ with $a \in L_{i}$. Since

$$
B \subseteq L_{i} \cup \cup\left\{L_{j} \mid j \neq i\right\}
$$

and since by (c), $\cup\left\{L_{j} \mid j \neq i\right\}$ is a subalgebra, it follows from (1.4) that

$$
B \subseteq L_{i} \quad \text { or } \quad B \subseteq \cup\left\{L_{j} \mid j \neq i\right\}
$$

But the second of these inclusions is impossible since $a \in B$ and $a \not L_{j}$ for all $j \neq i$. We thus have $B \subseteq L_{i}$.

The implications $(\mathrm{c}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{a})$ are obvious, which finishes the proof of (2.1).

Note that if the family $\left(L_{i}\right)_{i \in I}$ in (2.1) consists of two subalgebras only then the condition (c) follows immediately from (1.4) and hence by what we have proved all five conditions are automatically fulfilled. On the other hand it is easy to give an example showing that even if $\left(L_{i}\right)_{i \in I}$ consists of three sub)algebras only, the last five conditions above are not a consequence of the first two.

Definition. An OML L is said to be obtained by pasting a family $\left(L_{i}\right)_{i \in I}$ along the section $\left[0, c^{\prime}\right] \cup[c, 1]$ if and only if all the conditions of (2.1) are satisfied.

Extending Greechie's construction slightly we want to show now that a family $\left(L_{i}\right)_{i \in I}$ of OMLs can under certain conditions be pasted in the above sense. Assume for this that the following conditions are satisfied.
$(P 1)\left(L_{i}\right)_{i \in I}$ is a non-empty family of O\ILs,
(P2) for all $i, j \in I, L_{i} \cap L_{j}$ is a subalgebra of both L_{i} and L_{j},
(P3) $0 \neq c \in \bigcap_{i \in I} L_{i}$,
(P4) for all $i, j \in I$ with $i \neq j: L_{i} \cap L_{j}=\left[0, c^{\prime}\right]_{i} \cup[c, 1]_{i}$.
Note that from (P2) it follows in particular that all L_{i} have the same bounds so that we don't have to specify in ($P 3$) and ($P 4$) the algebras L_{i} in which the bounds are taken. For the same reason we don't have to specify in (P4) in which L_{i} we take the orthocomplement; the result is always the same. The index i in (P4) refers to the OMIL L_{i} in which the intervals are taken. Thus, if \leqq_{i} is the partial ordering of L_{i} then $\left[0, c^{\prime}\right]_{i}=\left\{x \in L_{i} \mid x \leqq{ }_{i} c^{\prime}\right\}$ and $[c, 1]_{i}=$ $\left\{x \in L_{i} \mid c \leqq{ }_{i} x\right\}$.
(2.2) Under the assumptions (P1), (P2), (P3), (P4) define $L=\cup_{i \in I} L_{i}$ and let \leqq be the union of the partial orderings $\leqq i$ of the L_{i}. Then $\leqq i s$ a partial ordering of L and with this partial ordering and the obvious definition of orthocomplementation, L is an OXIL. It is obtained by pasting the fumily $\left(L_{i}\right)_{i \in I}$ along the section $\left[0, c^{\prime}\right] \cup[c, 1]$.

The proof of this requires only minor modifications of Greechie's proof and there is no need to give it here.

The special case $c=1$ in the above definition of pasting was considered earlier by MacLaren [12]. The OMIL L is in this case called the horizontul sum of the family $\left(L_{i}\right)_{i \in I}$.

We are especially interested here in a construction which is more restricted than the general pasting as defined above but slightly more general than the horizontal sum. Assume for this that the OMIL L is obtained by pasting the family $\left(L_{i}\right)_{i \in I}$ along the section $\left[0, c^{\prime}\right] \cup[c, 1]$ and let B be an arbitrary OMIL. It is then obvious that the product $B \times L$ is obtained by pasting the family $\left(B \times L_{i}\right)_{i \in I}$ along the section $\left[(0,0),\left(1, c^{\prime}\right)\right] \cup[(0, c),(1,1)]$. The special case of this is the case where L is actually the horizontal sum of the family $\left(L_{i}\right)_{i \in I}$ and B is a Boolean algebra. This gives rise to the following definition.

Definition. An OMIL L is said to be the weak horizontal sum of a family $\left(L_{i}\right)_{i \in I}$ of subalgebras if and only if there exists an isomorphism f of L onto a product of $B \times L^{\prime}$ of a Boolean algebra B and an OMIL L^{\prime} such that the subalgebras L_{i} of L correspond via f to subalgebras of the form $B \times L_{i}{ }^{\prime}$ and L^{\prime} is the horizontal sum of the family $\left(L_{i}{ }^{\prime}\right)_{i \in I}$.

The following statement describes internally those pastings which are weak horizontal sums.
(2.3) Let L be an OMIL obtained by pasting the family $\left(L_{i}\right)_{i \in I}$ along the section $\left[0, c^{\prime}\right] \cup[c, 1]$. Then L is the weak horizontal sum of the family $\left(L_{i}\right)_{i \in I}$ if and only if the following three conditions are satisfied:

1. $c \in C(L)$,
2. $\left[0, \epsilon^{\prime}\right] \cup[c, 1]$ is a Boolean subalgebra of L,
3. for all $i, j \in I$ with $i \neq j$, c is an atom of $L_{i} \cap L_{j}$.

The simple proof of this is left to the reader.
3. Orthomodular lattices with two blocks. As an immediate consequence of (1.2) we obtain a simple description of all OMILs with two blocks. Their structure is essentially known (see [8], p. 10), but since it is the starting point of all the following considerations we give here a detailed analysis of OMLs with two blocks.
(3.1) Every OML L with two blocks is isomorphic with an OML of the form $B \times\left(A_{1}+A_{2}\right)$, where B, A_{1}, A_{2} are Boolean algebras and $A_{1}+A_{2}$ is the horizontal sum of A_{1} and A_{2}. In other words, every OML L with two blocks is the weak horizontal sum of its blocks.

Proof. By (1.2) every OML with two blocks is isomorphic with a direct product of a Boolean algebra and an irreducible ONIL with two blocks. Since the irreducible OMLs with two blocks are obviously exactly the horizontal sums of two Boolean algebras the claim follows.

The next theorem describes in more detail how the section along which the blocks of an OMIL with two blocks are pasted can be explicitly calculated.
(3.2) If L is an OML with two blocks B_{1} and $B_{2}, a \in B_{1}-B_{2}$ and $b \in B_{2}-B_{\mathrm{i}}$ then

$$
B_{1} \cap B_{2}=\left[0, \gamma^{\prime}(a, b)\right] \cup[\gamma(a, b), 1] .
$$

If $B_{1} \cap B_{2}=\left[0, c^{\prime}\right] \cup[c, 1]$ then $c=\gamma(a, b)$. L is irreducible if and only if $\gamma(a, b)=1$.

Proof. By (3.1) we may assume that L is of the form $B \times\left(A_{1}+A_{2}\right)$ and that $B_{1}=B \times A_{1}$ and $B_{2}=B \times A_{2}$. By the remark of the last chapter, B_{1} and B_{2} are then pasted along the section $[(0,0),(1,0)] \cup[(0,1),(1,1)]$. But the elements a and b above are of the form $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ with $a_{1}, b_{1} \in B, a_{2} \in A_{1}-A_{2}$ and $b_{2} \in A_{2}-A_{1}$. The first claim thus follows from the fact that $\gamma\left(a_{1}, b_{1}\right)=0$ and $\gamma\left(a_{2}, b_{2}\right)=1$, so that $\gamma(a, b)=(0,1)$. To prove the second claim assume that $B_{1} \cap B_{2}=\left[0, c^{\prime}\right] \cup[c, 1]$. Clearly $a \vee b$ $\in B_{1} \cap B_{2}$ and hence $a \vee b \leqq c^{\prime}$ or $c \leqq a \vee b$. But $a \vee b \leqq c^{\prime}$ would imply $a \in B_{2}$, a contradiction. We thus have $c \leqq a \vee b$ and hence also $a \vee b$; $a^{\prime} \vee b, a^{\prime} \vee b^{\prime} \geqq c$, which gives $c \leqq \gamma(a, b)$. But $c<\gamma(a, b)$ would because of $c \in B_{1} \cap B_{2}$ imply $c \leqq \gamma^{\prime}(a, b)$, hence $c=0$, hence $L=B_{1} \cap B_{2}$, a contradiction. We thus have $c=\gamma(a, b)$. The third claim is an immediate consequence of the second.

The reader may find it instructive to apply (3.1) to prove the following result, which follows from (2.1) and the fact that an n-generated Boolean algebra has at most $2^{2^{r}}$ elements.
(3.3) An OML with fwo blocks which is generated by an n-elenent set has at most $2^{2 \pi}\left(2^{2^{n-1}}+2\right)$ elements and this bound is best possible for every $n \geqq 2$.
4. Paths. We start out with some definitions which will be the main topic of interest in the rest of the paper.

Definition. For blocks A, B of an OML L define
$A \sim B$ if and only if $A \neq B$ and $A \cup B$ is a subalgebra of A,
$A \approx B$ if and only if $A \sim B$ and $A \cap B \neq C(L)$.
A link (strong link) in L is an unordered pair $\{A, B\}$ of blocks of L satisfying $A \sim B(A \approx B)$. A path in L is a finite sequence $B_{4}, B_{\mathbb{I}}, \ldots B_{m}(n \geqq 0)$ in $\mathfrak{M}(L)$ satisfying $B_{i} \sim B_{i+1}$ whenever $0 \leqq i<n$. The path is said to join the blocks B_{9} and B_{n}. The number n is said to be the length of the path. The path is said to be proper if and only if $n=1$ or $B_{i} \approx B_{i+1}$ holds whenever $0 \leqq i<n$. The path is said to be sirictly proper if and only if $B_{i} \approx B_{i+1}$ holds whenever $0 \leqq i<n$. The distance $d(A, B)$ of blocks $A, B \in \mathbb{U}(L)$ is defined to be the minimum of the lengths of all strictly proper paths joining A and B if such path exists and to be ∞ if there is no strictly proper path joining A and B.

If $A \sim B$ holds then by (3.2) there exists exactly one element $e \in A \cap B$ satisfying

$$
A \cap B=\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap(A \cup B)
$$

We say that A and B are linked (strongly linked if $A \approx B$) at e and use the notation $A \sim{ }_{e} B$ or $A \approx{ }_{e} B$.

If $A \sim B$ and $C \in \mathscr{N}(L)$ then $(A \cup B) \cap C$ is clearly a Boolean subalgebra of L and $(A \cup B) \cap C \subseteq A \cup B$. It follows from (1.4) that $A \cup B) \cap C$ is contained in either A or B. This gives the following simple but very useful remark.
(4.1) If $A \sim B$ then for cevery $C \in \mathbb{I}(L)$ either $A \cap C \subseteq B$ or $B \cap C \subseteq A$ holds.
(4.2) If L_{1}, L_{2} are OMLs, $L=L_{1} \times L_{2}, A, B \in \mathbb{M}\left(L_{1}\right)$ and $C, D \in \mathbb{M}\left(L_{2}\right)$ then $A \times C \sim B \times D$ holds in L if and only if either $A=B$ and $C \sim D$ or $A \sim B$ and $C=D$. If A and B are linked at a then $A \times C$ and $B \times C$ are linked at $(a, 0)$ If C and D are linked ai c then $A \times C$ and $A \times D$ are linked at ($0, c$).

We leave the simple proof of this to the reader.
Let again, L_{1} and L_{2} be OMLs, $A, B \in \mathbb{Y}\left(L_{1}\right)$ and $D, E \in \mathbb{Y}\left(L_{2}\right)$. Let $A=A_{0} \sim A_{1} \sim \ldots \sim A_{n}=B$ be a path in L_{1}. It then follows from (4.2) that $A \times D=A_{0} \times D \sim A_{1} \times D \sim \ldots \sim A_{n} \times D=B \times D$ is a path in $L=L_{1} \times L_{2}$. If the first path is proper (strictly proper) then the second path is proper (strictly proper). If, however, $D \neq C\left(L_{2}\right)$, i.e. if L_{2} has at least two blocks, then the second path is strictly proper regardless of whether the first
path is proper (strictly proper) or not. If L_{2} has only one block then clearly the second path is proper (strictly proper) if and only if the first path has this property. Similarly, if $D=D_{0} \sim D_{1} \sim \ldots \sim D_{m}=E$ is a path in L_{2} then $B \times D=B \times D_{0} \sim B \times D_{1} \sim \ldots \sim B \times D_{m}=B \times E$ is a path in L and the same remarks hold. Thus the composite of the two paths in L is again a path in L. We thus obtain
(4.3) Let L_{1}, L_{2} be O\ILs and $L=L_{1} \times L_{2}$. If each of L_{1} and L_{2} has at least two blocks, if any two blocks in L_{1} can be joined by a path of length at most n and if any two blocks in L_{2} can be joined by a path of length at most m then any two blocks in L can be joined by a strictly proper path of length at most $n+m$. If one of L_{1}, L_{2} is Boolean then any two blocks in the other can be joined by a path (proper path, strictly proper path) if and only if any two blocks in L have this property.

We are now in position to prove the first main theorem.
(4.4) Any two blocks in a block-finite OMIL L can be joined by a proper path.

Proof. (By induction on the number n of blocks of L.) If $n=1$ the claim is trivial. Assume $n \geqq 2$. By (1.2) L is either the direct product of two OMLs with at least two blocks each or it is the direct product of a Boolean algebra and an irreducible OMIL. In the first case the claim follows from (4.3) by induction hypothesis. In the second case we may, again by (4.3), restrict our attention to the case that L is irreducible, i.e. $C(L)=\{0,1\}$. Let $A, B \in \mathscr{Y}(L)$ and $A \cap B \neq C(L)=\{0,1\}$. Then by the remarks following (1.2) there exists $\mathfrak{B} \in \Omega(L)$ with $A, B \in \mathfrak{B}$. $\operatorname{By}(1.1) \cup \mathfrak{B}$ is a subalgebra with $\mathfrak{Y}(\cup \mathfrak{B})=$ \mathfrak{B} and since L is irreducible, $\cup \mathfrak{B}$ has fewer blocks than L. By inductive hypothesis A and B can be joined by a proper path in $\cup \mathcal{B}$. Since $C(\cup \mathfrak{B})=$ $\cap \mathfrak{B} \neq\{0,1\}=C(L)$, every such path in $\cup \mathfrak{B}$ is a strictly proper path in L and hence we have even shown that A and B can be joined by a strictly proper path in L. Assume finally that $A, B \in \mathfrak{V}(L)$ and $A \cap B=\{0,1\}$. If $A \cup B$ is a subalgebra then $A \sim B$ is a proper path and the claim is again proved. If $A \cup B$ is not a subalgebra then there exist $a \in A-B$ and $b \in B-A$ such that $a \vee b \notin A \cup B$. Since $a, b \leqq a \vee b$ there exist blocks C, D such that $a, a \vee b \in C$ and $b, a \vee b \in D$. Since $a, b, a \vee b \neq 0$, 1 , each of the intersections $A \cap C, C \cap D$ and $D \cap B$ is different from $\{0,1\}$. By what we have already shown any two consecutive blocks of the sequence A, C, D, B can be joined by a strictly proper path. It follows that A and B can be joined by a strictly proper path, completing the proof.

We investigate next the question under which conditions any two blocks can be joined by a strictly proper path.

Definition. For blocks A, B of an OMLL L define $A \equiv B$ if and only if A and B can be joined by a strictly proper path.

Clearly \equiv is an equivalence relation in $\mathfrak{H}(L)$.
(4.5) Let L be a block-finite OMIL containing at least two blocks which cannot be joined by a strictly proper path. Let $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \ldots, \mathfrak{B}_{n}$ be the equivalence classes of $\mathfrak{H}(L)$ modulo \equiv. Then each $\cup \mathfrak{B}_{i}(1 \leqq i \leqq n)$ is a subalgebra of L with $\mathfrak{A}\left(\cup \mathfrak{B}_{i}\right)=\mathfrak{B}_{i}$ and L is the weak horizontal sum of the family $\left(\cup \mathfrak{B}_{i}\right)_{1 \leqq i \leqq n}$.

Proof. Since by (4.3) and (4.4) any two blocks in the product of two OMLs with at least two blocks each can be joined by a strictly proper path the assumptions of (4.5) imply by (1.2) that L is the direct product of a Boolean algebra and an irreducible OMIL. By (4.3) it is thus enough to prove the claim under the assumption that L is irreducible. To show that the sets $\cup_{B_{i}}$ are subalgebras it is obviously enough to show that $a, b \in \cup \mathfrak{B}_{i}$ implies $a \vee b \in$ $\cup \mathfrak{B}_{i}$. For this assume $a \in A \in \mathfrak{B}_{i}$ and $b \in B \in \mathfrak{B}_{i}$. If $a \vee b \in A \cup B$ this is clear. If $a \vee b \nexists A \cup B$ there exists $C \in \mathfrak{H}(L)$ such that $a, a \vee b \in C$ and since $0,1 \neq a \in A \cap C$ we have by (4.4) that $A \equiv C$, i.e. $a \vee b \in C \in \mathfrak{B}_{i}$ i.e. $a \vee b \in \cup \mathfrak{B}_{i}$, proving that $\cup \mathfrak{B}_{i}$ is a subalgebra. By (4.4) any two blocks A, B with $A \cap B \neq\{0,1\}$ can be joined by a strictly proper path. It follows from this that $\left(\cup \mathfrak{B}_{i}\right) \cap\left(\cup \mathfrak{B}_{j}\right)=\{0,1\}$ holds whenever $i \neq j$. Clearly every block of L belongs to one of the \mathfrak{B}_{i}, which implies that L is the horizontal sum of the family $\left(\cup \mathfrak{B}_{i}\right)_{1 \leqq i \leqq n}$ and that the blocks of $\cup \mathfrak{B}_{i}$ are exactly the elements of \mathfrak{B}_{i}, completing the proof.

The next simple observation will be used later on.
(4.6) If liocks A, B, C of an OMLL L satisfy $A \sim_{e} B \sim_{f} C$ and if $A \cap C \nsubseteq B$ then $e=f$ and $A \cap B=B \cap C$.

Proof. The assumptions imply by (4.1) that $B \cap C \subseteq A$ and $A \cap B \subseteq C$, which gives the second claim. To prove the first claim pick $a \in(A \cap C)-B$ and $b \in B-(A \cup C)$. Then by (3.2), $e=\gamma(a, b)=f$.
(4.7) Let L_{1}, L_{2} be OMLs, $A, B \in \mathfrak{H}\left(L_{1}\right), C, D \in \mathfrak{H}\left(L_{2}\right)$ and

$$
A \times C \sim_{e} B \times C \sim_{f} B \times D
$$

Then this path is strictly proper and there exists exactly one block F in $L_{1} \times L_{2}$, namely $F=A \times D$, such that

$$
A \times C \sim_{f} F \sim_{e} B \times D
$$

Proof. It is obvious that the given path is strictly proper. By (4.1) the assumptions imply $A \sim{ }_{a} B, C \sim{ }_{c} D, e=(a, 0)$ and $f=(0, c)$. It follows from this immediately that $F=A \times D$ has the desired property. To show uniquess assume

$$
A \times C \sim_{f} E \times G \sim_{e} B \times D
$$

From (4.1) it follows that either $A=E$ or $C=G$. But $C=G$ would imply
$A \sim_{b} E$ for some $b \neq 0$, which would give $(b, 0)=f=(0, c)$, a contradiction. We thus obtain $A=E$ and, by symmetry, $G=D$.

The following theorem seems rather technical. It describes, however, an important feature of the interaction of blocks in a block-finite ONL in that it allows to single out certain subalgebras which admit a representation as a non-trivial direct product.
(4.8) Let L be a block-finite OML, $A, B, C \in \mathbb{M}(L), A \sim_{e} B \sim_{f} C$ and $e \leqq f$ '. Then the paih $A \sim B \sim C$ is strictly proper and there exists exactly one block D such that $A \sim_{s} D \sim_{e} C$. This D is different from B. Furthermore, $A \cup B \cup C \cup D$ is a subalgebra of L isomorphic with a direct product of two OMLs with two blocks each.

Proof. We show first that if the OMLs L_{1} and L_{2} satisfy (4.8) then the product $L=L_{1} \times L_{2}$ does. By symmetry and (4.1) we may assume that the given path is either of the form
(1) $A_{1} \times A_{2} \sim_{e} A_{1} \times B_{2} \sim_{1} A_{1} \times C_{2}$
or of the form

$$
\begin{equation*}
A_{1} \times A_{2} \sim_{e} B_{1} \times A_{2} \sim_{,} B_{1} \times C_{2} \tag{2}
\end{equation*}
$$

In the case (2) the claim follows from (4.7). In the first case there exist $a, b \in L$ such that $A_{2} \sim_{n} B_{2} \sim_{b} C_{2}$ with $a \leqq b^{\prime}$. By assumption there exists exactly one block $D_{2} \in \mathbb{N}\left(L_{2}\right)$ such that $A_{2} \sim_{b} D_{2} \sim_{n} C_{2}$. This clearly implies

$$
A_{1} \times A_{2} \sim_{1} A_{1} \times D_{2} \sim_{6} A_{1} \times C_{2}
$$

i.e. that the block $D=A_{1} \times D_{2}$ has the desired property. It is easy to see that it is the only one. We have thus shown that the property described in (4.8) is preserved under the formation of the product of two OMLs.

We now prove the general result by induction on the number n of blocks of L. If $n=1$ the claim is trivially true. Assume $n \geqq 2$. By (1.2), inductive hypothesis and the result already proved we may assume that L is irreducible. Assume in this case $A \sim_{e} B \sim_{f} C$ and $e \leqq f^{\prime}$. Since $e \neq 0 \neq f$ and $e \leqq f^{\prime}$ we have $0,1 \neq e \in A \cap B \cap C$, which implies in particular that the path is strictly proper. By the remark following (1.2) it also implies that there exists $\mathfrak{B} \in \Omega(L)$ with $A, B, C \in \mathfrak{B}$. By (1.1) $\cup \mathcal{B}$ is a subalgebra of L with fewer blocks than L and hence by inductive hypothesis there exists a unique block $D \in \mathfrak{B}$ such that $A \sim_{f} D \sim_{e} C$. It thus only remains to show that no block $D \in \mathfrak{g l}(L)-\mathfrak{B}$ satisfies $A \sim_{f} D \sim_{c} C$. But $D \in \mathfrak{M}(L)-\mathfrak{B}$ implies by definition of $\Omega(L)$ that $\cap \& \nsubseteq D$ and hence that $A \cap C \nsubseteq D$. This together with $A \sim_{f} D \sim_{e} B$ would by (4.6) imply that $e=f$. Since also $e \leqq f^{\prime}$ we would obtain $e=0$, a contradiction.
5. Line-like orthomodular lattices. In this section we discuss OMLs of a special type, which we call line-like and which are characterized by the fact
that its blocks admit a certain natural ordering described in the following definition.

Definition. A line-like ordering of the blocks of a block-finite OMIL L is a sequence $B_{0}, B_{1}, \ldots, B_{n}$ containing every block of L exactly once and satisfying:

1. If $0 \leqq i<j \leqq n$ then $\cup_{k=i}{ }^{j} B_{k}$ is a subalgebra of L;
2. If $0 \leqq i<j<k \leqq n$ then $B_{i} \cap B_{k} \subseteq B_{j}$.

A line-like OMIL is a block-finite OMIL the blocks of which admit a line-like ordering.
(5.1) Let $B_{0}, B_{1}, \ldots, B_{n}$ be a line-like ordering of the blocks of an OMIL L. Then:

1. If $0 \leqq i<j \leqq n$ then the blocks of $\cup_{k=i}{ }^{j} B_{k}$ are exactly the blocks B_{k} with $i \leqq k \leqq j$;
2. If B_{i} and B_{i+1} are linked at $e_{i}(0 \leqq i<n)$ then $e_{i} \$ e_{i+1}^{\prime}$ holds whenever $0 \leqq i \leqq n-2 ;$
3. L is the direct product of a Boolean algebra and an irreducible OMIL.

Proof. Every block B of $\bigcup_{k=i}{ }^{j} B_{k}$ satisfies

$$
B \subseteq\left(\cup_{k=i}^{j-1} B_{k}\right) \cup B_{j}
$$

The first claim follows from this and (1.4) by induction on $j-i$. If L was not the direct product of a Boolean algebra and an irreducible OML we may assume by (1.2) that it was the direct product of two OMLs L_{1} and L_{2} with at least two blocks each. By (4.2) there would exist an index i and blocks A, $B \in \mathfrak{A}\left(L_{1}\right), C, D \in \mathfrak{Y}\left(L_{2}\right)$ such that

$$
B_{i}=A \times C, B_{i+1}=B \times C \quad \text { and } \quad B_{i+2}=B \times D
$$

But then $B_{i} \cup B_{i+1} \cup B_{i+2}$ would not be a subalgebra, contradicting the first condition in the definition. By (4.8) we would arrive at the same contradiction if $e_{i} \leqq e_{i+1}^{\prime}$ would hold for some i. (5.1) is thus proved.

If $B_{0}, B_{1}, \ldots, B_{n}$ is a line-like ordering of the blocks of an OML we assume throughout this chapter that B_{i} and B_{i+1} are linked at e_{i}.
(5.2) Under the assumption of (5.1), $B_{i} \cap B_{i+1}=\left[0, e_{i}^{\prime}\right] \cup\left[e_{i}, 1\right]$ holds whenever $0 \leqq i<n$.

Proof. By the definition of a link we have

$$
B_{i} \cup B_{i+1}=\left(\left[0, e_{i}^{\prime}\right] \cup\left[e_{i}, 1\right]\right) \cap\left(B_{i} \cup B_{i+1}\right)
$$

and it is by duality enough to show that $\left[e_{i}, 1\right] \subseteq B_{i} \cup B_{i+1}$, i.e. that $e_{i} \leqq x$ implies $x \in B_{i} \cup B_{i+1}$. If $e_{i} \leqq x$ there exists a block B_{k} containing both e_{i} and x and we may by symmetry assume that $k \leqq i$. But $e_{i} \in B_{k} \cap B_{i+1}$ implies by the definition of a line-like ordering that $e_{i} \in B_{j}$ holds for $k \leqq j$
$\leqq i+1$ and hence that $e_{i} \leqq e_{j}^{\prime}$ or $e_{j} \leqq e_{i}$ holds for $k \leqq j \leqq i$. If $e_{i} \leqq e_{j}^{\prime}$ would hold for at least one such j there would be a largest j with this property and, since $e_{i} \not \leq e_{i}^{\prime}$, we would have $j<i$, hence $e_{i} \leqq e_{j}^{\prime}$ and $e_{j+1} \leqq e_{i}$, i.e. $e_{j} \leqq e_{j+1}{ }^{\prime}$, contradicting (5.1). It thus follows that $e_{j} \leqq e_{i}$ and hence $e_{j} \leqq x$ holds for $k \leqq j \leqq i$. This and $x \in B_{k}$ implies by induction that $x \in B_{j}$ holds for all j with $k \leqq j \leqq i$, in particular that $x \in B_{i} \subseteq B_{i} \cup B_{i+1}$.

From (5.2) and the second condition in the above definition we obtain:
(5.3) Under the assumption of (5.1)

$$
\left(B_{0} \cup \ldots B_{i}\right) \cap\left(B_{i+1} \cup \ldots \cup B_{n}\right)=\left[0, e_{i}^{\prime}\right] \cup\left[e_{i}, 1\right]
$$

holds whenever $0 \leqq i<n$; in particular L can be obtained by pasting the subalgebras $B_{0} \cup \ldots \cup B_{i}$ and $B_{i+1} \cup \ldots \cup B_{n}$ along a segment.

In the following two statements (5.4) and (5.5) we assume that $B_{0}, B_{1}, \ldots, B_{n}$ is a line-like ordering of the blocks of L and that $b_{i} \in B_{i}-$ $\bigcup_{j \neq i} B_{j}$. Such b_{i} exist since $B_{i} \subseteq \bigcup_{i \neq i} B_{j}$ would by (1.4) imply $B_{i} \subseteq$ $\bigcup_{j<i} B_{j}$, or $B_{i} \subseteq \bigcup_{j>i} B_{j}$, both contradicting the first part of (5.1).
(5.4) If $0 \leqq i<j \leqq n$ then

$$
e_{i} \vee e_{i+1} \vee \ldots \vee e_{j-1}=e_{i} \vee e_{j-1}=\gamma\left(b_{i}, b_{j}\right)=\gamma\left(b_{i}, b_{i+1}, \ldots, b_{j}\right)
$$

Proof. Since $B_{i}, B_{i+1}, \ldots, B_{j}$ is a line-like ordering of the blocks of $\bigcup_{k=i}{ }^{j} B_{k}$ we may assume, without loss of generality, that $i=0$ and $j=n$. By (5.1) L is the direct product of a Boolean algebra and an irreducible OMIL and it follows from this easily that we may restrict our attention to the case that L is irreducible. Since $\gamma\left(b_{0}, b_{n}\right) \leqq \gamma\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ it is then enough to show that $e_{0} \vee e_{n-1}=\gamma\left(b_{0}, b_{n}\right)=1$. From

$$
b_{0} \in B_{0}-\bigcup_{i=1}^{n} B_{i} \text { and } b_{n} \in B_{n}-\bigcup_{i=0^{n-1}} B_{i}
$$

it follows that

$$
b_{0} \vee b_{n}, b_{0} \vee b_{n}{ }^{\prime}, b_{0}{ }^{\prime} \vee b_{n}, b_{0}{ }^{\prime} \vee b_{n}{ }^{\prime} \in B_{0} \cap B_{n}=\{0,1\},
$$

i.e. $\gamma\left(b_{0}, b_{n}\right)=1$. From (5.1) it follows that $e_{0} \vee e_{n-1} \in B_{0} \cap B_{n}$, hence also $e_{0} \vee e_{n-1}=1$.

The following result is an immediate consequence of this.
(5.5) If $0 \leqq i<j \leqq n$ then

$$
\begin{aligned}
B_{i} \cap B_{j} & =\left[0, \gamma^{\prime}\left(b_{i}, b_{j}\right)\right] \cup\left[\gamma\left(b_{i}, b_{j}\right), 1\right] \\
& =\left[0, \gamma^{\prime}\left(b_{i}, b_{i+1}, \ldots, b_{j}\right)\right] \cup\left[\gamma\left(b_{i}, b_{i+1}, \ldots, b_{j}\right), 1\right] .
\end{aligned}
$$

Our next aim is to prove that if an OML L with $n+1$ blocks contains blocks with distance n then it is line-like.
(5.6) If an OML with $n+1$ blocks is the direct product of two OMLs with at least two blocks each then any two blocks A, B of L have a distance $d(A, B)<n$.

Proof. If the first of the factors has $k+1$ and the second $l+1(k, l \geqq 1)$ blocks then it follows from (4.3) and (4.4) that any two blocks in L have a distance $\leqq k+l$. But

$$
n+1=(k+1)(l+1)=k l+k+l+1
$$

hence $k+l<n$.
In the next three statements (5.7), (5.8), (5.9) we assume that L is an OML with $n+1 \geqq 1$ blocks, that B_{0} and B_{n} are blocks of L with distance n and that $\mathrm{B}_{0} \approx B_{1} \approx \ldots \approx B_{n}$.
(5.7) If $0 \leqq m \leqq n$ then $\bigcup_{i=0}^{m} B_{i}$ is a subalgebra of L with $m+1$ blocks and if $m \geqq 2$ the blocks B_{0} and B_{m} have distance m in this subalgebra.

Proof. By (1.2), (4.3) and (5.6) we may assume that L is irreducible. Assume now that for some $m(0 \leqq m<n), S_{m}=\bigcup_{i=0}^{m} B_{i}$ is not a subalgebra. Then there would exist elements $a, b \in S_{m}$ with

$$
a \vee b \in\left(\cup_{i=m+1}^{n} B_{i}\right)-S_{m} .
$$

Define $I=\left\{i \mid 0 \leqq i \leqq n, a \in B_{i}\right\}$ and $J=\left\{j \mid 0 \leqq j \leqq n, b \in B_{j}\right\}$. Since the union of any two consecutive blocks is a subalgebra of L, it follows that $|j-i| \geqq 2$ holds whenever $i \in I, j \in J$ and $i, j \leqq m$. It follows from this that at least one of the sets $I \cap\{0,1, \ldots, m\}, J \cap\{0,1, \ldots, m\}$ consists of numbers $\leqq m-2$ only and we may assume by symmetry that $I \cap\{0,1, \ldots, m\}$ has this property, i.e. that $i \in I$ and $i \leqq m$ implies $i \leqq m-2$. By definition of I we have

$$
a \in\left(\cap_{i \in I} B_{i}\right)-\bigcup_{j \in I} B_{j}
$$

which by (1.1) implies that $T=\bigcup_{i \in I} B_{i}$ is a subalgebra of L with $\mathscr{N}(T)=$ $\left\{B_{i} \mid i \in I\right\}$ and that the center $C(T)=\cap_{i \in I} B_{i}$ contains a and hence is nontrivial. Since a and $a \vee b$ are comparable there exists a block B_{k} containing both a and $a \vee b$ and since $a \vee b \notin S_{m}, k>m$ holds for every such k. By (4.4) any two blocks in T can be joined by a proper path in T. It would thus follow from our assumption that $\bigcup_{j=0}{ }^{m} B_{j}$ was not a subalgebra that there exist indices $i, k \in I$ with $i \leqq m-2, k \geqq m+1$ and $B i \sim B_{k}$. Since also $B_{i} \cap B_{k} \supseteq C(T) \supset C(L)$ it would follow that $B_{0} \approx B_{1} \approx \ldots \approx B_{i} \approx B_{k}$ $\approx \ldots \approx B_{n}$ was a strictly proper path in L contradicting $d\left(B_{0}, B_{n}\right)=n$. We have thus shown that the sets $S_{m}=\bigcup_{i=0}{ }^{m} S_{i}(0 \leqq m \leqq n)$ are subalgebras of L. Since every block of S_{m+1} is by (1.4) either contained in S_{m} or in B_{m+1} it follows easily by induction on m that the blocks of S_{m} are exactly B_{0}, B_{1}, \ldots, B_{m}. It remains to show that the distance of B_{0} and B_{m} in S_{m} is m provided that $m \geqq 2$. For every m the distance of B_{0} and B_{m} in L is m and every strictly proper path in S_{m} is also a strictly proper path in L. The distance of B_{0} and B_{m} in S_{m} is therefore either m or ∞ and it is thus enough to show that if it is ∞ then $m \leqq 1$. Assume that $d\left(B_{0}, B_{m}\right)=\infty$ in S_{m}. Then, in particular,
$B_{0} \sim B_{1} \sim \ldots \sim B_{n}$ is not a strictly proper path in S_{m} and hence $C\left(S_{m}\right) \neq$ 10, 1|. Furthermore, by (4.4), $B_{0} \cup B_{m}$ is a subalgebra of L and $B_{6} \cap B_{m}=$ $C\left(S_{m}\right) \neq\{0,1\}$. It follows that $B_{0} \sim B_{m} \sim B_{m+3} \sim \ldots \sim B_{n}$ is a strictly proper path in L which, together with the assumption $d\left(B_{0}, B_{n}\right)=n$ implies $m \leqq 1$.
(5.8) 1. If $0 \leqq i<j \leqq n$ then $\bigcup_{k=i} B_{k}$ is a subalgebra with $j-i+1$ blocks and if $j-i \geqq 2$ the blocks B_{i} and $B_{:}$have distance $j-i$ in this suoalgebra.
2. If $0 \leqq i<j<k \leqq n$ then $B_{i} \cap B_{k} \subseteq B_{j}$. In particular, $B_{0}, B_{1}, \ldots, B_{n}$ is a line-like ordering of ? (L).

Proof. The first claim follows easily by applying (5.7) twice. The second claim we prove by induction on n. If $n=1$ it is trivial. Assume $n \geqq 2$. If $0<i$ or $k<n$ the claim follows from the first part of (5.8) by inductive hypothesis. We thus only have to show that $\mathrm{B}_{0} \cap B_{n} \subseteq B_{;}$holds whenever $0<j<n$. If $B_{0} \cap B_{n} \nsubseteq B_{;}$would hold for all such j we would obtain by (1.4) that

$$
B_{0} \cap B_{n} \nsubseteq \cup_{i=1}^{n-1} B_{j}
$$

which by (1.1) would imply $B_{0} \approx B_{n}$ contradicting $d\left(B_{0}, B_{n}\right)=n \geqq$.. Thus there exists $k, 0<k<n$, such that $B_{0} \cap B_{n} \subseteq B_{k}$, hence $B_{0} \cap B_{n}=$ $B_{0} \cap B_{k} \cap B_{n}$. By inductive hypothesis we have $B_{0} \cap B_{k} \subseteq B_{j}$ if $0<j<k$ and $B_{k} \cap B_{n} \subseteq B_{j}$ if $k<j<n$, and in both cases $B_{0} \cap B_{n} \subseteq B_{j}$, completing the proof.

The definition of a line-like ordering and the second statement of (5.1) completely describe how Boolean algebras have to interact in order to be the blocks of a line-like OML. This is the content of the following statement.
(5.9) Let $B_{8}, B_{1}, \ldots, B_{n}$ be a sequence of Boolean algebras, \leqq_{i} the partial ordering of $B_{i}, e_{i} \in B_{i} \cap B_{i+1}(0 \leqq i<n)$ and assume that the following conditions are satistied:

1. $B_{i} \cap B_{i+1}$ is a subalgebra of both B_{i} and $B_{i+1}(0 \leqq i<n)$,
2. $B_{i} \cap B_{i+1}=\left[0, e_{i}^{\prime}\right], \cup\left[e_{i}, 1\right]_{i}=\left[0, e_{i}^{\prime}\right]_{i+1} \cap\left[e_{i}, 1\right](0 \leqq i<n)$
3. $B_{i} \cap B_{k} \subseteq B_{j}(0 \leqq i<j<k \leqq n)$,
4. $e_{i} \$ e_{i+1}(0 \leqq i<n)$.

Define $L=\bigcup_{i=\theta}{ }^{n} B_{i}$ and let \leqq be the union of the partial ordering \leqq_{i}. Then \leqq is a partial ordering of L and with this parial ordering and the obvious definition of orthocomplementation L is a line-like OMIL and $B_{0}, B_{1}, \ldots, B_{n}$ is a line-like ordering of its blocks.

Proof. This follows easily from (2.2) by induction on n.
6. Orthomodular lattices with three blocks. We assume in this section that L is an OML with three blocks. By (4.4) there exist $A, B \in \mathbb{Y}(L)$ with $A \sim B$. By (4.1) this implies that, if C is the remaining block, at least one of
the intersections $A \cap C, B \cap C$ equals the center of L. Thus it is not true that every two (distinct) blocks of I have distance 1 and it follows that either there exist blocks with distance 2 or there exist blocks which can not be joined by a strictly proper path. In the first case L is line-like by (5.8), and in the second case L is by (4.5) the weak horizontal sum of a Boolean algebra and an ONL with two blocks, bence, as is easily seen, aso line-like. We have thus proved the following statement.
(6.1) Every OML L weith three blocks is line-like.

Definition. Let L be an OML with three blocks. A block $B \in \mathbb{M}(L)$ is said to be a middle block of L if and only if $A \cap C \subseteq B$ holds, where A and C are the remaining blocks of L.
(6.2) Every OMI I with theree blocks has a middle block. If B is a middle block of L and A, C are the remaining blocks then $A \cup B$ and $B \cup C$ are subalgebras of L.

Proof. The existence of a middle block follows immediately from (6.1). If there exists a strictly proper path $A \approx B \approx C$ then B is obviously the only middle block and the second claim is obvious. If no two blocks of L have distance 2 then any two blocks have distance 1 or ∞. In both cases the union of the two blocks is a subalgebra, in the first case by definition and in the second case by (4.4).

Still another way to formulate (6.1) is the following, which follows from (5.2).
(6.3) Every OML L with three blacks can be obained by pastins a Boolean algedrat and an OML with two blocks along a section.

The following observation will be needed in the next two sections.
(6.4) For an OML with three blocks the following are equivalent.

1. L has two middle blocks;
2. The union of any two blocks is a subalgelira of L.

Proof. The second condition follows from the first by (6.2). To prove the converse assume that B is a middle block and A, C are the remaining blocks. If $A \cup C$ is a subalgebra, it follows from (4.1) that either $A \cap B \subseteq C$ or $B \cap C \subset A$, i.e. that one of A or C is another middle block.

7. Orthomodular lattices with four blocks.

(7.1) Let L be an irreducible OML with four blocks $B_{0}, B_{1}, B_{2}, B_{3}$ satisfying

$$
B_{0} \cap B_{1} \nsubseteq B_{2} \cup B_{3}, B_{1} \approx B_{2} \text { and } \quad B_{2} \cap B_{3} \nsubseteq B_{0} \cup B_{3} .
$$

Then $B_{0} \cup B_{3}$ is not a subalgebra.

Proof. Pick $u \in\left(B_{0} \cap B_{1}\right)-\left(B_{2} \cup B_{3}\right), v \in\left(B_{2} \cap B_{3}\right)-\left(B_{0} \cup B_{1}\right)$ and put $e=\gamma(u, v)$. Since $B_{1} \cup B_{2}$ is a subalgebra we have by (3.2) that $B_{1} \sim_{e} B_{2}$. If $B_{0} \cup B_{3}$ was also a subalgebra we would by the same argument have $B_{0} \sim_{e} B_{3}$, hence

$$
e \in B_{0} \cap B_{1} \cap B_{2} \cap B_{3}=C(L)=\{0,1\},
$$

hence $e=0$ or $e=1$. But $B_{1} \sim_{e} B_{2}$ implies $e \neq 0$ by an earlier remark and $e=1$ would imply $B_{1} \cap B_{2}=\{0,1\}$, contradicting $B_{1} \approx B_{2}$.
(7.2) If L is an irreducible OML with four blocks $B_{0}, B_{1}, B_{2}, B_{3}$ and $B_{0} \approx$ $B_{1} \approx B_{2}$ then $B_{0} \cup B_{1} \cup B_{2}$ is a subalgebra (which clearly has three blocks only).

Proof. Assume $B_{0} \cup B_{1} \cup B_{2}$ is not a subalgebra. Then there would exist

$$
a \in B_{0}-\left(B_{1} \cup B_{2}\right), b \in B_{2}-\left(B_{0} \cup B_{1}\right)
$$

such that $a \vee b \in B_{3}-\left(B_{0} \cup B_{1} \cup B_{2}\right)$. Since a and $a \vee b$ are comparable they both belong to some block and hence $a \in\left(B_{0} \cap B_{3}\right)-\left(B_{1} \cup B_{2}\right)$, which implies $B_{0} \cap B_{3} \nsubseteq B_{1} \cup B_{2}$. By symmetry we obtain $B_{2} \cap B_{3} \nsubseteq$ $B_{0} \cup B_{1}$. But $B_{0} \cap B_{1} \nsubseteq B_{2} \cup B_{3}$ would contradict (7.1) and we thus have either $B_{0} \cap B_{1} \subseteq B_{2}$ or $B_{0} \cap B_{1} \subseteq B_{3}$. The first of these conditions would imply $B_{0} \cap B_{1}=B_{0} \cap B_{1} \cap B_{2}$. Since $\mathrm{B}_{0} \cup B_{1} \cup B_{2}$ is not a subalgebra we have by (1.1) that $\mathrm{B}_{0} \cap B_{1} \cap B_{2} \subseteq B_{3}$ and we would obtain $B_{0} \cap B_{1}=\{0,1\}$, contradicting $B_{0} \approx B_{1}$. Thus $B_{0} \cap B_{1} \subseteq B_{2}$ is impossible and hence we have $B_{0} \cap B_{1} \subseteq B_{3}$. Since $B_{1} \cup B_{2}$ is a subalgebra we have by (4.1) either $B_{1} \cap B_{3} \subseteq B_{2}$ or $B_{2} \cap B_{3} \subseteq B_{1}$. The second of these conditions contradicts $B_{2} \cap B_{3} \nsubseteq B_{0} \cup B_{1}$. We would thus obtain

$$
B_{0} \cap B_{1}=B_{0} \cap B_{1} \cap B_{3}=B_{0} \cap B_{1} \cap B_{2} \cap B_{3}=\{0,1\},
$$

contradicting $B_{0} \approx B_{1}$. (7.2) is thus proved.
Definition. Let L be an OML with four blocks. A block B of L is said to be a middle block if and only if whenever A and C are two of the remaining blocks then $A \cup B \cup C$ is a subalgebra with three blocks and middle block B.

Definition. The valence of a block B of a block-finite OMLL L is the number of blocks A satisfying $A \approx B$.
(7.3) Let L be an OML with four blocks $B_{0}, B_{1}, B_{2}, B_{3}$ and assume that the block B_{1} has valence 3 . Then either B_{1} is a middle block of L or L is line-like.

Proof. Since no block in the direct product of two OMLs with two blocks each has valance 3 we may by (1.2) assume that L is irreducible. By (7.2) each of $B_{0} \cup B_{1} \cup B_{2}, B_{0} \cup B_{1} \cup B_{3}$ and $B_{2} \cup B_{1} \cup B_{3}$ is a subalgebra with three blocks. If B_{1} is a middle block of each of these, it is a middle block of L and there is nothing left to prove. If this is not the case we may assume without loss of generality that B_{1} is not a middle block of $B_{0} \cup B_{1} \cup B_{2}$. It then follows from (6.2) that $B_{0} \cup B_{2}$ is a subalgebra and that $B_{0} \cap B_{1} \subseteq B_{2}$ and
$B_{1} \cap B_{2} \subseteq B_{0}$. Since $B_{0} \cup B_{2}$ is a subalgebra we obtain from (4.1) that either $B_{0} \cap B_{3} \subseteq B_{2}$ or $B_{2} \cap B_{3} \subseteq B_{0}$ and we may by symmetry assume that $B_{0} \cap B_{3} \subseteq B_{2}$. Since $B_{1} \cup B_{3}$ is a subalgel)ra we obtain by the same argument that either $B_{0} \cap B_{3} \subseteq B_{1}$ or $B_{0} \cap B_{1} \subseteq B_{3}$. The second of these conditions would imply $B_{0} \cap B_{1}=\{0,1\}$, contradicting $B_{0} \approx B_{1}$. We thus have $B_{0} \cap B_{3} \subseteq B_{1}$ and hence $B_{0} \cap B_{3}=\{0,1\}$. We claim that $B_{0} \approx B_{2} \approx B_{1}$ $\approx B_{3}$ is a line-like ordering in this case. The only thing left to prove to establish this is $B_{2} \cap B_{3} \subseteq B_{1}$. But $B_{2} \cap B_{3} \nsubseteq B_{1}$ would as before imply $B_{1} \cap B_{2}$ $\subseteq B_{3}$, hence $B_{1} \cap B_{2}=\{0,1\}$, contradicting $B_{1} \approx B_{2}$.
(7.4) Let L be an OML with four blocks $B_{0}, B_{1}, B_{2}, B_{3}$ satisfying $B_{0} \approx B_{1} \approx B_{2} \approx B_{3} \approx B_{0}$ and having no other strong links. Then L is isomorphic with the direct product of two OMLs with two blocks each.

Proof. Assume that L was not a direct product of the described kind. We may then assume that L was irreducible. By (7.2), $B_{0} \cup B_{1} \cup B_{2}$ would be a subalgebra and since $B_{0} \not \approx B_{2}$ we would have $B_{0} \cap B_{2} \subseteq B_{1}$ and, by symmetry, $B_{0} \cap B_{2} \subseteq B_{3}$ and hence $B_{0} \cap B_{2}=\{0,1\}$. Again by symmetry we would obtain $B_{1} \cap B_{3}=\{0,1\}$. We would thus obtain $B_{i} \cap B_{i+1} \nsubseteq B_{i+2}$ $\cup B_{i+3}(i=0,1,2,3$, indices modulo 4), contradicting (7.1).
(7.5) Every O\IL with four blocks sutisfies one of the following conditions:

1. It is the direct product of a Boolean algelira and two irreducible OMLs with two blocks each;
2. It is line-like;
3. It has a middle block.

Proof. From (4.5) and the structure theorems for OMILs with at most three blocks it follows easily that L is line-like if there exist blocks which can not be joined by a strictly proper path. Hence we may assume that L is connected. If it has a block of valence 3 the claim follows from (7.3). If every block has valence at most two then it either satisfies the assumption (7.4) and hence the first condition of (7.5) or, with suitable enumeration of the blocks, we have $B_{0} \approx B_{1} \approx B_{2} \approx B_{3}$ and these are the only strong links. But then $d\left(B_{0}, B_{3}\right)=3$ and, by (5.8), L is line-like.
(7.6) Every OML L with four blocks is cither the direct product of two OMLs with two blocks each or can be obtained by pasting a Boolean algebra and an OML with three blocks along a segment.

Proof. By (5.2) and (7.5) it is enough to show that every OMLL L with four blocks which has a middle block can be obtained by pasting in the described way. Let $B_{0}, B_{1}, B_{2}, B_{3}$ be the blocks of L, assume that B_{1} is a middle block and $B_{0} \sim{ }_{e} B_{1}$. We then have by (5.1) and (6.1):

$$
\begin{gathered}
B_{0} \cap\left(B_{1} \cup B_{2} \cup B_{3}\right)=B_{0} \cap B_{1}=\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{0} \cup B_{1} \cup B_{2}\right) \\
=\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{0} \cup B_{1} \cup B_{3}\right)=\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \\
\cap\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right)=\left[0, e^{\prime}\right] \cup[e, 1],
\end{gathered}
$$

i.e. L is obtained by pasting B_{0} and $B_{1} \cup B_{2} \cup D_{3}$ along the segment $\left[0, e^{\prime}\right] \cup[c, 1]$.
8. Orthomodular lattices with five blocks. Whereas all OMLs with up to four biocks cond be obtained by either taking direct products or pasting OMLs with fewer blocks. a new phenomenon appears if the OML has five bocks, namely the existence of "loops". We deal with this case first.
 $\approx B_{2} \approx B_{3} \approx B_{4} \approx B_{4}$ holds und such thet there ure wo oiher strong links. Then

$$
B_{i} \cap B_{i+1} \nsubseteq B_{i+2}, B_{i+1} \cap B_{i+2} \nsubseteq B_{i} \text { and } B_{i} \cap B_{i+2} \subseteq B_{i+1}
$$

holds for alli i and for no is $B_{i} \cup B_{i+2}$ an subralqebra. (Indices moduto a).
Proof. By (1.2) we may assume that L is irreducible. We show first that for no i is $B_{i} \cup B_{i+2}$ a subalgebra. If it were a subalgebra for some i then by (6.4) $B_{i} \cup B_{i+1} \cup B_{i+2}$ would be a subalgebra with at least two middle bocks and hence one of

$$
B_{i} \cap B_{i+1} \subseteq B_{i+\frac{2}{}, B_{i+1} \cap B_{i+z} \subseteq B_{i},{ }_{i} .}
$$

would hold. Since $B_{i} \nsim B_{i+2}$ we wonld also have $B_{i} \cap B_{i+2}=10,11$ and we would obtain either $B_{i} \cap B_{i+1}=\{0,1\}$ or $B_{i+1} \cap B_{i+2}=\{0,1\}$, both contradicting the assumptions. We have thus proved that none of the unions $B_{i} \cup B_{i+2}$ is a subalgebra. To prove the rest of the clam it is by symmetry enough to assume $i=0$. If $B_{0} \cup B_{1} \cup B_{y}$ is a subalgebra, then, as we have seen, B_{1} is the only middle biock of it and the clam follows trivially. We may thus assume for the rest of the proof that $B_{0} \cup B_{1} \cup B_{4}$ is not a subalgebra. From (1.1) then follows that

$$
B_{4} \cap B_{1} \cap B_{2} \subseteq B_{3} \cup B_{i}
$$

which by (1.4) gives either

$$
B_{0} \cap B_{1} \cap B_{2} \subseteq B_{3} \text { or } B_{0} \cap B_{1} \cap B_{2} \subseteq B_{4}
$$

By symmetry we may assume that $B_{0} \cap B_{1} \cap B_{2} \subseteq B_{2}$. Assume now that

$$
B_{0} \cap B_{1} \cap B_{2} \cap B_{3} \nsubseteq B_{4} .
$$

Then, by (1.1), $B_{4} \cup B_{1} \cup B_{2} \cup B_{3}$ would be a subalgebra with four blochs. Since $B_{0} \approx B_{s}$ it can not be the product of two OMLs with two blocks each. Thus, by (7.5), it would be either line-like or have a middle block. Since both $B_{0} \cup B_{2}$ and $B_{1} \cup B_{3}$ are not subalgebras, it can not have a middle block. Since none of $B_{0} \cup B_{2}, B_{0} \cup B_{3}, B_{1} \cup B_{3}, B_{0} \cup B_{1} \cup B_{2}$ is a subalgebra it cannot be line-like either. It thus follows that

$$
B_{0} \cap B_{1} \cap B_{2} \cap B_{3} \subseteq B_{4}
$$

and hence

$$
B_{0} \cap B_{1} \cap B_{2}=\{0,1\}
$$

With this $B_{0} \cap B_{1} \subseteq B_{2}$ would imply $B_{0} \cap B_{1}=\{0,1\}$ and $B_{1} \cap B_{2} \subseteq B_{0}$ would imply $B_{1} \cap B_{2}=\{0,1\}$, both contradictions. We thus have $B_{0} \cap B_{1}$ $\nsubseteq B_{2}$ and $B_{1} \cap B_{2} \nsubseteq B_{0}$. Since $B_{1} \cup B_{2}$ is a subalgebra, the first of these inequalities implies $B_{0} \cap B_{2} \subseteq B_{1}$ by (4.1), proving (S.1).
(8.2) Under the assumption of (8.1) the following statements hold.

1. The union of three or four-blocks of L is never a subalgebra;
2. The only unions of two blocks which are subalgebras are the unions $B_{i} \cup B_{i+1}$ (indices mod 2);
3. $B_{i} \cap B_{i+1} \nsubseteq B_{i+2} \cup B_{i+3} \cup B_{i+i}$ holds for all $i($ indices $\bmod 5)$;
4. $B_{i} \cap B_{i+2}=C(L)$ hold for all $i($ indices $\bmod 5)$.

Proof. By (8.1) we have $B_{i} \cap B_{i+1} \nsubseteq B_{i+2}, B_{i+\frac{1}{}}$. But $B_{i} \cap B_{i+1} \subseteq B_{i+3}$ would by (8.1) imply

$$
B_{i} \cap B_{i+1}=B_{i} \cap B_{i+1} \cap B_{i+3} \subseteq B_{i+4}
$$

a contradiction. We thus have that $B_{i} \cap B_{i+1}$ is contained in neither of $B_{i+2}, B_{i+3}, B_{i+4}$, hence by (1.4),

$$
B_{i} \cap B_{i+1} \nsubseteq B_{i+2} \cup B_{i+3} \cup B_{i+i}
$$

proving the third claim. If the umion of two blocks with non-consecutive indices (mod 5) were a subalgebra it would be of the form $B_{i} \cup B_{i+2}$. But this would make $B_{i} \cup B_{i+1} \cup B_{i+2}$ a subalgebra with three blocks and two middle blocks, contradicting (8.1) and proving the second claim. We show next that none of the unions $B_{i} \cup B_{i+1} \cup B_{i+2}$ is a subalgebra. By (1.2) we may assume that L is irreducible. By symmetry it is enough to show that $B_{0} \cup B_{1} \cup B_{2}$ is not a subalgebra. If it were it would clearly have three blocks and by (8.1) B_{1} would be the only middle block. By condition 3 we may pick

$$
\begin{aligned}
a \in\left(B_{0} \cap B_{1}\right)-\left(B_{1} \cup B_{2} \cup B_{3}\right) \text { and } b \in\left(B_{2} \cap\right. & \left.B_{3}\right) \\
& -\left(B_{0} \cup B_{1} \cup B_{1}\right) .
\end{aligned}
$$

Since $B_{3} \cup B_{4}$ is a subalgebra we have $a \vee b \in B_{3} \cap B_{4}$. Since by assumption $B_{0} \cup B_{1} \cup B_{2}$ is a subalgebra we have $a \vee b \in B_{0} \cap B_{1} \cap B_{2}$, hence $a \vee b \in$ $C(L)=\{0,1\}$, hence $a \vee b=1$. By symmetry we also obtain

$$
a \vee b^{\prime}=a^{\prime} \vee b=a^{\prime} \vee b^{\prime}=1
$$

hence, if we put $e=\gamma(a, b)$ we have $e=1$. But by (3.2) we have $B_{3} \sim_{e} B_{i}$. We would thus obtain $B_{3} \cap B_{4}=\{0,1\}$ contradicting $B_{3} \approx B_{4}$. If a union $B_{i} \cup B_{i+1} \cup B_{i+3}$ were a subalgebra it would clearly have three blocks, and it would follow that at least one of $B_{i} \cup B_{i+3}$ or $B_{i+1} \cup B_{i+3}$ was a subalgebra, contrary to what we have already shown. Thus the union of no three blocks of L is a subalgebra. Every union of four blocks is of the form $B_{i} \cup B_{i+1}$
$\cup B_{i+2} \cup B_{i+3}$. If it were a subalgebra it would clearly have four blocks. If it were line-like or had a middle block the union of three blocks would be a subalgebra, which is not the case as we have already seen. If it were a subalgebra, it would by (7.5) be the direct product of two OMI with two blocks, which again is impossible because of a missing strong link. We have thus proved the first claim. Since $B_{i} \cup B_{i+1} \cup B_{i+2}$ is not a subalgebra we olstain from (1.1) and (8.1) that

$$
B_{i} \cap B_{i+2}=B_{i} \cap B_{i+1} \cap B_{i+2} \subseteq B_{i+3} \cup B_{i+4}
$$

and we may by (1.4) and symmetry assume that

$$
B_{i} \cap B_{i+1} \cap B_{i+2} \subseteq B_{i+3}
$$

Since $B_{i} \cup B_{i+1} \cup B_{i+2} \cup \mathrm{~B}_{i+3}$ is not a subalgebra we have

$$
B_{i} \cap B_{i+1} \cap B_{i+2} \cap B_{i+3} \subseteq B_{i+4}
$$

hence

$$
B_{i} \cap B_{i+2}=\bigcap_{j=0}{ }^{4} B_{j}=C(L)
$$

proving the last claim.
(8.3) Let L be un OML with five blocks $B_{i}(0 \leqq i \leqq 4)$ satisfying

$$
B_{0} \approx B_{1} \approx B_{2} \approx B_{3} \approx B_{0}, B_{0} \cap B_{1} \nsubseteq B_{2} \cup B_{3} \text { and } B_{1} \cap B_{2} \nsubseteq B_{3}
$$

Then $B_{0} \cap B_{1} \cap B_{2} \cap B_{3} \nsubseteq B_{+}$holds, and in particular $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra with four blocks.

Proof. By (1.2) we may assume that L is irreducible. If the claim were not true we would then have $B_{0} \cap B_{1} \cap B_{2} \cap B_{3}=\{0,1\}$. We show that this leads to a contradiction. The assumptions

$$
B_{0} \cap B_{1} \nsubseteq B_{3}, B_{0} \sim B_{3}, B_{1} \cap B_{2} \nsubseteq B_{3} \text { and } B_{2} \sim B_{3}
$$

imply by (4.1) that $B_{1} \cap B_{3} \subseteq B_{0}$ and $B_{1} \cap B_{3} \subseteq B_{2}$, hence $B_{1} \cap B_{3}=$ $\{0,1\}$. Since $B_{0} \cap B_{1} \nsubseteq B_{2}, B_{1} \sim B_{2}$ and $B_{2} \sim B_{3}$ we obtain by the same argument that $B_{0} \cap B_{2} \subseteq B_{1}$ and one of $B_{0} \cap B_{2} \subseteq B_{3}$ or $B_{0} \cap B_{3} \subseteq B_{2}$ holds. The second of these inclusions would imply

$$
B_{0} \cap B_{3}=B_{0} \cap B_{2} \cap B_{3} \subseteq B_{1}
$$

hence $B_{0} \cap B_{3}=\{0,1\}$, contradicting $B_{0} \approx B_{3}$. We thus have $B_{0} \cap B_{2} \subseteq B_{3}$ and we obtain:
(*) $\quad B_{0} \cap B_{2}=B_{1} \cap B_{3}=\{0,1\}$.
Choose a, b, d such that $B_{0} \sim_{a} B_{1} \sim_{b} B_{2}, B_{0} \sim_{d} B_{3}$. Since $a \vee b \geqq a, b$ and $a \vee b \in B_{1}$ we obtain $a \vee b \in B_{0} \cap B_{2}$, hence, by $\left(^{*}\right), a \vee b=1$ and $a^{\prime} \leqq b$. By the same argument we obtain $a^{\prime} \leqq d$. Since $b \neq 0,1$ and $b \in B_{1}$
$\cap B_{2}$ we obtain from $\left({ }^{*}\right)$ that

$$
b \in\left(B_{1} \cap B_{2}\right)-\left(B_{0} \cup B_{3}\right)
$$

By the same argument we obtain

$$
d \in\left(B_{0} \cap B_{3}\right)-\left(B_{1} \cup B_{2}\right) .
$$

Since $B_{0} \sim B_{1}$ and $B_{2} \sim B_{3}$ this implies

$$
a^{\prime} \leqq b \wedge d \in\left(B_{0} \cap B_{1}\right) \cap\left(B_{2} \cap B_{3}\right)=\{0,1\}
$$

hence $a^{\prime}=0$, contradicting $B_{0} \approx B_{1}$.
(8.4) If at least one block of an OMIL L with five blocks has valence at least 3 then there exist four blocks in L the union of which is a subalgebra of L with four blocks.

Proof. We may assume that L is irreducible and that the blocks are enumerated in such a way that $B_{0} \approx B_{1} \approx B_{2}$ and $B_{1} \approx B_{3}$ hold and that B_{4} is the remaining block. Assume first that $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is not a subalgebra. Then by symmetry, we may assume that there exist elements $a \in B_{0}-$ $\left(B_{1} \cup B_{2}\right)$ and $b \in B_{2}-\left(B_{0} \cup B_{1}\right)$ such that

$$
a \vee b \in B_{4}-\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right)
$$

It follows from this that a and b are both in B_{4}. Since not both of them are in B_{3} it can either happen that none of them or one of them, say b, is in B_{3}. It follows that either

$$
B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \cup B_{3} \text { and } B_{2} \cap B_{4} \nsubseteq B_{0} \cup B_{1} \cup B_{3}
$$

or

$$
B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \cup B_{3} \text { and } B_{2} \cap B_{3} \cap B_{4} \nsubseteq B_{0} \cup B_{1}
$$

holds. In the first case the assumptions of (8.3) are satisfied (with suitable permutation of the indices) and the claim is proved. In the second case $B_{2} \cup B_{3} \cup B_{4}$ is a subalgebra with three blocks and hence one of $B_{2} \sim B_{4}$ or $B_{3} \sim B_{4}$ holds. Since we have $B_{2} \cap B_{4} \nsubseteq B_{1}$ and $B_{3} \cap B_{4} \nsubseteq B_{1}$ the assumptions of (8.3) are satisfied in both cases and there is nothing left to prove. We may thus assume that $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra. If $B_{0} \cup B_{1} \cup B_{2}$ is a subalgebra then $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ has by (1.4) four blocks and the proof is again complete. If not there exist

$$
a \in B_{0}-\left(B_{1} \cup B_{2}\right) \text { and } b \in B_{2}-\left(B_{0} \cup B_{1}\right)
$$

with $a \vee b \in\left(B_{3} \cup B_{4}\right)-\left(B_{0} \cup B_{1} \cup B_{2}\right)$ and we obtain by the usual argument that

$$
B_{0} \cap\left(B_{3} \cup B_{4}\right) \nsubseteq B_{1} \cup B_{2} \text { and } B_{2} \cap\left(B_{3} \cup B_{4}\right) \nsubseteq B_{0} \cup B_{1}
$$

hold. This implies that one of the conditions

$$
\begin{aligned}
B_{0} \cap B_{3} \nsubseteq B_{1} \cup B_{2} \cup B_{4}, B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \cup B_{3}, \\
B_{0} \cap B_{3} \cap B_{4} \nsubseteq B_{1} \cup B_{2}
\end{aligned}
$$

and one of the conditions

$$
\begin{aligned}
B_{2} \cap B_{3} \nsubseteq B_{0} \cup B_{1} \cup B_{4}, B_{2} \cap B_{4} \nsubseteq B_{0} \cup B_{1} \cup B_{3} \\
B_{2} \cap B_{3} \cap B_{4} \nsubseteq B_{0} \cup B_{1}
\end{aligned}
$$

is satisfied. If $B_{0} \cap B_{3} \nsubseteq B_{1} \cup B_{2} \cup B_{4}$ then $B_{0} \cup B_{3}$ is a subalgebra and $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ has four blocks. The same conclusion is obtained if $B_{2} \cap B_{3} \nsubseteq B_{0} \cup B_{1} \cup B_{4}$. If $B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \cup B_{3}$ and $B_{2} \cap B_{4} \nsubseteq$ $B_{0} \cup B_{1} \cup B_{3}$ the desired conclusion follows again from (8.3). Using symmetry it is thus enough to consider the cases

$$
B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \cup B_{3} \text { and } B_{2} \cap B_{3} \cap B_{4} \nsubseteq B_{0} \cup B_{1}
$$

or

$$
B_{0} \cap B_{3} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \text { and } B_{2} \cap B_{3} \cap B_{4} \nsubseteq B_{0} \cup B_{1}
$$

In the first of these cases we have

$$
B_{2} \cap B_{4} \nsubseteq B_{1}, B_{3} \cap B_{4} \nsubseteq B_{1}
$$

and one of $B_{2} \sim B_{4}$ or $B_{3} \sim B_{4}$, so that we may apply (8.3) again. If in the second case either $B_{0} \sim B_{3}$ or $B_{2} \sim B_{3}$ the subalgebra $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ has four blocks. In the remaining case we have

$$
B_{0} \approx B_{4}, B_{2} \approx B_{4}, B_{0} \cap B_{4} \nsubseteq B_{1} \cup B_{2} \text { and } B_{2} \cap B_{4} \nsubseteq B_{0} \cup B_{1}
$$

and (8.3) applies again, completing the proof.
(8.5) Let L be an OML with five blocks $B_{0}, B_{1}, B_{2}, B_{3}, B_{4}$ and assume that $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra with four blocks. Then L is obtained by pasting $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ and B_{4} along a segment.

Proof. We may assume without loss of generality that L is irreducible. Since

$$
\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right) \cap B_{4} \subseteq B_{0} \cup B_{1} \cup B_{2} \cup B_{4}
$$

it follows from (1.4) and (7.5) that there exists an index $i, 0 \leqq i \leqq 3$ satisfying $\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right) \cap B_{4} \subseteq B_{i}$. It is easy to see that then $B_{i} \cup B_{4}$ is a subalgebra of L and, if $B_{i} \sim B_{j}$ holds for some $j \neq 4$, then $B_{j} \cup B_{i} \cup B_{4}$ is a subalgebra of L with three blocks and middle block B_{i}. Furthermore, there exists $e \in B_{i} \cap B_{4}$ such that

$$
\begin{aligned}
\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right) \cap B_{4}=B_{i} \cap B_{4} & \\
& =\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{i} \cup B_{4}\right) .
\end{aligned}
$$

We now have to distinguish various cases. If $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is line-like we may assume that $B_{0} \sim B_{1} \sim B_{2} \sim B_{3}$ is a line-like ordering of the blocks
and it is by symmetry enough to consider the cases $i=3$ and $i=2$. If $i=3$ it is easy to see that $B_{0} \sim B_{1} \sim B_{2} \sim B_{3} \sim B_{4}$ is a line-like ordering of the blocks of L and the claim follows from (5.2). If $i=2$ it is easy to see that $B_{0} \cup B_{1} \cup B_{2} \cup B_{4}$ is a subalgebra of L and that $B_{0} \sim B_{1} \sim B_{2} \sim B_{4}$ is a line-like ordering of its blocks. It follows from (5.2) that

$$
\begin{aligned}
B_{2} \cap B_{4}= & \left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{0} \cup B_{1} \cup B_{2} \cup B_{4}\right) \\
& =\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{4} \cup B_{2} \cup B_{3}\right)=\left[0, e^{\prime}\right] \cup[e, 1],
\end{aligned}
$$

which again proves the claim. If $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ has a middle block we may assume that B_{1} is a middle block and it is by symmetry enough to consider the cases $i=2$ and $i=1$. If $i=2, B_{3} \cup B_{1} \cup B_{2} \cup B_{4}$ and $B_{0} \cup B_{1}$ $\cup B_{2} \cup B_{4}$ are line-like subalgebras and the given orderings are line-like orderings of their blocks. The claim then follows from (5.2) as before. If $i=1, B_{0} \cup B_{1} \cup B_{2}, B_{0} \cup B_{1} \cup B_{3}$ and $B_{0} \cup B_{1} \cup B_{4}$ are subalgebras with three blocks and middle block B_{1} and the claim follows as before using (6.1). It remains the case that $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ is isomorphic with the direct product of two OMILs with two blocks each and we may by symmetry assume that

$$
B_{0} \sim B_{1} \sim B_{2} \sim B_{3} \text { and }\left(B_{1} \cup B_{2} \cup B_{3}\right) \cap B_{4} \subseteq B_{0}
$$

i.e. $i=0$. In this case $B_{4} \cup B_{0} \cup B_{1}$ and $B_{4} \cup B_{0} \cup B_{2}$ are subalgebras with middle block B_{0} and we obtain as before

$$
B_{0} \cap B_{4}=\left(\left[0, e^{\prime}\right] \cup[e, 1]\right) \cap\left(B_{0} \cup B_{1} \cup B_{3} \cup B_{4}\right)
$$

But $e \leqq x \in B_{2}-\left(B_{0} \cup B_{1} \cup B_{3} \cup B_{4}\right)$ would imply

$$
e \in B_{0} \cap B_{2}=B_{0} \cap B_{1} \cap B_{2} \cap B_{3} \cap B_{4}=\{0,1\}
$$

i.e. $e=1$, in which case the claim is trivially true. If $e \neq 1$ we thus obtain

$$
B_{0} \cap B_{4}=\left[0, e^{\prime}\right] \cup[e, 1]
$$

and the claim is again proved.
We are now in a position to describe all OMLs with five blocks completely.
(8.6) Every OMIL L with five blocks either satisfies the assumption of (8.1) or can be obtained by pasting an OMIL with four blocks and a Boolean algebra along a segment.

Proof. If at least one block of L has valence at least three the claim follows from (8.4) and (8.5). If there exist blocks which can not be joined by a strictly proper path the claim follows easily from (4.5), (6.1) and (7.5). We may thus assume that any two blocks can be joined by a strictly proper path and that every block has valence at most two. It is then easy to see that with suitable enumeration of the blocks the only strong links are either

$$
B_{0} \approx B_{1} \approx B_{2} \approx B_{3} \approx B_{4} \text { or } B_{0} \approx B_{1} \approx B_{2} \approx B_{3} \approx B_{4} \approx B_{0}
$$

In the second case the assumptions of (8.1) are satisfied. In the first case we have $d\left(B_{0}, B_{4}\right)=4$ and the claim follows from (5.8) and (5.2). The theorem is thus proved.

Since it is not difficult to prove that any five Boolean algebras satisfying the conditions of (8.1) and (8.2) can be amalgamated to give an OML with five blocks, the last result describes all OMLs with five blocks completely.
9. Two related results. The two results of this chapter are not directly related to the methods developed in this paper; they are both consequences of (1.5). But since both of them concern block-finite OMLs we present them here.

Let $\operatorname{MOn}(n \geqq 2)$ be the modular OL consisting of $2 n$ pairwise incomparable elements and bounds 0 , 1 . It is well known that the only finite irreducible modular OLs are the lattices MOn. (See [2], proof of (4.4). The result with a different proof was known much earlier among the lattice theorists at the University of Massachusetts, where I learned of it in 1970). We show here that the result remains true for block-finite modular OLs.
(9.1) The only black-finite, irreducible, modular OLs are the luttices MOn and 2. The variety of all modular OLs is not generated by the block-finite members. The equation $\gamma(x, \gamma(y, z))=0$ holds for all block-finite modular OLs but does not hold in all modular OLs.

Proof. Let L be a block-finite, irreducible modular OL. To prove the first result it is obviously enough to show that for all $a, b \in L, a<b$ implies $a=0$ or $b=1$. Assume that $a<b$. Let $B_{0}, B_{1}, \ldots, B_{n}$ be the blocks of L and let M be a finite subset of L which contains a, b and an element of each of the differences $B_{i}-B_{j}(i \neq j, 0 \leqq i, j \leqq n)$. Let S be the subalgebra of L generated by M. By (1.5), S is finite. Since S contains an element of each of the differences $B_{i}-B_{j}$ the blocks of S are exactly the sets $S \cap B_{i}(0 \leqq i \leqq n)$. Since L is irreducible S is also irreducible. By what is known it follows that S is $M O(n+1)$, i.e. that $a=0$ or $b=1$, proving the first part. The rest is a consequence of (4.4) of [2].

The second application of (1.5) concerns varieties of OMILs. In $[\mathbf{4}]$ it was shown that every finite OMIL L which does not belong to the variety [MO2] generated by MO2 contains one of the lattices of figures 2 to 5 of [4] as a homomorphic image of a subalgebra. This can be generalized as follows:
(9.2) Every block-finite OML L which is not in [MO2] contains one of the OMLs of figures 2 to 5 of [4] as a homomorphic image of a subalgebra.

This follows from the fact that if a block-finite OMIL L does not belong to [MO2] then a finitely generated subalgebra S of L does not belong to [MO2]. Since by (1.5) every such S is finite we may apply the quoted result of [4] to obtain (9.2).

References

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ. 25 (Amer. Math. Soc., Providence, 1967).
2. G. Bruns, Free ortholattices, Can. J. Math. 28 (1976), 977-985.
3. A finiteness criterion for orthomodular lattices, Can. J. Math. 30 (1978).
4. G. Bruns and G. Kalmbach, Varieties of orthomodular lattices II, Can. J. Math. 24 (1972), 328-337.
5. D. J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65-72.
6. R. J. Greechie, On the structure of orthomodular lattices satisfying the chain condition, J. Combinatorial Theory \& (1968), 210-218.
7. - An orthomodular poset with a full set of states not embeddable in Hilbert space, Caribbean J. of Science and Math. 1 (1969).
8. On generating pathological orthomodular structures, Kansas State Univ. Technical report 1.3 (1970).
9. Orthomodular lattices admitting no states, J. Combinatorial Theory 10 (1971), 119-132.
10. S. S. Holland, A Radon-Nikodym theorem for dimension lattices, Trans. Amer. Math. Soc. 108 (1963), 66-87.
11. G. Kalmbach, Orthomodular lattices do not satisfy any special lattice equation, Archiv d. Math. 28 (1977), 7-8.
12. M. D. MacLaren, Nearly modular orthocomplemented lattices, Boeing Sci. Res. Lab. D 1-82-0363 (1964).

McMaster University, Hamilton, Ontario

