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SUMMARY

A series of simulation experiments was conducted to determine how estimates of the latent and

infectious periods, number of neighbours (contacts) and population size impact on the predicted

magnitude and distribution of foot-and-mouth disease (FMD) outbreaks in white-tailed deer

in southern Texas. Outbreaks were simulated using a previously developed and applied

susceptible–latent–infected–recovered geographic automata model. There were substantial

differences in the estimated predicted number of deer and locations infected, based on the model

parameters used (3779–119 879 deer infected and 227–6526 locations affected). There were also

substantial differences in the spatial risk of infection based on the model parameters used. The

predicted spread of FMD was found to be most sensitive to the assumed latent period and the

assumed number of contacts. How these parameters are estimated is likely to be critical in studies

on the impact of FMD spread in situations in which wildlife reservoirs might potentially exist.

Key words : Foot-and-mouth disease, geographical information systems, spatial modelling, spread

of disease, veterinary epidemiology.

INTRODUCTION

Foot-and-mouth disease (FMD) is a highly con-

tagious viral disease of cloven-hoofed animals, af-

fecting both domestic and wild Artiodactyla species,

including deer. Deer have been infected both nat-

urally and experimentally [1–4], and deer-to-deer and

deer-to-cattle transmission has been observed [2].

Experimentally infected white-tailed deer exhibited

intermediate disease severity compared to suscep-

tible livestock species (e.g. cattle, sheep, goats) and

about 10% of those infected in a 1924 outbreak in

California displayed typical signs of FMD infection

[3]. During the 2001 FMD outbreak in the UK, it was

feared that a number of the deer species in the country

(red, fallow) might become infected and potentially

act as a reservoir for the disease [5, 6]. A similar con-

cern was also expressed in The Netherlands during

the 2001 FMD outbreak [6, 7]. However, evidence of

infection in deer was not observed in either of these

more recent outbreaks [7].
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The USA has been free of FMD since a 1929 out-

break. The response to an incursion of FMD virus

would be complicated if wildlife, such as deer, were

infected. In areas of the USA where livestock are

extensively grazed, the potential for interaction and

contact with susceptible wildlife species, such as

white-tailed deer, is high [8]. Deer traverse and forage

in fields between farms, and enter premises containing

animal feed and slurry [6]. In addition, supplemental

feeding of white-tailed deer for hunting purposes

occurs, potentially leading to increased contact [3, 8,

9–12]. Given the widespread distribution of wildlife

species susceptible to FMD virus infection and the

potential for interaction with livestock, modelling

the spread of the disease in wildlife populations is an

important resource in our ability to predict, respond

to and recover from a foreign animal disease incur-

sion, such as FMD.

To model the spread of FMD in a wildlife popu-

lation, such as white-tailed deer, estimates of a range

of disease and spatial parameters are critical. The

distribution of the species of interest must be esti-

mated spatially prior to parameterizing a disease

spread model and simulating disease spread [13].

Once the population distribution has been described,

disease parameters such as the latent and infectious

periods must be estimated prior to modelling disease

spread. In addition, the number and type of contacts

both within and between species must be estimated.

Although laboratory studies have been used to esti-

mate the period of latent infection and the length of

the infectiousness of some species [1–3, 10], the values

of these parameters in wildlife are usually unknown.

Often parameters used are the ‘best ’ estimates avail-

able, but these may not accurately capture the

dynamics of the disease in the field. Given the uncer-

tainty surrounding the parameter values, probability

distributions are often used to model the parameters

for disease spread. These distributions might be based

on little information, such as informed ‘guesses ’ of

the likely minimum and maximum parameter values.

Sensitivity analysis can be used to identify parameters

to which the model is particularly sensitive and for

which better data should be sought.

Epidemics have historically been modelled using

differential equations [14–16]. However, differential

equation models do not directly address the local

character of disease spread or complex boundary

conditions [16]. Geographic automata (GA), general-

izations of cellular automata models, are capable

of handling non-tessellated data (e.g. points). Both

cellular automata and GA provide an alternative to

differential equation-based epidemic spread models.

They treat time as discrete and interactions as local-

ized [16] and have been applied to a wide range of

disease-spread problems [14, 17–22]. Susceptible–

latent–infected–recovered models have been built

into GA to examine the spatial and temporal propa-

gation of epidemics [16, 17, 19–21, 23, 24], but this

approach has rarely been used to model the spread of

infectious diseases in wildlife populations. The influ-

ence of spatial estimation techniques on the predicted

spread of FMD in white-tailed deer using a GAmodel

has been explored [13]. However, the effect of esti-

mated disease-related parameters on model-predicted

spread of FMD in white-tailed deer populations has

not been evaluated.

The objectives of this study were to: apply a range

of values to critical disease parameters, specifically

latent and infectious periods, the number of neigh-

bours (contacts) and local-level population density,

in the GA model ; describe the predicted FMD out-

break distribution that might be observed, given the

various estimates used; and compare the predicted

FMD outbreak distributions for each of the par-

ameters varied.

MATERIALS AND METHODS

Study site

The study site, a nine-county area of southern Texas

bordering Mexico (Fig. 1), has been previously de-

scribed [8, 13]. It consists of two ecoregions, the

Edwards Plateau in the north and the South Texas

Brush in the south. Seasons in the study region are

characterized by hot, dry summers and mild, moist

winters, with average annual rainfall ranging between

750 and 1200 mm.

The Edwards Plateau ecoregion is predominantly

rangeland and is home to the highest concentration

of deer in Texas, with an estimated 100 deer/405 ha

[Texas Parks and Wildlife Department (TPWD),

Wildlife district descriptions (http://www.tpwd.state.

tx.us/landwater/land/habitats/cross_timbers/)].

The South Texas Brush ecoregion is considered

a brush community. White-tailed deer hunting has

increased in this ecoregion and the vegetation is ac-

tively managed to support hunting (TPWD, website

as above). Population densities of white-tailed deer

in this ecoregion are considered moderate with an

estimated 29 deer/405 ha.
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Data source

The estimated distribution of deer used to represent

the deer population for the baseline scenario has been

previously described [13]. Briefly, study area deer

counts were disaggregated using suitable land cover

and estimated carrying capacity derived from expert

opinion. Land use categories were extracted from

the 1992 national land cover dataset (NLCD) and

included forest, shrub and grassland categories. The

number of pixels in each land cover was multiplied by

the estimated carrying capacity to create a weighting

factor. The number of deer in the study region was

proportionally distributed within land cover based

on the weighting factor. The resulting counts of deer

were aggregated to 1r1 km pixels. Deer herds were

represented as points (using the centroids of each

1 km pixel) for all modelling scenarios.

Baseline scenario in the epidemic simulation model

The same herd (index case) was selected as infected

to initiate the simulations of model sensitivity to the

period of latency, the period of infectiousness, and

the number of contact neighbours. However, two

herds (index cases) – one in the northern area of the

study region (a higher deer density area) and one in the

southern area of the study region (a lower deer density

area) – were selected to evaluate the sensitivity of the

model to both global and local population density.

This approach was motivated by the need to incor-

porate both a higher density and lower density index

herd for comparison purposes. For every simulation

of the model, each herd was allowed to interact with

other herds within a 2000-m neighbourhood. The

model was simulated for a time period representing

100 days and 100 model runs were simulated for each

dataset. The median number of deer infected and

median area affected (km2) were used to characterize

each set of simulations at the 100th model day.

The population density, distribution, and habitat

requirements of deer within the study area were ex-

plicitly incorporated in the model. As a baseline, we

assumed the home ranges of deer in the study area

were within a distance of 2 km and no interactions

took place beyond this distance. The interaction

probabilities between herds were weighted using a

kernel defined by the inverse of the distance from

the herd location, with the value being a fraction of a

pre-specified bandwidth (1000 m). The weights were

reduced when neighbours were further away than the

pre-specified bandwidth, and increased when they

were closer.

N

E

S

W

0 50 100 200 300 400
km

Study region
Texas county

State boundary

Fig. 1. The location of a nine-county area of southern Texas used to simulate the potential spread of foot-and-mouth disease
through white-tailed deer populations using a geographic automata susceptible–latent–infected–recovered model.
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In the model, deer herds could pass through four

disease states : from susceptible to latent, from latent

to infectious, from infectious to recovered and finally

back to susceptible. The unit of analysis was herd

and all deer within that herd shared the same state at

each time step, meaning they all transitioned (SLIR)

together. Baseline parameter values for the latent,

infectious and recovered periods were based on the

literature, predominantly laboratory-based studies of

FMD infection in deer [1–4]. Dissemination is based

on density of the source and contact location and the

distance betweens these locations. The transition from

SLIR is based on the disease state of each location

in the previous time step, and on the number of con-

tacts (weighted by distance) in the previous time step.

These transitions partially determined the dissemi-

nation rate of FMD between locations [25]. The first

transition depended on contact rates between suscep-

tible and infected deer herds in the previous time step.

The model keeps a record of each location’s disease

state (S, E, I or R) at the previous time step and the

transition to the next state is based on its previous

state. The transition from S to E is based on the

number of contacts, the density and the distance be-

tween locations. Homogenous mixing was assumed

to take place within but not between herds.

The probability of interaction between neighbour-

ing herds also depended on the number of susceptible

deer in the two locations, calculated as the product of

their probabilities. Locations with more than a maxi-

mum threshold of deer were assigned a probability

of 1.0. The remaining herds were linearly scaled into

the interval 0 to 1 by dividing each herd’s population

size by the maximum threshold value [8]. To incor-

porate stochasticity into the model, interactions be-

tween a susceptible herd and an infectious neighbour

occurred when a random number from a pseudo-

random number generator (PRNG), specifically the

Mersenne Twister mt19937 algorithm [24, 26] was

below the assigned probability threshold for that pair

of herds [8].

Once a herd transitioned to infectious the second,

third, and fourth transitions in the model depended

on the length of the latent, infectious and recovered

periods as assigned in the model parameterization

[1–4]. The specific values were assigned randomly

within the corresponding parameter ranges using a

uniform distribution. The following baseline model

parameter values were used: latency (minimum, maxi-

mum), 3–5 days; duration of infectiousness (mini-

mum, maximum), 3–14 days; duration of resistance

to re-infection (minimum, maximum), 90–180 days;

maximum number of neighbouring cells with which

each infected cell can interact, 12; maximum distance

of neighbouring cells within which each infected cell

can interact, 2000 m; and density scaling parameters

(minimum, maximum), 0–30 deer. The maximum

value used to scale (30 deer/km) corresponded to the

95th percentile of estimated deer densities within the

study area.

The GA model framework is particularly suited

to modelling foreign animal diseases in wild animal

populations. Geographic variations are explicitly

modelled in a simple manner and individual-level

animal census data is not required, as long as an

approximate statistical distribution is available [27].

In addition, the model does not require complex

mathematical equations, but instead relies on local

relationships between spatial units [27]. The assump-

tion of local spread is reasonable for white-tailed deer

populations: in the absence of disturbance, deer are

unlikely to move outside their local home range [8, 11].

Population density scenarios

The number of deer at each spatial location (centroid)

was increased and decreased by 10%, respectively,

resulting in two additional datasets which were simu-

lated using the baseline model parameters specified

above.

Latent period

The latent period uniform probability distribution

was varied using three sets of parameter ranges: 1–5

days, 3–5 days (baseline) and 5–10 days. The actual

latent period for each location (centroid) was ran-

domly sampled from a uniform distribution using

these ranges.

Infectious period

The infectious period uniform probability distri-

bution was varied using three sets of parameter

ranges: 1–14 days, 3–14 days (baseline) and 14–28

days. The actual infectious period for each location

(centroid) was randomly sampled from a uniform

distribution using these ranges.

Neighbours

The number of neighbours that a given infected

herd was allowed to interact with at each time step

was varied to represent first- to third-order neigh-

bourhoods for each infectious herd. A 1000-m
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neighbourhood representing the four nearest

neighbours, a 2000 m neighbourhood (baseline) rep-

resenting 12 nearest neighbours and a 3000-m neigh-

bourhood representing 28 nearest neighbours were

used to simulate spread over a varying landscape

area.

Reduced population density within a local

neighbourhood

The impact of local population density reduction was

evaluated by reducing the number of deer in herds

within a 10-km distance from each of two selected

initiation scenarios (higher density and lower den-

sity). Within the 10-km distance from each index

herd, densities were reduced by 10–50% in 10% in-

crements, yielding 10 additional datasets for model

comparison.

Data analysis

The predicted spread of FMD was characterized for

each set of parameters using the median number of

deer infected, calculated by summation of the number

of deer in all infected herds and the median num-

ber of herds affected, together with 5th and 95th per-

centiles and interquartile range (IQR). Sensitivity of

the model to the parameter ranges was assessed by

calculating a median ratio; a change of >10% was

used to define a sensitive parameter. In addition, the

predicted spatial distribution of disease spread was

evaluated using spatial risk maps. Spatial risk maps

were created by calculating the probability of infec-

tion across 100 iterations of the GA model for each

spatial location affected.

RESULTS

The model was sensitive (>10% change compared

to the baseline scenario predicted number of deer

infected and herds infected) to changes in the par-

ameter values simulated for all of the variables [latent

and infectious periods, the number of neighbours

(contacts) and the population density both at a global

and local level] considered in this study.

Variation in the latent period affected the model-

predicted spread of FMD (Table 1). A higher range

of simulated latency (5–10 days) resulted in a 0.09

median ratio for the median predicted number of

infected deer and a 0.11 median ratio for the median

predicted number of infected herds. A lower range of

simulated latency (1–5 days) resulted in a 2.06 median

ratio for the median predicted number of infected

deer and a 2.08 median ratio for the median predicted

number of infected locations. The spatial pattern of

infection was also sensitive to the latent period range

simulated (Fig. 2). A shorter latent period produced

a slightly larger core area of infection (>50% risk),

but in a small (<20%) proportion of model runs

there was a much larger area of infection. A long

latent period produced a much smaller spatial distri-

bution of infection in all risk categories (10–100%

risk).

For period of infectiousness, the model was only

sensitive to a lower range of simulated values : an as-

sumed period of infectiousness of 1–14 days resulted

in a 0.34 median ratio for both the median predicted

number of deer infected and the median predicted

number of infected herds (Table 2). A short infectious

period substantially reduced the spatial risk of in-

fection for all risk categories (10–100% risk, Fig. 3),

Table 1. Predicted number of deer and herds infected in a simulated outbreak of foot-and-mouth disease

in a population of deer in southern Texas, for each of three latent periods (days) modelled as

uniform probability distributions. (Results shown are from 100 simulations of a geographic automata

susceptible–latent–infected–recovered model, using a baseline deer distribution surface.)

Latent
period

Deer Herds

Median
Ratio to
baseline* IQR 95% PI Median

Ratio to
baseline* IQR 95% PI

1–5 79 242 2.06 11 729 5–91 424 4123 2.08 576 1–4755

3–5 38 537 — 2781 34 785–41 829 1985 — 139 1787–2158

5–10 3779 0.09 4658 5–5480 227 0.11 281 1–326

IQR, Interquartile range ; PI, prediction interval.
Parameters and results in bold are from the baseline scenario.

* Median baseline vs. median scenario.
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whilst a long infectious period resulted in a slight

increase in the risk of infection for the core area

(>50%), particularly in the southern portion of the

affected area.

Variation in the number of neighbours (contacts)

affected the model-predicted spread of FMD (Table 3,

Fig. 4). A higher simulated number of neighbours

Table 2. Predicted number of deer and herds infected in a simulated outbreak of foot-and-mouth disease

in a population of deer in southern Texas, for each of three infectious periods (days) modelled as

uniform probability distributions. (Results shown are from 100 simulations of a geographic automata

susceptible–latent–infected–recovered model, using a baseline deer distribution surface.)

Infectious
period

Deer Herds

Median
Ratio to
baseline* IQR 95% PI Median

Ratio to
baseline* IQR 95% PI

1–14 13 063 0.34 1663 5–20 129 679 0.34 849 1–1002

3–14 38 537 — 2781 34 785–41 829 1985 — 139 1787–2158

14–28 36 829 0.96 2542 32 658–40 605 2114 1.06 117 1903–2345

IQR, Interquartile range ; PI, prediction interval.
Parameters and results in bold are from the baseline scenario.

* Median baseline vs. median scenario.

Latent 1–5 days
N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28

0 50 100
km

Probability of infection
0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

Latent 3–5 days Latent 5–10 days

0 25 50 100
km

Fig. 2. Probability of infection of each deer herd in a simu-
lated outbreak of foot-and-mouth disease in a population of

deer in southern Texas, for each of three latent periods
modelled as uniform probability distributions. Results
shown are from 100 simulations of a geographic automata

susceptible–latent–infected–recovered model, using a base-
line deer distribution surface and index case (upper left
panel). Results shown represent 100 days of simulation.

Infectious 1–14 days

N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28

0 50 100
km

Probability of infection
0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

Infectious 3–14 days Infectious 14–28 days

0 25 50 100
km

Fig. 3. Probability of infection of each deer herd in a simu-
lated outbreak of foot-and-mouth disease in a population of

deer in southern Texas, for each of three infectious periods
modelled as uniform probability distributions. Results
shown are from 100 simulations of a geographic automata
susceptible–latent–infected–recovered model, using a base-

line deer distribution surface and index case (upper left
panel). Results shown represent 100 days of simulation.
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(28) resulted in a median ratio of 3.11 for the median

predicted spread number of deer infected and in a

median ratio of 3.28 for the median predicted number

of infected herds. A lower simulated number of

neighbours (4) resulted in a 0.09 estimate of the me-

dian ratio for the median predicted number of in-

fected deer and a median ratio of 0.1 for the median

predicted number of infected herds.

Variation in the global population density affected

the predicted spread of FMD (Table 4). An assumed

increase of 10% in the overall (global) population

density resulted in a 1.27 median ratio for the median

predicted number of deer infected and a 1.15 median

ratio for the median predicted number of infected

herds. An assumed decrease of 10% in the overall

population density resulted in a median ratio of 0.76

for the median predicted number of infected deer and

a median ratio of 0.83 for the number of infected

herds. The spatial pattern of infection was also sen-

sitive to changes in the global population density

(Fig. 5). A reduced population density resulted in a

smaller core area of infection (>50% risk), whilst an

increased population density resulted in a larger core

area of infection.

Variation in the local population density also af-

fected the model-predicted spread in both ecoregions

(Edwards Plateau and South Texas Brush) (Tables 5

and 6, respectively). Decreasing the assumed local

population density (within 10 km of the higher den-

sity index case, Edwards Plateau) from 10% to 50%

(in 10% increments) resulted in median ratios for

the predicted number of deer infected ranging from

0.94 to 0.49, respectively, and number of infected

herds from 0.95 to 0.54, respectively (Table 5). For all

scenarios, disease spread was observed in 100% of

the simulations. The spatial pattern of infection was

also sensitive to the assumed local population density

(Figs 6 and 7). An increasing reduction in the core

Table 3. Predicted number of deer and herds infected in a simulated outbreak of foot-and-mouth disease in a

population of deer in southern Texas, for each of three different numbers of neighbouring deer herds contacted.

(Results shown are from 100 simulations of a geographic automata susceptible–latent–infected–recovered model,

using a baseline deer distribution surface.)

Neighbours

Deer Herds

Median
Ratio to
baseline* IQR 95% PI Median

Ratio to
baseline* IQR 95% PI

4 3606 0.09 1447 16–7063 205 0.1 77 1–379

12 38 537 — 2781 34 785–41 829 1985 — 139 1787–2158

28 119 873 3.11 3327 115 106–124 871 6526 3.29 249 6165–6823

IQR, Interquartile range ; PI, prediction interval.
Parameters and results in bold are from the baseline scenario.

* Median baseline vs. median scenario.

1000-m neighbourhood

N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28

0 50 100
km

Probability of infection
0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

3000-m neighbourhood 2000-m neighbourhood

0 25 50 100
km

Fig. 4. Probability of infection of each deer herd in a simu-
lated outbreak of foot-and-mouth disease in a population of

deer in southern Texas, for each of three different numbers
of neighbouring deer herds contacted. Results shown are
from 100 simulations of a geographic automata suscep-

tible–latent–infected–recovered model, using a baseline deer
distribution surface and index case (upper left panel). Re-
sults shown represent 100 days of simulation.
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area of infection (>50% risk) was observed for all

risk categories (10–100%) of reduced local density,

together with corresponding increases in the low

probability categories.

Decreasing the assumed local population density

(within 10 km of the lower density index case, South

Texas Brush) from 10% to 50% (in 10% increments)

resulted in median ratios for the predicted number

of deer infected ranging from 0.68 to 0.0005, re-

spectively, and number of infected herds from 0.7 to

0.002, respectively (Table 6). For all scenarios, disease

spread was observed in all simulations. The core area

of infection (>50% risk) was almost completely ab-

sent after a 20% reduction in the local population

density. The overall spatial risk of infection was also

drastically reduced as the local population density

decreased (Figs 8 and 9). For the 50% reduction

in local population density, the risk of infection for

almost all herds was reduced <20%.

DISCUSSION

Prior to eradication of FMD virus from the USA, a

series of outbreaks occurred in which wild animal

populations (including deer) were affected. The cur-

rent study addressed this issue by the application of

a GA model to simulate FMD spread under various

estimates of model parameters. This research provides

critical insight into the impact that these estimated

parameters have on modelling predictions. It is im-

portant because model predictions may be used to

guide policy and evaluate mitigation strategies prior

to an outbreak [4, 6]. In addition, modelling may be

used during an outbreak to inform response strategies,

particularly disease mitigation strategies in wildlife

populations. The habitat modelled (rangeland and

brush ecosystems with high concentrations of deer as

well as commercial livestock production) is represen-

tative of many parts of the USA. Thus, the study

Table 4. Predicted number of deer and herds infected in a simulated outbreak of foot-and-mouth disease in a

population of deer in southern Texas, increasing and decreasing the overall (global) population density by 10%.

(Results shown are from 100 simulations of a geographic automata susceptible–latent–infected–recovered model,

using a baseline deer distribution surface.)

Population
density

Deer Herds

Median
Ratio to
baseline* IQR 95% PI Median

Ratio to
baseline* IQR 95% PI

Decrease 29 177 0.76 3091 25 011–33 672 1650 0.83 166 1417–1900

Baseline 38 537 — 2781 34 785–41 829 1985 — 139 1787–2158

Increase 48 773 1.27 3676 44 118–53 278 2288 1.15 163 2084–2522

IQR, Interquartile range ; PI, prediction interval.
Parameters and results in bold are from the baseline scenario.

* Median baseline vs. median scenario.

Density decreased 10 %

N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28
Probability of infection

0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

0 50 100
km

Density increased 10 %Baseline density

0 25 50 100
km

Fig. 5. Probability of infection of each deer herd in a simu-
lated outbreak of foot-and-mouth disease in a population of
deer in southern Texas, increasing and decreasing the over-
all (global) population density by 10%. Results shown are

from 100 simulations of a geographic automata suscep-
tible–latent–infected–recovered model, using a baseline deer
distribution surface and index case (upper left panel). Re-

sults shown represent 100 days of simulation.
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results are relevant to planning for possible future

incursions of this disease.

We found that the model is sensitive to latent

period, infectious period, number of neighbours, and

global and local population density. A shorter latent

period resulted in a 2.06 median ratio for the model-

predicted number of infected deer and herds, whereas

a longer latent period resulted in a 0.09 median ratio

for the predicted number of infected deer and herds.

The shorter latent period allowed a faster progression

of the infection in the study area. Conversely, a longer

latent period resulted in what appears to be a ‘burn

out’ effect : the transition to infectiousness in every

herd is slowed enough that many fewer generations

of disease spread were observed in the 100-day time-

frame simulated in this study. However, there might

also be a neighbourhood effect because by the time

each herd transitioned to infected status (5–10 days),

most of its neighbours were already latently infected

because of shared contact (within the local neigh-

bourhood) with an infectious herd (with an infectious

period of 3–14 days). The relative influence of spatial

contact structure on disease spread needs to be further

investigated.

Table 5. Predicted number of deer infected in a simulated outbreak of foot-and-mouth disease in a population

of deer in southern Texas, decreasing the local (within a 10-km neighbourhood of the index herd location within

an area of high deer density) population density by 10% increments. (Results shown are from 100 simulations

of a geographic automata susceptible–latent–infected–recovered model, using a baseline deer distribution surface.)

Population
density

Deer Herds

Median
Ratio to
baseline* IQR 95% PI Median

Ratio to
baseline* IQR 95% PI

Baseline 56 092 — 2664 52 248–58 606 2641 — 132 2460–2784

10% 52 674 0.94 3086 48 996–57 044 2505 0.95 151 2325–2714

20% 50 082 0.89 3662 38 583–54 262 2413 0.91 185 1867–2611
30% 45 926 0.82 6059 12–52 771 2233 0.85 274 1–2570
40% 38 901 0.69 8369 25 245–47 225 1934 0.73 382 1316–2317

50% 27 424 0.49 10 727 9–41 833 1435 0.54 500 1–2091

IQR, Interquartile range ; PI, prediction interval.
Parameters and results in bold are from the baseline scenario.
* Median baseline vs. median scenario.

Table 6. Predicted number of deer and herds infected in a simulated outbreak of foot-and-mouth disease in

a population of deer in southern Texas, decreasing the local (within a 10-km neighbourhood of the index herd

location within an area of low deer density) population density by 10% increments. (Results shown are

from 100 simulations of a geographic automata susceptible–latent–infected–recovered model, using a baseline

deer distribution surface.)

Population

density

Deer Herds

Median

Ratio to

baseline* IQR 95% PI Median

Ratio to

baseline* IQR 95% PI

Baseline 6357 — 8679 5–11 362 590 — 815 1–1048

10% 4315 0.68 7042 5–9697 413 0.7 661 1–895

20% 10 0.002 2850 4–5626 2 0.003 294 1–529
30% 8 0.001 44 4–5623 2 0.003 9 1–545
40% 3 0.0005 5 3–878 1 0.002 1 1–90
50% 3 0.0005 7 3–65 1 0.002 2 1–16

IQR, Interquartile range ; PI, prediction interval.

Parameters and results in bold are from the baseline scenario.
* Median baseline vs. median scenario.
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A shorter infectious period reduced both the pre-

dicted median number of deer and herds infected

(median ratio of 0.34 for both). A shorter infectious

period resulted in a spatial pattern of infection risk

different from either the baseline or longer infection

periods. This indicates that the disease does not have

the ability to progress over a very large spatial area if

the infectious period is short : the lower range of the

infectious period (1–2 days) effectively stops the

spread of infection, compared to baseline (minimum

3-day infectious period). A longer infectious period

had almost no effect on predicted disease spread. It is

possible that in areas where deer densities are high

(such as in the northern portion of the study area), all

of the susceptible neighbours have been infected by

the 14th day of the infectious period. Thus, increasing

the period of infectiousness to 28 days has little

impact on disease spread. This indicates that there

might be a threshold value for the period of in-

fectiousness, given the specific population density and

size of the neighbourhood for each location (assuming

the length of the infectious period is shorter than the

recovered period). The effect of the infectious period

and the possibility of a threshold value require further

study. In the baseline scenario, each location could

contact up to the 12 nearest neighbours within a dis-

tance of 2 km. If the size of the neighbourhood were

increased together with the infectious period, the re-

sults would probably show increased spread. Whether

such an increase is additive or multiplicative needs

to be investigated in future research. In addition, fu-

ture research should examine this effect for a lower

density region such as the southern region of the study

area.

The model is also sensitive to the number of

neighbours (contacts). A higher number of neigh-

bours approximately tripled the predicted number of

Baseline local density
N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28
Probability of infection

0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

0 50 100
km

Local density reduced 10 % Local density reduced 20 %

0 25 50 100
km

Fig. 6. Probability of infection of each deer herd in a simu-

lated outbreak of foot-and-mouth disease in a population of
deer in southern Texas. Baseline results and results de-
creasing the local (within a 10-km neighbourhood, indicated

by a white circle on the map, of the index herd location
within an area of high deer density) population density by
10% and 20% are shown. Results shown are from 100

simulations of a geographic automata susceptible–latent–
infected–recovered model, using a baseline deer distribution
surface and index case (upper left panel). Results shown
represent 100 days of simulation.

Local density reduced 30 %

N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28
Probability of infection

0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

0 50 100
km

Local density reduced 40 % Local density reduced 50 %

0 25 50 100
km

Fig. 7. Probability of infection of each deer herd in a simu-

lated outbreak of foot-and-mouth disease in a population of
deer in southern Texas, decreasing the local (within a 10-km
neighbourhood, indicated by a white circle on the map, of
the index herd location within an area of high deer density)

population density by 30, 40 and 50%. Results shown are
from 100 simulations of a geographic automata suscep-
tible–latent–infected–recovered model, using a baseline deer

distribution surface and index case (upper left panel). Re-
sults shown represent 100 days of simulation.
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infected deer and herds, whereas a lower number re-

sulted in around a 90% decrease in the predicted

number of infected deer and herds (median ratio 0.09

and 0.1, respectively). This result makes biological

sense, because as the number of susceptible herds that

come into contact with infected herds increase, dis-

ease spread is expected to also increase.

The model appears to be sensitive to both the

global and local population density. Changes (10%

increase or decrease) in the global population density

resulted in around a 25% change in the median

predicted number of deer infected and around a 15%

change in the predicted number of herds infected

(median ratio 1.27 and 1.15, respectively). This result

is not surprising, considering the formulation of the

model. The number of deer in a herd is used to adjust

the probability of contact between a susceptible and

an infectious herd; so as the herd density increases or

decreases, the likelihood of contact between these

herds is adjusted accordingly.

The sensitivity of the model to local population

density was investigated for index herds in both

higher- and lower-density areas. The effect of the

change in density at the local level appeared to be

greater in lower-density areas (in the current study,

simulated incursions in the northern vs. southern re-

gion of the study area; Figs 6–9). For the index herd

in a higher-density area, the population had to be

reduced substantially more than for the index herd in

a lower-density area to achieve similar levels of re-

duced disease spread. For the index herd in a lower-

density area, the spatial pattern of disease spread was

also substantially reduced as local population density

was decreased. The core area of infection (>50%

risk) was almost completely absent after a 20% de-

crease in the local population density. While the area

of the core spatial spread (>50% risk) was reduced

for each level of local density reduction for the index

Baseline local density
N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28
Probability of infection

0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

0 50 100
km

Local density reduced 10 % Local density reduced 20 %

0 25 50 100
km

Fig. 8. Probability of infection of each deer herd in a simu-
lated outbreak of foot-and-mouth disease in a population of
deer in southern Texas. Baseline results and results de-
creasing the local (within a 10-km neighbourhood, indicated

by a white circle on the map, of the index herd location
within an area of low deer density) population density by
10% and 20% are shown. Results shown are from 100

simulations of a geographic automata susceptible–latent–
infected–recovered model, using a baseline deer distribution
surface and index case (upper left panel). Results shown

represent 100 days of simulation.

Local density reduced 30 %
N

E

S

W

Deer density

Index case

0–7
8–17 29–39

18–28
Probability of infection

0·01–0·10
0·11–0·20
0·21–0·30

0·31–0·40
0·41–0·50
0·51–1·00

0 50 100
km

Local density reduced 40 % Local density reduced 50 %

0 25 50 100
km

Fig. 9. Probability of infection of each deer herd in a simu-

lated outbreak of foot-and-mouth disease in a population of
deer in southern Texas, decreasing the local (within a 10-km
neighbourhood, indicated by a white circle on the map, of

the index herd location within an area of low deer density)
population density by 30, 40 and 50%. Results shown are
from 100 simulations of a geographic automata suscep-

tible–latent–infected–recovered model, using a baseline deer
distribution surface and index case (upper left panel). Re-
sults shown represent 100 days of simulation.
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herd in a higher-density area, the overall distribution

of spatial risk was relatively constant. This indicates

that, in some situations, the spatial spread of disease

would not be greatly different even with a 50% re-

duction in the local population density. This is prob-

ably because in very high deer density areas there is

also a high level of spatial contiguity; therefore a re-

duction in the density does not have the same impact

as it does in lower-density areas.

The relationship between population density and

disease spread has potentially important policy im-

plications: in areas of lower-density white-tailed deer

populations, local population density reduction could

be an effective strategy to reduce disease spread either

prior to or during an outbreak, whereas in areas of

higher density culling does not appear to be a useful

strategy. In reality, culling higher-density populations

might even be counter-productive. For example, an

attempt to cull deer might result in family groups

rapidly dispersing, effectively increasing the rate of

disease spread if the population is infected. In ad-

dition, the resources needed to cull a higher-density

population needs to be considered. An alternative

strategy might be a combination of : (1) do not disturb

a higher-density population of infected deer (and even

provide feed so they do not disperse), allowing the

disease to run its course (‘burn-out’) ; (2) impose strict

area quarantine and movement control (both in and

out) without disturbing the natural deer groups and

habitat ; and (3) commence depopulation of deer

within this local area once the model suggests that

FMD virus is no longer circulating. Thus, additional

mitigation strategies need to be modelled to support

policy development for dealing with FMD virus in-

cursions in which wild animal populations are in-

fected. Further research on local population density

reduction as a potential mitigation strategy to prevent

disease spread in white-tailed deer is needed. The as-

sumed biological relationship between density and

contact also needs to be better characterized in wild-

life species that might act as reservoirs of FMD

disease.

The model used in this study has been used pre-

viously to investigate wildlife–domestic species inter-

actions between feral pigs and cattle [8, 28], between

wild deer and cattle [8] and to evaluate the impact of

spatial estimates of deer distribution [13]. In the cur-

rent study, our focus was on the potential spread of

FMD in wild deer populations. As in previous studies

[8, 13] we focused on the initial stages of disease

spread (<100 days). This time-frame allowed us to

make comparisons without needing to consider the

complexities of seasonal variation [29]. We assumed

that all deer within a herd transitioned (SLIR) at one

time step. We believe that given the highly infectious

nature of FMD and the small herd size (compared

to cattle, for example) that this is a reasonable as-

sumption. Deer within a herd share very close contact

(both direct and indirect – shared grazing and water

sources). The duration of resistance to FMD virus re-

infection was assumed to be 90–180 days. Although

this assumption may be unrealistically low, it prob-

ably had little impact on the study results because

of the focus on the initial stages of disease spread.

Caution should be exercised when using the same

epidemiological parameters in different spatial land-

scapes. This is even more problematic when epi-

demiological parameters are estimated from a disease

outbreak that occurs within a given spatial landscape.

Given that FMD has not occurred in the USA since

1929, it is virtually impossible to estimate valid epi-

demiological parameters, should FMD virus be

introduced into the deer population. We selected

parameter ranges for the latent and infectious periods

based on the limited available data [3]. Using latent

period as the example, we elected to model shorter

time ranges in the first two ranges (1–5, 3–5 days)

because these parameter ranges were seen more fre-

quently in the infected deer in laboratory studies,

while the third range (5–10 days) is larger with less

overlap to encompass the lower probability ranges

that were observed. Laboratory data was collected on

individual animals [3]. We applied that data to the

herd level by using the range of reported values from

individually tested animals [3]. We realize that this

may not cover the possible range of values, but it is

the only data available regarding these parameters

in white-tailed deer.

However, the model system does incorporate un-

certainty by using parameter ranges [8]. The model is

robust even in the absence of detailed spatial hetero-

geneity parameter estimates : spatial heterogeneity

has been implicitly included in the model by the use

of herd size (density) to adjust disease transmission.

Furthermore, by using landscape variability via key

habitat features in the distribution methodologies

and density to control interaction in the simulation

model, heterogeneity of transmission has been in-

corporated via a ‘self-adjusting’ model that varies

across the landscape. Variation in both the distri-

bution of susceptible herds and contact rates over

the landscape has been captured: this is the primary
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underlying cause of the differences between model

results.

CONCLUSIONS

This is the first study to define the range and distri-

bution of estimates of outbreak magnitude generated

by various estimates of critical model parameters

(both aspatial and spatial) for FMD spread in white-

tailed deer. The information generated can be used to

assist in the development of a decision-support system

to plan for potential FMD incursions in which white-

tailed deer might form a disease reservoir.
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