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1. Introduction

We examine the equation

or, briefly,

where
cos a sin j3 (a r£| /5)

with

(1.3) 0(a, /?) = cos-1 I 1 (principal value; a 2; /3).

This integral equation arises in connection with the problem of measuring
foliage density of small plants and grasses by means of point quadrats;
it is due to J. R. Philip [1]. Foliage density is defined to be the area of
foliage per unit volume of space. In order to assess the foliage density within
a certain spacial region, the phytologist pushes a point quadrat (which is
a sharp needle, suitably mounted) through the region along a line inclined
at an angle fi to the horizontal, and records the number of contacts with
foliage made by the point of the quadrat per unit length of travel: this figure
determines f(fl). The unknown distribution of foliage angle is given by
g: g{x)dx is the contribution to foliage density due to foliage inclined at
angles between a and a.+da. to the horizontal (it being supposed that
the foliage slopes non-preferentially to all points of the compass). The
practical problem is to find g from a knowledge of the values of /(/?) for
a few values of /?. In general the phytologist must work on che assumption
that / is smooth; g is of course expected to be non-negative, but may be
anything from constant to, say, a delta function.

The form of the kernel K is due to J. Warren Wilson and J. E. Reeve
[4]. K is continuous over the square [0, \n\ x [0, \n\, but it is not sym-
metric: thus (1.1) is a Fredholm integral equation of the first kind whose
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L2 theory would be covered by, say, the discussion in [3], §§ 3.15, 3.16.
The purpose of the present note is to describe the L1 theory, where an
explicit formula for the solution ((3.5)) can be found by quite modest
means when / is sufficiently smooth. The solution found is unique, but
depends explicitly upon / and its first three derivatives; thus to estimate g,
many values of /(/?) are required. Consequently, the solution is principally
of theoretical interest, and is unsuitable for application to experimental
data. We do not examine here what further conditions on / are necessary
in order that g be non-negative, as required.

I must thank Dr. Philip for introducing me to the subject and for the
benefit of several helpful discussions, and the referee for additional com-
ments.

2. Range of K

The transform relation (1.1) is, in more detail,

(2.1) \nf(fi) = \nc, sin /?+sin fi Jj*g(«) cos a (tan 6(x, jS)-0(«, fi))d»,

where
c, = J *g(oc) cos xdx.

In this section we shall take K to be the linear operator defined by (1.1)
whose domain is L^O, \n) (briefly, L1); we assume that g is a function
in L1, and consider the consequent properties of its transform /. In this
way we find necessary conditions on f for the existence of solutions g in L1.

Notice that 0 ^ 0(a, /3) ^ \n; for fixed fl ^ 0, 0(a, ft) increases from
0 to \n as a increases from /? to \n, while for fixed « # 0 , 0(a, /?) decreases
from \n to 0 as /3 increases from 0 to a.

LEMMA 1. If geL1, then

lim f\p\ = I g{&) sinacdx, lim/(/?) = I £v*) cosoc»ot = c9.

PROOF. Since
(2.2) tan 0(oc, /J) = cot p Vtan2 a-tan2 /?,

cos a tan 0 (a, fl) is an increasing function of a, and

0 g cos x tan 0(a, /?) < cot /S for 0 < 0 ^ a ^ \n.

The result follows from (2.1).

LEMMA 2. If geL1, then /'(/S) exists for all /S in (0, \n), and
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PROOF. Formula (2.3) follows formally from (2.1) by differentiation,
since

8 . v „. Vtan2 a—tan8 8
(2.4) - (tan «(«, /?)-*(«, fl) = ^ y ^ £ .

To prove the lemma, let h(fi) denote the righthand side of (2.3). Taking
0 < a < x < he, integrate h(fi) over (a, x), inverting the order of integration
in the double integral. (This is justified by Fubini's and Tonelli's theorems,
under the assumption g e l 1 . ) We find

2 sin T 2 sin a
Hence

for almost all T in (0, \n). Since in fact h(x) exists for all T in (0, \n), we
can assume that f'(r) likewise exists for all T. The result follows.

LEMMA 3. / / g e L\ then l im^0 f{fi) = l i m ^ j . /'(/») = 0.

PROOF. (2.3) is equivalent to

K ( W = h™. cos/J+cos p f *"g(a)cos a(tan 8{«, ^)-0(a, )̂)<fa
(2.5) J '

—cosec^J g(a) cos aVtan* «—tan* /? rfa.

The value of the limit as /? -*• \n follows without difficulty. To derive
the limit as fi -»• 0, one first shows that

lim ^(a
s-*oJe
lim I g(a.) cos a 0(a, fi)da. = •hica,

and then uses (2.5). We omit the details.

LEMMA i.Ifge L1, then f" (fi) exists for almost all f} in (0, hi), determining
a measurable function, and for such fi,

- f / .
Vtan2 a—tan2 fl

The proof follows closely that of Lemma 2, so we omit it.
We conclude from Lemmas 2, 3 and 4 that the range of K is contained

in the class of functions f which are defined and have absolutely continuous
first derivative on the open interval (0, hi), with /'(0+0) = f{hi—0) = 0.

It can be shown that / has a third derivative if g is also absolutely
continuous and satisfies certain integrability conditions.
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3. Solution of the integral equation

The solution in L1 is unique.

THEOREM 1. The integral equation (1.1) has at most one solution g in
L1, if f is given.

PROOF. Let gt and g2 be two solutions of (2.1), in L1. By Lemma 2,

(3.1) |*" (g±(a) —g2(a)) cos a Vtan2 a - t a n 2 jS da. = 0

for all fi in (0, \n). Make the change to variables x and y defined by

(3.2) tan2 a. = x, tan2 $ = y,

and write

(3.1) becomes

I"00 (a;—y)ir(a;)rfx = 0 for all y in (0, oo).

Titchmarsh's convolution theorem J implie's that r(x) — 0 for almost all a;.
The result follows.

In § 2 we have found necessary conditions on / for the existence of a
solution g e L1. We now find sufficient conditions, and obtain an explicit
formula for the solution. Formally, this is done as follows. The solution g
satisfies the differentiated form (2.3); change to the variables x and y of
(3.2), and introduce functions p and q by writing

Equations (2.3) becomes

(3.3) p(3,)= J " {x-y)iq{x)dx.

Then

Jt y2 L J. y2

= g(z) , • - — dx,

so that
1 [2], p. 325, Theorem 152.
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Therefore

p(tu)du

= — f (u-l)-ip"(tu)du

i.e.

(3.4) q(t) = •

In terms of the original functions, this is

, „ , . , > . , fin 3 cos»TsinT(/(T) + / " (T) )~COS»T( / ' (T) + / ' " to) J

(3.5) £ (a) = tan a sec3 a - = = ax.
J* Vtan2 T—tan8 a

Rather than justify the above argument, it is simpler to start with
(3.5), and show that it defines a solution of (2.1) under suitable conditions
on /. If this is done (and we shall not elaborate the details here), we obtain

THEOREM 2. Let f be such that f" exists and is absolutely continuous
on [0, fyi], and

/'(0) =/'(£*) = 0.

Then g(a), given by (3.5), exists for almost all a, and g is the solution of (1.1)
belonging to L1.

Finally, to round off the discussion, we consider the circumstances in
which a solution g of (1.1) can be found by solving one of the differentiated
forms of the equation, (2.3) or (2.6). It is evident, for example, that a
solution g of (2.3), which does not contain the constant c, depending upon
the solution, may not be a solution of (2.1). We state without proof

THEOREM 3. (i) Let f be absolutely continuous on (0, \n). If g is a solution
in L1 of (2.6), it is also a solution of (2.3) if and only if f'(%n—Q) = 0.

(ii) Suppose instead that f is absolutely continuous on (0, JJI) . / / g is a
solution in L1 of (2.3), it is also a solution of (2.1) if and only if cg — fQpi—O).
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