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Abstract

A variational principle is established to provide a new formulation for convex Hamiltonian systems. Using
this formulation, we obtain some existence results for second-order Hamiltonian systems with a variety
of boundary conditions, including nonlinear ones.
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1. Introduction

This paper is a continuation of [4–7] where a general nonlinear selfdual variational
principle was established to provide a variational formulation and resolution for several
nonlinear partial differential equations. Applications included nonlinear transport
equations, Navier–Stokes equations, and the generalized Choquard–Pekar Schrödinger
equations with certain nonlocal potentials. In this paper we introduce a new variational
formulation for second-order convex Hamiltonian systems to construct solutions that
satisfy certain linear and nonlinear boundary conditions. To illustrate this principle we
consider a second-order Hamiltonian system with periodic boundary conditions of the
form A(t)u(t) − ü(t) = ∇Φ(t, u(t)),

u(0) = u(T ), u̇(0) = u̇(T ),
(1.1)

and also with nonlinear boundary conditions,
A(t)u(t) − ü(t) = ∇Φ(t, u(t)),

u̇(0) = −∇Ψ1(u(0)),

u̇(T ) = ∇Ψ2(u(T )).

(1.2)

In the above systems the Hamiltonian Φ : [0, T ] × RN → R ∪ {∞} is convex and lower
semi-continuous on the second variable. Also the functions Ψ1, Ψ2 : RN → R ∪ {∞}
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are convex and lower semi-continuous and the matrix-valued map A ∈C([0, T ],
RN × RN) is symmetric. Letting 〈·, ·〉 denote the usual inner product on RN , the
Fenchel–Legendre dual of Φ(t, ·) is denoted by Φ∗(t, ·) and defined by

Φ∗(t, v) = sup
u∈RN

{〈v, u〉 − Φ(t, u)}.

We now state our first theorem.

T 1.1. Suppose that Φ : [0, T ] × RN → R is measurable with respect to the
σ-field generated by the product of Lebesgue sets in [0, T ] and Borel sets in RN

and is convex and lower semi-continuous in the second variable. Let A ∈C([0, T ],
RN × RN) be a strictly positive definite symmetric matrix-valued map. If Φ is Gâteaux
differentiable with respect to the second variable, then critical points of the functional

I(u) =

∫ T

0
Φ∗(t, A(t)u(t) − ü(t)) dt −

∫ T

0
Φ(t, u(t)) dt (1.3)

on the space of periodic paths are solutions of the system (1.1) and vice versa.

Theorem 1.1 applies readily to many equations, giving a new formulation and
resolution. In the following example we shall show how the new functional I given
by (1.3) will be useful in the calculus of variations to obtain solutions with more
regularity. Indeed, we consider the systemA(t)u(t) − ü(t) = |u(t)|p−2u(t) + f (t),

u(0) = u(T ), u̇(0) = u̇(T ).
(1.4)

As a consequence of Theorem 1.1 we shall establish the following existence result.

T 1.2. Let A ∈C([0, T ], RN × RN) be a strictly positive definite symmetric
matrix-valued map. Let p > 2 and f ∈ Lp′[0, T ] where p′ = p/(p − 1). If ‖ f ‖Lp′ [0,T ]
is small enough, then the functional

I(u) =
1
p′

∫ T

0
|−ü(t) + A(t)u(t) − f (t)|p

′

dt −
1
p

∫ T

0
|u(t)|p dt

−

∫ T

0
〈 f (t), u(t)〉 dt

(1.5)

has a nontrivial critical point on the space of periodic paths in W2,p′[0, T ] which is
indeed a solution of (1.4).

Here is our result taking into account certain nonlinear boundary conditions.

T 1.3. Suppose that Φ : [0, T ] × RN → R is measurable with respect to the
σ-field generated by the product of Lebesgue sets in [0, T ] and Borel sets in RN and is
Gâteaux differentiable, convex and lower semi-continuous on the second variable. Let
A ∈C([0, T ], RN × RN) be a strictly positive definite symmetric matrix-valued map.
We also assume that Ψ1, Ψ2 : RN → R are Gâteaux differentiable, convex and lower
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semi-continuous. Then critical points of the functional

I(u) =

∫ T

0
Φ∗(t, A(t)u(t) − ü(t)) dt −

∫ T

0
Φ(t, u(t)) dt

+ Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T )) − Ψ1(u(0)) − Ψ2(u(T ))

are solutions of the system (1.2) and vice versa.

As an application of Theorem 1.3, we establish the following existence result
for (1.2).

T 1.4. Let Φ : [0, T ] × RN → R be continuously differentiable, strictly convex
and lower semi-continuous in the second variable. Let Ψ1, Ψ2 : RN → R be
continuously differentiable and strictly convex. Then the functional

I(u) =

∫ T

0
Φ∗(t, A(t)u(t) − ü(t)) dt −

∫ T

0
Φ(t, u(t)) dt

+ Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T )) − Ψ1(u(0)) − Ψ2(u(T ))

has a critical point ũ ∈W2,p′[0, T ] which is a solution of (1.2) if the following
conditions hold for all t ∈ [0, T ] and ξ ∈ RN:

(i) Φ(t, 0) = Ψi(0) = 0, and there exist p, pi > 2, i = 1, 2, such that

pΦ(t, ξ) ≤ 〈∇Φ(t, ξ), ξ〉,

piΨi(ξ) ≤ 〈∇Ψi(ξ), ξ〉;

(ii) there exist q ≥ p and α > 0, qi > pi and αi > 0, i = 1, 2, such that

Φ(t, ξ) ≤ α|ξ|q,

Ψi(ξ) ≤ αi|ξ|
qi .

Note that the functions Φ(t, ξ) = |ξ|p and Ψi(ξ) = |ξ|pi for p, pi > 2 satisfy
conditions (i) and (ii) in the above theorem. This is a more general version of the
problem considered in [1].

2. Preliminaries

In this section we recall some standard notions in convex analysis, Sobolev spaces
and nonsmooth critical point theory [2, 3, 8]. Let X be a reflexive Banach space and
X∗ its topological dual. Let Φ : X→ R ∪ {∞} be a proper convex function. Define the
sub-differential ∂Φ of Φ to be the following set-valued operator: if u ∈ Dom(Φ), set

∂Φ(u) = {p ∈ X∗; 〈p, v − u〉 + Φ(u) ≤ Φ(v) for all v ∈ X},

and if u < Dom(Φ), set ∂Φ(u) = ∅. If Φ is Gâteaux differentiable at u then ∂Φ(u) =

{∇Φ(u)}.
The Fenchel–Legendre dual of Φ is denoted by Φ∗ and is the function on X∗ defined

to be
Φ∗(p) = sup{〈p, x〉 − Φ(x); x ∈ X}.
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It follows from this definition that for every (u, p) ∈ X × X∗, we have Φ(u) + Φ∗(p) ≥
〈u, p〉. If Φ is convex and lower semi-continuous, then Φ∗∗ = Φ and the following are
equivalent:

(i) Φ(u) + Φ∗(p) = 〈u, p〉;
(ii) p ∈ ∂Φ(u);
(iii) u ∈ ∂Φ∗(p).

Let r > 1 be a real number and k be a positive integer. Let Lr[0, T ] be the classical
space of integrable functions from [0, T ] to RN equipped with the norm

‖u‖Lr[0,T ] =

(∫ T

0
|u(t)|r dt

)1/r

and Wk,r[0, T ] the classical Sobolev space consisting of all paths from [0, T ] to RN

such that the derivatives up to order k exist in the sense of distributions and equipped
with the norm

‖u‖Wk,r[0,T ] = ‖u‖Lr[0,T ] +

∥∥∥∥∥dku
dtk

∥∥∥∥∥
Lr[0,T ]

.

Set Wk,r
per[0, T ] to be the space of periodic maps in Wk,r[0, T ], that is,

Wk,r
per[0, T ] =

{
u ∈Wk,r[0, T ];

diu(T )
dti

=
diu(0)

dti
, i = 1, 2, . . . , k − 1

}
,

equipped with the norm of Wk,r[0, T ].
Since, the functionals proposed in Theorems 1.1 and 1.3 may not be Gâteaux

differentiable, we are required to give a meaning to the notion of a critical point of
such a functional.

D 2.1. We will say that u ∈W2,r
per[0, T ] is a critical point of

I(u) =

∫ T

0
[Φ∗(t, A(t)u(t) − ü(t)) − Φ(t, u(t))] dt

if I(u) is finite and there exist v(t) ∈ ∂Φ∗(t, A(t)u(t) − ü(t)) such that∫ T

0
〈v(t), A(t)η(t)〉 dt −

∫ T

0
〈v(t), η̈(t)〉 dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt = 0,

for all η ∈W2,r
per[0, T ].

D 2.2. We will say that u ∈W2,r[0, T ] is a critical point of

I(u) =

∫ T

0
[Φ∗(t, A(t)u(t) − ü(t)) − Φ(t, u(t))] dt

+ Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T )) − Ψ1(u(0)) − Ψ2(u(T ))

if I(u) is finite and there exist v(t) ∈ ∂Φ∗(t, A(t)u(t) − ü(t)), w1 ∈ ∂Ψ∗1(−u̇(0))
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and w2 ∈ ∂Ψ∗2(u̇(T )) such that

0 =

∫ T

0
〈v(t), A(t)η(t)〉 dt −

∫ T

0
〈v(t), η̈(t)〉 dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt

+ 〈w1, −η̇(0)〉 + 〈w2, η̇(T )〉 − 〈∇Ψ1(u(0)), η(0)〉 − 〈∇Ψ2(u(T )), η(T )〉,

for all η ∈W2,r[0, T ].

3. Proofs

In this section we proceed with the proof of theorems stated in the Introduction. We
need a few preliminary results that will be frequently used in the proofs.

Suppose that the matrix A(t) is strictly positive and continuous, thus there exist
positive constants α1 and α2 such that

α2
1|ξ|

2 ≤ 〈A(t)ξ, ξ〉 ≤ α2
2|ξ|

2 (3.1)

for all ξ ∈ RN . Now for each u ∈W2,r[0, T ] define

‖u‖ = ‖−ü(t) + A(t)u(t)‖Lr[0,T ] + |u̇(0)| + |u̇(T )|,

and for each u ∈W2,r
per[0, T ] define

‖u‖per = ‖−ü + A(t)u‖Lr[0,T ].

We have the following proposition.

P 3.1.

(1) ‖u‖ is an equivalent norm for W2,r[0, T ].
(2) ‖u‖per is an equivalent norm for W2,r

per[0, T ].

P. We prove part (2); the same argument works for part (1). It follows from (3.1)
that

‖u‖per = ‖−ü + A(t)u‖Lr[0,T ]

≤ ‖−ü‖Lr[0,T ] + ‖A(t)u‖Lr[0,T ]

≤ ‖−ü‖Lr[0,T ] + α2‖u‖Lr[0,T ]

≤ (1 + α2)‖u‖W2,r[0,T ].

(3.2)

Now suppose that ‖u‖per <∞. Set f (t) = −ü(t) + A(t)u(t) so f ∈ Lr[0, T ]. It follows
that∫ T

0
[|u̇(t)|2 + 〈A(t)u(t), u(t)〉] dt =

∫ T

0
〈 f (t), u(t)〉 dt

≤ ‖ f ‖Lr[0,T ]‖u‖Lr/(r−1)[0,T ]

≤ c‖ f ‖Lr[0,T ]‖u‖W1,2[0,T ] (Sobolev inequality)
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from which together with (3.1) we obtain ‖u‖W1,2[0,T ] ≤C‖ f ‖Lr[0,T ] for some positive
constant C independent of u. This implies A(t)u and u ∈ Lr[0, T ] and indeed

‖A(t)u‖Lr[0,T ] + ‖u‖Lr[0,T ] ≤ (1 + α2)‖u‖Lr[0,T ]

≤ (1 + α2)c1‖u‖W1,2[0,T ]

≤ (1 + α2)c1C‖ f ‖Lr[0,T ]

where c1 comes from the embedding of W1,2[0, T ] into Lr[0, T ]. Let C0 = (1 + α2)c1C.
It then follows that

‖u‖W2,r
per[0,T ] = ‖u‖Lr[0,T ] + ‖ü‖Lr[0,T ]

≤C0‖ f ‖Lr[0,T ] + ‖ f − A(t)u‖Lr[0,T ]

≤ (1 + 2C0)‖ f ‖Lr[0,T ] = (1 + 2C0)‖−ü + A(t)u‖Lr[0,T ]

= (1 + 2C0)‖u‖per.

(3.3)

Therefore, by (3.2) and (3.3) we have

1
1 + α2

‖u‖per ≤ ‖u‖W2,r
per[0,T ] ≤ (1 + 2C0)‖u‖per.

This proves part (2). �

P  T 1.1. First suppose that u is a solution of (1.1), then A(t)u(t) −
ü(t) = ∇Φ(t, u(t)). This implies that u(t) ∈ ∂Φ∗(t, A(t)u(t) − ü(t)), and therefore for
η ∈W2,r

per[0, T ] we obtain

0 =

∫ T

0
〈A(t)u(t) − ü(t) − ∇Φ(t, u(t)), η(t)〉 dt

=

∫ T

0
[〈u(t), A(t)η(t)〉 + 〈u(t), η̈(t)〉] dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt

thereby giving that u is a critical point of I.
Now suppose that u is a critical point of I, thus there exists v ∈ ∂Φ∗(t, A(t)u − ü)

such that∫ T

0
〈v(t), A(t)η(t) − η̈(t)〉 dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt = 0 for all η ∈W2,r

per[0, T ].

(3.4)
Suppose that w is the solution of the minimization problem infw∈W1,2[0,T ],w(0)=w(T ) F(w)
where

F(w) =
1
2

∫ T

0
[〈w(t), A(t)w(t)〉 + |ẇ(t)|2] dt −

∫ T

0
〈∇Φ(t, u(t)), w(t)〉 dt.
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It then follows that A(t)w(t) − ẅ(t) = ∇Φ(t, u(t)) with w(0) = w(T ). It also follows
that ẇ(0) = ẇ(T ). In fact, take an arbitrary ξ ∈ RN and set η0(t) = ξ. Note that
η0 ∈W1,2[0, T ] and η(0) = η(T ) = ξ. It follows that

0 =

∫ T

0
〈∇F(w), η0〉 dt

=

∫ T

0
[〈A(t)η0(t), w(t)〉 + 〈ẇ(t), η̇0(t)〉] dt −

∫ T

0
〈∇Φ(t, u(t)), η0(t)〉 dt

=

∫ T

0
[〈η0(t), A(t)w(t)〉 − 〈ẅ(t), η0(t)〉] dt + 〈ẇ(T ), η0(T )〉 − 〈ẇ(0), η0(0)〉

−

∫ T

0
〈∇Φ(t, u(t)), η0(t)〉 dt

=

∫ T

0
〈η0(t), A(t)w(t) − ẅ(t) − ∇Φ(t, u(t))〉 dt + 〈ẇ(T ) − ẇ(0), ξ〉

= 〈ẇ(T ) − ẇ(0), ξ〉,

from which and the fact that ξ ∈ RN is arbitrary we indeed have ẇ(0) = ẇ(T ).
This and (3.4) together imply that∫ T

0
〈v(t), A(t)η(t) − η̈(t)〉 dt =

∫ T

0
〈A(t)w(t) − ẅ(t), η(t)〉 dt for all η ∈W2,r

per[0, T ].

(3.5)
It follows from A(t)w(t) − ẅ(t) = ∇Φ(t, u(t)) and v ∈ ∂Φ∗(t, A(t)u(t) − ü(t)) that

Φ∗(t, A(t)w(t) − ẅ(t)) + Φ(t, u(t)) = 〈A(t)w(t) − ẅ(t), u(t)〉, (3.6)

Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, v(t)) = 〈A(t)u(t) − ü(t), v(t)〉. (3.7)

By adding (3.6) and (3.7) we obtain

〈A(t)w(t) − ẅ(t), u(t)〉 + 〈A(t)u(t) − ü(t), v(t)〉

= Φ∗(t, A(t)w(t) − ẅ(t)) + Φ(t, u(t)) + Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, v(t))

= Φ∗(t, A(t)w(t) − ẅ(t)) + Φ(t, v(t)) + Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, u(t))

≥ 〈A(t)w(t) − ẅ(t), v(t)〉 + 〈A(t)u(t) − ü(t), u(t)〉,

(3.8)

and consequently∫ T

0
〈A(t)w(t) − ẅ(t), u(t)〉 dt +

∫ T

0
〈A(t)u(t) − ü(t), v(t)〉 dt

≥

∫ T

0
〈A(t)w(t) − ẅ(t), v(t)〉 dt +

∫ T

0
〈A(t)u(t) − ü(t), u(t)〉 dt.

(3.9)

It follows from (3.5) that∫ T

0
〈v(t), A(t)u(t) − ü(t)〉 dt =

∫ T

0
〈A(t)w(t) − ẅ(t), u(t)〉 dt
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and ∫ T

0
〈v(t), A(t)w(t) − ẅ(t)〉 dt =

∫ T

0
〈A(t)w(t) − ẅ(t), w(t)〉 dt.

Together with the previous inequality this yields that∫ T

0
〈A(t)w(t) − ẅ(t), u(t)〉 dt +

∫ T

0
〈A(t)w(t) − ẅ(t), u(t)〉 dt

≥

∫ T

0
〈A(t)w(t) − ẅ(t), w(t)〉 dt +

∫ T

0
〈A(t)u(t) − ü(t), u(t)〉 dt,

and hence, ∫ T

0
〈A(t)w(t) − ẅ(t) − A(t)u(t) + ü(t), w(t) − u(t)〉 dt ≤ 0.

On the other hand, since Λu = A(t)u − ü(t) is a nonnegative operator we have that the
latter is indeed zero,∫ T

0
〈A(t)w(t) − ẅ(t) − A(t)u(t) + ü(t), w(t) − u(t)〉 dt = 0.

This implies that the inequality in (3.9) is in fact an equality, which together with (3.8)
implies that

0 =

∫ T

0
[Φ∗(t, A(t)w(t) − ẅ(t)) + Φ(t, v(t)) − 〈A(t)w(t) − ẅ(t), v(t)〉] dt

+

∫ T

0
[Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, u(t)) − 〈A(t)u(t) − ü(t), u(t)〉] dt.

Together with the fact that

Φ∗(t, A(t)w(t) − ẅ(t)) + Φ(t, v(t)) − 〈A(t)w(t) − ẅ(t), v(t)〉 ≥ 0

and
Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, u(t)) − 〈A(t)u(t) − ü(t), u(t)〉 ≥ 0,

this implies that Φ∗(t, A(t)u(t) − ü(t)) + Φ(t, u(t)) − 〈A(t)u(t) − ü(t), u(t)〉 = 0 and
therefore A(t)u(t) − ü(t) = ∇Φ(t, u(t)), and so u is a solution of (1.1). �

For simplicity of notation we will at times use the symbol Λ to refer to the operator
defined by Λu = A(t)u − ü.

P  T 1.2. The existence of a critical point can be established by
minimizing the functional I on the Nehari manifold

N =

{
u ∈W2,p′

per [0, T ]
∣∣∣∣∣ ∫ T

0
〈I′(u(t)), u(t)〉 dt = 0, u . 0

}
.
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We first prove that if ‖ f ‖Lp′ [0,T ] is small enough then there exists r > 0 such that
inf‖u‖per=r I(u) > I(0). We have

I(u) − I(0) =
1
p′

∫ T

0
|−ü(t) + A(t)u(t) − f (t)|p

′

dt −
1
p

∫ T

0
|u(t)|p dt

−

∫ T

0
〈 f (t), u(t)〉 dt −

1
p′

∫ T

0
| f (t)|p

′

dt.

Let us first recall the elementary inequality

|a|p
′

≤ 2p′−1(|a − b|p
′

+ |b|p
′

) for all a, b ∈ RN ,

from which we obtain

|a − b|p
′

≥ 21−p′ |a|p
′

− |b|p
′

for all a, b ∈ RN .

It follows from this inequality that

I(u) − I(0) ≥
21−p′

p′

∫ T

0
|Λu(t)|p

′

dt −
1
p′

∫ T

0
| f (t)|p

′

dt −
1
p

∫ T

0
|u(t)|p dt

−

∫ T

0
f (t)u(t) dt −

1
p′

∫ T

0
| f (t)|p

′

dt

≥
21−p′

p′

∫ T

0
|Λu(t)|p

′

dt −
3
p′

∫ T

0
| f (t)|p

′

dt −
2
p

∫ T

0
|u(t)|p dt

=
21−p′

p′
‖u‖p

′

per −
2
p
‖u‖pLp[0,T ] −

3
p′

∫ T

0
| f (t)|p

′

dt

≥
21−p′

p′
‖u‖p

′

per −C0‖u‖
p
per −

3
p′

∫ T

0
| f (t)|p

′

dt (Sobolev inequality)

where C0 > comes from the embedding of W2,p′
per [0, T ] into Lp[0, T ]. Note that since

p > p′, if ‖u‖per = r for some r > 0 small enough, then there exists ρ > 0 depending
only on p and T such that

21−p′

p′
‖u‖p

′

per −C0‖u‖
p
per > ρ.

Thus, if (3/p′)
∫ T

0
| f (t)|p

′

dt < ρ/2 then for ‖u‖per = r we have I(u) − I(0) > ρ/2.
Let {un}n∈N be a minimizing sequence for I over the Nehari manifold N . Then

I(un) = I(un) −
1
p

∫ T

0
〈I′(un(t)), un(t)〉 dt.
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Expanding the right-hand side,

I(un) =
1
p′

∫ T

0
|Λun(t) − f (t)|p

′

dt −
1
p

∫ T

0
|un(t)|p dt −

∫ T

0
〈 f (t), un(t)〉 dt

−
1
p

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λun(t)〉 dt

+
1
p

∫ T

0
|un(t)|p dt +

1
p

∫ T

0
〈 f (t), un(t)〉 dt,

thereby giving that

I(un) =

( 1
p′
−

1
p

) ∫ T

0
|Λun(t) − f (t)|p

′

dt −
1
p′

∫ T

0
〈 f (t), un(t)〉 dt

−
1
p

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), f (t)〉 dt.

It follows from Hölder’s inequality that

I(un) ≥
( 1

p′
−

1
p

) ∫ T

0
|Λun(t) − f (t)|p

′

dt −
1
p′
‖ f ‖Lp′ [0,T ]‖un‖Lp[0,T ]

−
1
p

(∫ T

0
(|Λun(t) − f (t)|p

′−1)p′/(p′−1) dt
)(p′−1)/p′(∫ T

0
| f (t)|p

′

dt
)1/p′

=

( 1
p′
−

1
p

)
‖Λun − f ‖p

′

Lp′ [0,T ]
−

1
p′
‖ f ‖Lp′ [0,T ]‖un‖Lp[0,T ]

−
1
p
‖Λun − f ‖p

′−1
Lp′ [0,T ]

‖ f ‖Lp′ [0,T ]

≥

( 1
p′
−

1
p

)
| ‖un‖per − ‖ f ‖Lp′ [0,T ]|

p′ −
C
p′
‖ f ‖Lp′ [0,T ]‖un‖per

−
1
p

(‖un‖per + ‖ f ‖Lp′ [0,T ])
p′−1‖ f ‖Lp′ [0,T ],

where the last inequality is a consequence of Hölder’s inequality and the continuous
embedding W2,p′

per [0, T ] ↪→ Lp[0, T ]. The right-hand side can now be seen to be
coercive since p′ > 1 and (1/p′) − (1/p) > 0. I(un) is bounded from above, hence it
follows that the sequence {un}n∈N is bounded in W2,p′

per [0, T ]. By the Banach–Alaoglu

theorem, {un}n∈N is contained in a weakly compact subset of W2,p′
per [0, T ], and hence

there is a function u ∈W2,p′
per [0, T ] such that, up to a subsequence, un converges weakly

to u. Additionally, since W2,p′
per [0, T ] can be compactly embedded into Lp[0 T ], it

follows that un converges strongly to u in Lp[0, T ]. Defining the functional G by the
constraint

G(u) =

∫ T

0
〈I′(u(t)), u(t)〉 dt = 0
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and using the method of Lagrange multipliers,

I′(un) = λnG′(un) + o(n)

where λn→ 0, and therefore I′(un)→ 0 taking into account the boundedness of
{un}n∈N. Now it follows that∫ T

0
〈I′(un(t)), u(t)〉 dt =

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λu〉 dt

−

∫ T

0
|un(t)|p−2〈un(t), u(t)〉 dt −

∫ T

0
f (t)u(t) dt→ 0,

which implies that∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λu(t)〉 dt→
∫ T

0
|u(t)|p dt +

∫ T

0
f (t)u(t) dt.

(3.10)
Similarly,∫ T

0
〈I′(un(t)), un(t)〉 dt =

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λun(t)〉 dt

−

∫ T

0
|un(t)|p dt −

∫ T

0
f (t)un(t) dt→ 0,

and hence,∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λun(t)〉 dt→
∫ T

0
|u(t)|p dt +

∫ T

0
f (t)u(t) dt.

(3.11)
The functional

∫ T

0
|Λu(t) − f (t)|p

′

dt is lower semi-continuous, that is,∫ T

0
|Λu(t) − f (t)|p

′

dt ≤ lim inf
n→∞

∫ T

0
|Λun(t) − f (t)|p

′

dt. (3.12)

In addition, the functional is convex, therefore,∫ T

0
|Λun(t) − f (t)|p

′

dt ≤
∫ T

0
|Λu(t) − f (t)|p

′

dt

+

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λun(t)〉 dt

−

∫ T

0
|Λun(t) − f (t)|p

′−2〈Λun(t) − f (t), Λu(t)〉 dt

where the latter terms cancel in the limit from (3.10) and (3.11). Therefore,∫ T

0
|Λu(t) − f (t)|p

′

dt ≥ lim sup
n→∞

∫ T

0
|Λun(t) − f (t)|p

′

dt. (3.13)
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Inequalities (3.12) and (3.13) together then imply that

lim
n→∞

∫ T

0
|Λun(t) − f (t)|p

′

dt =

∫ T

0
|Λu(t) − f (t)|p

′

dt,

that is to say, ‖Λun − f ‖Lp′ → ‖Λu − f ‖Lp′ . Therefore Λun→ Λu strongly in Lp′[0, T ]
which then implies un→ u strongly in W2,p′

per [0, T ]. Since I and I′ are continuous,
u is then a nontrivial critical point of I. By Theorem 1.1 u is then a solution of
Equation (1.4). �

P  T 1.3. First suppose that u is a solution of (1.2), that is,
A(t)u(t) − ü(t) = ∇Φ(t, u(t)),

u̇(0) = −∇Ψ1(u(0)),

u̇(T ) = ∇Ψ2(u(T )).

This implies that u(t) ∈ ∂Φ∗(A(t)u(t) − ü(t)), u(0) ∈ ∂Ψ∗1(−u̇(0)), and u(T ) ∈ ∂Ψ∗2(u̇(T )).
For η ∈W2,r[0, T ], the ‘Green formula’ yields∫ T

0
[〈u(t), A(t)η(t)〉 − 〈u(t), η̈(t)〉] dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt

+ 〈u(0), −η̇(0)〉 + 〈u(T ), η̇(T )〉 − 〈∇Ψ1(u(0)), η(0)〉 − 〈∇Ψ2(u(T )), η(T )〉

=

∫ T

0
[〈A(t)u(t) − ü(t) − ∇Φ(t, u(t)), η(t)〉] dt − 〈u̇(0) + ∇Ψ1(u(0)), η(0)〉

+ 〈u̇(T ) − ∇Ψ2(u(T )), η(T )〉 = 0.

Therefore, u is a critical point of I.
Suppose that u is a critical point of I, and thus there exist v(t) ∈ ∂Φ∗(A(t)u(t) − ü(t)),

w1 ∈ ∂Ψ1(−u̇(0)) and w2 ∈ ∂Ψ2(u̇(T )) such that∫ T

0
[〈v(t), A(t)η(t) − η̈(t)〉] dt −

∫ T

0
〈∇Φ(t, u(t)), η(t)〉 dt

+ 〈w1, −η̇(0)〉 + 〈w2, η̇(T )〉 − 〈∇Ψ1(u(0)), η(0)〉 − 〈∇Ψ2(u(T )), η(T )〉 = 0
(3.14)

for all η ∈W2,r[0, T ]. Let x ∈W1,2[0, T ] be a solution of the minimizing problem

inf
x∈W1,2[0,T ]

{1
2

∫ T

0
[〈x(t), A(t)x(t)〉 + |ẋ(t)|2 − 2〈x(t), ∇Φ(t, u(t))〉] dt

+ 〈x(T ), ∇Ψ2(u(T ))〉 + 〈x(0), ∇Ψ1(u(0))〉
}
.

It follows that x is a solution of the system
A(t)x(t) − ẍ(t) = ∇Φ(t, u(t)),

ẋ(0) = −∇Ψ1(u(0)),

ẋ(T ) = ∇Ψ2(u(T )).

(3.15)

https://doi.org/10.1017/S0004972711002425 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002425


198 M. Lewis and A. Moameni [13]

This together with (3.14) implies that∫ T

0
〈v(t), A(t)η(t) − η̈(t)〉 dt −

∫ T

0
〈A(t)x(t) − ẍ(t), η(t)〉 dt

+ 〈w1, −η̇(0)〉 + 〈w2, η̇(T )〉 + 〈ẋ(0), η(0)〉 − 〈ẋ(T ), η(T )〉 = 0,

for all η ∈W2,r[0, T ]. It follows from the above and integration by parts that∫ T

0
〈v(t) − x(t), A(t)η(t) − η̈(t)〉 dt + 〈w1 − x(0), η̇(0)〉 + 〈w2 − x(T ), η̇(T )〉 = 0,

(3.16)
for all η ∈W2,r[0, T ]. As seen in (3.15), the operator A : W2,r′[0, T ]→ Lr′[0, T ] ×
RN × RN defined byA(x) = (A(t)x(t) − ẍ(t), ẋ(0), ẋ(T )) is onto. This together with the
above equation implies that x(t) = v(t). Therefore,

x(0) ∈ ∂Ψ1(−u̇(0)),

x(T ) ∈ ∂Ψ2(u̇(T )),

ẋ(0) = −∇Ψ1(u(0)),

ẋ(T ) = ∇Ψ2(u(T )),

from which we obtain

〈u(0), −ẋ(0)〉 + 〈u(T ), ẋ(T )〉 + 〈x(0), −u̇(0)〉 + 〈x(T ), u̇(T )〉

= Ψ∗1(−ẋ(0)) + Ψ∗2(ẋ(T )) + Ψ1(u(0)) + Ψ2(u(T )) + Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T ))

+ Ψ1(x(0)) + Ψ2(x(T ))

= Ψ∗1(−ẋ(0)) + Ψ∗2(ẋ(T )) + Ψ1(x(0)) + Ψ2(x(T )) + Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T ))

+ Ψ1(u(0)) + Ψ2(u(T ))

≥ 〈x(0), −ẋ(0)〉 + 〈x(T ), ẋ(T )〉 + 〈u(0), −u̇(0)〉 + 〈u(T ), u̇(T )〉.

From this inequality we deduce that

〈u(0) − x(0), ẋ(0) − u̇(0)〉 − 〈u(T ) − x(T ), ẋ(T ) − u̇(T )〉 ≤ 0. (3.17)

By the same argument as (3.8) in the proof of Theorem 1.1, it follows from x(t) =

v(t) ∈ ∂Φ∗(t, A(t)u(t) − ü(t)) and A(t)x(t) − ẍ(t) = ∇Φ(t, u(t)) that∫ T

0
〈A(t)x(t) − ẍ(t) − A(t)u(t) + ü(t), x(t) − u(t)〉 dt ≤ 0. (3.18)

Taking the sum of inequalities (3.17) and (3.18) and using integration by parts, we
have ∫ T

0
〈A(t)x(t) − A(t)u(t), x(t) − u(t)〉 dt +

∫ T

0
|ẋ(t) − u̇(t)|2 dt ≤ 0. (3.19)
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On the other hand, the operator A(t) is strictly positive definite, which implies that
the latter holds with equality. This implies that x = u and therefore u is a solution of

A(t)u(t) − ü(t) = ∇Φ(t, u(t)),

u̇(0) = −∇Ψ1(u(0)),

u̇(T ) = ∇Ψ2(u(T )).

This concludes the proof. �

R 3.2. The preceding proof can be easily modified to deal with other types of
boundary conditions, including the case ofu(0) = ∇Ψ1(u̇(0)),

u(T ) = −∇Ψ2(u̇(T )).

P  T 1.4. We first consider the case of p = q. We note that I(0) = 0.
Since Φ is lower semi-continuous, strictly convex, and coercive it follows that the
mapping u 7→ Φ∗(·, u) is continuously differentiable. Similarly Ψ∗1, Ψ∗2 ∈C1(RN),
which implies that I : W2,p′[0, T ]→ R is continuously differentiable. Condition (i) of
the theorem implies the existence of constants c, c1, c2 > 0 such that for all t ∈ [0, T ]
and ξ ∈ RN ,

c(|ξ|p − 1) ≤ Φ(t, ξ),

ci(|ξ|pi − 1) ≤ Ψi(ξ).
(3.20)

Combined with condition (ii), this implies the existence of constants α∗, c∗, α∗i , c∗i > 0,
such that for all t ∈ [0, T ], ξ ∈ RN and i = 1, 2,

α∗|ξ|p
′

≤ Φ∗(t, ξ) ≤ c∗(|ξ|p
′

+ 1),

α∗i |ξ|
q′i ≤ Ψ∗i (ξ) ≤ c∗i (|ξ|p

′
i + 1),

(3.21)

where pi, p′i and qi, q′i are conjugate pairs. For λ > 0 we have

I(λu) ≤ c∗λp′‖Λu‖p
′

Lp′ [0,T ]
− cλp‖u‖pLp[0,T ]

+ c∗1λ
p′1 |u̇(0)|p

′
1 + c∗2λ

p′2 |u̇(T )|p
′
2 − c1λ

p1 |u(0)|p1 − c2λ
p2 |u(T )|p2 + C,

for some constant C ∈ R. Since p > 2 > p′, p′1, p′2 we note that I(λu)→−∞ as λ→∞,
which implies the existence of a function e ∈W2,p′[0, T ] such that I(e) < 0, as we can
simply take any function with a sufficiently large norm in Lp[0, T ]. Similarly, we have
the following inequality in the opposite direction,

I(u) ≥ C0‖u‖
p′

W2,p′ [0,T ]
− α‖u‖pLp[0,T ] + α∗1|u̇(0)|q

′
1 + α∗2|u̇(T )|q

′
2

− α1|u(0)|q1 − α2|u(T )|q2

≥ C0‖u‖
p′

W2,p′ [0,T ]
−C‖u‖p

W2,p′ [0,T ]
+ α∗1|u̇(0)|q

′
1 + α∗2|u̇(T )|q

′
2

−C1‖u‖
q1

W2,p′ [0,T ]
−C2‖u‖

q2

W2,p′ [0,T ]
,

(3.22)
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for some C,C0, C1, C2 > 0, making use of the fact that W2,p′[0, T ] can be continuously
(indeed compactly) embedded in both C[0, T ] and Lp[0, T ]. Noting that q, q1,
q2 > 2 > p′, it then follows that

inf
‖u‖=r

I(u) > 0

for r sufficiently close to the origin. Hence by the mountain pass theorem, there exists
a sequence {un}n∈N with un ∈W2,p′[0, T ] for all n, satisfying

lim
n→∞

I(un) = c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

and
lim
n→∞

I′(un) = 0,

where
Γ = {γ ∈C([0, 1], W2,p′[0, T ]) : γ(0) = 0, γ(1) = e}.

It is easily seen that c > 0. It follows immediately that

I(un) −
1
ρ

∫ T

0
〈I′(un(t)), un(t)〉 dt→ c, (3.23)

where ρ is chosen such that p′, p′i < ρ < 2. Since Φ is convex and differentiable, it
follows that

v = ∇Φ(t, u)⇔ u = ∇Φ∗(t, v)⇔ Φ∗(t, v) = 〈u, v〉 − Φ(t, u).

Hence condition (2) implies that

Φ∗(t, v) = 〈u, v〉 − Φ(t, u) ≥
(
1 −

1
p

)
〈u, v〉 =

1
p′
〈∇Φ∗(t, v), v〉. (3.24)

Similarly, it follows that

Ψ∗i (u) ≥
1
p′i
〈∇Ψ∗i (u), u〉 for i = 1, 2. (3.25)

Now expanding the left-hand side of (3.23),

I(un) −
1
ρ

∫ T

0
〈I′(un(t)), un(t)〉 dt

=

∫ T

0
[Φ∗(t, Λun(t)) − Φ(t, un(t))] dt + Ψ∗1(−u̇n(0)) + Ψ∗2(u̇n(T )) − Ψ1(un(0))

− Ψ2(un(T )) −
1
ρ

∫ T

0
[〈∇Φ∗(t, Λun(t)), Λun(t)〉 − 〈∇Φ(t, un(t)), un(t)〉] dt

+
1
ρ
〈∇Ψ∗1(−u̇n(0)), u̇n(0)〉 −

1
ρ
〈∇Ψ∗2(u̇n(T )), u̇n(T )〉 +

1
ρ
〈∇Ψ1(un(0)), un(0)〉

+
1
ρ
〈∇Ψ2(un(T )), un(T )〉.
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From inequalities (3.20), (3.21), (3.24) and (3.25) and condition (ii) of the theorem we
then have

I(un) −
1
ρ

∫ T

0
〈I′(un(t)), un(t)〉 dt

≥

(
1 −

p′

ρ

)
α∗‖Λun‖

q′

Lp′ [0,T ]
+

( p
ρ
− 1

)
c‖un‖

p
Lp[0,T ] +

(
1 −

p′1
ρ

)
α∗1|u̇(0)|q

′
1

+

(
1 −

p′2
ρ

)
α∗2|u̇(T )|q

′
2 +

( p1

ρ
− 1

)
c1(un(0))p1 +

( p2

ρ
− 1

)
c2(un(T ))p2 + C,

for some constant C ∈ R. Since p′, p′i < ρ < 2 < p, pi, all coefficients on the right-hand
side are positive. The right side is hence coercive and (3.23) then implies that each
term is bounded. In particular, {Λun}n∈N is bounded in Lp′[0, T ] hence un is bounded in
W2,p′[0, T ]. Thus, by the Banach–Alaoglu theorem, the sequence {un}n∈N is contained
in a weakly compact subset of W2,p′[0, T ], and hence there is a function u ∈W2,p′[0, T ]
such that, up to a subsequence, un converges weakly to u. Now since I′(un)→ 0,∫ T

0
〈I′(un(t)), un(t)〉 dt =

∫ T

0
[〈∇Φ∗(t, Λun(t)), Λun(t)〉 − 〈∇Φ(t, un(t)), un(t)〉] dt

− 〈∇Ψ∗1(−u̇n(0)), u̇n(0)〉 + 〈∇Ψ∗2(u̇n(T )), u̇n(T )〉

− 〈∇Ψ1(un(0)), un(0)〉 − 〈∇Ψ2(un(T )), un(T )〉 → 0.

Since W2,p′[0, T ] can be compactly embedded in Lp[0, T ] and C1[0, T ], it follows that
un converges strongly to u in Lp[0, T ], and un and its derivative converge pointwise
(indeed, uniformly). This implies that∫ T

0
〈∇Φ∗(t, Λun(t)), Λun(t)〉 dt

→

∫ T

0
〈∇Φ(t, u(t)), u(t)〉 dt + 〈∇Ψ∗1(−u̇(0)), u̇(0)〉 − 〈∇Ψ∗2(u̇(T )), u̇(T )〉

+ 〈∇Ψ1(u(0)), u(0)〉 + 〈∇Ψ2(u(T )), u(T )〉.

(3.26)

Similarly, we have∫ T

0
〈I′(un(t)), u(t)〉 dt =

∫ T

0
[〈∇Φ∗(t, Λun(t)), Λu(t)〉 − 〈∇Φ(t, un(t)), u(t)〉] dt

− 〈∇Ψ∗1(−u̇n(0)), u̇(0)〉 + 〈∇Ψ∗2(u̇n(T )), u̇(T )〉

− 〈∇Ψ1(un(0)), u(0)〉 − 〈∇Ψ2(un(T )), u(T )〉 → 0,

from which we conclude that∫ T

0
〈∇Φ∗(t, Λun(t)), Λu(t)〉 dt

→

∫ T

0
〈∇Φ(t, u(t)), u(t)〉 dt + 〈∇Ψ∗1(−u̇(0)), u̇(0)〉 − 〈∇Ψ∗2(u̇(T )), u̇(T )〉

+ 〈∇Ψ1(u(0)), u(0)〉 + 〈∇Ψ2(u(T )), u(T )〉.

(3.27)
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The functional
∫ T

0
Φ∗(t, Λu(t)) dt is lower semi-continuous, hence∫ T

0
Φ∗(t, Λu(t)) dt ≤ lim inf

n→∞

∫ T

0
Φ∗(t, Λun(t)) dt, (3.28)

and convex, therefore∫ T

0
Φ∗(t, Λun(t)) dt ≤

∫ T

0
Φ∗(t, Λu(t)) dt −

∫ T

0
〈∇Φ∗(t, Λun(t)), Λu(t) − Λun(t)〉 dt.

Taking limits and making use of (3.26) and (3.27), we deduce that

lim sup
n→∞

∫ T

0
Φ∗(t, Λun(t)) dt ≤

∫ T

0
Φ∗(t, Λu(t)) dt. (3.29)

Inequalities (3.28) and (3.29) then together imply that

lim
n→∞

∫ T

0
Φ∗(t, Λun(t)) dt =

∫ T

0
Φ∗(t, Λu(t)) dt. (3.30)

This together with the compact embedding of W2,p′[0, T ] in Lp[0, T ], C[0, T ] and
C1[0, T ] implies that

lim
n→∞

I(un) = lim
n→∞

∫ T

0
[Φ∗(t, Λun(t)) − Φ(t, un(t))] dt + Ψ∗1(−u̇n(0)) + Ψ∗2(u̇n(T ))

− Ψ1(un(0)) − Ψ2(un(T ))

=

∫ T

0
[Φ∗(t, Λu(t)) − Φ(t, u(t))] dt + Ψ∗1(−u̇(0)) + Ψ∗2(u̇(T ))

− Ψ1(u(0)) − Ψ2(u(T ))

= I(u)

from which we obtain I(u) = c and, in particular, u is nontrivial. It also follows from
I′(un)→ 0, together with the fact that I′ is weakly continuous in W2,p′[0, T ], that
I′(u) = 0. This completes the proof for the case p = q. �

The proof for the case of q > p relies on a variant of the mountain pass theorem
introduced in [8], which we will briefly describe. Let X be a real Banach space and
I a function on X of the form I = F + G, where F ∈C1(X, R) and G : X→ (−∞,∞] is
proper, convex and lower semi-continuous. We define critical points of I to be those
points u ∈ Dom(G) ⊆ X satisfying

〈F′(u), v − u〉X∗×X + G(v) −G(u) ≥ 0 for all v ∈ X.

c ∈ R is called a critical value if I−1(c) contains a critical point. I is said to satisfy the
Palais–Smale condition if each sequence {un}n∈N in X, such that I(un)→ c ∈ R and

〈F′(un), v − un〉X∗×X + G(v) −G(u) ≥ 〈zn, v − un〉X∗×X for all v ∈ X
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where zn→ 0, has a convergent subsequence. Now suppose that I = F + G satisfies
the Palais–Smale condition and that the following conditions hold:

(i) I(0) = 0 and there exist δ, ρ > 0 such that I|∂Bρ ≥ δ;
(ii) I(e) ≤ 0 for some e < Bρ.

Then I has a critical value c ≥ δ given by

c = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈C([0, 1], X) : γ(0) = 0, γ(1) = e}. In light of this result, the proof for the
case of q > p then follows in the same way as the proof for q = p.

4. Further remarks

R 4.1. Assuming that f (t) = 0, one can think of the functional I in (1.5) as a
function of two parameters p, q′ > 1:

Ip,q′(u) =
1
q′

∫ T

0
|A(t)u(t) − ü(t)|q

′

dt −
1
p

∫ T

0
|u(t)|p dt. (4.1)

It follows that Ip,p′ = I. This functional is continuously differentiable on W2,q′
per [0, T ].

Therefore, because of the compact embedding

W2,q′
per [0, T ] ↪→ Lp[0, T ],

for p > 1 the functional Ip,q′ is lower semi-continuous. It is also straightforward that
Ip,q′ satisfies the mountain pass geometry and the condition for q′ < p. Note that this
functional is bounded from below and coercive for q′ > p. It then follows that the
functional Ip,q′ has a critical point u ∈W2,q′

per [0, T ]. If we set

v(t) = |A(t)u(t) − ü(t)|q
′−2(A(t)u(t) − ü(t))

then (u, v) is a solution of the Hamiltonian system
A(t)v(t) − v̈(t) = |u(t)|q−2u(t), t ∈ (0, T ),

A(t)u(t) − ü(t) = |v(t)|p−2v(t), t ∈ (0, T ),

v(0) = v(T ), v̇(0) = v̇(T ),

u(0) = u(T ), u̇(0) = u̇(T ).

Note that the standard variational formulation to prove existence for the above system
amounts to finding critical points for the functional

F(u, v) =
1
p

∫ T

0
|u(t)|p dt +

1
q

∫ T

0
|v(t)|q dt −

∫ T

0
〈A(t)u(t), v(t)〉 dt +

∫ T

0
〈u̇(t), v̇(t)〉 dt

on W1,2[0, T ]. This functional is strongly indefinite and one needs to use linking type
theorems to deal with this situation even for the case q′ > p for which one just needs
to minimize the proposed functional (4.1).
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We also note that this new functional turns out to be extremely useful in
Hamiltonian systems of partial differential equations. Indeed, in our forthcoming
work we shall discuss the existence of solutions for the elliptic system with Neumann
boundary condition 

−∆v + v = |u|q−2u + λ|u|r−2u, x ∈Ω,

−∆u + u = |v|p−2v, x ∈Ω,
∂u
∂n

=
∂v
∂n

= 0, x ∈ ∂Ω

where r < q and p and q are on the critical hyperbola

1
p

+
1
q

=
N − 2

N
.

We refer the interested reader to [6] for more details on this problem.
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