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Abstract We answer in a probabilistic setting two questions raised by Stokolos in a private communi-
cation. Precisely, given a sequence of random variables {Xk : k ≥ 1} uniformly distributed in (0, 1) and
independent, we consider the following random sets of directions

Ωrand,lin :=

{
πXk

k
: k ≥ 1

}
and

Ωrand,lac :=

{
πXk

2k
: k ≥ 1

}
.

We prove that almost surely the directional maximal operators associated to those sets of directions
are not bounded on Lp(R2) for any 1 < p < ∞.

Keywords: maximal operator; differentiation of integrals; harmonic analysis; lacunary sets of finite
order; real analysis
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We denote by R the collection of all rectangles in the plane; if R belongs to R, we denote
by ωR ∈ (0, π) the angle that its longest side makes with the Oy-axis. Without loss of
generality, we will always suppose that we have actually 0 ≤ ωR ≤ π

2 .

1. Introduction

Given any set of directions Ω ⊂ S1, one can define the directional family of rectangle RΩ

as

RΩ := {R ∈ R : ωR ∈ Ω}
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Perron’s capacity of random sets 961

and then consider the directional maximal operator MΩ defined for f : R2 → R locally
integrable and x ∈ R2 as

MΩf(x) := sup
x∈R∈RΩ

1

|R|

∫
R

|f | .

The boundedness property of the operatorMΩ is deeply related to the geometric structure
of the set of directions Ω. For example, in the case where Ω = S1, the following obstruction
of the Euclidean plane (which is also true in higher dimension) allows us to completely
describe the boundedness property of the operator MS1 .

Theorem 1. (Kakeya blow with R). Given any large constant A � 1, there exists
a finite family of rectangles {Ri : i ∈ I} ⊂ R such that we have∣∣∣∣∣⋃

i∈I

TRi

∣∣∣∣∣ ≥ A

∣∣∣∣∣⋃
i∈I

Ri

∣∣∣∣∣ .
Here, we have denoted by TR the rectangle R translated along its longest side by its own
length

The reader can find a proof of this Theorem in [4]: it follows that given any large
constant A � 1, there exists a bounded set E satisfying the following estimate∣∣∣∣{MS11E ≥ 1

2

}∣∣∣∣ ≥ A |E| .

It suffices to set E = ∪i∈IRi and to observe that we have the following inclusion:⋃
i∈I

TRi ⊂
{
MS11E ≥ 1

2

}
.

The previous estimate easily implies the following.

Theorem 2. The operator MS1 is not bounded on Lp for any p < ∞.

Far from being exotic, Theorem 1 has deep implications in harmonic analysis: for
example, it is a central part of Fefferman’s work in [4] where he disproves the famous
Ball multiplier conjecture. A natural question is the following: given a set of directions Ω,
is it possible to make a Kakeya blow only with the directional family RΩ? This question
has been investigated by different analyst among which are [2, 5–7, 9] to cite a few. In [1],
Bateman answered this question as he classified the Lp(R2) behaviour of those operators
according to the geometry of the set Ω. Precisely, he proved that the notion of finitely
lacunary for a set of directions were the correct one to consider.

Theorem 3. (Bateman). We have the following alternative:

• If Ω is finitely lacunary, then MΩ is bounded on Lp for any p> 1.
• If Ω is not finitely lacunary, then it is possible to make a Kakeya blow with the
family RΩ. In particular, the operator MΩ is not bounded on Lp for any p < ∞.

https://doi.org/10.1017/S0013091523000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000482


962 A. Gauvan

Let us define the notion of finite lacunarity following a nice presentation made by
Kroc and Pramanik [8]: we start by defining the notion of lacunary sequence and then
the notion of lacunary set of finite order. We say that a sequence of real numbers
L = {`k : k ≥ 1} is a lacunary sequence converging to ` ∈ R when there exists 0 < λ < 1
such that

|`− `k+1| ≤ λ|`− `k|

for any k. For example, the sequences
{

1

2k
: k ≥ 2

}
and

{
1
k! : k ≥ 4

}
are lacunary. We

define now by induction the notion of lacunary set of finite order.

Definition 4. (Lacunary set of finite order). A lacunary set of order 0 in R is
a set which is either empty or a singleton. Recursively, for N ∈ N∗, we say that a set Ω
included in R is a lacunary set of order at most N+ 1 – and write Ω ∈ Λ(N+1) – wether
there exists a lacunary sequence L with the following properties: for any a, b ∈ L such
that a< b and (a, b) ∩ L = ∅, the set Ω ∩ (a, b) is a lacunary set of order at most N, that
is, Ω ∩ (a, b) ∈ Λ(N).

For example, the set

Ω :=
{ π

2k
+

π

4l
: k, l ∈ N, l ≤ k

}
is a lacunary set of order 2. In this case, observe that the set Ω cannot be re-written as
a monotone sequence, since it has several points of accumulation. We can finally give a
definition of a finitely lacunary set.

Definition 5. (Finitely lacunary set). A set Ω in [0, π) is said to be finitely
lacunary if there exists a finite number of set Ω1, . . . ,ΩM , which are lacunary of finite
order such that

Ω ⊂
⋃

k≤M

Ωk.

2. Can we apply Bateman’s Theorem?

A classic example of set which is known to be not finitely lacunary is the set

Ωlin =
{π
n

: n ∈ N∗
}
.

Indeed, the classic construction of Perron trees shows that it is possible to make a Kakeya
blow with the family RΩlin

: hence, an application of Bateman’s Theorem implies that
Ωlin is not finitely lacunary. The second classic example of set which is known to be
finitely lacunary is the set

Ωlac =
{ π

2n
: n ∈ N∗

}
.

One can see that the set Ωlac is finitely lacunary by definition, and it was in [9] that Nagel,
Stein and Waigner proved that the maximal operator MΩlac

is bounded on Lp(R2) for
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any 1 < p < ∞; their proof relies on Fourier analysis. Also, let us say that the com-
prehension of the sets Ωlin and Ωlac is important because they are the most simple (and
smallest) cases of infinite sets which yield maximal operator having different boundedness
properties.
However, even if Bateman’s Theorem is extremely satisfying, it appears to be difficult

to decide if a given set Ω is finitely lacunary or not. The most striking example was raised
by Stokolos: at the present time, it is not known if the set

Ωsin,lac :=

{
π sin(n)

2n
: n ∈ N∗

}
is finitely lacunary or not. The main problem of this set of directions is that we have a
very poor control on the deterministic sequence {sin(n) : n ≥ 1} and that initially, the
set Ωlac is finitely lacunary; hence, the perturbations are quite difficult to handle. In [3],
with D’Aniello and Moonens, we were able to show that the following set

Ωsin,lin :=

{
π sin(n)

n
: n ∈ N∗

}
is not finitely lacunary (this was also a set considered by Stokolos). More precisely, we
studied the maximal operatorMΩsin,lin

associated, and improving on concrete techniques,

we proved that this operator is not bounded on Lp(R2) for any 1 < p < ∞: the heart of
the method relied on the introduction of the Perron’s capacity of a set of directions. We
need some notations to recall our results: given an infinite set of directions Ω ⊂ S1 whose
only point of accumulation is 0 and we denote, for notational convenience, by Ω−1, the
set
{

π
u : u ∈ Ω

}
, that is

Ω−1 :=
π

Ω
,

and we order Ω−1 as a strictly increasing sequence {uk : k ∈ N∗}. With those notations,
we define the Perron’s factor of Ω as

G(Ω) := sup
k≥1
l≤k

(
uk+2l − uk+l

uk+l − uk
+

uk+l − uk

uk+2l − uk+l

)
.

In [6], Hare and Ronning proved the following Theorem.

Theorem 6 (Hare and Ronning). If we have G(Ω) < ∞, then it is possible to make
a Kakeya blow with the family RΩ.

It turns out that it is difficult to compute the Perron factor of the set

Ωsin,lin =

{
π sin(n)

n
: n ≥ 1

}
since the oscillation of the cosinus prevent us to obtain a good description of the increasing
sequence {uk : k ∈ N∗} associated to Ωsin,lin. Based on a careful reading of the proof of
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964 A. Gauvan

Theorem 6, for an arbitrary set of directions Ω included in S1, we define its Perron’s
capacity as

P (Ω) := lim inf
N→∞

inf
U⊂Ω−1

#U=2N

G(Ω) ∈ [2,∞],

where as before

G(Ω) = sup
k,l≥1

k+2l≤2N

(
uk+2l − uk+l

uk+l − uk
+

uk+l − uk

uk+2l − uk+l

)

if U = {u1 < · · · < u2N }. In [3], we proved the following (in contrast with Hare and
Ronning Theorem, we do not assume that the set Ω is ordered).

Theorem 7. (D’Aniello, G. and Moonens). For any set of directions Ω, if we
have

P (Ω) < ∞,

then it is possible to make a Kakeya blow with the family RΩ. In particular, for any
p < ∞, one has ‖MΩ‖p = ∞.

Loosely speaking, if P (Ω) < ∞, then the set Ω contains arbitrary large set which are
(more or less) uniformly distributed, and this geometric pattern prevents the set Ω to
be finitely lacunary. The advantage of Theorem 7 is that it allows us to make effective
computation. However, as mentioned earlier, the following case is still unsettled.

Question 1. Is the following set of direction

Ωsin,lac :=

{
π sin(n)

2n
: n ∈ N∗

}
finitely lacunary or not?

3. Results

Our result concerns random sets of directions which are meant to give a generic compre-
hension of the two classic examples Ωlin and Ωlac when they are randomly perturbated.
Precisely, we consider the following random sets of slopes

Ωrand,lin :=

{
πXk

k
: k ≥ 1

}
and

Ωrand,lac :=

{
πXk

2k
: k ≥ 1

}
,

https://doi.org/10.1017/S0013091523000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000482


Perron’s capacity of random sets 965

where {Xk : k ≥ 1} are random variables uniformly distributed in (0, 1) and independent.
To begin with, we prove the following Theorem.

Theorem 8. The Perron’s capacities of Ωrand,lin is finite almost surely, that is, we
have almost surely

P (Ωrand,lin) < ∞.

In some sense, Theorem 8 means that if a set Ω presents structured patterns – like
large uniformly distributed sequence – then a small perturbation of Ω will still exhibit
those patterns. The second result reads as follow.

Theorem 9. The Perron’s capacities of Ωrand,lac is finite almost surely, that is, we
have almost surely

P (Ωrand,lac) < ∞.

The proof of Theorems 8 and 9 relies on the possibility to compute effectively the
Perron’s capacity of the random sets Ωrand,lin and Ωrand,lac.

4. Proof of Theorem 8

We wish to prove that the Perron’s capacity of Ωrand,lin is finite almost surely. We are
simply going to prove that the set Ω−1

rand,lin contains small perturbation of arbitrarily long
homogeneous sets. We say that a set H of the form

H := Ha,N = {ka : 1 ≤ k ≤ 2N}

for some integer a ∈ N∗ is a homogeneous set. The following claim is easy.

Claim 1. For any a,N ∈ N, one has G(Ha,N ) = 2.

We wish to perturb a little a homogeneous set H into a set H ′ such that the Perron’s
factor of H ′ is still controlled. Precisely, fix any a,N ∈ N∗ and let ε be an arbitrary
function

ε : Ha,N → (0,∞).

Define then the set Ha,N (ε) as

H ′ := Ha,N (ε) := {(1 + ε(l))l : l ∈ Ha,N} .

If the perturbation ε is small enough compared to the integer N, one can control uniformly
G(H ′).

https://doi.org/10.1017/S0013091523000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000482


966 A. Gauvan

Proposition 1. With the previous notations, if we have

2N‖ε‖∞ ≤ 1

2
,

then we have G(Ha,N (ε)) < 6.

We are now ready to prove Theorem 8. We fix a large integer N ∈ N and consider the
following set of indices

EN :=
{
k ∈ N : |Xk − 1| ≤ 2−N

}
.

In other words, an integer k belongs to EN when Xk is close to 1 with precision 2−N .
We claim that this random set EN contains almost surely large (with at least 2N points)
homogeneous sequences.

Claim 2. For any N ≥ 1, the set EN contains a homogeneous set of cardinal 2N

almost surely.

Proof. Observe that for any a ∈ N∗, the following probability P(Ha,N ⊂ EN ) is
independent of a: indeed since the random variables {Xk : k ≥ 1} are independent and
uniformly distributed, we have

P(Ha,N ⊂ EN ) =
∏

k∈Ha,N

P
(
|Xk − 1| ≤ 2−N

)
=

1

2N2N
.

Hence, we fix a sequence {ai}i≥1 satisfying for any i 6= j

Hai,N
∩Haj,N

= ∅.

For example, setting ai = 22N(i+1) works since we have ai2
N < ai+1 for any i ≥ 1. In

particular, this means that the events

{
(
Hai,N

⊂ EN

)
: i ≥ 1}

are independent, and since we have∑
i≥1

P(Hai,N
⊂ EN ) = ∞,

an application of Borel–Cantelli lemma yields the conclusion. �

We can now conclude the proof: we define a perturbation ε for any n ≥ 1 as

1 + ε(n) = X−1
n .

We fix a large integer N � 1, and we know that almost surely there exists an integer
a ∈ N∗ such that Ha,N ⊂ EN . Observe now that by definition one has the following
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inclusion

Ha,N (ε) ⊂ Ω−1
rand,lin.

However, since Ha,N ⊂ EN and that it is not difficult to see that we have

‖ε|Ha,N
‖∞ . 2−N .

Indeed, for k ∈ Ha,N ⊂ EN , we have

|1 + ε(k)| =
∣∣∣∣ 1

1 + (Xk − 1)

∣∣∣∣ . 1 + 2 |Xk − 1| . 1 + 2−N .

It follows that we have P (Ωrand,lin) < 6 almost surely applying Proposition 1.

5. Proof of Theorem 9

We wish to prove that the Perron’s capacity of Ωrand,lac is finite almost surely. Observe
that if U is a set in R who is well distributed, then one can control its Perron’s capacity.

Claim 3. If we have δ > 0 and a set

U =
{
u1 < · · · < u2N

}
such that for any 1 ≤ i ≤ 2N − 1, we have

δ ≤ ui+1 − ui ≤ 3δ,

then one has G(U) . 1.

Proof. For any i, j such that i+ j ≤ 2N − 1, one has ui+j − ui ' jδ. Hence, i, j such
that i+ 2j ≤ 2N−1, we have

ui+2j − ui+j

ui+j − ui
+

ui+j − ui

ui+2j − ui+j
' 2jδ

jδ
+

jδ

2jδ
' 1.

Hence, we obtain G(U) . 1 as claimed �

We are going to prove the following proposition.
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Proposition 2. For any N ≥ 1, there exists almost surely a scale δ > 0 and a set
U ⊂ Ω−1

rand,lac such that

U :=
{
u1 < · · · < u2N−1

}
and for any i ≤ 2N−1, one has

δ < ui+1 − ui < 3δ.

Theorem 9 is a consequence of Claim 3 and Proposition 2: for any N, we can exhibit
almost surely a set U ⊂ Ω−1

rand,lac of cardinal 2N such that G(U) . 1, and so we obtain

P (Ωrand,lac) < ∞

as expected. The rest of the section is devoted to the proof of Proposition 2.

Proof of Proposition 2

We consider the following dyadic intervals for d ∈ N

Id :=
[
2d, 2d+1

]
.

We wish to obtain information on the distribution of the points of the set Ωrand,lac that
may be in the interval Id. We fix a large integer N � 1, and we divide each dyadic
interval Id into 2N intervals of same length, that is, for any 1 ≤ l ≤ 2N , we set

Id,l =

[
2d
(
1 +

l − 1

2N

)
, 2d
(
1 +

l

2N

)]
.

Claim 4. For any d ≥ 2N + 1 and any 1 ≤ l ≤ 2N , the probability

P
(

2d−l

Xd−l
∈ Id,l

)
:= pN,l

is independent of d.

Proof. By definition of Id,l, one has 2d−lX−1
d−l ∈ Id,l if and only if

2−l

(
1 +

l

2N

)−1

≤ Xd−l ≤ 2−l

(
1 +

l − 1

2N

)−1

.

One has

P
(
2d−lX−1

d−l ∈ Id,l
)
= 2−l

((
1 +

l − 1

2N

)−1

−
(
1 +

l

2N

)−1
)

:= pl,N

since the variable Xd−l is uniformly distributed in (0, 1). �
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We fix an extraction {ds : s ≥ 1} satisfying the following property

ds+1 − ds > 2N + 1

for any s ≥ 1; this growth condition will assure that the events we will consider are
independent and we will be able to apply Borel–Cantelli lemma when needed. Thanks to
Claim 4 and independence, one can see that for any s ≥ 1, the following probability is
independent of s

P

 ⋂
l≤2N

(
2ds−l

Xds−l
∈ Ids,l

) =
∏

l≤2N

pN,l := ηN .

Now for any d ≥ 1, we consider the following event Ad,N defined as

Ad,N :=
⋂

l≤2N

{
Ω−1

rand,lac ∩ Id,l 6= ∅
}
.

In other words, the event Ad,N occurs when the random set Ω−1
rand,lac fills each subintervals{

Id,l : 1 ≤ l ≤ 2N
}
with at least one point. In particular, observe that we have

⋂
l≤2N

(
2d−l

Xd−l
∈ Id,l

)
⊂ Ad,N .

We claim that the union of those events

BN :=
⋃
d≥1

Ad,N

occurs almost surely.

Claim 5. One has P (BN ) = 1.

Proof. Indeed, we have

∑
s

P

 ⋂
l≤2N

(
2ds−l

Xds−l
∈ Ids,l

) =
∑
s

ηN = ∞.

Using Borel–Cantelli lemma, one obtains

P

⋃
s≥1

AN,ds

 = 1.

In particular, one has P(BN ) = 1. �
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We can now prove Proposition 2 since we have

P

 ⋂
N≥1

BN

 = 1.

Precisely, for any N ≥ 1, the event BN occurs almost surely, and this means that there
exists a (for each N, we just need one) dyadic interval Id such that

Ω−1
rand,lac ∩ Id,l 6= ∅

for any 1 ≤ l ≤ 2N . We let ul be one point in Ω−1
rand,lac ∩ Id,l, and we claim that the set

U :=
{
u2l : 1 ≤ l ≤ 2N−1

}
satisfy the condition of Proposition 2 with δ ' 2d−N . In particular, we have G(U) . 1
for U ⊂ Ω−1

rand,lac with arbitrary large cardinal. This yields almost surely

P (Ωrand,lac) . 1,

which concludes the proof.
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