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The cross-slot stagnation point flow is one of the benchmark problems in non-
Newtonian fluid mechanics as it allows large strains to develop and can therefore be
used for extensional rheometry measurements or, once instability arises, as a mixing
device. In such a flow, beyond a critical value for which the ratio of elastic force to
viscous force is high enough, elasticity can break symmetry even in the absence of
significant inertial forces (i.e. creeping flow), which is an unwanted phenomenon if the
device is to be used as a rheometer but beneficial from a mixing perspective. In this
work, a passive control mechanism is introduced to the cross-slot by adding a cylinder
at the geometric centre to replace the ‘free’ stagnation point with ‘pinned’ stagnation
points at the surface of the cylinder. In the current modified geometry, effects of the
blockage ratio (the ratio of the diameter of the cylinder to the width of the channel),
the Weissenberg number (the ratio of elastic forces to viscous forces) and extensibility
parameters (α and L2) are investigated in two-dimensional numerical simulations using
both the simplified Phan-Thien and Tanner and finitely extensible nonlinear elastic
models. It is shown that the blockage ratio for fixed solvent-to-total-viscosity ratio
has a stabilizing effect on the associated symmetry-breaking instability. The resulting
data show that the suggested modification, although significantly changing the flow
distribution in the region near the stagnation point, does not change the nature of
the symmetry-breaking instability or, for low blockage ratio, the critical condition
for onset. Using both numerical and physical experiments coupled with a supporting
theoretical analysis, we conclude that this instability cannot therefore be solely
related to the extensional flow near the stagnation point but it is more likely related
to streamline curvature and the high deformation rates towards the corners, i.e. a
classic ‘curved streamlines’ purely elastic instability. Our work also suggests that the
proposed geometric modification can be an effective approach for enabling higher
flow rates to be achieved whilst retaining steady symmetric flow.

Key words: viscoelasticity, microfluidics

1. Introduction
Extensional flow occurs when a fluid experiences a deformation in the streamwise

direction and can be observed in many different situations such as flow passing
through contractions (Afonso et al. 2011) and expansions (Pinho, Oliveira &
Miranda 2003; Alves & Poole 2007) and at stagnation point flows like flow through
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intersections (such as T- shaped (Soulages et al. 2009) or cross-slot (Arratia et al.
2006) geometries) or flow passing an obstacle (Bisgaard 1983; Walters & Tanner
1992; Alves, Pinho & Oliveira 2001; McKinley 2002). Many industrial processes
deal with highly extensional flows of polymeric fluids. In most of these cases, a
purely elastic instability occurs that is absent for its equivalent Newtonian creeping
flow (Poole et al. 2007a; Zilz et al. 2014). During the last few decades, significant
attention has been placed on such flows to characterize the physics behind these types
of instabilities especially in shear flows (Larson, Shaqfeh & Muller 1990; McKinley,
Pakdel & Öztekin 1996); however, understanding of this type of elastic instability in
extensional-dominated flows is not as advanced as for shear-dominated flows (Haward,
McKinley & Shen 2016).

The cross-slot geometry is a common flow geometry that has been utilized for
generating controllable planar elongational flow fields and for studying the stretching
dynamics of polymers (Haward et al. 2012b, 2016). This geometry consists of four
bisecting rectangular channels with two sets of opposite inlets and outlets. These
opposing inlets and outlets produce a flow field with a free stagnation point located
at the centre of the geometry. At this point the velocity field is zero and a finite
gradient of velocity in the streamwise direction appears. In principle, due to the zero
velocity field at this point, a fluid element is trapped for an infinite time generating
a significant strain and potentially enabling ‘steady-state’ extentional flow kinematics
to be realized. To obtain an ideal planar elongational flow field, Haward et al.
(2012b) suggested optimizing the standard shape of the cross-slot geometry using a
numerical approach and termed the resulting shape the optimized shape cross-slot
elongation rheometry (OSCER) geometry. A similar type of stagnation point flow can
be observed when fluid is passing an object such as a cylinder or a sphere (Walters
& Tanner 1992). If the obstacle is a solid object the stagnation point is pinned at
the surface of the geometry and cannot move, while for example in the case of
falling/rising drops, the stagnation point is located at the surface of the moving
drop and in principle is free to move and change the shape of the droplet (Bisgaard
1983; McKinley 2002; Davoodi & Norouzi 2016). As a consequence of the no-slip
condition and mass continuity, the local velocity gradient and the velocity field are
zero for a pinned stagnation point while for a free stagnation point the strain rate
can have finite non-zero values. In both types of flows, beyond a critical value of
strain rate a symmetry breaking of the flow distribution can be observed for both
the pinned (Hulsen, Fattal & Kupferman 2005) and free (Bisgaard 1983) stagnation
point flows. Soulages et al. (2009) studied two different geometries to investigate the
kinematic differences between a pinned stagnation point flow at a wall and a free
stagnation point flow by adding a recirculating cavity opposite to the outlet arm of a
T-shaped channel. They showed that the critical value of flow rate for the onset of an
unsteady three-dimensional instability is delayed to higher values of the Weissenberg
number for the free stagnation point flow geometry with a cavity compared to the
pinned case without a cavity. Also, a new type of steady asymmetric instability was
reported in this modified geometry that was suppressed for the cases in which the
stagnation point was pinned at the wall.

Early research conducted by Gardner et al. (1982) was the first to report that
a steady flow asymmetry can occur for viscoelastic flows in cross-slot geometries.
In this geometry, although nominally extensional dominated, fluid particles passing
through the cross-section between the corner and the stagnation point experience
both significant shear flow near these re-entrant corners (Dean & Montagnon 1949;
Moffatt 1964; Davies & Devlin 1993; Hinch 1993) and elongational-dominated
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flow near the stagnation point (Öztekin, Alakus & McKinley 1997; Haward et al.
2016). The combination of this complex deformation with the nonlinear elastic
stresses for viscoelastic materials can enable disturbances to grow and trigger a
‘purely elastic instability’. Although firstly observed by Gardner et al. (1982), it was
not until Arratia et al. (2006) that this effect was clearly associated with a purely
elastic instability and suitably characterized. Supporting numerical simulations for
this phenomenon were presented by Poole, Alves & Oliveira (2007b), where it was
shown that once the instability appears, the shape of the velocity profile along a
line between the corner of the cross-slot geometry and the free stagnation point
changes from convex into concave. These types of instability are generally triggered
when a combination of the normal stress in the streamwise direction is coupled with
streamline curvature, although in the cross-slot geometry this is debated (Wilson
2012) and something we will directly address in the current article. A well-known
dimensionless parameter which rationalizes these ‘curved streamlines’ instabilities
is the M parameter introduced by McKinley et al. (1996) (often referred to as the
‘Pakdel–McKinley’ criteria). This parameter can be considered as the viscoelastic
complement of the Görtler number (Saric 1994) and is defined as

M =

√
λ̃Ũ

<̃

τ̃ss

η̃0 ˜̇γ
, (1.1)

where Ũ is the magnitude of the local velocity, <̃ is the local radius of curvature of a
streamline, τ̃ss is the normal stress in the streamwise direction, η̃0 is the zero-shear-rate
viscosity of the fluid and ˜̇γ is the magnitude of the shear rate. Throughout this paper
we will indicate dimensional variables using a tilde. In (1.1), the first term on the
right-hand side can be referred to as a local Deborah number, showing the ratio
of the relaxation time of the fluid to the time a disturbance takes to travel along a
streamline. As this ratio increases, the chance that a disturbance may grow and lead
to instability increases. The second term on the right-hand side of (1.1) is added
to scale properly the effect of the normal stress in the streamwise direction with a
reference stress scale. This term is generally of the same order of magnitude as a local
Weissenberg number. Recently, Cruz et al. (2016) have plotted the spatial variation
of this parameter in the cross-slot geometry for both upper-convected Maxwell and
simplified Phan-Thien–Tanner (sPTT) fluids. Previous studies for flow around sharp
re-entrant corners for both Newtonian (Dean & Montagnon 1949; Moffatt 1964)
and upper-convected Maxwell (Davies & Devlin 1993; Hinch 1993) fluids suggest
that although the velocity field at the corner is zero, the velocity gradient, and
consequently the magnitude of the stress tensor, are singular. At such corners the
combination of high shear rate along with high curvature of the streamlines can thus
provide a suitable mechanism for a disturbance to grow and trigger an instability.
The numerical simulations of Cruz et al. (2016) for a geometry with sharp square
re-entrant corners (i.e. a standard-shape cross-slot) suggest that instability should
be triggered at a region near the corner of the geometry. These results support the
earlier work by Rocha et al. (2009) who showed the instability is delayed to a
higher value of the Weissenberg number once the sharp square corner is replaced
with a strongly rounded corner. In a following work, Haward et al. (2016) using the
OSCER geometry showed that once the ideal planar elongation flow field is obtained,
although the velocity exhibits a small value at the stagnation point, the curvature of
the streamline exhibits a large value near this region and the maximum value of the
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M parameter appears in the vicinity of the stagnation point. Despite these results,
it still remains an open question in the literature as to whether instabilities in the
cross-slot are driven via curvature and high deformation rate near the stagnation point
or from a region closer to the corner, or from simply the extensional flow at the
stagnation point itself (Wilson 2012; Kalb, Villasmil & Cromer 2017).

In the current work, using a series of numerical simulations supported by
experimental and analytical tools, we study and modify the standard-shape cross-slot
geometry by replacing the free stagnation point flow with pinned stagnation points
by adding a cylinder at the geometric centre of the domain. Using this modification,
the curvature of streamlines close to the geometric centre will be affected by the
presence of the cylinder and will exhibit an opposite sign in comparison to the
streamlines near the corners of the geometry. A change in the relative size of the
cylinder (i.e. changing the ‘blockage ratio’ parameter) will allow us to control the
local value of streamline curvature along with the average value of the velocity
passing through the gap between the corner of the cross-slot and the cylinder. We
will show that the introduced modification acts as a passive control mechanism that
can be used to delay the critical flow rate in which the instability is triggered. Also,
due to conservation of mass and the no-slip boundary condition, once a cylinder is
added, the finite non-zero value of the strain rate at the stagnation point seen for the
standard-shape cross-slot geometry is replaced by stagnation points where the strain
rates are identically zero. Considering the above, one can state that the addition of
the cylinder at the geometrical centre of the cross-slot geometry significantly changes
the flow distribution near the stagnation point while the flow distribution close to the
corners will stay relatively unchanged (at least for small cylinders).

The structure of the paper is as follows. In § 2, the governing equations and the
employed numerical procedure are reviewed. In § 3, the experimental set-up and the
employed protocol are explained. Following this, in § 4, a discussion of the results
obtained in this study is presented followed by conclusions.

2. Numerical procedure
The governing equations for this problem are conservation of mass, assuming

incompressibility, and momentum:

∇ · ũ= 0, (2.1)

ρ̃

(
∂ ũ
∂ t̃
+ ũ · ∇ũ

)
=−∇p̃+∇ · τ̃ + η̃s∇

2ũ, (2.2)

where ρ̃ is the density of the fluid, ũ is the velocity vector, η̃s is the solvent viscosity
and τ̃ is the extra-stress tensor containing the polymeric contribution to the stress. In
this work two different constitutive equations, namely the sPTT model (Phan-Thien
& Tanner 1977) and the finitely extensible nonlinear elastic (FENE-P) model (Bird,
Dotson & Johnson 1980), have been used to study the effect of different constitutive
equations.

The extra-stress tensor using the sPTT model may be calculated as follows:

f1τ̃ + λ̃
∇

τ̃= η̃p(∇ũ+∇ũT
), (2.3)

where λ̃ is the relaxation time of the fluid and η̃p is the polymeric contribution to the

viscosity. The upper-convective derivative of the extra-stress tensor,
∇

τ̃ , is defined as
∇

τ̃=
D
Dt̃
(τ̃ )− (τ̃ · ∇ũ+∇ũT

· τ̃ ), (2.4)
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where the material derivative of an arbitrary matrix Ã is defined as (D/Dt̃)Ã =
(∂ Ã/∂ t̃+ ũ · ∇ Ã). The f1 function for the linear sPTT model is defined as follows:

f1 = 1+ α
λ̃

η̃p
Tr(τ̃ ), (2.5)

where α is the the extensibility parameter, and, in the limiting case that α = 0, the
sPTT constitutive equation reduces to the Oldroyd-B model. This constitutive equation
is derived from network theory by Phan-Thien & Tanner (1977) and is a suitable
model for simulation of shear-thinning polymeric fluids (Bird, Armstrong & Hassager
1987).

One other constitutive equation which has frequently been used to simulate the
shear-thinning behaviour of polymeric materials is the FENE-P model (Bird et al.
1980) which may be presented in the following form:

τ̃ + λ̃

∇(
τ̃

f2

)
=

aη̃p

f2
(∇ũ+∇ũT

)− aη̃p

(
D
Dt̃

(
1
f2

))
I, (2.6)

where a= L2/(L2
− 3), I is the identity tensor and L2 is also called the extensibility

parameter. The f2 function for the FENE-P model is defined as

f2 =

L2
+
λ̃

aη̃p
Tr(τ̃ )

L2 − 3
. (2.7)

Here we use the rheoFoam solver in the OpenFOAM platform which was previously
introduced by Pimenta & Alves (2017). In this solver, instead of dealing with large
values of stress components in the global x̃, ỹ and z̃ coordinate system, the logarithms
of the eigenvalues of the stress tensor in a local coordinate system consisting of the
eigenvectors of the stress tensor (i.e. principal axis) are calculated and solved. More
detail about the employed approach can be obtained from Afonso, Pinho & Alves
(2012) and Fattal & Kupferman (2004).

2.1. Problem definition
A schematic of the geometry and the employed coordinate systems are shown in
figure 1. The length of the inlet/outlet arms is set to be 15 times the width of the
channel in order to allow fully developed conditions at the cross-slot, which we
confirmed in our numerical simulation to be sufficient. In the numerical procedure,
a constant bulk velocity ŨB at the inlets and Neumann boundary condition at the
outlets were applied. At the walls, no-slip boundary conditions were imposed and the
values of the extra stress components were linearly extrapolated using the method
introduced in Pimenta & Alves (2017). In order to better understand effects of
the proposed geometry modification on the cross-slot symmetry-breaking instability,
besides the no-slip boundary condition, a number of additional simulations using
a complete slip boundary condition at the cylinder wall were also carried out (i.e.
normal velocity component is fixed to zero while the tangential component is set
to have zero gradient). No finite disturbances are introduced in the simulations to
induce the onset of symmetry-breaking instability. Instead, the instability is naturally
triggered from accumulation of numerical error via machine-level precision.
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Outlet 1

Outlet 2

Inlet 2
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Inlet 1

¡

15W¡

W¡

W¡

L¡
r¡ x¡
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D¡

FIGURE 1. (Colour online) Schematic of the cross-slot geometry with a cylinder and the
coordinate systems used in the problem. Not to scale. The angle θ is measured with
respect to the diagonal line |x| = |y|.

2.2. Non-dimensionalization
It is convenient to use dimensionless parameters in this problem. The relationships
between dimensional and dimensionless parameters are

x=
x̃

W̃
, y=

ỹ

W̃
, r=

r̃

W̃
, Φ =

D̃

W̃
, U =

Ũ
ŨB
, Re=

ρ̃ŨBW̃
η̃t

,

Wi=
λ̃ŨB

W̃
, β =

η̃s

η̃t
, N1 =

τ̃xx − τ̃yy

η̃tŨB/W̃
, ε̇ =

˜̇ε

ŨB/W̃
, Ω =

Ω̃

ŨB/W̃
,

 (2.8)

were x̃, ỹ and r̃ are the variables related to the corresponding rectangular and polar
coordinate systems, W̃ is the width of the channel, D̃ is the diameter of the cylinder,
Φ is the blockage ratio parameter which may change between zero (the standard cross-
slot geometry with no cylinder) and

√
2 (fully blocked cross-slot geometry), Ũ is the

velocity vector, ŨB is the imposed bulk velocity at the inlet arms, Re is the Reynolds
number which is set to be 0.01 for all simulations in order to model creeping flow,
Wi is the Weissenberg number, β is the solvent-to-total-viscosity ratio, η̃t is the total
viscosity (i.e. η̃t = η̃s+ η̃p), N1 is the non-dimensional first normal-stress difference, ˜̇ε
is the strain rate (either ˜̇εxx or ˜̇εyy) and Ω̃ is the vorticity tensor.

2.3. Mesh dependency study
In this section, a number of representative results analysing the effect of mesh
on the two-dimensional (2-D) flow distribution are presented to give an overview
of numerical accuracy. The block-structured mesh generation in OpenFOAM has
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FIGURE 2. (Colour online) Schematic representation of the geometry and definition of the
blocks used to generate the mesh.

Block I II III IV NCVa

M1 60× 30 (0.05, 5) 36× 30 (25, 5) 36× 30 (25, 0.2) 60× 30 (20, 0.2) 23 040
M2 120× 60 (0.05, 5) 72× 60 (25, 5) 72× 60 (25, 0.2) 120× 60 (20, 0.2) 92 160

TABLE 1. Main characteristics of meshes in different blocks (NR × NTa (GRR, GRT)b

problems).
aNR, NT, number of cells in radial and tangential directions; NCV, total number of

control volumes.
bGRR, GRT, cell growth rate in radial and tangential directions.

required us to divide the flow domain into 16 smaller sub-domain blocks. In figure 2,
a schematic definition of different blocks used in our mesh-generation steps for a
nominal blockage ratio of Φ = 0.55 is illustrated. Here, two different meshes were
used and the characteristics of these meshes are presented in table 1. The cell growth
rate is defined based on the ratio of the first cell size to the last cell size in a specific
direction. Note that, owing to the symmetry of the domain, only mesh information for
a quarter of the geometry is presented but the full geometry is used in all simulations.

In figure 3, the effect of mesh refinement on the flow distribution of creeping
Newtonian flow is presented (i.e. Re = 0.01). In this figure, the distribution of
velocity magnitude at the entrance region of the outlet arms is presented for the
meshes introduced in table 1. The results show that the mean average errors between
M1 and M2 are less than 1.3 %. Therefore, the remaining results presented here
were obtained using the M1 mesh, except for simulations corresponding to Φ = 0.10
in which meshes similar in density to M2 were used. For the standard cross-slot
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1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

|U|

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

M1
M2

0.2 0.3 0.4 0.5
x

FIGURE 3. (Colour online) Distribution of velocity magnitude at the entrance region of
the outlet arms (i.e. along the line y=±0.5) for different meshes for Newtonian creeping
flow. Results for M1 and M2 are shown in blue and red, respectively.

geometry a mesh similar to that of Cruz et al. (2016) consisting of five blocks was
used. The total number of cells for the standard cross-slot geometry is 13 005.

3. Experiments
3.1. Experimental set-up

A schematic diagram of the experimental rig is shown in figure 4. Flow through
the microfluidic system was driven using two identical individually controlled high-
precision syringe pumps (PHD Ultra Harvard Apparatus). One of the pumps drives
fluid into the two opposed inlets, while the other one withdraws fluid simultaneously
from the two outlets of the device (all at equal volumetric flow rates). According to
the manufacturer, the mass flow rate ( ˜̇m) certified accuracy is 0.35 % at the lowest
pulsation-free delivering rate, which set our lowest flow rate.

For the purpose of this study, two geometries, namely one standard cross-slot
device and one modified cross-slot geometry with Φ = 0.55, were designed. These
geometries were micro-machined into two pieces of brass using CNC machining with
a rectangular cross-section channel. To best approximate a 2-D channel, the channel
height is selected to be twice its width, H̃=2000±10 (µm) and W̃=1000±10 (µm),
respectively. The device was encased in polyoxymethylene, an insulating material
also known as ACETAL. The cross-sectional dimensions of the cross-slot flow device
were quantified using a Nikon EPIPHOT TME inverted microscope with × 100
magnification, 470 pixels= 1000 (µm). The combined length of the channel inlet and
outlet is 80W̃ = 80 ± 0.1 (mm) to ensure fully developed flow at the central region
of the geometry for all flow rates studied. The cross-slot geometry was enclosed by
a 6.5 (mm) thick upper wall fabricated from borosilicate glass to maintain sealing
while still allowing the flow structure to be visualized.

Rhodamine-B (Acros Organics) was chosen as a fluorescent dye to capture the
flow patterns in the cross-slot micro-geometry (Ross, Gaitan & Locascio 2001;
Huang et al. 2013, 2014). The dyed fluid was prepared by dissolving 30 ppm of
Rhodamine-B in half of the working fluid. The optical set-up was composed of an
inverted microscope (DMI, Leica Microsystems GmbH) fitted with an appropriate
filter cube (excitation BP 530–545 (nm), dichroic mirror 565 (nm), barrier filter
610–675 (nm), Leica Microsystems GmbH), a pulsed Nd:YAG laser (Solo-PIV III
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Camera

Syringe pumps

Laser Nd:YAG
532 (nm) (green)

Optical
fibre Inverted

microscope

Camera
FOV

Pulse

Computer

x

y

z

W¡

W¡

D¡

40W¡

40W¡

(a)

(c)(bI)

(bII)

FIGURE 4. (Colour online) (a) A schematic illustrating the experimental apparatus of
a microfluidic cross-slot device allowing for direct observation of the x–y plane. The
origin is placed at the geometric centre of the device. The rig is mounted on an inverted
microscope fitted with a filter cube. A pulsed Nd:YAG laser is used to excite the dyed
fluid, and a CCD camera enables the instability formation to be captured (the illustration
is not to scale; the two-camera field of view (FOV) to be captured is 4 mm × 4 mm).
(b) The prototype microfluidic device rigs for (I) standard cross-slot geometry and (II)
cross-slot with cylinder geometry. The channels were micro-machined in brass and encased
in polyoxymethylene. (c) Photograph illustrating the assembled experimental rig set-up.

laser, wavelength 532 (nm), New Wave Research) used to excite the fluorescent
Rhodamine-B dye with illumination and a CCD (charge couple device) camera.

3.2. Working fluids
The Newtonian working fluid used in the experiments is a mixture of glycerine
(relative density 1.26, ReAgent Chemical Services) and distilled water with a nominal
concentration of 70 % glycerine (by weight). The density (ρ̃) and viscosity (η̃s) of the
mixed solution were measured at T̃ = 20 (◦C). A density meter (Anton Paar DMA
35N) with a quoted precision of 0.001 (g cm−3) was used for quantifying the fluid
density. A controlled-stress torsional rheometer (Anton Paar MCR302) was utilized to
measure the fluid viscosity using a 60 (mm) and 1◦ cone with a shear rate range from
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FIGURE 5. (Colour online) Analytical fit based on the sPTT model (α = 0.63, η̃0 =

3360 (mPa s), η̃∞= 35.5 (mPa s)) and the experimental shear viscosity data of 190 ppm
PAA in 70 : 30 glycerine–water solution versus the shear rate at T̃ = 20 (◦C).

1× 10−3(s−1) to 200 (s−1). The measured values of the density (ρ̃) and viscosity (η̃s)
are 1184 (kg m−3) and 35.50 (mPa s), respectively.

To elucidate the role of elasticity, a mixture of 70 % glycerine and distilled
water (by weight) and 190 ppm polyacrylamide (PAA; Mw = 18 × 106 (g mol−1),
Sigma-Aldrich) was used. Initially, the required amount of PAA is added to distilled
water, and the resultant liquid is slowly mixed using a magnetic stirrer. In another
container, the necessary amount of glycerine is also added to distilled water and
mixed using a magnetic stirrer. After 24 h, the result is two clear, transparent and
colourless solutions. The PAA and glycerine solutions are then combined in a single
container, and the resultant polymer solution is thus left to mix gently in a magnetic
stirrer (24 h). All rheology measurements were conducted at T̃ = 20± 0.1 (◦C). The
working fluid characterization includes measuring viscosity, density and relaxation
time. Figure 5 displays the experimental data for viscosity of the viscoelastic fluid
as a function of applied shear rate and an analytical fit based on a single-mode
sPTT model with α = 0.63, η̃0 = 3.36 (Pa s) and η̃∞ = 35.5 (mPa s). The relaxation
time of the fluid was measured using small-amplitude oscillatory shear. Analysing
the storage modulus (G̃′) and the loss modulus (G̃′′) using a Maxwell model is a
standard approach for estimating the relaxation time of viscoelastic fluids (Bird et al.
1987). Here, a four-mode generalized Maxwell model is used to estimate the average
relaxation time. The response of the generalized Maxwell model for the oscillatory
test is as follows:

G̃′ =
4∑

i=1

η̃iλ̃iω̃
2

1+ λ̃2
i ω̃

2
, (3.1)

G̃′′ =
4∑

i=1

η̃iω̃

1+ λ̃2
i ω̃

2
, (3.2)

where the unknown λ̃i and η̃i values of the model are determined by minimizing the
deviation between the model and experimental data of the frequency sweep test subject
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FIGURE 6. (Colour online) Variation of the storage and loss modulus versus the frequency
for the solution of 190 ppm PAA in 70 : 30 glycerine–water at T̃ = 20 (◦C).

to the constraints that the total viscosity is equal to 3.36 (Pa s) and that of the solvent
mode is 35.5 (mPa s). Finally, the average relaxation time of our working fluid may
be estimated as

¯̃λ=

4∑
i=1

η̃iλ̃i

4∑
i=1

η̃i

. (3.3)

As for the shear viscosity, the Anton Paar MCR302 is used to measure the
small-amplitude oscillatory shear properties of the working fluid. Both the amplitude
and frequency sweep tests are carried out at T = 20 (◦C), using a 60 (mm) and 1◦
cone. Figure 6 shows the results of the frequency sweep test in the range of 0.01 to
4 (rad s−1) at 10 % strain amplitude (which we confirmed was in the linear limit).
Our experimental results suggest an average relaxation time of ¯̃λ= 45.05 (s).

3.3. Experimental protocol

Experiments are conducted over a range of 0.1 < W̄i < 200 by programming the
syringe pumps to perform ramps in W̄i with small step increases in volumetric flow
rate (0.001< Q̇< 0.2 (nl s−1)). Here, W̄i is defined based on the average relaxation
time of the fluid obtained from (3.3). The camera is synchronized with the laser at
a repetition rate of 8.875 (Hz). All images shown in this work were captured from
the top view using a × 8 microscope objective (Leica Microsystems GmbH) and a
camera field of view of 4 mm× 4 mm which thoroughly covers the central region of
the device containing the field of interest. The flow visualization technique applied
consists of pumping dyed fluid (Rhodamine-B) from one of the inlets while undyed
fluid is pumped in the other inlet; both inlets are kept at the same flow rate using
the same syringe pump and two identical syringes. Fluid motion starts from rest and
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at least 50 images were captured for each steady state. Due to the flow visualization
technique used the images represent an integral measurement across a significant
portion of the channel depth. To ensure the flow distribution has reached steady state,
after changing the flow rate we wait approximately 30–40 minutes at each step, i.e.
more than 45 fluid relaxation times.

4. Results and discussion
In this section, results related to the influence of the geometric modification on the

flow field and on the associated steady symmetry-breaking instability in the cross-slot
geometry are presented. We use a series of 2-D numerical simulations, experimental
results and a supporting approximate analytical solution to determine the M parameter
(1.1) to show that this instability cannot be solely related to the extensional flow near
the stagnation point and is more likely related to streamline curvature and the high
deformation rates nearer the re-entrant corners.

In the standard cross-slot geometry, fluid particles experience a complex deformation
due to the existence of shear-dominated and elongational-dominated flows near the
corners and stagnation point, respectively. A suitable parameter that can be used to
visualize different types of flow is the flow-type parameter ξ (Lee et al. 2007):

ξ =
||D̃|| − ||Ω̃||
||D̃|| + ||Ω̃||

, (4.1)

where ||D̃|| = ((D̃ : D̃)/2)1/2 and ||Ω̃|| = ((Ω̃ : Ω̃)/2)1/2 are magnitudes of the rate of
deformation (i.e. D̃= (∇Ũ +∇Ũ

T
)/2) and vorticity tensors (i.e. Ω̃= (∇Ũ −∇Ũ

T
)/2),

respectively. The ξ parameter may vary within the range [−1, 1] in which ξ = −1
characterizes a solid-like rotational flow, ξ = 1 a pure extensional flow and ξ = 0 a
simple shear flow. Results presented in the left-hand column of figure 7 show the
effect of elastic stress on the streamline distribution superimposed on the flow-type
parameter for small values of Wi before the onset of the symmetry-breaking purely
elastic instability. In all figures, the inlets are located on the left- and right-hand sides
while the outlets are at the top and bottom. Due to the existence of these opposite
inlets and outlets, a point with zero velocity appears at the centre of the geometry (a
stagnation point) resulting in a planar elongational flow field in this area. As shown
in figure 7, in the creeping flow of Newtonian fluids, this extensional-dominated flow
appears in the shape of four strands stretched along the centrelines of the inlet/outlet
arms. These strands are located at the mid-distance between the two walls where, due
to symmetry, the shear rate is zero (see figure 8), and due to a non-zero value of the
streamwise gradient of velocity, a purely elongational flow is observed. This effect is
also highlighted by plotting the xy component of the vorticity tensor (Ωxy) as shown
in the right-hand column of figure 7.

On increasing the Weissenberg number up to a certain limit (here, Wi = 0.17 for
β = 1/9 and α = 0.02), the velocity distribution in the fully developed inlet arms
exhibits a flatter distribution in comparison to the Newtonian flow field, due to shear-
thinning, and consequently the elongational-dominated flow expands to a wider region.
As shown in figure 8, on increasing the value of the Weissenberg number beyond
this limit, three shear-free locations appear in the velocity profile, leading to three
strands of elongational-dominated fields at the outlet arms (along the line y=±0.5).
As the flow redevelops we expect the flow further downstream to eventually exhibit
its approximately parabolic fully developed distribution (i.e. with only one shear-free
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-1 0 1
≈

-0.5 0 0.5

-0.5 0 0.5

-0.5 0 0.5
Øxy

-1 0 1
≈

-1 0 1
≈ Øxy

Øxy

(a) (b)

(c) (d)

(e) (f)

Newtonian Newtonian

Wi = 0.17 Wi = 0.17

Wi = 0.3 Wi = 0.3

FIGURE 7. (Colour online) Distribution of the flow-type parameter and the non-
dimensional xy component of the vorticity tensor (Ωxy) for Newtonian and viscoelastic
fluids with α = 0.02 and β = 1/9, in a standard-shape cross-slot geometry (Φ = 0).
Streamlines are superimposed in all cases.

point), so these strands naturally join together as we move further downstream through
the outlet arms. The results in figures 7 and 8 show that the effect of elasticity on
the flow field, even prior to any purely elastic instability, is significant and changes
the flow type downstream of the stagnation point in a quite fundamental way.

Previous experimental studies (Gardner et al. 1982; Arratia et al. 2006) conducted
with the standard cross-slot geometry have shown that beyond a critical value of Wi,
elasticity can break symmetry even in the creeping-flow regime. This change of flow
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FIGURE 8. (Colour online) Comparison of non-dimensional velocity distribution along (a)
the vertical line at x = −0.5, (b) the horizontal line at y = 0.5 and (c) the horizontal
line at y= 1 between Newtonian and viscoelastic fluids with α = 0.02 and β = 1/9, in a
standard-shaped cross-slot geometry (Φ = 0).

distribution can be related to the existence of multiple solutions to the hydrodynamic
problem due to the nonlinear nature of the elastic force in viscoelastic fluids. In other
words, due to the existence of the nonlinear upper-convective derivative operator (2.4)
in the governing equations, the problem may exhibit more than one solution leading to
bifurcation of solutions after a critical value of Weissenberg number. The modifying
effects of adding a cylinder to the flow field and the associated symmetry-breaking
instability are presented in figure 9 (for a nominal case of Φ = 0.50). The results
suggest that once the cylinder is added, although the flow distribution in the geometric
central region changes significantly, i.e. the shear-free elongational-dominated regime
with a single stagnation point is replaced with a shear flow around the cylinder wall
containing four stagnation points stretched towards the inlet/outlet arms, the steady
symmetry-breaking nature of the instability essentially does not change.

By increasing the blockage ratio, the average velocity passing through the central
region of the cross-slot geometry (i.e. through L̃ in figure 1) increases which
consequently increases the local shear rate and hence the first normal-stress difference
in this region (see figure 10). On the other hand, by changing the size of the cylinder,
the local values of streamline curvature are also changed. These two issues suggest
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Newtonian, Ï = 0 Newtonian, Ï = 0.50
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FIGURE 9. (Colour online) Distribution of the flow-type parameter for Newtonian and
viscoelastic fluids with α = 0.02 and β = 1/9.

that the proposed geometry modification may be used as an effective approach for
controlling the kinematic properties of the flow field that are suspected to play an
important role in the onset of the instability (see (1.1)) if the instability is of the
‘curved streamlines’ type. Figure 10 illustrates the return to symmetry induced by the
cylinder by performing increasing blockage ratio simulations at a constant value of
Wi= 0.7 with α = 0.02 and β = 1/9.

In order to better characterize the magnitude of the observed instability in the
numerical simulations, we define an asymmetry parameter as the ratio of the
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FIGURE 10. (Colour online) Effect of geometry modification on streamlines superimposed
onto contour plots of non-dimensional first normal-stress difference for Wi= 0.7, α= 0.02,
β = 1/9. At Φ = 0.60 and beyond, symmetry is returned to the flow.

x component of velocity to the mean value of velocity in the inlet arms, i.e.
AP = (Ũx)/ŨB, at the x = 0, y = 0.5 location. Under this definition, if the flow
retains its symmetric distribution, the x component of velocity at this location will
be equal to zero, while once the instability is triggered, due to the asymmetric
distribution of the resulting flow, Ũx exhibits a non-zero value.

Previous studies (Poole et al. 2007a,b) showed that by increasing the Weissenberg
number, the symmetry breaking exhibits a supercritical growth close to the bifurcation
point. In figure 11, the variation of the asymmetry parameter is plotted versus the
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FIGURE 11. (Colour online) Effect of Weissenberg number on the symmetry-breaking
instability for α = 0.02, β = 1/9 and different blockage ratios Φ.
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FIGURE 12. (Colour online) Effect of blockage ratio parameter on the symmetry-breaking
instability for α = 0.02 and β = 1/9.

Weissenberg number for different values of blockage ratios, which all exhibit a similar
supercritical characteristic behaviour for the instability as was observed previously in
the standard cross-slot (Poole et al. 2007b). In figure 12, we show the effect of the
blockage ratio for different constant values of the Weissenberg number with β = 1/9
and α = 0.02. These results show a stabilizing effect of the addition of the cylinder
which is characterized by a supercritical behaviour close to the bifurcation point AP2

=

a(1−Φ)+ b, where values of a and b are shown in figure 12.
Previous experimental studies with the standard cross-slot geometry (Arratia

et al. 2006; Pathak & Hudson 2006; Haward et al. 2012a; Sousa, Pinho & Alves
2018) have shown that by increasing the Weissenberg number to higher values,
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FIGURE 13. (Colour online) Visualization of the flow pattern and schematic representation
of characteristic lengths used in the definition of the asymmetry parameter in our
experiment for the standard cross-slot geometry (Φ = 0) at Re = 6 × 10−6 for
solutions of (a) 70 : 30 glycerine–water Newtonian fluid and (b) 190 ppm PAA in 70 : 30
glycerine–water viscoelastic fluid at W̄i = 0.8. Fluid with the fluorescent dye is injected
from right inlet arm whereas the fluid without dye is injected from left.

one can potentially trigger a second time-dependent instability. A numerical study
of shear-thinning sPTT fluids conducted by Cruz et al. (2016) has also shown that
the critical values of Weissenberg number for the onset on instability for both the
steady symmetry-breaking and the time-dependent instabilities are a function of the
cross-section aspect ratio (AR = height/width) and the shear-thinning properties of
the fluid (i.e. the α parameter in the sPTT model). In Cruz et al. (2016), it was
shown that once the aspect ratio is sufficiently small, depending on the value of
the α parameter, the flow distribution can potentially switch directly from the steady
symmetry state to the time-dependent instability. In order to test our hypothesis that
a cylinder can delay the steady symmetry-breaking instability, we extend our analysis
from 2-D numerical simulations to a series of experiments using the flow-visualization
approach introduced in § 3. For this purpose, we use two cross-slot geometries with
cross-section aspect ratio of two, AR = 2, one standard cross-slot geometry and one
cross-slot geometry with a cylinder at the geometrical centre with Φ = 0.55. This
geometry is selected to best approximate a 2-D channel and observe the steady
asymmetry in the standard geometry based on the results of Cruz et al. (2016).

A florescent dyed fluid is injected from the right inlet while undyed fluid is
pumped in from the left inlet, both at the same flow rate, to visualize the flow
distribution in the studied geometries. By increasing the flow rate, we are able
to change the Weissenberg number from 0.1 up to 200. Our results suggest that
beyond a critical value of the Weissenberg number, W̄icr ≈ 0.46, the symmetry of
flow is broken in agreement with previous studies (Arratia et al. 2006; Sousa et al.
2018). In the standard cross-slot geometry, figure 13 shows the flow distribution
in symmetric Newtonian flows and a steady asymmetric flow for 190 ppm PAA in
70 : 30 glycerine–water viscoelastic fluid at W̄i = 0.8 and Re = 6 × 10−6. To better
investigate the symmetry-breaking instability we define an experimental asymmetry
parameter as APe = ((H̃11− H̃12)+ (H̃22− H̃21))/2W̃. A schematic definition of
H̃11, H̃12, H̃21 and H̃22 is illustrated in figure 13(a).
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FIGURE 14. (Colour online) Variation of the asymmetry parameter against the
Weissenberg number for 190 ppm PAA in 70 : 30 glycerine–water viscoelastic fluid
in standard cross-slot geometry.

0.5 mm 0.5 mm

(a) (b)

Instant 1 Instant 2

FIGURE 15. Flow visualization at different instants of the oscillation cycle at the centre
of the standard cross-slot geometry at W̄i= 277. Fluid with the fluorescent dye is injected
from right inlet arm whereas the fluid without dye is injected from left.

In figure 14, we show that the symmetry-breaking instability in the standard
cross-slot geometry which, near the bifurcation point, follows a supercritical growth
was also observed in our 2-D numerical simulations. As the Weissenberg number is
increased to higher values, a time-dependent symmetry-breaking instability develops
at W̄i ≈ 92 which oscillates between two states (see figure 15) with a period of
approximately 5λ̄ (s). Unfortunately, our experimental protocol was insufficient to
characterize this time dependency more quantitatively.

Following the benchmark of our experimental protocol, we replace the standard
cross-slot geometry with a modified geometry with Φ = 0.55. In figure 16, the
symmetric distributions of the flow field for both the Newtonian fluid and 190 ppm
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0.5 mm 0.5 mm

Steady symmetry (Wi = 0) Steady symmetry (Wi = 2.3)

(a) (b)

FIGURE 16. Visualization of the flow pattern in cross-slot geometry with Φ = 0.55 at
Re=2×10−5 for solutions of (a) 70 : 30 glycerine–water Newtonian fluid and (b) 190 ppm
PAA in 70 : 30 glycerine–water viscoelastic fluid at W̄i = 2.3. Fluid with the fluorescent
dye is injected from right inlet arm whereas the fluid without dye is injected from left.

0.5 mm 0.5 mm

Instant 1 Instant 2

(a) (b)

FIGURE 17. Flow visualization at different instants of the oscillation cycle at the centre
of the cross-slot geometry with Φ = 0.55 and W̄i= 18.5. Fluid with the fluorescent dye
is injected from right inlet arm whereas the fluid without dye is injected from left.

PAA in 70 : 30 glycerine–water viscoelastic fluid at W̄i = 2.3 and Re = 2 × 10−5 are
presented. Here, unlike the standard cross-slot geometry where the purely elastic
symmetry-breaking instability was triggered at W̄icr = 0.46, we were able to retain
symmetric flow up to W̄icr ≈ 3.5, qualitatively supporting our numerical simulations
regarding the stabilizing effect of the addition of a cylinder.

In the experiments, unlike the prediction from 2-D numerical simulations, we have
noticed that by increasing the Weissenberg number to higher values, the flow field
switches directly to an unsteady oscillatory instability (figure 17) with no evidence
of the steady symmetry-breaking instability. This issue may potentially be related to
the effect of finite cross-section aspect ratio in our experiments which was neglected
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FIGURE 18. (Colour online) Boundary between the symmetric and asymmetric flow for
different Wi and blockage ratio for α = 0.02 and β = 1/9.

in our 2-D simulations. Having shown experimentally that the cylinder does indeed
stabilize the flow field significantly, we return to numerical simulations to probe
additional effects and to see if we can quantify how the blockage ratio delays onset.

Figure 18 shows the ‘stability diagram’ for the modified geometry. As can be seen,
above the black dashed line (the data are shown by red filled diamonds) are the
regions in which the flow exhibits a steady asymmetric distribution. Our simulations
suggest that as the size of the cylinder approaches zero, its modifying effects on the
symmetry-breaking instability fade away and the critical value of the Weissenberg
number for the onset of the instability approaches the same value as in the standard
cross-slot geometry. One should note that a combination of conservation of mass (i.e.
(∂Ur/∂r)+ (1/r)(∂Uθ/∂θ)=0) with the no-slip boundary condition (i.e. velocity at the
cylinder wall is equal to zero and due to the no-slip boundary condition ∂Uθ/∂θ |r=Φ =
0) requires the strain rate at the stagnation point at the cylinder to become zero. So, by
replacing the free stagnation point with pinned stagnation points, independent of the
cylinder size, a non-zero value of strain rate at the stagnation point is replaced with a
zero value once the no-slip boundary condition is applied (as confirmed in figure 19).

By changing the applied boundary condition at the cylinder surface at a constant
blockage ratio, we attempt to analyse the onset sensitivity of the purely elastic
instability with the magnitude of the strain rate in the vicinity of the cylinder. In
figures 19 and 20, the strain rate distribution along the symmetry lines before the
onset of instability is plotted using both slip and no-slip boundary conditions at the
cylinder surface. The obtained results suggest that by replacing the no-slip boundary
condition with the slip boundary condition, although the zero strain rate value at
the stagnation point is replaced by a larger non-zero value (approximately 3.5 times
larger than the maximum value of strain rate at the standard cross-slot geometry), the
critical value of the Weissenberg number for which the instability is triggered stays
almost constant at least in the small-aspect-ratio limit (i.e. Wicr ≈ 0.51 for Φ = 0.05).

As shown in figure 21, the effects of the geometry modification and change of
the boundary condition for Φ = 0.10 are essentially local and mainly influence the
flow distribution near the central region. Our results presented in figures 18–21 show
that in the limit where the blockage ratio tends to zero (Φ→ 0), even by applying
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FIGURE 19. (Colour online) Effect of blockage ratio parameter on the flow strain rate
before the start of instability for α = 0.02 and β = 1/9 along (a) horizontal line and (b)
vertical line. (The critical values of Wi for Φ = 0, 0.25, 0.40, 0.50, 0.55, 0.60, 0.65 are
0.51, 0.54, 0.59, 0.66, 0.7, 0.78, 0.9, respectively.)

fundamental changes on the kinematic characteristics of the flow field in the vicinity
of the stagnation point (changing both the strain rate value and the curvature of
streamlines), the critical value of the Weissenberg number for which the instability
is triggered tends towards its critical value for the standard cross-slot geometry (i.e.
Wicr = 0.51). These data strongly suggest the symmetry-breaking instability in the
cross-slot geometry is triggered at a location away from the geometric centre and
closer to the corner regions as it is essentially independent of the kinematic properties
of the flow near the stagnation point.

From the results presented we conclude that the high shear rate along with the high
streamline curvature near the four cross-slot corners is more likely to be responsible
for the transition to an asymmetric flow pattern and we therefore apply the ideas
developed by McKinley et al. (1996) to investigate this possibility. Following the
numerical procedure explained by Cruz et al. (2016), we have plotted the local
distribution of the M parameter (1.1) in figure 22. Local illustration of the M
parameter can be an effective way to observe the location of instability-driving
regions within the flow field. As expected from previous results, the maximum value
of the M parameter appears near the corners which is related to the high curvature
of streamlines and shear rate in this region (Hinch 1993).
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FIGURE 20. (Colour online) Effect of slip boundary condition at the cylinder on flow
strain rate along (a) horizontal line and (b) vertical line for creeping Newtonian flows and
viscoelastic fluids before the start of the purely elastic instability for α = 0.02, β = 1/9
and Φ = 0.05.

One of the interesting properties of the M parameter is related to its ability to
scale purely elastic instabilities with respect to both rheological and geometrical
properties of the problem (McKinley et al. 1996; Pakdel & McKinley 1998; Alves
& Poole 2007; Zilz et al. 2012). Here, we use the approach suggested by McKinley
et al. (1996) to model the effect of blockage ratio. An initial analysis suggests that
neither D̃ nor W̃ provides a good approximation of the characteristic curvature of
the streamlines in the cross-slot cylinder geometry, and in fact this characteristic
length scale is influenced by both of these parameters. In appendix A, using an
approximate analytical solution for creeping Newtonian flows, we show that the
streamline curvature should scale as

1

<̃
=

1
W̃
(a+ bΦ2), (4.2)

where a and b are undetermined constants. The results presented in figure 22 clearly
show that the highest value of the M parameter appears in the vicinity of the corner’s
shear-dominated regions. Assuming a steady-state purely shear flow for an Oldroyd-B
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FIGURE 21. (Colour online) Effect of (a) geometry modification and (b) slip boundary
condition on the magnitude of the velocity field for creeping Newtonian fluid flows.

fluid (to which the sPTT model approaches in the α→ 0 limit), one may scale the
normal-stress component in (1.1) as

τ̃ss = 2λ̃η̃p ˜̇γ
2. (4.3)

Using Ũb and <̃ as references for the velocity field and the length scale, the
reference shear rate may be expressed as ˜̇γ = Ũb/<̃. Substitution of these equations
into the dimensionless M criteria (1.1) results in the following condition for the onset
criteria of purely elastic instability in the modified cross-slot geometry:

Mc =

√
λ̃Ũb

W̃
(a+ bΦ2)2(1− β)

λ̃Ũb

W̃
(a+ bΦ2), (4.4)

where a, b and Mc are unknown constants. However, factoring out the quantity
(λ̃Ũb/W̃)2 and with some rearrangement one can simplify the equation into

1
Wicr
= ā+ b̄Φ2, (4.5)

where ā = a
√

2(1− β)/Mc and b̄ = b
√

2(1− β)/Mc are now the unknown constants.
Figure 23 shows the fit obtained based on (4.5) and our 2-D numerical simulations.
From this prediction (4.5), one can show ∂Wicr/∂Φ = 0 once Φ → 0, suggesting
that, in the limit Φ → 0, the modifying effect of the addition of a cylinder on the
critical kinematic properties of the flow field and the onset criteria of instability fades
away (figure 18 also illustrates this point). Bearing in mind that (4.5) is obtained
using a pure-shear flow assumption (i.e. (4.3)) and scaling of streamline curvature is
obtained using a Taylor expansion in the vicinity of corners, the surprisingly good
agreement between the analytical prediction (4.5) and numerical simulations once
again suggests that the instability is triggered due to the shear flow near the corners
and not the elongational-dominated flow at the stagnation point itself. Finally, to test
the sensitivity of our chosen model parameters, in appendix B we show how the
extensibility parameter in the sPTT model modifies the critical conditions and in
appendix C we show that the same results can be observed with the FENE-P model
in certain parameter limits.
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FIGURE 22. (Colour online) Illustrative contours of M parameter for α = 0.02 and
β = 1/9.

5. Conclusions

In this work a passive control mechanism is introduced to the cross-slot geometry
by the addition of a cylinder at the geometric centre of the domain. We use a series
of numerical simulations and an approximate analytical analysis, using the definition
of the M parameter introduced by McKinley et al. (1996), to scale and analyse
the stabilizing effect of the proposed geometrical modification on the onset criteria
for a purely elastic instability and compare these results to our experimental data.
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FIGURE 23. (Colour online) Variation of critical values of Weissenberg number against the
blockage ratio parameter for α= 0.02 and β = 1/9 (analytical fit: 1/Wicr =−1.9578Φ2

+

1.9858).

Our work suggests that, in the limit Φ → 0, replacing the finite strain rate ‘free’
stagnation point flow with zero strain rate ‘pinned’ stagnation points at the cylinder
surface does not affect the onset for the purely elastic instability. We extend our
simulations by applying a complete slip boundary condition at the cylinder thereby
changing the maximum strain rate from zero to approximately 3.5 times the strain
rate in the standard cross-slot geometry, to show that the kinematic properties of the
flow distribution around the stagnation point do not play any significant role in the
onset of the purely elastic symmetry-breaking instability and that the critical values
of the Weissenberg number for which the instability is triggered, in both cases, tend
toward the critical value for the standard cross-slot geometry (i.e. Wi≈ 0.51). Finally,
by plotting the local distribution of the M parameter, we show that the location
of instability-driving regions appears in the vicinity of the corners which can be
attributed to the high deformation rate and strong streamline curvature in this region.
We also show how the effect of blockage ratio scales with the onset criteria and thus
can be successfully used to predict onset conditions.
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Appendix A. Analytical approach for determining the Mcr parameter
In this appendix, an approximate analytical solution for the flow distribution of a

creeping Newtonian fluid along a diagonal line between a corner and a stagnation
point is obtained (a schematic of the problem is depicted in figure 1). Moving to a
cylindrical coordinate system, the components of the velocity vector in terms of the
stream function are

Ũθ =
∂ψ̃

∂ r̃
, Ũr =−

1
r̃
∂ψ̃

∂θ
. (A 1a,b)
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For steady Newtonian flows, the conservation of momentum equation using the
definition of stream function may be presented as

∇
4ψ̃ = 0. (A 2)

Separation of the stream function into a function of a radial line f (r̃) and a function
of the polar angle which is periodic with the wavenumber m allows us to obtain the
general form of the analytical solution for (A 2) as

ψ̃ = (C1r̃m
+C2r̃−m

+C3r̃m+2
+C4r̃m−2)eimθ . (A 3)

The analytical solution obtained by Moffatt (1964) for the creeping flow of Newtonian
fluids around a sharp corner implies that the stream function must have the following
form:

ψ̃ = Ar̃1.5445(cos(0.3415π) cos(1.5445θ)− cos(1.158π) cos(0.4555θ)). (A 4)

Using the general form of the stream function solution (A 3), we aim to find an
approximate analytical expression for the stream function which as r→ 0 the solution
asymptotes to the exact solution presented by Moffatt (1964) (i.e. equation (A 4)). One
should note that 1<m< 3, which implies that the velocity is not singular at r̃= 0 and
the velocity gradient has a bounded value far from the corner. Equation (A 4) shows
that as r̃→ 0 the stream function must have wavenumbers (the m parameter in (A 3))
of 0.4555 and 1.5445.

Using the suggested values for m in (A 3), the stream function is now

ψ̃ = Ar̃1.5445(cos(0.3415π) cos(1.5445θ)− cos(1.158π) cos(0.4555θ))
+Br̃2.4555 cos(0.4555θ). (A 5)

Considering the following constraints at θ = 0:

Ũθ |r̃=L̃= 0, (A 6)∫ L̃

0
Ũθ dr̃= 1

2 ŨBW̃, (A 7)

the unknown constants can then be calculated as

A=
0.9938W̃ŨB

L̃1.5445
, B=

−0.8477W̃ŨB

L̃2.4555
. (A 8a,b)

Using (A 1), one can then calculate the components of the velocity vector along the
line θ = 0 with L̃=

√
2/2W̃ as

Ũθ = 3.5551ŨB

(
r̃

W̃

)0.5445

− 4.8749ŨB

(
r̃

W̃

)1.4555

, Ũr = 0. (A 9a,b)

A comparison between this approximate analytical solution and the numerical
result is shown in figure 24 where a good agreement can be observed. Knowing
the functional form of the velocity (A 5), the curvature of the streamline may be
calculated as (Cruz et al. 2016; Haward et al. 2016)

<̃ = (|ũ|)3/
(∣∣∣∣ũ× Dũ

Dt̃

∣∣∣∣) , (A 10)
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FIGURE 24. (Colour online) Velocity distribution along the radial direction at θ = 0 for
both the analytical and numerical simulations for standard cross-slot geometry, Newtonian
fluid and Re= 0.01.

where Dũ/Dt̃ is the material derivative of the velocity vector. Using the definition of
the stream function, one can calculate 1/<̃ as follows:

1

<̃
=

1.538(L̃)0.911
− 3.811r̃0.911

(4.163(L̃)0.911 − 4.163r̃0.911)r̃
. (A 11)

One should notice that the present analytical solution is only an approximate solution
for creeping Newtonian fluid flow between the corner of the cross-slot geometry and
the stagnation point and so the obtained stream function does not satisfy the boundary
conditions at the walls and does not present a correct θ dependency away from θ = 0.

To include the effect of the cylinder at the centre of the cross-slot geometry, we
consider the diagonal gap length L̃ to be simply

L̃=

√
2

2
W̃ −

D̃
2
. (A 12)

Using (A 12) and some simplification with a Taylor expansion around the corner of
the cross-slot geometry, the 1/<̃ term can be expressed as

1

<̃
=

0.369

W̃
(

r̃

W̃

)(1− 3.388
(

r̃

W̃

)0.911

(1+ 0.642Φ)
)

×

(
1+ 1.366

(
r̃

W̃

)0.911

(1+ 0.642Φ)
)
. (A 13)

Equation (A 13) suggests a second-order dependency of the streamline curvature
with the blockage ratio parameter. Here we assume that, prior to instability,
viscoelasticity does not significantly affect the scaling correlation between the
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streamline curvature and the blockage ratio and we will proceed to scale the M
parameter with the blockage ratio parameter based on (A 13). In the end we will
check the accuracy of this hypothesis by plotting the obtained approximate analytical
expression with our numerical results.

For an Oldroyd-B fluid, assuming steady-state simple shear, the second term on the
right-hand side of (1.1) can be simplified to

τ̃11

η̃0 ˜̇γ
= 2(1− β)λ̃ ˜̇γ . (A 14)

Considering ŨB as our reference velocity, and using the derived <̃ parameter as our
reference length (i.e. equation (4.2)), after some simplifications, one can state

1
Wic
=

a
√

2(1− β)
Mc

+Φ2 b
√

2(1− β)
Mc

≡ a∗ + b∗Φ2, (A 15)

so that a plot of the reciprocal of the critical condition (1/Wic) against Φ2 should
be linear with intercept a∗ and slope b∗ (figure 23 shows this plot confirming the
approximate analysis).

Appendix B. Effect of extensibility parameter in sPTT model

In this appendix, the effect of the extensibility parameter α of the sPTT model
on the purely elastic symmetry-breaking instability is investigated. In the limiting
case where α→ 0 the sPTT model reduces to the Oldroyd-B model which predicts
a constant viscosity for the viscoelastic materials and the elastic stress in a pure
shear flow can be scaled as 2λ̃η̃p ˜̇γ

2. In the sPTT model, for a non-zero value of
α, due to shear-thinning properties of viscosity, the magnitude of first normal-stress
difference reduces and scales as 2λ̃η̃p ˜̇γ

n, where n < 2. This suggests that the local
value of the Weissenberg number (the ratio of elastic to viscous stress) reduces
as the α parameter increases once the flow is subject to a constant shear rate. In
figure 25 the variation of the asymmetry parameter versus Wi for different values of
α is plotted, showing a supercritical growth near the bifurcation point. As shown, on
increasing the extensibility parameter the critical value of the Weissenberg number for
the onset of symmetry-breaking instability is delayed to higher values which may be
a consequence of the shear-thinning of the first normal-stress difference. In figure 26,
the variation of the critical Weissenberg number Wicr with the α parameter is shown.

Appendix C. Two-dimensional simulations using the FENE-P model

In this appendix, we use the FENE-P model as a second constitutive equation to
match the rheological properties of our model with the sPTT constitutive equation and
show that the same effect is observed regardless of constitutive equation. Expanding
the upper-convective derivative in (2.6), the FENE-P model can be rewritten as

τ̃ + λ̃

(∇τ̃ 1
f2

)
+ τ̃

∇(
1
f2

)= aη̃p

f2
(∇ũ+∇ũT

)− aη̃p

(
D
Dt̃

(
1
f2

))
I. (C 1)
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FIGURE 25. (Colour online) Effect of extensibility parameter on symmetry-breaking
instability of flow for Φ = 0.50 and β = 1/9.
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FIGURE 26. (Colour online) Effect of extensibility parameter on critical Weissenberg
number for Φ = 0.50 and β = 1/9.

In ideal steady-state shear/extensional flows, the term (
∇

1 /f2) is equal to zero and
in the limit where L2 finds a large value (a→ 1), the FENE-P model reduces to
(Oliveira 2009) (

1+
λ̃(Tr(τ̃ ))
η̃pL2

)
τ̃ + λ̃

∇

τ̃= η̃p(∇ũ+∇ũT
). (C 2)

This way of expressing the FENE-P model suggests that in ‘viscometric’ flows,
assuming L2

� 1, both the FENE-P and sPTT models are identical when α = 1/L2

(cf. equation (C 2) and equations (2.3) and (2.5)). In figure 27, this point is illustrated
by plotting viscometric functions of both the sPTT and FENE-P models with
α = 2 × 10−4 and L2

= 5000, respectively, with β = 1/9. Our simulations with
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FIGURE 27. (Colour online) Comparison of rheological properties for (a) planar
elongational viscosity and (b) shear viscosity and the first normal stress between sPTT
(α= 2× 10−4) and FENE-P (L2

= 5000) models with β = 1/9, in standard pure shear and
planar elongational flows.
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FIGURE 28. (Colour online) Variation of asymmetry parameter with the Weissenberg
number for sPTT (α = 2 × 10−4) and FENE-P (L2

= 5000) models with β = 1/9 in a
standard cross-slot geometry.
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FIGURE 29. (Colour online) Comparison of rheological properties for (a) planar
elongational viscosity and (b) shear viscosity and the first normal stress between sPTT
(α= 0.02) and FENE-P (L2

= 58) models with β = 0.2, in standard pure shear and planar
elongational flows.

L2
= 5000 and α = 2 × 10−4 shown in figure 28 suggest that once the viscometric

functions are matched the instability is triggered at almost the same critical value of
the Weissenberg number which may, at first glance, suggest that the critical condition
in which the instability is triggered is related to the steady-state viscometric properties
of the model. However, one should note that very large values of L2 in the FENE-P
model and very small values of α in the sPTT model may potentially conceal the
difference between these two models since in the limit L2

→∞ or α→ 0 both the
FENE-P and sPTT models will reduce to the Oldroyd-B model (Bird et al. 1987).

In another attempt, to better investigate the effect of rheological properties of the
fluids, we try to fit the viscometric functions using a smaller value of L2 and a larger
value of the α parameter in these two models. Figure 29 shows the fit obtained
between viscometric function of sPTT model with α= 0.02 and FENE-P model with
L2
= 58 at a fixed value of β = 0.2. Interestingly, as shown in figure 30, although

the steady-state viscometric functions between the two constitutive equations are in
good agreement, the critical values of the Weissenberg number for the onset of the
instability are significantly different in these two models. This result provides further
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FIGURE 30. (Colour online) Variation of asymmetry parameter with the Weissenberg
number for sPTT (α = 0.02) and FENE-P (L2

= 58) models with β = 0.2 in a standard
cross-slot geometry.

evidence that the kinematic properties of the flow triggering the instability are, most
probably, related to the non-homogeneous aspects of this complex flow and not solely
related to the stagnation point.
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