ON COUNTING TYPES OF SYMMETRIES IN FINITE UNITARY REFLEGTION GROUPS

C. L. MORGAN

Let K be a field of characteristic zero. Let V be an n-dimensional vector space over K. A linear automorphism of V is said to be of type i if it leaves fixed a subspace of dimension i. A reflection is a linear automorphism of type $n-1$ which has finite order. A finite reflection group is a finite group of linear automorphisms which is generated by reflections. These groups are especially interesting because the full group of symmetries of a regular polytope is always a finite reflection group. There is also a strong connection between these groups and Lie groups.

Shephard and Todd [2] have discovered and verified and L. Solomon [3] has given a general proof of the following counting principle: Let G be a finite reflection group. Let g_{i} denote the number of elements in G of type i; then the polynomial

$$
g_{n} x^{n}+g_{n-1} x^{n-1}+\ldots+g_{0}
$$

always factors into the form

$$
\left(x+m_{1}\right)\left(x+m_{2}\right) \ldots\left(x+m_{n}\right),
$$

where m_{1}, \ldots, m_{n} are positive integers such that $m_{1}+1, \ldots, m_{n}+1$ are the degrees of a minimal generating set for the homogeneous polynomial invariants of G. From now on let $d_{k}=m_{k}+1$. The m_{1}, \ldots, m_{n} are called the exponents of the group. See Coxeter [1, pp. 149-150] for an historical discussion of this principle.

In this paper we extend the above result to a counting principle on the eigenvalues of the elements of a finite reflection group. We shall prove the following theorem:

Theorem. Let G be a finite reflection group, let p be a positive integer, and let u be a primitive p th root of unity. If g_{i} is the number of elements in G for which the eigenvalue u occurs with multiplicity i, then the polynomial

$$
g_{n} x^{n}+g_{n-1} x^{n-1}+\ldots+g_{0}
$$

factors into the form

$$
c\left(x+m_{l_{1}}\right)\left(x+m_{l_{2}}\right) \ldots\left(x+m_{l_{r}}\right),
$$

[^0]where $m_{l_{1}}, \ldots, m_{l_{r}}$ are the exponents of G for which $p \mid d_{k}$ and c is the product of the remaining d_{k}.

Note: If $u=1$, then the above statement reduces to the original counting principle.

Proof. Let $w_{1}(g), w_{2}(g), \ldots, w_{n}(g)$ be the eigenvalues of $g \in G$. According to Solomon [3], we can write

$$
\frac{1}{|G|} \sum_{g \in G} \frac{\sigma_{n, k}\left(w_{1}(g), \ldots, w_{n}(g)\right)}{\left(1-w_{1}(g) t\right) \ldots\left(1-w_{n}(g) t\right)}=\frac{\sigma_{n, k}\left(t^{m_{1}}, \ldots, t^{m_{n}}\right)}{\left(1-t^{d_{1}}\right) \ldots\left(1-t^{d_{n}}\right)}
$$

for $k=0, \ldots, n$, where $\sigma_{n, k}$ is the k th elementary symmetric function in n variables.

A computation shows that

$$
\frac{1}{|G|} \sum_{g \in G} \frac{\sigma_{n, k}\left(1-w_{1}(g) t, \ldots, 1-w_{n}(g) t\right)}{\left(1-w_{1}(g) t\right) \ldots\left(1-w_{n}(g) t\right)}=\frac{\sigma_{n, k}\left(1-t^{d_{1}}, \ldots, 1-t^{d_{n}}\right)}{\left(1-t^{d_{1}}\right) \ldots\left(1-t^{d_{n}}\right)}
$$

By expanding and canceling within each term, we get:

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G} \sigma_{n, n-k}\left(\frac{1}{1-w_{1}(g) t}, \ldots, \frac{1}{1-w_{n}(g) t}\right) & \\
& =\sigma_{n, n-k}\left(\frac{1}{1-t^{d_{1}}}, \ldots, \frac{1}{1-t^{d_{n}}}\right) .
\end{aligned}
$$

Thus the average over the group of any elementary symmetric function in the $1 /\left(1-w_{i}(g) t\right)$ is the same elementary symmetric function in the $1 /\left(1-t^{d}\right)$.

Using these elementary symmetric functions as coefficients of a polynomial in X gives us:

$$
\begin{aligned}
\frac{1}{|G|} \sum_{k=0}^{n} \sum_{g \in G} \sigma_{n, k}\left(\frac{1}{1-w_{1}(g) t}, \ldots,\right. & \left.\frac{1}{1-w_{n}(g) t}\right) X^{k} \\
& =\sum_{k=0}^{n} \sigma_{n, k}\left(\frac{1}{1-t^{d_{1}}}, \ldots, \frac{1}{1-t^{d_{n}}}\right) X^{k},
\end{aligned}
$$

which factors into:

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{g \in G}\left(\frac{X}{1-w_{1}(g) t}+1\right) \ldots\left(\frac{X}{1-w_{n}(g) t}+1\right) \\
&=\left(\frac{X}{1-t^{d_{1}}}+1\right) \ldots\left(\frac{X}{1-t^{d_{n}}}+1\right) .
\end{aligned}
$$

If, in the above expression, we let $X=(1-u t) Y$, set $t=u^{-1}$, then on the left each $X /\left(1-w_{i}(g) t\right)+1$ yields $Y+1$ if $u=w_{i}(g)$ and 1 if not. Thus for each $g \in G$, the product $\left(X /\left(1-w_{1}(g) t\right)+1\right) \ldots\left(X /\left(1-w_{n}(g) t\right)+1\right)$ yields $(Y+1)^{i}$, where i is the multiplicity of the eigenvalue u in g. Thus on the left we get:

$$
\frac{1}{|G|} \sum_{i=0}^{n} g_{i}(Y+1)^{i} .
$$

On the right, for each $k=1, \ldots, n$, we have

$$
\frac{1}{1-t^{\bar{d}_{k}}}=\frac{1}{d_{k}} \sum_{j=0}^{m_{k}} \frac{1}{1-\eta_{j} t},
$$

where $\eta_{0}, \ldots, \eta_{m_{k}}$ are the d_{k}-th roots of unity. Hence the factor $X\left(1-t^{d_{k}}\right)+1$ yields $\left(Y / d_{k}\right)+1$ if $u \in\left\{\eta_{0}, \ldots, \eta_{m_{k}}\right\}$, and 1 otherwise.

Since u is a primitive p th root of unity, $u \in\left\{\eta_{0}, \ldots, \eta_{m_{k}}\right\}$ if and only if $p \mid d_{k}$. Thus on the right we get $\left(\left(Y / d_{l_{1}}\right)+1\right) \ldots\left(\left(Y / d_{l_{r}}\right)+1\right)$, where $m_{l_{1}}, \ldots, m_{l_{r}}$ are the exponents of G such that $p \mid d_{k}$. Equating the two sides yields:

$$
\sum_{i=0}^{n} g_{i}(\gamma+1)^{i}=\frac{|G|}{\left(d_{l_{1}}\right) \ldots\left(d_{l_{r}}\right)}\left(Y+d_{l_{1}}\right) \ldots\left(Y+d_{l_{r}}\right) .
$$

Now it follows from the original result that $|G|=d_{1} \ldots d_{n}$. Setting $x=Y+1$ gives:

$$
\sum_{i=0}^{n} g_{i} x^{i}=c\left(x+m_{l_{1}}\right) \ldots\left(x+m_{l_{r}}\right),
$$

where c is the product of the remaining d_{k} 's.

References

1. H. S. M. Coxeter, Regular complex polytopes, (Cambridge University Press, Cambridge, 1974).
2. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.
3. L. Solomon, Invariants of finite reflection groups, Naroya Math. J. 22 (1963), 57-64.

California State University,
Hayward, California

[^0]: Received September 20, 1977 and in revised form June 6, 1978.
 The referee remarks that this theorem was proved by Ian G. Macdonald in a seminar at the Institute for Advanced Study, Princeton, in 1968. Macdonald's proof, along the same lines, has not been published.

