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Abstract. We study the joint distribution of values of a pair consisting of a quadratic form
q and a linear form l over the set of integral vectors, a problem initiated by Dani and
Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of SL3(R).
Math. Ann. 286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis
and Mozes on the quantitative version of the Oppenheim conjecture, we show that if n ≥ 5,
then under the assumptions that for every (α, β) ∈ R2 \ {(0, 0)}, the form αq + βl2 is
irrational and that the signature of the restriction of q to the kernel of l is (p, n− 1 − p),
where 3 ≤ p ≤ n− 2, the number of vectors v ∈ Zn for which ‖v‖ < T , a < q(v) < b

and c < l(v) < d is asymptotically C(q, l)(d − c)(b − a)T n−3 as T → ∞, where C(q, l)
only depends on q and l. The density of the set of joint values of (q, l) under the same
assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear
form and a quadratic form. Trans. Amer. Math. Soc. 356(11) (2004), 4447–4463].
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1. Introduction
The Oppenheim conjecture [16], settled by Gregory Margulis in 1986 [15], states that for
any non-degenerate irrational indefinite quadratic form q over Rn, n ≥ 3, the set q(Zn) of
values of q over integral vectors is a dense subset of R.

Margulis’ proof uses the dynamics of Lie group actions on homogeneous spaces. More
precisely, he shows that every pre-compact orbit of the orthogonal group SO(2, 1) on the
homogeneous space SL3(R)/SL3(Z) is compact. This proof also settled a special case
of Raghunathan’s conjecture on the action of unipotent groups on homogenous spaces.
Raghunathan’s conjecture was posed in the late seventies (appearing in print in [8])
suggesting a different route towards resolving the Oppenheim conjecture. This conjecture
was later settled in its full generality by Marina Ratner [18].

Ever since Margulis’ proof, homogenous dynamics has turned into a powerful machin-
ery for studying similar questions of number theoretic nature. In particular, various
extensions and refinements of the Oppenheim conjectures have been studied. In the
quantitative direction, one can inquire about the distribution of values of q(Zn ∩ B(T )),
where B(T ) denotes the ball of radius T centred at zero. It was shown in a groundbreaking
work by Eskin, Margulis and Mozes [9] that the number NT ,I (q) of vectors v ∈ B(T )with
q(v) ∈ I := (a, b) satisfies the asymptotic formula

NT ,I (q) ∼ C(q)(b − a)T n−2 as T → ∞, (1.1)

assuming that q is non-degenerate, indefinite and irrational, and has signature different
from (2, 1) and (2, 2). Prior to [9], an asymptotically exact lower bound was established
by Dani and Margulis [7] under the condition n ≥ 3.

It is noteworthy that equation (1.1) does not hold for all irrational quadratic forms
of signatures (2, 1) and (2, 2). However, for quadratic forms of signature (2, 2) that are
not well approximable by rational forms, an analogous quantitative result for a modified
counting function has been established in [10]. The question for forms of signature (2, 1)
remains open.

Let q be an indefinite quadratic form of signature (p, q). The approach taken up in [9]
translates the problem of determining the asymptotic distribution of q(Zn) to the question
of studying the distribution of translated orbits atKx0 in the space SLn(R)/SLn(Z) of
unimodular lattices in Rn. Here, at is a one-parameter diagonal subgroup of the orthogonal
group SO(p, q) defined in equation (2.5), K is isomorphic to the maximal compact
subgroup of the connected component of identity in SO(p, q) and x0 ∈ SLn(R)/SLn(Z)
is determined by the quadratic form q. One of the major challenges of the proof is that
the required equidistribution result involves integrals of unbounded observables (or test
functions). This difficulty is overcome by introducing a set of height functions, which can
be used to track the elements k ∈ K for which the lattice atkx0 has a large height, and
thereby reducing the problem to bounded observables.
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Asymptotic distribution for pairs of linear and quadratic forms 3

1.1. Pairs of quadratic and linear forms. In this paper, we study the joint distribution
of the values of pairs (q, l) consisting of a quadratic and a linear form. This problem was
first studied by Dani and Margulis [6] who proved a result for the density of the joint
values of pairs of a quadratic form and a linear form in three variables. This result was
extended by Gorodnik [11] to forms with n ≥ 4 variables. Our goal in this paper is to
prove a quantitative version of these qualitative results.

Fix n ≥ 4, and write q for a non-degenerate indefinite quadratic form on Rn and l for
a non-zero linear form on Rn. Denote by S 0

n the set of all such pairs (q, l) satisfying the
following two conditions.
(A) The restriction of q to the subspace defined by l = 0 is indefinite.
(B) For every (α, β) ∈ R2 \ {(0, 0)}, the form αq + βl2 is irrational.
The main result of [11, Theorem 1] shows that under these assumptions, the set of joint
values

{(q(v), l(v)) : v ∈ Zn} ⊆ R2

is dense. Note that condition (A) is necessary for the set of values to be dense in R2.
Condition (B), however, can conceivably be weakened, see a remark in [11, §6].

Our goal in this work is to study a quantitative refinement of this problem. More
precisely, we will ask the following question.

Question 1.1. For (q, l) ∈ S 0
n and intervals I = (a, b), J = (c, d), denote by NT ,I ,J (q, l)

the number of vectors v ∈ Zn for which ‖v‖ < T , q(v) ∈ I and l(v) ∈ J . Find conditions
under which the following asymptotic behaviour holds:

NT ,I ,J (q, l) ∼ C(q, l) (b − a)(d − c)T n−3

as T → ∞. Here, C(q, l) is a positive constant that depends only on q and l.

Note that the above asymptotic behaviour is consistent with the general philosophy in
[9]. The ball B(T ) of radius T centred at zero contains about T n integral vectors. As v
ranges in B(T ), q(v) takes values in an interval of length approximately T 2, while the
values of l(v) range in an interval of length comparable to T. Packing the T n points
(q(v), l(v)) in a box of volume comparable to T 3, one might expect that a rectangle of
fixed size is hit approximately T n−3 times.

1.2. Statement of results. Let |I | denote the length of the interval I ⊆ R. Our main
result is the following.

THEOREM 1.2. Let q be a non-degenerate indefinite quadratic form on Rn for n ≥ 5 and
let l be a non-zero linear form on Rn. For T > 0, open bounded intervals I , J ⊆ R, let
NT ,I ,J (q, l) denote the number of vectors v for which

‖v‖ < T , q(v) ∈ I , l(v) ∈ J .
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Let Sn be the set of (q, l) ∈ S 0
n for which the restriction of q to ker l is non-degenerate

in ker l and not of signature (2, 2). Then for any (q, l) ∈ Sn, we have

lim
T→∞

NT ,I ,J (q, l)
T n−3 = C(q, l)|I | |J |,

where C(q, l) is a positive constant depending only on q and l.

Remark 1.3. Theorem 1.2 does not generally hold if the restriction of q to ker l is of
signature (2, 2), see §6 for a counterexample. Based on the main result of [10], it seems
reasonable that a modified result, under certain diophantine condition, might still hold.

1.3. Strategy of proof. The proof follows the same roadmap as in [9]. We will start by
translating the question into one about the distribution of translated orbits on homogenous
spaces.

It is well known that the space Xn of unimodular lattices in Rn can be identified
with the homogenous space SLn(R)/SLn(Z). This space is non-compact and carries an
SLn(R)-invariant probability measure. In many problems in homogenous dynamics, it is
useful to quantify the extent to which a lattice lies in the cusp of Xn.

We will translate Question 1.1 to the problem of showing that certain translated orbits
of the form atK� become asymptotically equidistributed in Xn as t goes to ∞. Here, K is
the maximal compact subgroup of the connected component of identity in SO(p, q − 1),
where (p, q − 1) denotes the signature of the restriction of q to ker l. At this point,
several problems will arise. However, the existence of various intermediate subgroups
make the application of the Dani–Margulis theorem more difficult. Dealing with this
problem requires us to classify all intermediate subgroups that can arise. The second
problem, similar to that in [9], involves the unboundedness of test functions to which the
equidistribution result must be applied. We will adapt the technique used in [9] with one
twist. Namely, we will prove a boundedness theorem for the integrals of α(atk�)s for some
s > 1, where α is the Margulis height function defined as follows: for a lattice �,

α(�) = max{‖v‖−1 : v ∈ �(�)},
where

�(�) = {v = v1 ∧ · · · ∧ vi : v1, . . . , vi ∈ �, 1 ≤ i ≤ n} \ {0}.
More precisely, we will show that for p ≥ 3, q ≥ 2 and 0 < s < 2, for every

g ∈ SLn(R), we have

sup
t>0

∫
K

α(atk.gZn)s dm(k) < ∞.

The strategy in [9] requires K not to have non-trivial fixed vectors in certain represen-
tation spaces. Since this is no longer the case here, we need to use a refined version of the
α function developed by Benoist and Quint [4, 19] which we recall now.

Let H be a connected semisimple Lie subgroup of SLn(R). Denote by
∧
(Rn) the

exterior power of Rn, that is, the direct sum of all
∧i
(Rn) for 0 ≤ i ≤ n. Let ρ : H →

GL(
∧

Rn) be the representation of H induced by the linear representation of H on Rn.
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Since H is semisimple, ρ decomposes into a direct sum of irreducible representations
of H parametrized by their highest weights λ. For each λ, denote by V λ the direct
sum of all irreducible subrepresentations of ρ with highest weight λ. Denote by τλ the
canonical orthogonal projection of

∧
(Rn) onto V λ. Fix ε > 0. Following [4, 19], define

the Benoist–Quint ϕ-function

ϕε :
∧
(Rn) �→ [0, ∞]

for v ∈ ∧i
(Rn), 0 < i < n, by

ϕε(v) =
{

minλ =0 ε
(n−i)i‖τλ(v)‖−1 if ‖τ0(v)‖ ≤ ε(n−i)i ,

0 otherwise.

Let us define fε : SLn(R)/SLn(Z) → [0, ∞] by

fε(�) = max{ϕε(v) : v ∈ �(�)}.

1.4. Outline of the paper. This paper is organized as follows. In §2, after recalling some
preliminaries, we state and prove results about the equidistribution of translated orbits of
the form atKgZn in the orbit closure. This requires us to classify all the intermediate
subgroups that can potentially appear in the conclusion of Ratner’s theorem. In §3, we
recall Siegel’s integral formula and prove Theorem 3.5, which is an analogue for a subset
of lattices that all share a rational vector. This proof relies on the boundedness of some
integrals (see Theorem 3.3) involving α-function, which is proven in the beginning of
this section. In §4, we will show that the integral of the α-function along certain orbit
translates is uniformly bounded. This is one of the major ingredients of the proof. In §5,
we will use results of the previous sections to establish Theorem 1.2. Finally, §6 is devoted
to presenting counterexamples illustrating that the analogue of Theorem 1.2 does not hold
for certain forms of signatures (2, 2) and (2, 3).

2. Equidistribution results
In this section, we will relate Question 1.1 to the question of equidistribution of certain
orbit translates in homogeneous spaces. In §2.1, we recall some preliminaries and in §2.2,
we establish a connection to the homogeneous dynamics.

2.1. Preliminaries: canonical forms for pairs (q, l) and their stabilizers. In this subsec-
tion, we will first introduce some notation and recall a number of basic facts about the
space of unimodular lattices in Rn. Then we will recall the classification in [11] of pairs
consisting of a quadratic form and a linear form under the action of SLn(R).

Let q be a non-degenerate isotropic quadratic form on Rn. There exists 1 ≤ p ≤ n− 1,
λ ∈ R \ {0} and g ∈ SLn(R) such that

λ · q(gx) = 2x1x2 + x2
3 + · · · + x2

p+1 − (x2
p+2 + · · · + x2

n).

We say that q has signature (p, n− p). We need a similar classification for pairs of
quadratic and linear forms. Let q be as above and let l be a non-zero linear form on Rn.
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For g ∈ SLn(R), define

qg(x) = q(gx), lg(x) = l(gx).

For i = 1, 2, let qi and li be as above. We say that (q1, l1) is equivalent to (q2, l2) if
q1 = λ · qg2 and l1 = μ · lg2 for some g ∈ SLn(R) and non-zero scalars λ and μ. Using the
action of SLn(R), we can transform any pair (q, l) into a standard pair.

PROPOSITION 2.1. [11, Proposition 2] Every pair (q, l) as above is equivalent to one and
only one of the following:

(I) (2x1x2 + x2
3 + · · · + x2

p+1 − x2
p+2 + · · · − x2

n, xn) p = 1, . . . , n− 1, (2.1)

(II) (2x1x2 +x2
3 + · · · +x2

p−x2
p+1 − · · · −x2

n−2 +2xn−1xn, xn) p=1, . . . , [n/2−1].
(2.2)

Pairs in equations (2.1) and (2.2) are referred to as type I and II, respectively. It can
be seen that the pair (q, l) is of type I if and only if the restriction of q to ker l is
non-degenerate. In this paper, we deal only with pairs (q, l) of type I satisfying conditions
(A) and (B). We denote this set by Sn.

Remark 2.2. For pairs of type II satisfying conditions (A) and (B), it appears that the
maximal compact subgroup K preserving both q and l is not sufficiently large for our
methods to apply.

2.2. Connection to the homogenous dynamics and equidistribution results. Let
G = SLn(R) and � = SLn(Z). Denote the Lie algebra of G by sln(R). Suppose that
(q, l) is equivalent to

(q0, l0) = (2x1x2 + x2
3 + · · · + x2

p+1 − x2
p+2 − · · · − x2

n , xn). (2.3)

Let H be the subgroup of SLn(R) defined by

H =

⎛⎜⎜⎜⎝
0

SO(p, q − 1)◦
...
0

0 · · · 0 1

⎞⎟⎟⎟⎠.

Denote by SO(q0, l0) the subgroup of SO(q0) that stabilizes l0, where (q0, l0) is defined
as in equation (2.5) so that SO(q0, l0)◦ is isomorphic to H. The Lie algebra of H, denoted
by h, consists of the subalgebra consisting of matrices of the form

h =

⎛⎜⎜⎜⎝
0

so(p, q − 1)
...
0

0 · · · 0 0

⎞⎟⎟⎟⎠. (2.4)
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It is not difficult to see that K := H ∩ SO(n) is a maximal compact subgroup of H and
is isomorphic to SO(p)× SO(q − 1). Denote the canonical basis of Rn by {e1, . . . , en}.
Let at denote the one-parameter subgroup defined by

ate1 = e−t e1, ate2 = et e2, atej = ej , 3 ≤ j ≤ n. (2.5)

Using this notation, we can state one of the main results of this paper.

THEOREM 2.3. For p ≥ 3, q ≥ 2 and 0 < s < 2. Then for every � ∈ Xn, we have

sup
t>0

∫
K

α(atk�)
s dm(k) < ∞.

This theorem is analogous to [9, Theorem 3.2]. What makes the proof of Theorem 2.3
more difficult is that the integration is over a proper subgroup of SO(p)× SO(q). In
general, one can see that if K is replaced by an arbitrary subgroup of SO(p)× SO(q)
with large co-dimension, then the analogue of Theorem 2.3 may not hold. As a result,
establishing the boundedness of the integral requires a more delicate analysis of the
excursion to the cusp of the translated orbit atK�. Using Theorem 2.3, we will prove
the theorem below from which Theorem 1.2 will be deduced.

THEOREM 2.4. Suppose p ≥ 3, q ≥ 2 and s > 1. Let φ : Xn → R be a continuous
function such that

|φ(�)| ≤ Cα(�)s

for all� ∈ Xn and some constant C > 0. Let� ∈ Xn be such thatH� is either Xn or is
of the form (SLn−1(R)�l Rn−1)�, where SLn−1(R)�l Rn−1 is defined by equation (2.6).
Then,

lim
t→∞

∫
K

φ(atk�) dm(k) =
∫
H�

φ dμ
H�

,

where μ
H�

is the H-invariant probability measure on H�.

We shall see that Theorem 2.4 will apply to � = g0Zn, when (qg0
0 , lg0

0 ) ∈ Sn, see
Theorem 2.8.

The methods used are inspired by those employed in [9]. We will recall a theorem
of Dani and Margulis after introducing some terminology and set some notation. Let
G be a real Lie group with the Lie algebra g. Let Ad : G → GL(g) denote the adjoint
representation of G. An element g ∈ G is called Ad-unipotent if Ad(g) is a unipotent
linear transformation. A one-parameter group {ut } is called Ad-unipotent if every ut is an
Ad-unipotent element of G. In this section, we will recall some results from [7, 9] that will
be needed in the following.

As in the proof of the quantitative Oppenheim conjecture [9], a key role is played by
Ratner’s equidistribution theorem. Suppose G is a connected Lie group, � < G a lattice
and H is a connected subgroup of G generated by unipotent elements in H. Ratner’s
orbit closure theorem asserts that for every point x ∈ G/�, there exists a connected
closed subgroup L containing H such that Hx = Lx. Moreover, Lx carries an L-invariant

https://doi.org/10.1017/etds.2024.30 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.30


8 J. Han et al

probability measure μL. To apply Ratner’s theorem in concrete situations, one needs to
be able to classify all subgroups L that can arise. In the next subsection, we will classify
all connected subgroups of SLn(R) containing H. Using well-known results in Lie theory,
this classification problem is equivalent to the problem of classifying all Lie subalgebras
of sln(R) containing h.

2.3. Intermediate subgroups. We will maintain the notation as in §2.2. Since h is
semisimple, sln(R), regarded as an ad(h)-module, can be decomposed as the direct sum of
irreducible ad(h)-invariant subspaces. For 1 ≤ i, j ≤ n, let Eij be the n× nmatrix whose
only non-zero entry is 1 and is located on the ith row and jth column. We will refer to
{Eij : 1 ≤ i, j ≤ n} as the canonical basis of the Lie algebra gln(R).

PROPOSITION 2.5. The Lie algebra sln(R) splits as the direct sum of irreducible
ad(h)-invariant subspaces

sln(R) = h ⊕ s ⊕ u+ ⊕ u− ⊕ t,

where:
• s consists of all matrices of the form⎛⎝ A B 0

−Bt D 0
0 0 0

⎞⎠,

and A and D are symmetric matrices of size p and (q − 1), respectively, such that
tr(A)+ tr(D) = 0, and B is an arbitrary p by q − 1 matrix;

• u+ is the (n− 1)-dimensional subspace spanned by Ein, 1 ≤ i ≤ n− 1;
• u− is the (n− 1)-dimensional subspace spanned by Eni , 1 ≤ i ≤ n− 1;
• t is the one-dimensional subspace spanned by E11 + · · · + En−1,n−1 − (n− 1)Enn.

Proof. The only challenging assertion lies in demonstrating that an ad(h)-invariant sub-
space s is ad(h)-irreducible. Using the weight decomposition of sln(R) for the restricted
root system of h, one can establish this assertion by showing that any weight vector of s
can be transformed into another weight vector via the adjoint action of restricted roots (for
further elaboration, refer to [13]).

Let : u+ → u− map Ein to Eni for 1 ≤ i ≤ p and Ein to −Eni for p+ 1 ≤ i≤n− 1.
In other words,



( p∑
i=1

viEin +
n−1∑
i=p+1

viEin

)
:=

p∑
i=1

viEni −
n−1∑
i=p+1

viEni .

One can verify that  is an h-module isomorphism. For any non-zero ξ ∈ R, consider
the subspace

uξ := (Id + ξ)u+.

It is clear that u0 = u+. Set also u∞ := u−. Note that for ξ = 0, ∞, the subspace uξ is not
a subalgebra of sln(R).
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TABLE 1. List of intermediate subalgebras.

Levi subalgebra f

h � so(p, q − 1) h, h ⊕ t, h ⊕ u+, h ⊕ u−, h ⊕ u+ ⊕ t, h ⊕ u− ⊕ t
so(qξ ) so(qξ ) ξ ∈ R \ {0}

h ⊕ s � sln−1(R) sln−1(R), sln−1(R)⊕ u+, sln−1(R)⊕ u−, sln−1(R)⊕ t,
sln−1(R)⊕ u+ ⊕ t, sln−1(R)⊕ u− ⊕ t

sln(R) sln(R)

Remark 2.6. Define the quadratic form qξ by

qξ (v) = (x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

n−1)+ ξx2
n .

The Lie algebra so(qξ ) for ξ ∈ R \ {0} decomposes as so(qξ ) = h ⊕ uξ . Moreover, any
quadratic form q′ for which SO(q′) contains H is of the form qξ up to scalar multiplication.

PROPOSITION 2.7. Let f be a subalgebra of sln(R) containing h. Then f is one of the Lie
algebras in Table 1.

Proof. Before we start the proof, let us recall that

h ⊕ uξ = so(qξ ), ξ ∈ R, h ⊕ s � sln−1(R).

Let f be as in the statement of Proposition 2.7. Since h is semisimple and f is an
h-submodule of sln(R), f decomposes into a direct sum of h and irreducible h-invariant
subspaces, each isomorphic to one of s, u+, u− and t. Note that aside from u+ and u−,
which are isomorphic h-modules, no other two of these h-modules are isomorphic. One
can thus write f = f1 ⊕ f2, where f1 is a direct sum of h with a subset of {s, t}, and f2 is
an h-submodule of u+ ⊕ u−. We will consider several cases. First assume that f1 = h.
All h-submodules of u+ ⊕ u− are of the form uξ for ξ ∈ R ∪ {∞}. This leads to the
submodules h ⊕ u+, h ⊕ u− and h ⊕ uξ = so(qξ ), all of which are subalgebras of sln(R).
Consider the case f1 = h ⊕ t. One can easily see that h ⊕ u+ ⊕ t, h ⊕ u− ⊕ t are both
subalgebras of sln(R). However, the inclusion

[t, uξ ] ⊆ u−ξ

rules out the potential candidate h ⊕ uξ ⊕ t. The case f1 = h + s = sln−1(R) can be dealt
with similarly. In view of the inclusion

[s, uξ ] ⊆ u−ξ ,

the potential candidates sln−1(R)⊕ uξ for ξ = 0, ∞ are ruled out, while sln−1(R),
sln−1(R)⊕ u+ and sln−1(R)⊕ u− are all possible. The last case f1 = h ⊕ s ⊕ t can be
studied similarly.
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For a subgroup F of SLn−1(R), denote

F �u R
n−1 =

⎛⎜⎜⎝ F Rn−1

0 · · · 0 1

⎞⎟⎟⎠ and F �l R
n−1 =

⎛⎜⎜⎜⎝
0

F
...
0

Rn−1 1

⎞⎟⎟⎟⎠. (2.6)

THEOREM 2.8. (Classification of possible orbit closures) Assume that (q, l) ∈ Sn. Let
g0 ∈ SLn(R) be such that SO(q, l)◦ = g−1

0 Hg0. Let F ≤ G denote the closed Lie sub-
group containing H with the property thatHg0� = g0F� ⊆ G/�. Then either F = G or
F = g−1

0 (SLn−1(R)�l Rn−1)g0.

One ingredient of the proof is the following theorem of Shah.

THEOREM 2.9. [20, Proposition 3.2] Let G ≤ SLn be a Q-algebraic group and
G = G(R)◦. Set � = G(Z) and let L be a subgroup which is generated by algebraic
unipotent one-parameter subgroups of G contained in L. Let L� = F� for a connected
Lie subgroup F of G. Let F be the smallest algebraic Q-group containing L. Then the
radical of F is a unipotent Q-group and F = F(R)◦.

Proof of Theorem 2.8. The proof relies on Proposition 2.7. Recall that SO(q, l) �
SO(p, q − 1) is semisimple and there are two proper SO(q, l)-invariant subspaces L1 and
L2 in the dual space (Rn)∗ of Rn with dim L1 = n− 1 and dim L2 = 1. Notice that since
(q, l) ∈ Sn, L2 is an irrational subspace.

Let f = Lie(F ). After conjugation by g0, since h ⊆ f, the Lie algebra f is a subalgebra
of sln(R) appearing in Table 1 of Proposition 2.7. We will show that if f = sln(R), then
only possible f is sln−1(R)�l Rn−1.

Claim 1. f does not contain t.

By Theorem 2.9, F is (the connected component of) the smallest algebraic Q-group and
the radical of F is a unipotent algebraic Q-group. According to Table 1, if t ⊆ f, the radical
of f is one of t, u+ ⊕ t or u− ⊕ t, which is not possible since t is not unipotent.

Claim 2. u+ is not contained in the radical of f.

If u+ is in the radical of f, then f is either h ⊕ u+ or sln−1(R)⊕ u+. In both cases,
F has invariant subspaces L1 and L2 in (Rn)∗. Since F is a Q-group, any F-invariant
subspace in (Rn)∗ is defined over Q. In particular, L2 must be a rational subspace, which
is a contradiction.

Claim 3. F is not semisimple.

If F � G is semisimple, then F is either SO(q, l)◦ or SO(q + ξ l2)◦ for some
ξ ∈ R − {0}. If F is SO(q, l)◦, F has an invariant subspace L2 in (Rn)∗, which leads
to a contradiction as in Claim 2. If F � SO(q + ξ l2)◦, since F is defined over Q, q + ξ l2
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is a scalar multiple of a rational form. This contradicts our assumption that αq + βl2 is
not rational for all non-zero (α, β) ∈ R2.

Thus, aside from sln−1(R)⊕ u−, the only possible option for f is so(p, q − 1)⊕ u−.

Claim 4. Levi subgroup of F is not isomorphic to SO(q, l)◦.

Suppose not. Let L be a unipotent radical of F. By the Levi–Malcev theorem ([14], see
also [1, Corollary 3.5.2]), there is � ∈ L such that �−1SO(q, l)� = SO(q�, l�) is a Levi
subgroup of F, which is defined over Q.

Choose a basis l1, . . . , ln−1 of L1 and ln of L2 such that q = l21 + · · · + l2p − l2p+1 −
· · · − l2n. Since the action of L fixes elements of L1, the space L1 is an SO(q�, l�)-invariant
subspace which is defined over Q by the assumption of SO(q�, l�). Choose a rational linear
form l0 ∈ (Rn)∗ such that 〈l0〉 is SO(q�, l�)-invariant and (Rn)∗ = L1 ⊕ 〈l0〉. Clearly,
l0 = cl� for some c ∈ R − {0}. Moreover, by Remark 2.6, since any quadratic forms fixed
by SO(q�, l�) are of the form

q′ = α′(l21 + · · · + l2p − l2p+1 − · · · − l2n−1)
� + β ′l20

= α′(l21 + · · · + l2p − l2p+1 − · · · − l2n−1)+ β ′l20,

there is a non-trivial (α′, β ′) ∈ R2 such that q′ is rational. Since L1 is an (n− 1)-
dimensional rational subspace of (Rn)∗, there is a rational vector v ∈ Rn such that
lj (v) = 0 for all 1 ≤ j ≤ n− 1 and l0(v) = 0. Evaluating q′ on v, we have β ′l0(v) ∈ Q
so that β ′ is a rational number. It follows that q + l2 = (1/α′)(q′ − β ′l20) is a rational
quadratic form, which is a contradiction.

PROPOSITION 2.10. LetG = SLn(R) and � = SLn(Z). Let (q, l) ∈ Sn and F be a closed
subgroup of G for which SO(q, l)◦� = F�. Then F � SLn−1(R)�l Rn−1 if and only if
there exists a non-zero v ∈ Qn that is SO(q, l)-invariant.

Proof. Suppose that F � SLn−1(R)�l Rn−1. Since F is a Q-group by Theorem 2.9, there
is g1 ∈ SLn(Q) for which SO(q, l) ⊆ g−1

1 (SLn−1(R)�l Rn−1)g1. Since SLn−1(R)�l
Rn−1 fixes en, SO(q, l) fixes g1en which is a non-zero rational vector.

Conversely, suppose that SO(q, l) fixes a non-zero rational vector v ∈ Qn. Since

F := {g ∈ SLn(R) : gv = v}
is an algebraic group defined over Q, F ∩ � is a lattice subgroup of F. Since F contains
SO(q, l), it follows that SO(q, l)◦� ⊆ F�. Then the equality automatically holds by
Theorem 2.8.

For closed subgroups U, H of G, define

X(H , U) = {g ∈ G : Ug ⊆ gH }.
Note that if g ∈ X(H , U) and H� ⊆ G/� is closed, then the orbit Ug� is included

in the closed subset gH� and hence cannot be dense. The next theorem asserts that for
a fixed ε > 0 and a continuous compactly supported test function φ by removing finitely
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many compact subsets Ci of such sets, the time average over [0, T ] of φ remains within ε
of the space average for sufficiently large values of T.

THEOREM 2.11. [7, Theorem 3] Let G be a connected Lie group and � be a lattice
in G. Denote by μ the G-invariant probability measure on G/�. Let U = {ut } be
an Ad-unipotent one-parameter subgroup of G and let φ : G/� → R be a bounded
continuous function. Suppose D is a compact subset of G/� and ε > 0. Then there exist
finitely many proper closed subgroups H1, . . . , Hk such that Hi ∩ � is a lattice in Hi
for all 1 ≤ i ≤ k, and compact subsets Ci ⊆ X(Hi , U) such that the following holds. For
every compact subset F ⊆ D − ⋃k

i=1 Ci�/�, there exists T0 ≥ 0 such that for all x ∈ F
and all T > T0, we have ∣∣∣∣ 1

T

∫ T

0
φ(utx) dt −

∫
G/�

φ dμ

∣∣∣∣ < ε.

If H is isomorphic to SO(p, q − 1)◦, since we have a classification of all intermediate
(connected) Lie subgroups between SO(p, q − 1)◦ and SLn(R), one can obtain concrete
statements. Using Theorem 2.8, we will prove Theorem 2.13 below, which is in the spirit
of [9, Theorems 4.4 or 4.5]. However, due to the presence of intermediate subgroups, both
the statement and the proof are more involved.

Recall that closed subgroupsHi in Theorem 2.11 are those who give the orbit closures of
U inG/�. Notice that in our case, sinceG = SLd(R) is Q-algebraic and� = SLd(Z) is an
arithmetic lattice subgroup, one can apply Theorem 2.9, that is, Hi terms are Q-algebraic
and with unipotent radical.

We say that X ⊆ Rd is a real algebraic set if X is equal to the set of common zeros of
a set of polynomials. We need the following lemma.

LEMMA 2.12. Let X be an affine algebraic set over the field of real numbers. Suppose that
Y1, Y2, . . . are countably many affine algebraic sets such that X is covered by the union of
Yi , i ≥ 1. Then X is covered by the union of only finitely many of Yi .

Proof. Assume, without loss of generality, that X is irreducible. The intersection
Xi = X ∩ Yi is an affine algebraic set, and hence is either X or a proper algebraic subset
of X. Suppose that there is no Yi for which Xi = X. Since every proper algebraic subset
is of lower dimension, and hence of Lebesgue measure zero, we obtain a contradiction to
the assumption that X is covered by countably many Yi terms. Consequently, there exists
i ≥ 1 such that X ⊆ Yi .

THEOREM 2.13. Let G, �, H and K be as in §2.2. Let φ, D and ε > 0 be as in
Theorem 2.11. Let ψ be a bounded measurable function on K. Then there exist a finite
set R ⊆ G/� and closed subgroups Lx ≤ G associated to every x ∈ R such that we have
the following.
(1) For x ∈ R, Lx is one of the following:

TH , T SLn−1(R), SO(qξ )◦ (ξ ∈ Q − {0}), T (SO(p, q − 1)◦ �u Rn−1)

T (SO(p, q − 1)◦ �l Rn−1), T (SLn−1(R)�u R
n−1) and T (SLn−1(R)�l R

n−1),
(2.7)
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where qξ is defined as in Remark 2.6 and T = {diag(et , . . . , et , e−(n−1)t ) : t ∈ R}.
Here, T L is the subgroup generated by T and L.

Moreover, for each x ∈ R, Lx .x ⊆ G/� is a closed submanifold with a positive
codimension. In particular, μ(Lx .x) = 0.

(2) For every compact set

F ⊆ D \
⋃
x∈R

Lx .x,

there exists t0 > 0 such that for any x ∈ F and every t > t0, the following holds:∣∣∣∣∫
K

φ(atkx)ψ(k) dm(k)−
∫
G/�

φ dμ

∫
K

ψ dm

∣∣∣∣ ≤ ε.

Proof. We will follow the strategy of [9, Theorem 4.4 (II)]. Let us first verify the following
statement, which is an analogue of [9, Theorem 4.3]: let U = {ut } be a given Ad-unipotent
one-parameter subgroup of H. We need to find sets R1, R2 and closed subgroups Fx terms
so that for any compact set F ⊆ D \ ⋃

x∈R1∪R2
Fx .x, there is T0 > 0 such that for any

x ∈ F and T > T0, it holds that

m

({
k ∈ K :

∣∣∣∣ 1
T

∫ T

0
φ(utkx) dt −

∫
G/�

φ dμ

∣∣∣∣ > ε

})
≤ ε. (2.8)

Let Hi = Hi(φ, KD, ε) and Ci = Ci(φ, KD, ε), 1 ≤ i ≤ k, be as in Theorem 2.11 for
U. For each i, define

Yi = {y ∈ G : Ky ⊂ X(Hi , U)}.
The group generated by

⋃
k∈K k−1Uk is normalized by U ∪K . Since K is maximal in

H, we obtain 〈⋃k∈K k−1Uk〉 = H . Let y ∈ Yi . Since Uky ⊆ kyHi for all k ∈ K , the
previous assertion implies that H ≤ yHiy

−1.
Note that Hi is a closed subgroup of G defined over Q and Hi ∩ � is a lattice in Hi .

Moreover, the radical of Hi is unipotent by Theorem 2.9. It follows from Theorem 2.7 that
Fi,y := yHiy

−1 belongs to the following list:

H , SLn−1(R), SO(qξ )◦ (ξ ∈ Q − {0}), SO(p, q − 1)◦ �u Rn−1

SO(p, q − 1)◦ �l Rn−1, SLn−1(R)�u R
n−1 and SLn−1(R)�l R

n−1.
(2.9)

Note that the only groups conjugate to each other in the list in equation (2.9) are those
of the form SO(qξ ) for ξ ∈ Q − {0}. Based on this fact, we will distinguish two cases.

Case I: Hi is not isomorphic to SO(qξ ) for any ξ ∈ Q − {0}. Consider y1, y2 ∈ Yi
such that Fi,y1 = Fi,y2 =: Fi , that is, y−1

1 y2 ∈ NG(Fi), where Fi is one of equation (2.9).
Thus, Yi� ⊆ NG(Fi)y1�. Since G is semisimple, NG(Fi) is a real algebraic group and has
finitely many connected components [22, Theorem 3]. Moreover, it is easy to check that
T ⊆ NG(Fi) and NG(Fi)◦ = T Fi . Hence, all orbits Yi�/� of this form can be covered by
finitely many orbits of T Fi .

Case II: Hi is isomorphic to SO(qξ )◦ for some ξ ∈ Q − {0}. We will partition Yi as

Yi =
⊔

ξ∈Q−{0}
(Yi ∩ Zξ ), (2.10)
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14 J. Han et al

where Zξ = {y ∈ G : yHiy−1 = SO(qξ )◦}. For each ξ ∈ Q − {0}, if Zξ is non-empty,
then it is a coset of NG(SO(qξ )◦), and hence is an algebraic set. Note that

Yi = {g ∈ G : Kg ⊂ X(Hi , U)} =
⋂
k∈K

{g ∈ G : kg ∈ X(Hi , U)} =
⋂
k∈K

k−1X(Hi , U).

We claim that X(Hi , U) is an algebraic set and Yi , being an intersection of algebraic
sets, is also algebraic. The proof of this claim is essentially included in [7, Proposition 3.2].
Write h = dim Hi and define

ρHi = ∧h(Ad) : G → GL
( h∧

g
)
.

Note that ρHi is an algebraic representation of G. We also know (see [7, Proposition
3.2]) that g ∈ X(Hi , U) if and only if u ⊆ (Adg)(hi ), which, in turn, is equivalent to the
condition that (ρHi (g)pHi ) ∧ w = 0 for all w ∈ u. This is, clearly, an algebraic condition.

It follows from equation (2.10) and Lemma 2.12 that there exists finitely many rational
numbers ξ1, . . . , ξm such that

Yi ⊆
⋃

1≤j≤m
(Yi ∩ Zξj ).

For each 1 ≤ j ≤ m, suppose that y1, y2 ∈ Yi are such that y1Hiy
−1
1 = y2Hiy

−1
2 =

SO(qξj )◦. Then y−1
1 y2 ∈ NG(SO(qξj )◦) and we conclude that

Yi� =
⋃

1≤j≤m
{y ∈ Yi : yHiy−1 = SO(qξj )

◦}� ⊆
⋃

1≤j≤m
NG(SO(qξj )

◦)yξj �

for some yξj ∈ Yi . In view of the fact that NG(SO(qξ )◦) is a finite union of right cosets of
SO(qξ )◦, there exists a finite set R ⊆ G/� and a closed subgroup Lx as in equation (2.9)
so that ⋃

i

Yi�/� ⊆
⋃
x∈R

Lx .x.

By the definition of Hi , Lx .x for each x ∈ R is a proper closed submanifold in G/�.
Since X(Hi , U) is a real analytic submanifold and K is connected, for any x ∈ F ,

m

({
k ∈ K : kx ∈

⋃
1≤i≤k

Ci�/�

})
= 0.

By [9, Theorem 4.2], there is an open set W ⊂ G/� for which
⋃

1≤i≤k Ci�/� ⊆ W

and m({k ∈ K : kx ∈ W }) < ε for any x ∈ F .
Let T0 be as in Theorem 2.11. Then for any x ∈ F and k ∈ K with kx /∈ W , we have∣∣∣∣ 1

T

∫ T

0
φ(utkx) dt −

∫
G/�

φ dμ

∣∣∣∣ < ε,

which shows equation (2.8). We will skip the rest of the proof since it closely parallels
the proof of [9, Theorem 4.4 (II)] once we replace [9, Theorem 4.3] by the inequality in
equation (2.8).
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THEOREM 2.14. Let g0 ∈ SLn(R) be such that G1 := g−1
0 (SLn−1(R)�l Rn−1)g0 is

defined over Q, and �1 := G1 ∩ SLn(Z) is a lattice in G1. Let Hg0 = g−1
0 Hg0 < G1. Let

Kg0 be a maximal compact subgroup of Hg0 and {ag0
t = g−1

0 diag(e−t , et , 1, . . . , 1)g0 :
t ∈ R} be a one-parameter subgroup ofHg0 . Let φ, D and ε > 0 be as in Theorem 2.11 for
G = G1 and � = �1, and let ψ be a bounded measurable function onKg0 . Then there are
finitely many points xi and closed subgroups Li , 1 ≤ i ≤ �, so that (g−1

0 Lig0).xi is closed
for every 1 ≤ i ≤ �, and for any compact F ⊆ (D − ⋃�

i=1(g
−1
0 Lig0).xi), there is t0 > 0

such that for any x ∈ F and t > t0,∣∣∣∣∫
Kg0

φ(a
g0
t kx)ψ(k) dm(k)−

∫
G1/�1

φ dμ

∫
Kg0

ψ dm

∣∣∣∣ ≤ ε.

Here, Li is one of

SO(p, q − 1)◦, SLn−1(R) and SO(p, q − 1)◦ �l Rn−1. (2.11)

Proof. The proof is similar to that of Theorem 2.13. In this case, possible proper
intermediate subgroups Hi terms are listed in equation (2.11). It is not hard to see that
for each Hi in this list, Hi = NG(Hi)◦.

3. Siegel integral formula for an intermediate subgroup
In this section, we will prove a version of Siegel’s integral formula for intermediate
subgroups F in Proposition 2.10. For a bounded and compactly supported function
f : Rn → R, the Siegel transform of f is defined by

f̃ (g) := f̃ (gZn) =
∑

v∈Zn−{0}
f (gv).

LEMMA 3.1. (Schmidt [9, Lemma 3.1]) Let f : Rn → R be a bounded function vanishing
outside of a bounded set. Then there exists a constant c = c(f ) such that

f̃ (�) < cα(�)

for all unimodular lattices � in Rn.

In the rest of this section, we will change the notation slightly and write α(g) for α(gZn).
One can see that the inequality α(g1g2) ≤ α(g1)α(g2) does not always hold. The following
lemma singles out special cases in which this inequality holds.

LEMMA 3.2. Let a, g, g1, g2 ∈ SLn(R). Assume, further, that a is self-adjoint. Then we
have:

(1)
α(g1g2)

α(g2)
≤ max

1≤j≤n
‖ ∧j g−1

1 ‖op;

(2) α(ag) ≤ α(a)α(g).

Proof. By the definition of α, we have

α(g1g2) = max
1≤j≤n

{
1

‖g1v1 ∧ · · · ∧ g1vj‖ :
v1, . . . , vj ∈ g2Zn,
v1 ∧ · · · ∧ vj = 0

}
.
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It follows from the definition of the operator norm that for any 1 ≤ j ≤ n and any
linearly independent vectors v1, . . . , vj ∈ g2Zn, we have

‖g1v1 ∧ · · · ∧ g1vj‖ = ‖(∧ig1)(v1 ∧ · · · ∧ vj )‖ ≥ ‖ ∧i g−1
1 ‖−1

op ‖v1 ∧ · · · ∧ vj‖.

This proves item (1).
To show item (2), we first assume that a = diag(a1, . . . , an). Recall that for

multi-indices I = {1 ≤ i1 < · · · < ij ≤ n} and L = {1 ≤ �1 < · · · < �j ≤ n}, the
(I , L)-component of ∧ia is

(∧ia)IL =
{∏

j aij if I = L,

0 otherwise.

Therefore,

sup
1≤j≤n

‖ ∧j a−1‖op = sup
1≤j≤n

(
sup

{
1

ai1 · · · aij
: 1 ≤ i1 < · · · < ij ≤ n

})
. (3.1)

However, since a is a diagonal matrix,

α(a) = sup
j

(
1

min{ai1 · · · aij : 1 ≤ i1 < · · · < ij ≤ n}
)

. (3.2)

Combining equations (3.1) and (3.2) with the first result, we obtain the second property.
For an adjoint matrix a′ ∈ SLn(R), we can write a′ = kak−1, where a is diagonal and

k ∈ SO(n). Notice that the α function is invariant under left multiplication by SO(n).
Using item (2),

α(a′g) = α((kak−1)g) = α(ak−1g) ≤ α(a)α(k−1g) = α(a′)α(g).

The following theorem is an analogue of [9, Lemma 3.10], where a similar statement
for the integral of αr over Xn is proven.

THEOREM 3.3. Let g0 ∈ SLn(R) be such that the algebraic group

F = g−1
0 (SLn−1(R)�l R

n−1)g0

is defined over Q and that �F := F ∩ � is a lattice in F. Denote by μF the F-invariant
probability measure on F/�F , and let FF ⊆ F be a fundamental domain for the action of
�F on F. Then for any 1 ≤ r < n− 1,∫

FF
αr(g) dμF (g) < ∞.

Proof. Since F is defined over Q, there exists g1 ∈ SLn(R) such that g−1
0 (SLn−1(R)�l

Rn−1)g0 = g−1
1 (SLn−1(R)�l R

n−1)g1 and F0 = g−1
1 SLn−1(R)g1 is a Levi subgroup for

F defined over Q. Note that the unipotent radical of F is given by R = g−1
1 ({Idn−1} �

Rn−1)g1 and is defined over Q (see [5]).
Recall that if H is a connected algebraic group defined over Q, then the discrete

subgroup H(Z) is a lattice in H if and only if H does not admit a non-trivial character
defined over Q (see [17, Theorem 4.13]). Since F0 is semisimple and R is polynomially
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isomorphic to Rn−1, they do not have non-trivial polynomial characters, and hence
F0(Z) = F0 ∩ �F and R(Z) = R ∩ �F are lattices in F0 and R, respectively. Moreover,
since R is abelian, R(Z) is cocompact.

Let FF0 and FR be fundamental domains for F0/F0(Z) and R/R(Z), respectively. One
can find a fundamental domain FF ⊆ FF0 × FR .

Now, we want to cover FF0 by a finite union of copies of a Siegel set of SLn−1(R).
Recall that the standard Siegel set � = �η,ξ of SLn(R) is the product SO(n)AηNξ , where

Aη = {diag(a1, . . . , an) ∈ SLn(R) : 0 < ai < ηai+1} and

Nξ = {(uij ): upper unipotent ∈ SLn(R) : |uij | ≤ ξ}.
It is well known that a fundamental domain of SLn(R)/SLn(Z) is contained in �η,ξ for
some appropriate η, ξ > 0 (see [17, Theorem 4.4] for instance). Moreover, since F0 is a
semisimple Lie group defined over Q and g1F0g

−1
1 is self-adjoint, by a theorem of Borel

and Harish-Chandra ([3], see also [17, Theorems 4.5 and 4.8]), there are γ1, . . . , γk ∈
SLn(Z) such that for D = (

⋃k
i=1 g

−1
1 �γi) ∩ F0, one has DF0(Z) = F0.

Note that g−1
1 �g1 is a Siegel set with respect to the Iwasawa decomposition

Kg1 = g−1
1 K0g1, Ag1 = g−1

1 A0g1 and Ng1 = g−1
1 N0g1. By [3, Lemma 7.5], for each

g−1
1 �γi = g−1

1 �g1(g
−1
1 γi), there are finitely many gij terms for which

g−1
1 �γi ∩ F0 ⊆

⋃
j

g−1
1 �1g1g

i
j ,

for some �1, where �1 is some standard Siegel set of SLn−1(R)(⊆ SLn(R)), so that
g−1

1 �1g1 is a Siegel set with respect to the Iwasawa decomposition Kg1 ∩ F0, Ag1 ∩ F0

and Ng1 ∩ F0. Therefore, by change of variables and using the fact that SLn(R) is
unimodular,∫

FF
αr(g) dμF (g) ≤

∑
i,j

∫
�1×FR

αr(g−1
1 gg1g

i
j h) dμSLn−1(R)

(g) dμR(h).

Let �1 = (�1)η′,ξ ′ and denote g = k′a′n′, where k′ ∈ SO(n− 1), a′ = diag(a′
1, . . . ,

a′
n−1, 1) for which a′

i ≤ η′a′
i+1 and n′ = (u′

ij ) is the upper unipotent element in
SLn−1(R)� {0} such that |u′

ij | ≤ ξ ′ for any (i, j) with i < j . Since dμSLn−1(R)�{0} is
locally �(a′)dk′da′dn′, where �(a′) is the product of positive roots, using Lemma 3.2
and [9, Lemma 3.10], it follows that for 1 ≤ r < n− 1,∫

FF
αr(g) dμF (g) � g1

∑
i,j

∫
A′
η′

∫
N ′
ξ ′×FR

αr(a′)αr(n′g1g
i
jh)�(a

′) da′ dn′ dμR(h)

≤ C
∑
i,j

∫
A′
η′
αr(a′)�(a′) da′ < ∞

for some C > 0 since Nξ ′ × FR is compact. Here,

A′
η′ = {diag(a1, . . . , an−1, 1) ∈ SLn−1(R) : 0 < ai ≤ η′ai+1} and

N ′
ξ ′ = {(u′

ij ): upper unipotent ∈ SLn−1(R) : |u′
ij | ≤ ξ ′}.
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Recall the well-known Siegel integral formula.

THEOREM 3.4. (Siegel [21]) For a bounded and compactly supported function
f : Rn → R, we have ∫

G/�

f̃ (g) dμ(g) =
∫
Rn
f (v) dv.

We also need the analogue of Siegel’s integral formula for the following specific
intermediate subgroup.

THEOREM 3.5. Assume that g0 ∈ SLn(R) is such that F = g−1
0 (SLn−1(R)�l R

n−1)g0 is
an algebraic group defined over Q and that �F := F ∩ � is a lattice. Denote by μF the
probability F-invariant measure on F/�F and by FF a fundamental domain for �F in F.
Then for any bounded compactly supported measurable function f : Rn → R, we have∫

FF
f̃ (g) dμF (g) =

∫
Rn
f (v)dv +

∑
m∈Z−{0}

f (m k0g
−1
0 en),

where k0 is determined by R.g−1
0 en ∩ Zn = Z.k0g

−1
0 en.

Proof. By Lemma 3.1 and Theorem 3.3, the integral∫
F/�F

f̃ (g) dμF (g)

is finite, and the map sending f to
∫
F/�F

f̃ (g) dμF (g) is a continuous positive linear
functional on the space of compactly supported continuous functions and is hence given
by a finite measure.

Note that the set of F-fixed vectors in Rn is R.g−1
0 en which is defined over Q, and F

acts transitively on Rn − R.g−1
0 en. Since R.g−1

0 en ∩ gZn is Z-span of k0g
−1
0 en for some

0 = k0 ∈ R, it follows from the usual argument of Siegel’s integration formula combined
with Proposition 3.3 (see [12, §3]) that∫

FF
f̃ (g) dμ(g) =

∫
Rn
f (v) dv +

∑
m∈Z−{0}

f (m k0g
−1
0 en).

4. Upper bounds for spherical averages of the α-function
In this section, we will prove the following theorem, which is an analogue of [9, Theorem
3.2].

THEOREM 4.1
(1) For p ≥ 3, q ≥ 2 and 0 < s < 2. Then for every g ∈ SLn(R), we have

sup
t>0

∫
K

α(atk.gZn)s dm(k) < ∞.

(2) For p = 2, q = 3, there is 0 < s < 1 such that

sup
t>0

∫
K

α(atk.gZn)s dm(k) < ∞.
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The proof is based on the following proposition, which is [9, Proposition 5.12].

PROPOSITION 4.2. Consider a self-adjoint reductive subgroup H of GLn(R). Let
K = On(R) ∩H and let m be the normalized Haar measure of K. Let A = {at : t ∈ R}
be a self-adjoint one-parameter subgroup of H and let F be a family of strictly positive
functions on H having the following properties.
(a) For any ε > 0, there is a neighbourhood V (ε) of Id in H such that for any f ∈ F ,

(1 − ε)f (h) < f (uh) < (1 + ε)f (h) for all h ∈ H for all u ∈ V (ε).
(b) For any f ∈ F , f (Kh) = f (h) for all h ∈ H .
(c) supf∈F f (Id) < ∞.

Then there exists a positive constant c = c(F) < 1 such that for all t0 > 0, b > 0, there
exists B = B(t0, b) < ∞ with the following property: if f ∈ F and∫

K

f (at0kh) dm(k) < cf (h)+ b (4.1)

for all h ∈ KAK ⊂ H , then ∫
K

f (aτ k) dm(k) < B

for any τ > 0.

4.1. Reduction to an fε-function. Let us start by recalling the definition of a
Benoist–Quint function. Write

∧
(Rn) = ⊕n−1

i=1
∧i
(Rn) and consider the representation

ρ : H → GL(
∧
(Rn)) induced by the linear representation of H on Rn. Since H is

semisimple, ρ decomposes into a direct sum of irreducible representations. For each
highest weight λ, denote by V λ the direct sum of all irreducible components with highest
weight λ and by τλ the orthogonal projection on V λ.

For ε > 0 and 0 < i < n, we define the Benoist–Quint ϕ-function ϕε :
∧
(Rn) →

[0, ∞] as in [4, 19]:

ϕε(v) =
{

minλ =0 ε
(n−i)i‖τλ(v)‖−1 if ‖τ0(v)‖ ≤ ε(n−i)i ,

0 otherwise.

Note that V 0 = {v ∈ ∧
(Rd) : Hv = v} by definition. Denote by (V 0)⊥ its orthogonal

complement in
∧
(Rd).

Remark 4.3
(1) Since τλ is defined in terms of projection of v onto V λ, for every v ∈ ∧

(Rd) and
λ = 0, we have

τλ(v) = τλ(v − τ0(v)).
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(2) Since maxλ =0 ‖τλ(v)‖ defines a norm on (V 0)⊥, there exists c1 > 1 such that for all
v ∈ (V 0)⊥,

1
c1‖v‖ ≤ 1

maxλ =0 ‖τλ(v)‖ ≤ c1
1

‖v‖ . (4.2)

4.2. The function fε and associated inequalities. Recall that �(�) = ⋃n
i=1 �

i(�),
where �i(�) is defined by

�i(�) = {v = v1 ∧ · · · ∧ vi : v1, . . . , vi ∈ �} \ {0}.
For ε > 0, define fε : SLn(R)/SLn(Z) → [0, ∞] by

fε(�) = max
v∈�(�)

ϕε(v).

We will first show that although fε is not finite on its entire domain, its restriction to each
H-orbit H .� is finite for sufficiently small ε.

LEMMA 4.4. For a given g ∈ SLn(R), there is ε0 > 0 such that if 0 < ε < ε0, the function

fg,ε(h) := fε(hgZ
n)

has a finite value for all h ∈ H .

Proof. Observe that fε(hgZn) = ∞ if and only if there is 1 < i < n and 0 = v ∈
�i(gZn) ∩ V 0 for which ‖v‖ ≤ εi(n−i). Since any element in H is of the form diag(M , 1)
with M ∈ SO(p, q − 1)◦, H acts on

⊕n−1
i=1 R.ei irreducibly. This implies that any

non-zero H-fixed elements v ∈ �(gZn) are scalar multiples of en, e1 ∧ · · · ∧ en−1, or
e1 ∧ · · · ∧ en. If �(gZn) does not contain any such vectors other than e1 ∧ · · · ∧ en, any
value of ε > 0 will work. Otherwise, there exists a non-empty set S of vectors v ∈ �(gZn)
which are of the form

v = a(v)en or v = a(v)(e1 ∧ · · · ∧ en−1)

for some a(v) > 0. Since gZn is discrete, ε0 := min{a(v)1/(n−1) : v ∈ S} > 0. If ε < ε0,
there are no vectors in �(gZn) ∩ V 0 or norm at most εi(n−i). It follows that the restriction
of fε to HgZn is finite.

LEMMA 4.5. Let s > 0 and g ∈ SLn(R). Let ε > 0 be such that fg,ε(h) < ∞ for all
h ∈ H . Then there exist cs,ε > 0 and Cs,ε > 0 depending on s and ε such that for all
h ∈ H , we have

α(hgZn)s ≤ cs,εfg,ε(h)
s + Cs,ε.

Proof. Write ε1 = min1≤i≤n−1 ε
i(n−i) and ε2 = max1≤i≤n−1 ε

i(n−i), and define
cs,ε = (c1/ε1)

s and Cs,ε = εs2 + 1, where c1 is chosen as in equation (4.2). In view of
equation (4.2), for all v ∈ ⊕

λ =0 V
λ, we have

ε1

c1‖v‖ ≤ ϕε(v) ≤ c1ε2

‖v‖ .
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Let v ∈ �i(hgZn) be the vector at which α(hgZn) is attained. We will consider two cases.
If ‖τ0(v)‖ > εi(n−i), then we have

α(hgZn) = 1
‖v‖ ≤ 1

‖τ0(v)‖ ≤ ε−i(n−i) ≤ Cs,ε.

Otherwise, we have ‖τ0(v)‖ ≤ εi(n−i). In this case, by the choice of ε, we must have
v = τ0(v). This implies that

α(hgZn) = 1
‖v‖ ≤ 1

‖v − τ0(v)‖ ≤ c1

ε1
ϕε(v − τ0(v)) = c1

ε1
ϕε(v) ≤ cs,εfg,ε(h).

The claim follows by combining these two cases.

LEMMA 4.6. Suppose p ≥ 3, q ≥ 2 and s ∈ (0, 2) or p = 2, q = 2, 3 and s ∈ (0, 1).
Then, for every c > 0, there exists t0 > 0 such that for every t > t0 and v ∈ ∧i

(Rn)− V 0,
the following holds:∫

K

1
maxλ =0 ‖τλ(atkv)‖s dm(k) ≤ c

maxλ =0 ‖τλ(v)‖s .

Proof. Let v ∈ ∧i
(Rn)− V 0. By part (1) of Remark 4.3, we may assume that

v ∈ ⊕
λ =0 V

λ. It follows from [9, Proposition 5.4] and the inequality in equation (4.2)
that ∫

K

1
maxλ =0 ‖τλ(atkv)‖s dm(k) ≤ c1

∫
K

1
‖atkv‖s dm(k) < c1c

′ 1
‖v‖s

≤ c2
1c

′ 1
maxλ =0 ‖τλ(v)‖s .

Indeed, one can use [9, Proposition 5.4] as follows: let W−, W 0, W+ be the eigenspaces
corresponding to eigenvalues e−t , 1, et (of at ) in

∧i
(Rn), respectively. From v ∈ V 0, it

follows thatKv � W 0. Since p ≥ 3 and q ≥ 2, we deduce that conditions (a), (b), (c) of [9,
Lemma 5.2] are satisfied. For p = 2 and q = 2, 3, one can directly show that conditions
(a), (b) of [9, Lemma 5.1] are satisfied.

PROPOSITION 4.7. Let g ∈ SLd(R). Suppose p ≥ 3, q ≥ 2 and s ∈ (0, 2) or p = 2,
q = 2, 3 and s ∈ (0, 1). One can find ε1 > 0 for which for any ε ∈ (0, ε1) and for any
c > 0, there are t0 and b > 0 such that for every h ∈ H , the following inequality holds:∫

K

fg,ε(at0kh)
s dm(k) < cfg,ε(h)

s + b.

Proof. Let �i be the set of monomials in
∧i
(Rn) for 0 ≤ i ≤ n. By [19], there

exists C > 0 such that for all 0 < ε < 1/C, and u ∈ �i1 , v ∈ �i2 , w ∈ �i3 with i1 ≥ 0,
i2 > 0, i3 > 0 and

ϕε(u ∧ v) ≥ 1, ϕε(u ∧ w) ≥ 1,

we have following.
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(1) If i1 > 0 and i1 + i2 + i3 < d, then

min{ϕε(u ∧ v), ϕε(u ∧ w)} ≤ (Cε)1/2 max{ϕε(u), ϕε(u ∧ v ∧ w)}.
(2) If i1 = 0 and i1 + i2 + i3 < d, then

min{ϕε(v), ϕε(w)} ≤ (Cε)1/2ϕε(v ∧ w).
(3) If i1 > 0, i1 + i2 + i3 = d and ‖u ∧ v ∧ w‖ ≥ 1, then

min{ϕε(u ∧ v), ϕε(u ∧ w)} ≤ (Cε)1/2ϕε(u).

(4) If i = 0, i1 + i2 + i3 = d and ‖v ∧ w‖ ≥ 1, then

min{ϕε(v), ϕε(w)} ≤ b1,

where b1 = sup{ϕε(v) : v ∈ ∧
(Rn) : ‖v‖ ≥ 1}.

By Lemma 4.6, there exists t0 > 0, independent of the choice of ε > 0, such that for
any v ∈ ∧

(Rn) with ϕε(v) = 0, we have∫
K

ϕε(at0kv)
s dm(k) ≤ c

2n
ϕε(v)

s . (4.3)

Let m0 = et0s ≥ 1 so that

1
m0
ϕε(v) ≤ ϕε(at0v) ≤ m0ϕε(v).

Define the set

�(hgZn) = {v ∈ �(hgZn) : fε,g(h) ≤ m2
0ϕε(v)}.

Note that

fε,g(h) = max
v∈�(hgZn)

ϕε(v) = max
v∈�(hgZn)

ϕε(v)

and if v ∈ �(hgZn) is such that fg,ε(h) = ϕε(v), then v ∈ �(hgZn). Choose ε > 0 small
enough so that

m4
0Cε < 1. (4.4)

Case 1. fε,g(h) = fε(hgZn) ≤ max{b1, m2
0}. For any k ∈ K , since fε is left

K-invariant,

fε(at0khgZ
n) ≤ m0fε(khgZ

n) = m0fε(hgZ
n),

and hence it follows that∫
K

fg,ε(at0kh)
s dm(k) ≤ (m0 max{b1, m2

0})s . (4.5)

Case 2. fε,g(h) > max{b1, m2
0}. One can deduce that �(hgZn) contains at most one

element up to sign change in each degree from exactly the same argument for [19, Claim
3.9] with the assumption m4

0Cε < 1.
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Note that for any v ∈ �(hgZn),
ϕε(at0kv) ≤ max

ψ∈�(hgZn)
ϕε(at0kψ)

since if v ∈ �(hgZn), it is obvious and if v /∈ �(hgZn), by the definition of �(hgZn)
and m0,

ϕε(at0kv) ≤ m0ϕε(v) ≤ m−1
0 fε(hgZ

n)

≤ m−1
0 max

ψ∈�(hgZn)
ϕε(ψ) ≤ max

ψ∈�(hgZn)
ϕε(at0kψ).

Hence, ∫
K

fε(at0khgZ
n)s dm(k) ≤

∑
ψ∈�(hgZn)

∫
K

ϕε(at0kψ)
s dm(k).

For any ψ ∈ �(hgZn), 0 < fε,g(h)/m
2
0 ≤ ϕε(v), we have ψ /∈ V 0, and hence by equation

(4.3), ∫
K

ϕε(at0kψ)
s dm(k) ≤ c

2n
ϕε(ψ)

s .

Since there is at most 2n elements in �(hgZn),∫
K

fε(at0khgZ
n)s dm(k) ≤ c max

ψ∈�(hgZn)
ϕε(ψ)

s = cfε,g(h)
s . (4.6)

Therefore, by equations (4.5) and (4.6), it follows that∫
K

fε,g(at0kh)
s dm(k) ≤ cfε,g(h)

s + (m0 max{b1, m2
0})s .

Proof of Theorem 4.1. By Lemma 4.5, it suffices to show that

sup
t>0

∫
K

fg,ε(at k.gZn)s dm(k) < ∞

for an appropriate ε > 0, using Proposition 4.2. The assumptions of Proposition 4.2 are
obvious except the condition (c) and the inequality in equation (4.1). Choose ε > 0 such
that Lemma 4.4 and the inequality in equation (4.4) holds. Note that m0 ≥ 1 in equation
(4.4) is determined once 0 < c < 1 in Proposition 4.2 is given. Then Lemma 4.4 shows
the condition (c) and Proposition 4.7 shows the inequality in equation (4.1).

Proof of Theorem 2.4. The proof works exactly as the proof of in [9, Theorem 3.4]. Instead
of using in [9, Theorem 3.2], one needs to use Theorem 4.1 and one of Theorems 2.13 and
2.14 depending on the orbit closure.

5. Passage to dynamics on the space Xn of unimodular lattices in Rn

In this section, we will show how to use the equidistribution results of previous sections
to prove Theorem 1.2. The methods used here are analogous to those in [9, §3]. Our
assumption that (q, l) ∈ Sn will be used in this section as well. Throughout the proof,
we will assume that n ≥ 4. We denote by Rn+ the set of vectors v ∈ Rn with 〈v,e1〉 > 0.
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The volume of the unit sphere in Rm is denoted by γm−1. Finally, for p + q = n, we write
cp,q = 2(n−2)/2/γp−1γq−1.

We will start by setting some notation. For t ∈ R, recall the one-parameter subgroup of
H defined by

at = diag(e−t , et , 1, . . . , 1).

Let f : Rn+ → R be continuous of compact support. We set

Jf (r , ζ , s) = 1
rn−3

∫
Rn−3

f (r , x2, x3, . . . , xn−1, s) dx3 · · · dxn−1,

where x2 is uniquely determined so that q0(r , x2, . . . , xn−1, s) = ζ .

PROPOSITION 5.1. For every ε > 0, there exists t0 > 0 so that if t > t0,∣∣∣∣cp,q−1e
(n−3)t

∫
K

f (atkv) dk − Jf (‖v‖e−t , q0(v), l0(v))
∣∣∣∣ < ε

for any v ∈ Rn.

Proof. This proposition is analogous to [9, Lemma 3.6] and a special case of [19, Lemma
5.1], where the number of linear forms is set to be one and the matrix g to the identity. Let
us point out that the function Jf in [19, Lemma 5.1] also depends on the value of quadratic
form (ζ for us), but is not part of the notation.

PROPOSITION 5.2. Let f be a continuous bounded function on Rn+ with compact support.
For every ε > 0 and g0 ∈ G, the following inequality holds for sufficiently large values
of t: ∣∣∣∣e−(n−3)t

∑
v∈Zn

Jf (‖g0v‖e−t , q0(g0v), l0(g0v))− cp,q−1

∫
K

f̃ (atkg0) dk

∣∣∣∣ < ε.

Proof. It follows from Proposition 5.1 that the number of the terms involved in the sum
over vectors in Zn is O(e(n−3)t ). Now, the desired inequality follows by applying the
conclusion of Proposition 5.1 to the vectors g0v with v ∈ Zn and summing over all these
vectors.

The next proposition is similar to [9, Lemma 3.8], with the difference that the last
variable s is fixed.

PROPOSITION 5.3. Let h = h(v, ζ , s) : (Rn \ {0})× R × R → R be a continuous func-
tion of compact support. Then

lim
T→∞

1
T n−3

∫
Rn
h

(
v

T
, l0(v), q0(v)

)
dv

= cp,q−1

∫
K

∫
R

∫
R

∫ ∞

0
h(rk−1e1, ζ , s)rn−3 dr

2r
ds dζ dm(k). (5.1)
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Proof. We start from the left-hand side of equation (5.1). Decompose the vector v as
v = v′ + vnen and denote by q′

0 the restriction of q0 to the hyperplane vn = 0. Since h
is compactly supported,

lim
T→∞

∫
vn

∫
Rn−1

h

(
v′ + vnen

T
, vn, q′

0(v
′)− v2

n

)
dv′ dvn

= lim
T→∞

∫
vn

∫
Rn−1

h

(
v′

T
, vn, q′

0(v
′)− v2

n

)
dv′ dvn

=
∫
vn

∫
Rn−1

hvn

(
v′

T
, q′

0(v
′)
)
dv′ dvn,

where ha(v′, ξ) = h(v, a, ξ − a2). Note that ha is a function on (Rn−1 − {0})× R. By [9,
Lemma 3.6], ∫

vn

∫
Rn−1

hvn

(
v′

T
, q′

0(v
′)
)
dv′ dvn

=
∫
vn

∫
K

∫
R

∫ ∞

0
hvn(rk

−1e1, ξ − v2
n)r

n−3 dr

2r
dζ dm(k)

=
∫
R

∫
K

∫
R

∫ ∞

0
h(rk−1e1, η, ξ)rn−3 dr

2r
dζ dη,

after appropriate changing of variables.

COROLLARY 5.4. Let f be a continuous bounded function on Rn+ with compact support.
Set h(v, ξ , s) = Jf (‖v‖, ξ , s). Then we have

lim
T→∞

1
T n−3

∫
Rn
h

(
v

T
, q0(v), l0(v)

)
dv = cp,q−1

∫
G/�

f̃ (g) dμ(g).

Proof. Using the change of variable

v = (v1, . . . , vn) �→ (v1, ζ , v3, . . . , vn),

where ζ = q0(x1, . . . , xn), the desired claim will follow.

COROLLARY 5.5. Let VT ,I ,J (q, l) denote the volume of the subset of Rn consisting of
vectors v for which ‖v‖ < T , q(v) ∈ I , and l(v) ∈ J . Then

lim
T→∞

VT ,I ,J (q, l)
T n−3 = C(q, l)|I | |J |,

where C(q, l) is a constant depending only on q, l, and | · | denotes the length of an
interval.

Proof. This follows from Corollary 5.4. For details, see [2].

Let us now turn to the proof of the main theorem. Let g0 ∈ G be such that q = qg0
0 and

l = lg0
0 . Consider the space C of all functions on (Rn \ {0})× R × R that vanish outside of
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a fixed compact set and equip it with the topology of uniform convergence. It follows from
Proposition 5.3 that the functional L : C → R defined by

L(h) = lim
T→∞

1
T n−3

∫
Rn
h

(
v

T
, q0(v), l0(v)

)
dv

is continuous. Let χ denote the characteristic function of {v ∈ Rn : ‖v‖ ∈ (1/2, 1)} ×
[a, b] × [c, d]. Note that ∑

v∈Zn
χ(e−t v, q0(g0v), l0(g0v))

counts the number of v ∈ Zn satisfying et/2 ≤ ‖v‖ ≤ et , a ≤ q0(g0v) ≤ b and
c ≤ l0(g0v) ≤ d . Given ε > 0, there exists h+, h− ∈ C such that

h−(g0v, ζ , s) ≤ χ(g0v, ζ , s) ≤ h+(g0v, ζ , s) and |L(h+)− L(h−)| < ε.

One can easily verify that every compactly supported radial function is of the form
Jf (‖v‖, ζ , s) for some compactly supported function f defined on Rn+ with the similar
arguments in [9, p. 109]. By Proposition 5.2, Theorem 2.3, two variations of Siegel’s
integral formula (Theorems 3.4 and 3.5, depending on the orbit closures) and Proposition
5.3, there exists t0 such that for t > t0, we have∣∣∣∣e−(n−3)t

∑
v∈Zn

h±(e−t g0v, q0(g0v), l0(g0v))− L(h±)
∣∣∣∣ < ε. (5.2)

Clearly, for t sufficiently large, we have∣∣∣∣e−(n−3)t
∫
Rn
h±(e−t g0v, q0(g0v), l0(g0v))− L(h±)

∣∣∣∣ < ε. (5.3)

We note that when we apply Theorem 3.5, since we are considering Jf functions for f
supported on Rn+, we have that f (xen) = 0 for any x ∈ R. After applying Theorem 2.3, it
follows that

cp,q−1e
(n−3)t

∫
F/�F

f̃ (g0g�) dμF (g)

= cp,q−1e
(n−3)t

∫
Rn
f (g0v) dv +

∑
m∈Z−{0}

f (g0(mk0g
−1
0 en))

= cp,q−1e
(n−3)t

∫
Rn
f (v) dv +

∑
m∈Z−{0}

f (mk0en)

= cp,q−1e
(n−3)t

∫
Rn
f (v) dv

so that we can apply Proposition 5.3. It follows that for every θ > 0, for t > t0, we have

(1 − θ)

∫
Rn
h−(e−t v, q0(g0v), l0(g0v)) dv ≤

∑
v∈Zn

χ(e−t v, q0(g0v), l0(g0v))

≤ (1 + θ)

∫
Rn
h+(e−t v, q0(g0v), l0(g0v)) dv,

(5.4)
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which implies that for sufficiently large T � 0,

(1 − θ) vol(q−1(I ) ∩ l−1(J ) ∩ BT )≤NT ,I ,J (q, l)≤ (1 + θ) vol(q−1(I )∩ l−1(J )∩BT ).
Now, the theorem follows from Corollary 5.5.

6. Counterexamples
In this section, we provide counterexamples showing that Theorem 1.2 does not generally
hold when (p, q) = (2, 2) and (2, 3). The construction is based on the existence of forms
of signature (2, 1) and (2, 2) for which equation (1.1) fails, as proven in [9].

Let us first consider the (2, 2)-case. For an irrational positive real number β, set

qβ(x1, x2, x3, x4) = (x2
1 + x2

2)− βx2
3 − (βx3 + x4)

2,

lβ(x1, x2, x3, x4) = βx3 + x4.
(6.1)

We claim that (qβ , lβ) belongs to S4. It is clear that both forms are irrational. Suppose
that λ1qβ + λ2l2β is a rational quadratic form. By considering the ratios of the coefficients
of monomials x2

4 and x3x4, and the term x2
1 , we conclude that

−1 + λ2

λ1
, −2β

(
1 − λ2

λ1

)
must both be rational. This implies that β is rational, which is a contradiction. It is also
clear that the restriction of qβ to the kernel of lβ is indefinite. This shows that the pair
(qβ , lβ) is of type I.

Now, consider the quadratic form

q′
β = x2

1 + x2
2 − β2x2

3 .

Given any ε > 0 and interval I = (a, b) ⊆ R, of [9, Theorem 2.2] provides a dense set of
irrational values for B ⊆ R such that for every β ∈ B, there exists c > 0 and a sequence
Tj → ∞ such that

Nq,I (T ) > cTj (log Tj )1−ε

holds for all j ≥ 1. Choose β ∈ (1/2, 1) and I = [β−1, 2]. Then we can find a subset
Lj ⊆ Z3 of cardinality at least cTj (log Tj )1−ε such that for every x = (x1, x2, x3) ∈ Lj ,
we have

x2
1 + x2

2 − β2x2
3 ∈ [β−1, 2], x2

1 + x2
2 + x2

2 ≤ T 2
j .

For every (x1, x2, x3) ∈ Lj , choose x4 ∈ Z such that |βx3 + x4| ≤ 1. Note that this also
implies that for j sufficiently large, we have

|x4| ≤ 1 + | βx3| ≤ 1 + β|Tj | ≤ |Tj |.
From here, we conclude the following inequalities:

qβ(x1, x2, x3, x4) = q ′
β(x1, x2, x3)− (βx3 + x4)

2 ∈ [−1, 2],

lβ(x1, x2, x3, x4) = βx3 + x4 ∈ [−1, 1].
(6.2)
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Moreover,

‖(x1, x2, x3, x4)‖ ≤ √
2Tj .

Setting I = [−1, 2], J = [−1, 1] and adjusting the constant c slightly, the claim follows.
Forms of signature (2, 3) can be dealt with in a similar manner by considering the pair

qβ(x1, x2, x3, x4, x5) = (x2
1 + x2

2)− β(x2
3 + x2

4)− (βx3 + βx4 + x5)
2,

lβ(x1, x2, x3, x4, x5) = βx3 + βx4 + x5.

We omit the details.
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