AN INTEGRAL EQUATION FROM PHYTOLOGY

J. B. MILLER
(received 28 October 1963)

1. Introduction

We examine the equation

$$
\begin{equation*}
f(\beta)=\int_{0}^{\frac{1}{2} \pi} K(\alpha, \beta) g(\alpha) d \alpha \quad\left(0 \leqq \beta \leqq \frac{1}{2} \pi\right) \tag{1.1}
\end{equation*}
$$

or, briefly,

$$
f=K g
$$

where

$$
K(\alpha, \beta)= \begin{cases}\cos \alpha \sin \beta & (\alpha \leqq \beta) \tag{1.2}\\ \cos \alpha \sin \beta\left\{1+\frac{1}{2} \pi(\tan \theta(\alpha, \beta)-\theta(\alpha, \beta)\}\right. & (\alpha \geqq \beta)\end{cases}
$$

with

$$
\begin{equation*}
\left.\theta(\alpha, \beta)=\cos ^{-1}\left(\frac{\tan \beta}{\tan \alpha}\right) \quad \text { (principal value; } \alpha \geqq \beta\right) . \tag{1.3}
\end{equation*}
$$

This integral equation arises in connection with the problem of measuring foliage density of small plants and grasses by means of point quadrats; it is due to J. R. Philip [1]. Foliage density is defined to be the area of foliage per unit volume of space. In order to assess the foliage density within a certain spacial region, the phytologist pushes a point quadrat (which is a sharp needle, suitably mounted) through the region along a line inclined at an angle β to the horizontal, and records the number of contacts with foliage made by the point of the quadrat per unit length of travel: this figure determines $f(\beta)$. The unknown distribution of foliage angle is given by $g: g(\alpha) d \alpha$ is the contribution to foliage density due to foliage inclined at angles between α and $\alpha+d \alpha$ to the horizontal (it being supposed that the foliage slopes non-preferentially to all points of the compass). The practical problem is to find g from a knowledge of the values of $f(\beta)$ for a few values of β. In general the phytologist must work on che assumption that f is smooth; g is of course expected to be non-negative, but may be anything from constant to, say, a delta function.

The form of the kernel K is due to J. Warren Wilson and J. E. Reeve [4]. K is continuous over the square $\left[0, \frac{1}{2} \pi\right] \times\left[0, \frac{1}{2} \pi\right]$, but it is not symmetric: thus (1.1) is a Fredholm integral equation of the first kind whose
L^{2} theory would be covered by, say, the discussion in [3], §§ 3.15, 3.16. The purpose of the present note is to describe the L^{1} theory, where an explicit formula for the solution ((3.5)) can be found by quite modest means when t is sufficiently smooth. The solution found is unique, but depends explicitly upon f and its first three derivatives; thus to estimate g, many values of $f(\beta)$ are required. Consequently, the solution is principally of theoretical interest, and is unsuitable for application to experimental data. We do not examine here what further conditions on f are necessary in order that g be non-negative, as required.

I must thank Dr. Philip for introducing me to the subject and for the benefit of several helpful discussions, and the referee for additional comments.

2. Range of K

The transform relation (1.1) is, in more detail,

$$
\begin{equation*}
\frac{1}{2} \pi f(\beta)=\frac{1}{2} \pi c_{\theta} \sin \beta+\sin \beta \int_{\beta}^{\frac{1}{2} \pi} g(\alpha) \cos \alpha(\tan \theta(\alpha, \beta)-\theta(\alpha, \beta)) d \alpha, \tag{2.1}
\end{equation*}
$$

where

$$
c_{\theta}=\int_{0}^{\frac{1}{2} \pi} g(\alpha) \cos \alpha d \alpha
$$

In this section we shall take K to be the linear operator defined by (1.1) whose domain is $L^{1}\left(0, \frac{1}{2} \pi\right)$ (briefly, L^{1}); we assume that g is a function in L^{1}, and consider the consequent properties of its transform f. In this way we find necessary conditions on f for the existence of solutions g in L^{1}.

Notice that $0 \leqq \theta(\alpha, \beta) \leqq \frac{1}{2} \pi$; for fixed $\beta \neq 0, \theta(\alpha, \beta)$ increases from 0 to $\frac{1}{2} \pi$ as α increases from β to $\frac{1}{2} \pi$, while for fixed $\alpha \neq 0, \theta(\alpha, \beta)$ decreases from $\frac{1}{2} \pi$ to 0 as β increases from 0 to α.

Lemma 1. If $g \in L^{1}$, then

$$
\lim _{\beta \rightarrow 0} f(\beta)=\int_{0}^{\frac{1}{k} \pi} g(\alpha) \sin \alpha d \alpha, \lim _{\beta \rightarrow \frac{k}{2} \pi} f(\beta)=\int_{0}^{\frac{1}{2} \pi} g(\alpha) \cos \alpha d \alpha=c_{\theta} .
$$

Proof. Since

$$
\begin{equation*}
\tan \theta(\alpha, \beta)=\cot \beta \sqrt{\tan ^{2} \alpha-\tan ^{2} \beta}, \tag{2.2}
\end{equation*}
$$

$\cos \alpha \tan \theta(\alpha, \beta)$ is an increasing function of α, and

$$
0 \leqq \cos \alpha \tan \theta(\alpha, \beta) \leqq \cot \beta \quad \text { for } \quad 0<\beta \leqq \alpha \leqq \frac{1}{2} \pi
$$

The result follows from (2.1).
Lemma 2. If $g \in L^{1}$, then $f^{\prime}(\beta)$ exists for all β in $\left(0, \frac{1}{2} \pi\right)$, and

$$
\begin{equation*}
\frac{\pi}{2} \frac{d}{d \beta}\left(\frac{f(\beta)}{\sin \beta}\right)=-\frac{1}{\sin ^{2} \beta} \int_{\beta}^{\frac{\ddagger}{n}} g(\alpha) \cos \alpha \sqrt{\tan ^{2} \alpha-\tan ^{2} \beta} d \alpha \tag{2.3}
\end{equation*}
$$

Proof. Formula (2.3) follows formally from (2.1) by differentiation, since

$$
\begin{equation*}
\frac{\partial}{\partial \beta}(\tan \theta(\alpha, \beta)-\theta(\alpha, \beta))=-\frac{\sqrt{\tan ^{2} \alpha-\tan ^{2} \beta}}{\sin ^{2} \beta} . \tag{2.4}
\end{equation*}
$$

To prove the lemma, let $h(\beta)$ denote the righthand side of (2.3). Taking $0<\sigma<\tau<\frac{1}{2} \pi$, integrate $h(\beta)$ over (σ, τ), inverting the order of integration in the double integral. (This is justified by Fubini's and Tonelli's theorems, under the assumption $g \in L^{1}$.) We find

$$
\int_{\sigma}^{\tau} h(\beta) d \beta=\frac{\pi}{2} \frac{f(\tau)}{\sin \tau}-\frac{\pi}{2} \frac{f(\sigma)}{\sin \sigma} .
$$

Hence

$$
h(\tau)=\frac{\pi}{2} \frac{\partial}{\partial \tau}\left(\frac{f(\tau)}{\sin \tau}\right)
$$

for almost all τ in $\left(0, \frac{1}{2} \pi\right)$. Since in fact $h(\tau)$ exists for all τ in $\left(0, \frac{1}{2} \pi\right)$, we can assume that $f^{\prime}(\tau)$ likewise exists for all $\boldsymbol{\tau}$. The result follows.

Lemma 3. If $g \in L^{1}$, then $\lim _{\beta \rightarrow 0} f^{\prime}(\beta)=\lim _{\beta \rightarrow \frac{1}{\pi} f^{\prime}} f^{\prime}(\beta)=0$.
Proof. (2.3) is equivalent to

$$
\begin{array}{r}
\frac{1}{2} \pi f^{\prime}(\beta)=\frac{1}{2} \pi c_{g} \cos \beta+\cos \beta \int_{\beta}^{\frac{1 \pi}{\pi}} g(\alpha) \cos \alpha(\tan \theta(\alpha, \beta)-\theta(\alpha, \beta)) d \alpha \\
-\operatorname{cosec} \beta \int_{\beta}^{\frac{1}{2} \pi} g(\alpha) \cos \alpha \sqrt{\tan ^{2} \alpha-\tan ^{2} \beta} d \alpha . \tag{2.5}
\end{array}
$$

The value of the limit as $\beta \rightarrow \frac{1}{2} \pi$ follows without difficulty. To derive the limit as $\beta \rightarrow 0$, one first shows that

$$
\lim _{\beta \rightarrow 0} \int_{\beta}^{\frac{1}{2} \pi} g(\alpha) \cos \alpha \theta(\alpha, \beta) d \alpha=\frac{1}{2} \pi c_{\theta}
$$

and then uses (2.5). We omit the details.
Lemma 4. If $g \in L^{1}$, then $f^{\prime \prime}(\beta)$ exists for almost all β in $\left(0, \frac{1}{2} \pi\right)$, determining a measurable function, and for such β,

$$
\begin{equation*}
\frac{1}{2} \pi \cos ^{3} \beta\left(f(\beta)+f^{\prime \prime}(\beta)\right)=\int_{\beta}^{\frac{1}{2} \pi} \frac{g(\alpha) \cos \alpha d \alpha}{\sqrt{\tan ^{2} \alpha-\tan ^{2} \beta}} \tag{2.6}
\end{equation*}
$$

The proof follows closely that of Lemma 2, so we omit it.
We conclude from Lemmas 2, 3 and 4 that the range of K is contained in the class of functions t which are defined and have absolutely continuous first derivative on the open interval $\left(0, \frac{1}{2} \pi\right)$, with $f^{\prime}(0+0)=f^{\prime}\left(\frac{1}{2} \pi-0\right)=0$.

It can be shown that f has a third derivative if g is also absolutely continuous and satisfies certain integrability conditions.

3. Solution of the integral equation

The solution in L^{1} is unique.
Theorem 1. The integral equation (1.1) has at most one solution g in L^{1}, if f is given.

Proof. Let g_{1} and g_{2} be two solutions of (2.1), in L^{1}. By Lemma 2,

$$
\begin{equation*}
\int_{\beta}^{\frac{1}{2} \pi}\left(g_{1}(\alpha)-g_{2}(\alpha)\right) \cos \alpha \sqrt{\tan ^{2} \alpha-\tan ^{2} \beta} d \alpha=0 \tag{3.1}
\end{equation*}
$$

for all β in ($0, \frac{1}{2} \pi$). Make the change to variables x and y defined by

$$
\begin{equation*}
\tan ^{2} \alpha=x, \quad \tan ^{2} \beta=y \tag{3.2}
\end{equation*}
$$

and write

$$
r(x)=\frac{h\left(\tan ^{-1} \sqrt{ } x\right)}{2 x^{\frac{1}{2}}(1+x)^{\frac{3}{2}}}, \quad h(\alpha)=g_{1}(\alpha)-g_{2}(\alpha)
$$

(3.1) becomes

$$
\int_{y}^{\infty}(x-y)^{\frac{1}{2}} r(x) d x=0 \quad \text { for all } y \text { in }(0, \infty)
$$

Titchmarsh's convolution theorem ${ }^{1}$ implies that $r(x)=0$ for almost all x. The result follows.

In § 2 we have found necessary conditions on f for the existence of a solution $g \in L^{1}$. We now find sufficient conditions, and obtain an explicit formula for the solution. Formally, this is done as follows. The solution g satisfies the differentiated form (2.3); change to the variables x and y of (3.2), and introduce functions p and q by writing

$$
\begin{array}{ll}
p(y)=-\frac{\pi}{2} \sin ^{2} \beta \frac{d}{d \beta}\left(\frac{f(\beta)}{\sin \beta}\right) & \left(0<\beta<\frac{1}{2} \pi ; 0<y<\infty\right), \\
q(x)=\frac{g(\alpha)}{2 \tan \alpha \sec ^{3} \alpha} & \left(\beta<\alpha<\frac{1}{2} \pi ; y<x<\infty\right) .
\end{array}
$$

Equations (2.3) becomes

$$
\begin{equation*}
p(y)=\int_{y}^{\infty}(x-y)^{\frac{1}{2}} q(x) d x \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{aligned}
\int_{t}^{\infty} \frac{(y-t)^{-\frac{1}{2}}}{y^{2}} p(y) d y & =\int_{t}^{\infty} q(x) d x \int_{t}^{x} \frac{(x-y)^{\frac{1}{2}}(y-t)^{-\frac{1}{2}}}{y^{2}} d y \\
& =\int_{t}^{\infty} q(x) \frac{(x-t)}{x^{\frac{1}{2}} t^{\frac{3}{2}}} \frac{\pi}{2} d x
\end{aligned}
$$

so that

$$
\frac{2 t t^{2}}{\pi} \int_{t}^{\infty} \frac{(y-t)-\frac{1}{2}}{y^{2}} p(y) d y=\int_{t}^{\infty} d u \int_{x}^{\infty} \frac{q(x)}{x t} d x .
$$

Therefore

$$
\begin{aligned}
(-1)^{2} \frac{q(t)}{t^{\frac{1}{2}}} & =\frac{2}{\pi} \frac{d^{2}}{d t^{2}}\left(t^{\frac{3}{2}} \int_{t}^{\infty} \frac{(y-t)^{-\frac{1}{2}}}{y^{2}} p(y) d y\right) \\
& =\frac{2}{\pi} \frac{d^{2}}{d t^{2}} \int_{1}^{\infty} \frac{(u-1)^{-\frac{1}{2}}}{u^{2}} p(t u) d u \\
& =\frac{2}{\pi} \int_{1}^{\infty}(u-1)^{-\frac{1}{2}} p^{\prime \prime}(t u) d u
\end{aligned}
$$

i.e.

$$
\begin{equation*}
q(t)=\frac{2}{\pi} \int_{t}^{\infty}(y-t)^{-t} p^{\prime \prime}(y) d y . \tag{3.4}
\end{equation*}
$$

In terms of the original functions, this is

$$
\begin{equation*}
g(\alpha)=\tan \alpha \sec ^{3} \alpha \int_{\alpha}^{\frac{1}{2} \pi} \frac{3 \cos ^{2} \tau \sin \tau\left(f(\tau)+f^{\prime \prime}(\tau)\right)-\cos ^{3} \tau\left(f^{\prime}(\tau)+f^{\prime \prime \prime}(\tau)\right)}{\sqrt{\tan ^{2} \tau-\tan ^{2} \alpha}} d \tau . \tag{3.5}
\end{equation*}
$$

Rather than justify the above argument, it is simpler to start with (3.5), and show that it defines a solution of (2.1) under suitable conditions on f. If this is done (and we shall not elaborate the details here), we obtain

Theorem 2. Let f be such that $f^{\prime \prime}$ exists and is absolutely continuous on [$\left.0, \frac{1}{2} \pi\right]$, and

$$
f^{\prime}(0)=f^{\prime}\left(\frac{1}{2} \pi\right)=0 .
$$

Then $g(\alpha)$, given by (3.5), exists for almost all α, and g is the solution of (1.1) belonging to L^{1}.

Finally, to round off the discussion, we consider the circumstances in which a solution g of (1.1) can be found by solving one of the differentiated forms of the equation, (2.3) or (2.6). It is evident, for example, that a solution g of (2.3), which does not contain the constant c_{g} depending upon the solution, may not be a solution of (2.1). We state without proof

Theorem 3. (i) Let f^{\prime} be absolutely continuous on ($0, \frac{1}{2} \pi$). It g is a solution in L^{1} of (2.6), it is also a solution of (2.3) if and only if $f^{\prime}\left(\frac{1}{2} \pi-0\right)=0$.
(ii) Suppose instead that t is absolutely continuous on ($0, \frac{1}{2} \pi$). If g is a solution in L^{1} of (2.3), it is also a solution of (2.1) if and only if $c_{a}=f\left(\frac{1}{2} \pi-0\right)$.

References

[1] Philip, J. R., Analysis of the spatial distribution of foliage by point quadrats at several inclinations (to be submitted to the Aust. J. of Dotany).
[2] Titchmarsh, E. C., Introduction to the theory of Fourier integrals. Oxford U.P., 1937.
[3] Tricomi, F. G., Integral equations. Interscience, New Yori, 1957.
[4] Warren Wilson, J., Inclined point quadrats, with Appendix by J. E. Reeve. The New Phytologist 59 (1960), 1-8.

Australian National University, Canberra.

