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ON COUNTING TYPES OF SYMMETRIES IN FINITE 
UNITARY REFLECTION GROUPS 

C. L. MORGAN 

Let K be a field of characteristic zero. Let V be an w-dimensional vector 
space over K. A linear automorphism of V is said to be of type i if it leaves fixed 
a subspace of dimension i. A reflection is a linear automorphism of type n — 1 
which has finite order. A finite reflection group is a finite group of linear auto
morphisms which is generated by reflections. These groups are especially 
interesting because the full group of symmetries of a regular poly tope is always 
a finite reflection group. There is also a strong connection between these groups 
and Lie groups. 

Shephard and Todd [2] have discovered and verified and L. Solomon [3] 
has given a general proof of the following counting principle: Let G be a finite 
reflection group. Let gt denote the number of elements in G of type i; then the 
polynomial 

gnx
n + gn-ix

n~l + . . . + go 

always factors into the form 

(x + nii)(x + tn2) . . . (x + mn), 

where mi, . . . , mn are positive integers such that m\ + 1, . . . , mn + 1 are 
the degrees of a minimal generating set for the homogeneous polynomial 
invariants of G. From now on let dk = mk + 1. The mi, . . . , mn are called the 
exponents of the group. See Coxeter [1, pp. 149-150] for an historical discus
sion of this principle. 

In this paper we extend the above result to a counting principle on the eigen
values of the elements of a finite reflection group. We shall prove the following 
theorem : 

THEOREM. Let G be a finite reflection group, let p be a positive integer, and let u 
be a primitive pt\i root of unity. If g t is the number of elements in G for which the 
eigenvalue u occurs with multiplicity i, then the polynomial 

gnx
n + gn-ix71-1 + . . . + go 

factors into the form 

c(x + mh)(x + ml2) . . . (x + mlr), 
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The referee remarks that this theorem was proved by Ian G. Macdonald in a seminar at the 

Institute for Advanced Study, Princeton, in 1968. Macdonald's proof, along the same lines, 
has not been published. 
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where mh, . . . , mXr are the exponents of G for which p\dk and c is the product of 
the remaining dk. 

Note: If u = 1, then the above statement reduces to the original counting 
principle. 

Proof. Let Wi(g), w2(g)j . . . , wn(g) be the eigenvalues of g £ G. According 
to Solomon [3], we can write 

_L v ^AMg), • • •, Mg)) _ *nAtni, • • •, tmn) 
\G\ fto (1 - Mg)t) . . . (1 - wn(g)t) (1 - f) . . . (1 - **") 

for k = 0, . . . , n, where anj1c is the &th elementary symmetric function in n 
variables. 

A computation shows that 

J _ v an^1 ~ Wl^l> - • »* " Wn^g)t) _ ̂ fc(1 ~ *dl» • • • > * - /dn) 
\G\ fto (1 - W!(g)0 . . . (1 - wn(g)t) (1 - /dl) . . . (1 - &) 

By expanding and canceling within each term, we get: 

]G\ S '""-Al - wxfàt ' •••' 1 - wn{g)t) 

( 1 1 \ 

Thus the average over the group of any elementary symmetric function in the 
1/(1 — Wi(g)t) is the same elementary symmetric function in the 1/(1 — tdi). 

Using these elementary symmetric functions as coefficients of a polynomial 
in X gives us: 

J_ T Y a ( l _J__W* 
\G\ h fto n,k\i - wi(g)< ' • • • • ! - wn{g)tr 

= S '"Ai - fl ' " " ' i - fvxk' 
which factors into: 

ici ,5 u - »,<«)< + v • • • li - „jg)i+ v 
= (r^+i)---(r^+1)-

If, in the above expression, we let X = (1 — zz/) F, set t = u~l, then on the 
left each X/(l — wt(g)t) + 1 yields Y + 1 if u = wt(g) and 1 if not. Thus for 
each g e G, the product (X/(l - w1{g)t) + 1) . . . 0X7(1 - wn(g)t) + 1) 
yields (Y + 1)', where i is the multiplicity of the eigenvalue u in g. Thus on 
the left we get: 
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On the right, for each k = 1, . . . , n, we have 

1 — tdlt dk J==Q 1 — rjjt J 

where 170, . . . , y]mfc are the dk-th roots of unity. Hence the factor X(l — tdk) + 1 
yields (Y/dk) + 1 if w G {*?o, . . . , lmk\, and 1 otherwise. 

Since u is a primitive pth root of unity, u £ {r/0, . . . , ^mj if and only if 
£ 1 ^ . Thus on the right we get ((Y/dh) + 1) . . . ((Y/dlr) + 1), where 
mhl . . . , mh are the exponents of G such that £|dfc. Equating the two sides 
yields: 

t gt(y + l)' = -,, , |G| ,, -T (7 + d,,) .. . (F + d,r). 

Now it follows from the original result that \G\ = di . . . dn. Setting 
x = Y + 1 gives: 

n 

X) g<ff* = c(x + mh) . . . (x + wiIr), 

where c is the product of the remaining dks. 
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