ON ONE-PARAMETER SUBGROUPS IN FINITE DIMENSIONAL LOCALLY COMPACT GROUP WITH NO SMALL SUBGROUPS

MASATAKE KURANISHI

Let G be a locally compact topological group and let U be a neighborhood of the identity in G. A curve $g(\lambda)$ ($|\lambda| \le 1$) in G, which satisfies the conditions,

$$g(s)g(t) = g(s+t)$$
 (|s|, |t|, |s+t| \le 1),

is called a one-parameter subgroup of G. If there exists a neighborhood U_1 of the identity in G such that for every element x of U_1 there exists a unique one-parameter subgroup $g(\lambda)$ which is contained in U and g(1) = x, we shall call, for the sake of simplicity, that U has the property $(S)^*$. It is well known that the neighborhoods of the identity in a Lie group have the property $(S)^*$. More generally it is proved that if G is finite dimensional, locally connected, and is without small subgroups, G has the same property. In this note, these theorems will be generalized to the case when G is finite dimensional and without small subgroups.

The writer's proof is based on the theorems recently developed by D. Montgomery and A. Gleason.³⁾ Their theorems, which will be used in this note, are summarized in $\S 1$. In $\S 2$ it will be proved that the group G, which is finite dimensional and without small subgroups, is locally connected and our theorem is reduced to the known case.

§ 1. Theorem 1 (Montgomery). Let G be a locally compact locally connected n-dimensional group $(n < \infty)$. Then there exists a neighborhood V of the identity in G possessing the following properties:

Let A and B, $(B \subset A)$, be compact subsets of V. Then the sufficient con-

Received November 5, 1951.

 $^{^{1)}}$ G is called to be without small subgroups, if there exists a compact neighborhood of the identity in G which does not contain non-trivial subgroups of G.

 $^{^{2)}}$ Cf. Chevalley, C. [1]. C. Chevalley proved the case when G is locally euclidean and without small subgroups. K. Iwasawa communicated to the present author that D. Montgomery pointed out that the Chevalley's method may be applicable even when G is locally connected and without small subgroups. It is also informed that H. Yamabe obtained the same result.

³⁾ D. Montgomery [7], [8], [9], [10], A. Gleason [2].

⁴⁾ This Theorem and its Corollaries are valid when G is a locally connected finite dimensional homogeneous space, or more generally, G is a locally homogeneous space. See D. Montgomery [8].

ditions for A - B to be an open subset of G are

- 1) B carries an (n-1)-cycle z^{5} which is not homologous to zero in B, and
- 2) A is minimal with respect to the properties
 - a) $B \subset A$
 - b) z is homologous to zero in A.

COROLLARY 1 to THEOREM 1. (Invariance theorem of domain). Let G_1 and G_2 be locally compact locally connected groups. Suppose that dim $G_1 = \dim G_2$ = $n < \infty$. Let M be an open subset of G_1 and f be a topological mapping of M into G_2 . Then the image f(M) of M under the mapping f is an open subset of G_2 .

Proof. Let V_i be the neighborhood of the identity in G_i pointed out in Theorom 1 (i=1, 2). Let p_2 be a point of f(M) and let p_1 be the ponit M such that $f(p_1) = p_2$. We can take a neighborhood V_1' of the identity in G_1 such that $\overline{V}_1' \subseteq V_1$, $\overline{V}_1' p_1 \subseteq M$, $f(\overline{V}_1' p_1) \subseteq V_2 p_2$. Since the dimension of \overline{V}_1' is n, there exist compact subsets A_1 and B_1 of \overline{V}_1' satisfying the conditions 1) and 2) of the Theorem 1. Moreover, we can assume that the identity in G_1 is contained in $A_1 - B_1$. Then $f(A_1 p_1)$ and $f(B_1 p_1)$ are subsets of $V_2 p_2$ and satisfy the conditions 1) and 2) of the Theorem 1. Hence by Theorem 1 $f(A_1 p_1) - f(B_1 p_1)$ is an open subset of G_2 . Since $p_2 \in f(A_1 p_1) - f(B_1 p_1) \subseteq f(M)$, f(M) is an open subset of G_2 .

COROLLARY 2 to THEOREM 1. Under the same notations and assumptions as in the Corollary 1, let N be an open subset of M such that $\overline{N} \subseteq M$, and let x be an arbitrary point of f(N). Then

$$C_x(G_2-f(bdry N))^{7} \subseteq f(N).$$

Proof. From the Corollary 1, it is easy to prove that

$$bdry f(N) = f(bdry N).$$

Hence, $G_2 - f(bdry N) = G_2 - bdry f(N) = f(N) \cup (G_2 - \overline{f(N)})$, $f(N) \cap (G_2 - \overline{f(N)}) = \phi$, and both f(N) and $(G_2 - \overline{f(N)})$ are open subsets of G_2 . Since $x \in f(N)$, it follows that

$$C_x(G_2 - f(bdry N) \subseteq f(N)).$$

THEOREM 2^{9} (Montgomery). Let G be a locally compact n-dimensional

⁵⁾ Cycles are in the sense of Cech.

⁶⁾ Cf. Hurewicz and Wallman [2], p. 151.

⁷⁾ If x is a point of topological space A, $C_x(A)$ is the connected component of A which contains x.

⁸⁾ ϕ denotes the empty set.

⁹⁾ This is a part of Theorem 7 of D. Montgomery [9].

group $(n < \infty)$. Then there exists a locally compact locally connected group G^* of dimension n and a continuous one-to-one mapping α of G^* into G satisfying the following conditions.

Let C^* be a neighborhood of the identity in G^* , then $\alpha(C^*) = C$ is an invariant local subgroup of G and the factor local group of G by C is zero-dimensional.

§2. A neighborhood U of the identity in a topological group G is called to have the property (S), if for every element x of U there exists an integer n such that $x^{2^n} \notin U$.

Lemma 1 (Yamabe).¹⁰⁾ Let G be a locally compact group, and suppose that G is without small subgroups. Let U be a neighborhood of the identity e in G such that U contains no non-trivial subgroups. For every neighborhood V of e there exists a neighborhood V^* of e satisfying the following conditions.

If x and x^k are contained in V^* and if x^i $(1 \le i \le k)$ are elements of U, then x^i is contained in V for i = 1, 2, ..., k.

COROLLARY to LEMMA 1 (Yamabe and Gotô).¹¹⁾ If a locally compact group G is without small subgroups, G has the property (S).

LEMMA 2.¹²⁾ Let G be a locally compact group which is without small subgroups. Then there exists a neighborhood U of the identity in G, in which the square root is unique. More strictly, if x and y are elements of U, and if $x^2 = y^2$, it follows that x = y.

In this case the mapping $\varphi(x) = x^2$ of U into G is one-to-one.

LEMMA 3.¹²⁾ Let G be a locally compact group which is without small subgroups. Then on a sufficiently small neighborhood U of the identity in G we can define a real valued continuous function f(x) satisfying the following conditions.

(3)
$$f(x^2) \ge 2f(x) \quad \text{for} \quad x, \ x^2 \in U,$$

(4)
$$f(x) = 0$$
 if and only if x is the identity.

Now let U be a local group and let C be an invariant local subgroup of U. If we take a sufficiently small neighborhood W of the identity in U the factor local group W/C is defined as follows.¹³⁾

- (i) The element X of W/C is the coset $W \cap Cx$ for $x \in W$.
- (ii) We shall consider that the product XY of a pair of elements X, Y of W/C is defined if and only if there exist elements $x \in X$ and $y \in Y$ such that

¹⁰⁾ For the proof, see H. Yamabe [12].

¹¹⁾ H. Yamabe and M. Gotô [4].

¹²⁾ See Kuranishi [5] and [6].

¹³⁾ Pontrjagin [11], p. 83.

xy is contained in W. The product XY is equal to $W \cap Cxy$, which is independent of the choices of x and y.

(iii) The natural mapping $W \rightarrow W/C$ is continuous and open.

Let G be a locally compact finite dimensional group. Suppose that G is without small subgroups. Let G^* and α be the locally compact locally connected group and the continuous one-to-one mapping of G^* into G stated in Theorem 2. Let G be the sufficiently small neighborhood of the identity in G on which the function G0 of Lemma 2 is defined. G1 is naturally a local group. Take a sufficiently small open neighborhood G2 of the identity in G3 and let G4 a sufficiently small neighborhood G5 is an invariant local subgroup of G7. Take a sufficiently small neighborhood G8 is a zero-dimensional locally compact local group. Let G2 be the natural mapping G3 is a zero-dimensional locally compact local group. Let G3 be the natural mapping G4 is a zero-dimensional locally compact local group. Let G4 be the natural mapping G5 is a zero-dimensional locally compact local group. Let G5 be the natural mapping G6 is a zero-dimensional locally compact local group. Let G5 be the natural mapping G6 is a zero-dimensional locally compact local group. Let G6 be the natural mapping G6 is a zero-dimensional locally compact local group. Let G6 be the natural mapping G6 is a zero-dimensional locally compact local group. Let G6 be the natural mapping G7 is a zero-dimensional locally compact local group. Let G8 be the natural mapping G9 is a zero-dimensional locally compact local group. Let G9 be the neighborhood of the identity in G9 such that

(5)
$$\varphi(bdry\ W) \cap V_1^2 = \phi,$$

$$(6) V_1^2 \subseteq W,$$

(7)
$$V_1 \cap C$$
 is connected.

Let V be a neighborhood of the identity in U such that $V^4 \subseteq V_1$, $V = V^{-1}$.

LEMMA 4. Let X be an element of $\beta(V)$ such that X^2 is contained in $\beta(V)$. Then for every element y of $X^2 \cap \overline{V}$, there exists an element x of X such that $y = x^2$.

Proof. Let
$$X=W_1\cap Cx_0, x_0\in V,$$
 and $M^*=\alpha^{-1}((W_1\cap Cx_0)x_0^{-1}).$

We define the topological mapping $\psi(a)$ of M^* into G^* by

$$\psi(a) = \alpha^{-1}((\varphi((\alpha(a))x_0))x_0^{-2}).^{14)}$$

Since $N^* = \alpha^{-1}((W \cap Cx_0)x_0^{-1})$ is an open set containing the identity e^* in G^* and $\overline{N}^* \subseteq M^*$, by Corollary 2 to Theorem 1,

(8)
$$C_{e^*}(G^* - \phi(bdry N^*)) \subseteq \phi(N^*).$$
Since
$$\alpha(\alpha^{-1}(V_1 \cap C) \cap \phi(bdry N^*))$$

$$\subseteq (V_1 \cap C) \cap (\varphi(bdry (W \cap Cx_0)))x_0^{-2}$$

$$\subseteq [V_1x_0^2 \cap \varphi(bdry W)]x_0^{-2}$$

$$\subseteq [V_1^2 \cap \varphi(bdry W)]x_0^{-2} = \phi \qquad \text{(by condition (5))}$$

¹⁴ α is the injection of G^* into G.

and since $V_1 \cap C$ is connected, it follows that

(9)
$$\alpha^{-1}(V_1 \cap C) \subseteq C_{e^*}(G^* - \psi(bdry N^*)).$$

If $cx_0^2 \in X^2 \cap \overline{V} = (W_1 \cap Cx_0^2) \cap \overline{V} = \overline{V} \cap Cx_0^2$, it follows that

$$c \in \overline{V}x_0^{-2} \cap C \subseteq \overline{V}V^{-2} \cap C \subseteq V_1 \cup C$$

that is,

$$x^2 \cap \overline{V} \subseteq (V_1 \cap C)x_0^2$$

(10)
$$\alpha^{-1} \left[(X^2 \cap \overline{V}) x_0^{-2} \right] \subseteq \alpha^{-1} (V_1 \cap C).$$

From (8), (9) and (10), it follows that

$$\alpha^{-1}[(X^2 \cap \overline{V})x_0^{-2}] \subseteq \psi(N^*) = \alpha^{-1}[\varphi(W \cap Cx_0)x_0^{-2}],$$

that is.

$$X^2 \cap V \subseteq \varphi(W \cap Cx_0).$$

Hence the lemma is proved.

We now define the function F(X) on $\beta(\overline{W})$ by

(11)
$$F(X) = \inf_{x \in X \cap F} f(x).^{(5)}$$

LEMMA 5. Let V be the neighborhood of the identity in G stated in Lemma 4. We can assume without loss of generality that $V = \{x | f(x) \le \delta\}$, where f(x) is the function of Lemma 3. Then

(12)
$$F(X^2) \ge 2F(X) \quad \text{if } X, X^2 \in \beta(V),$$

(13)
$$F(X) = 0 \quad \text{if and only if } X \text{ is the identity,}$$

(14)
$$F(X)$$
 is continuous.

Proof. Continuity of F(X): Let $X_n \in \beta(V)$, and $X_n \to X \in \beta(V)$. There exists a sequence x_n (n = 1, 2, ...) of V such that $F(X_n) = f(x_n)$. We can assume without loss of generality that $x_n \to x \in V \cap X$. Then

(15)
$$F(X) \leq f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} F(X_n).$$

Let x be the element of X such that F(X) = f(x). For arbitrary positive number ε , there exists a neighborhood V_2 of the identity in G such that

$$f(y) \leq f(x) + \varepsilon$$
 for $y \in V_2x$.

Since β is an open mapping, there exists an integer N' such that

$$X_n \in \beta(V_2x)$$
 for $n > N'$.

¹⁵⁾ f(x) is the function of Lemma 3.

Hence

Let x_n be a point of $X_n \cap V_2 x$, (n = N' + 1, N' + 2, ...). Then

(16)
$$F(X_n) \leq f(x_n) \leq f(x) + \varepsilon = F(X) + \varepsilon \quad \text{for} \quad n \leq N',$$

from (15) and (16) it follows that F(X) is a continuous function on $\beta(\overline{W})$.

(13) is obvious. We shall prove (12). Suppose that X and X^2 are elements of $\beta(V)$. There exists an element y of $X^2 \cap V$ such that

$$F(X^2) = f(y).$$

From Lemma 4 and the fact that $V = \langle x | f(x) \leq \delta \rangle$, there exists an element x of $X \cap V$ such that $x^2 = y$.

 $F(X^2) = f(y) = f(x^2) \ge 2f(x) \ge 2F(X)$

LEMMA 6. Let G be a locally compact finite dimensional group. Suppose that G is witout small subgroups. Then G is locally connected.

Proof. Let V be a sufficiently small neighborhood of the identity in G. Since W/C is a zero-dimensional local group, $\beta(V)$ contains an open and compact subgroup H of W/C. We can take H so that H is the group in the large, i.e., the product is defined for every pair of elements of H and is contained in H. By Lemma 5 there is defined the function F(X) on the compact group H and satisfies the conditions

(12)'
$$F(X^2) \ge 2F(X)$$
 for every element X of H.

(13), and (14). Hence H must be the group consisting of the identity element only. Since H is an open subset of W/C, W/C must be a discrete space. Thus W is locally connected.

Theorem 3. Let G be a finite dimensional locally compact group. Suppose that G is without small subgroups. Then for every neighborhood U of the identity in G there exists a neighborhood U_1 satisfying the following conditions.

"For every element x of U_1 , there exists a unique one-parameter subgroup $g(\lambda)$ $(0 \le \lambda \le 1)$ contained in U such that g(1) = x."

Proof. We can suppose without loss of generality that

- (18) the function f(x) of Lemma 3 is defined on U, and that
- (19) the mapping $\varphi(x) = x^2$ of U into G is one-to-one. (Lemma 2.)

Take a neighborhood V of the identity in G such that $V^2 \subseteq U$ and let V^* be an open neighborhood of the identity in G of the Lemma 1 with respect to V. By Lemma 6, G is locally connected. Hence from the condition (19) and

¹⁷⁾ This can be proved in the same way as in the case of the locally compact zero-dimensional groups.

the Corollary 1 to Theorem 1, $\varphi(V^*)$ is an open subset G and contains the identity. Choose a sufficiently small positive number δ such that

(20)
$$U_1 = \{x | f(x) < \delta\} \subseteq V^* \cap \varphi(V^*),$$

For every element x of U_1 , there exists an element x_1 of V^* such that $x = x_1^2$. Since $f(x_1) \le \frac{1}{2} f(x_1^2) = \frac{1}{2} f(x) < \delta$, x_1 is contained in U_1 . Thus there exists a suquence x_n (n = 1, 2, ...) of elements of U_1 such that

$$x=x_n^{2^n}.$$

Since the square root is unique (Lemma 2),

$$x_n x_m = x_m x_n$$

and

$$x_n = x_m^{2^{m-n}}$$
 for $m \ge n$.

Then there exists a unique one-parameter subgroup $g(\lambda)$ such that $g\left(\frac{1}{2^n}\right) = x_n$ for $n = 1, 2, \dots^{17}$ Suppose that

$$g\binom{m}{2^n} \subseteq V$$
 for $m = 1, 2, \ldots, 2^n$.

Put $y = g(\frac{1}{2^{n+1}}) \in U_1$. For m = 2m' + 1,

$$y^{m} = g\left(\frac{m}{2^{n+1}}\right) = g\left(\frac{m'}{2^{n}}\right)g\left(\frac{1}{2^{n+1}}\right) \in V^{2} \subseteq U.$$

Hence

$$y^m \in U$$
 for $m = 1, 2, \dots, 2^{n+1}$

and

$$v, v^{2^{n+1}} \in U_1 \subseteq V^*$$

By Lemma 1,

$$y^m \in V$$
 for $m = 1, 2, \dots 2^{m+1}$.

Hence

$$g\left(\frac{m}{2^n}\right) \in V \subseteq U$$
 for $m = 1, 2, \dots, 2^n, n = 1, 2, \dots$

Thus

$$g(\lambda) \in V \subseteq U$$
 for $0 \le \lambda \le 1$.

BIBLIOGRAPHY

[1] Chevalley, C., On a theorem of Gleason, Proc. Amer. Math. Soc. Vol. 2 (1951) p. 122-

¹⁷⁾ See the Lemma 1 of M. Kuranishi [6].

125.

- [2] Gleason, A., Arcs in locally compact groups, Proc. Nat. Acad. Sci. U.S.A., 36 (1950) pp. 663-667.
- [3] Hurewicz, W. and Wallman, H., Dimension theory, Princeton, 1941.
- [4] Gotô, M. and Yamabe, H., On some properties of locally compact groups with no small subgroups, Nagoya Math. Jour. Vol. 2 (1950) pp. 29-33.
- [5] Kuranishi, M., On euclidean local groups satisfying certain conditions, Proc. Amer. Math. Soc. Vol. 1 (1950) pp. 372-380.
- [6] Kuranishi, M., On conditions of differentiability of locally compact groups, Nagoya Math. Jour. Vol. 1 (1950) pp. 71-81.
- [7] Montgomery, D., Theorems on the topological structure of locally compact groups, Ann. of Math. Vol. 50 (1949) pp. 570-580.
- [8] Montgomery, D., Locally homogeneous spaces, Ann. of Math. Vol. 52 (1950) pp. 261-271.
- [9] Montgomery, D., Finite dimensional groups, Ann. of Math. Vol. 52 (1950) pp. 591-605.
- [10] Montgomery, D., Existence of subgroups isomorphic to the real numbers, Ann. of Math. Vol. 53 (1951) pp. 298-326.
- [11] Pontrjagin, L., Topological groups, Princeton, 1939.
- [12] Yamabe, H., Note on locally compact groups, Osaka Math. Jour. Vol. 3 (1951) pp. 29-33.

Mathematical Institute, Nagoya University