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Abstract

A low-profile wideband circularly polarized (CP) metasurface antenna is demonstrated for
C-band applications. The metasurface consists of 4 x 4 square patches with Z-shaped slots.
Characteristic mode analysis is used to investigate the modal behavior of the metasurface, and
a pair of degenerate modes is chosen as the operating modes. The CP radiation is realized by
exciting a pair of degenerate modes of the metasurface through a slot antenna, which isused as a
feed structure with a 90° phase difference. The CP bandwidth is further widened by combining
the resonance modes of the metasurface and slot antenna. The measured results show that
the —10 dB impedance bandwidth of the antenna is 3.47-4.76 GHz, and the 3 dB axial ratio
bandwidth is 3.5-4.9 GHz with a peak gain of 6.9 dBic. Moreover, the antenna exhibits well
left-hand CP radiation performances with a low profile of 0.046 ..

Introduction

Circularly polarized (CP) antennas have been widely utilized in wireless communication sys-
tems due to the strong anti-multipath interference and anti-fading ability [1, 2]. The traditional
CP microstrip antennas have a simple structure, lightweight, and easiness of integration.
However, due to the limited of narrow bandwidth, they are not suitable for applications with
high transmission rates and high channel capacity. The bandwidth of the CP microstrip anten-
nas can be improved by using thick dielectric substrates [3], stacked patches [4], and multi-feed
networks [5]. However, the geometric dimension of the antennas will be increased.

Metamaterials have attracted much attention since their excellent characteristics of manip-
ulating electromagnetic waves. As a two-dimensional metamaterial, metasurfaces have opened
a new door to improve the performance of the conventional CP microstrip antenna [6-9].
Recently, some CP metasurface antennas have been reported. In papers [10, 11], a square meta-
surface is excited by a hybrid feed structure to obtain two degenerated orthogonal modes to
realize CP radiation, and the axial ratio (AR) bandwidths (ARBWSs) reach 14.5% and 20.9%,
respectively. In paper [12], a nonuniform rectangular metasurface is fed by a slot antenna to
radiate CP field. The ARBW is 17.43%. In paper [13], an S-shaped metasurface is proposed to
efficiently covert linearly polarized into CP wave and the ARBW reaches 22%. In paper [14],
an H-shaped metasurface is used as a radiator to form CP radiation. The ARBW is 14.3%. In
addition, the metasurfaces can be used to improve the AR characteristic. In papers [15, 16], the
CP radiation is realized through a patch antenna, and the ARBWs are increased up to 22.4%
and 20.1% by loading patch and ring metasurfaces, respectively. For the aforementioned anten-
nas, the biggest AR bandwidth is 22.4%, but the profile is 0.063\. Therefore, this work aims to
design a low-profile wideband CP metasurface antenna.

In this paper, a low-profile wideband CP metasurface antenna is proposed. According to
the characteristic mode analysis (CMA), two degenerate modes of the metasurface are cho-
sen as the operating modes to realize the CP radiation. The metasurface is excited by a slot
antenna. Combining the resonance modes of the slot antenna and metasurface to broaden CP
bandwidth. The measured result shows that the —10 dB impedance bandwidth (IBW) of the
proposed antenna is 3.47-4.76 GHz, and the 3 dB AR bandwidth (ARBW) is 3.5-4.9 GHz.

CMA of metasurface

Figure 1 shows the configuration of the proposed metasurface. It consists of 4 x 4 square patches
with Z-shaped slots. The width of the unit cell is w,,, and the gap between the adjacent unit cells
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Figure 2. Mode significance for the first four modes.

is g. The commercial simulation software CST 2019 is used to
analyze the mode behaviors of the metasurface. The optimized
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parameters are as follows: L = 55 mm, w,, = 11 mm, ¢ = 0.8 mm,
I, =2.6 mm, ], = 1 mm and w = 0.6 mm, respectively.

The mode significance of the first four modes is given in Fig. 2.
It is observed that the fundamental modes J,/J, and high-order
modes J3/J, have the same frequency trend. The current distribu-
tions and radiation patterns of the first four modes are plotted in
Fig. 3. It can be seen that the currents in modes J,/J, is in-phase on
the metasurface, but there is a 90° rotation. Hence, they are a pair
of degenerate orthogonal modes, and good radiation patterns are
obtained. Also, the currents in modes J5/], are self-symmetrical,
and that a radiation null appears due to the out-of-phase current
distributions. Figure 4 plots the characteristic angle of the first four
modes. It can be seen that the phase difference between modes
J1/], is 0°. According to the CP radiation mechanism, modes J,/J,
with equal amplitude are elected as operating modes, and the CP
radiation can be obtained by using a feed structure with 90° phase
difference.

Wideband CP metasurface antenna

To obtain CP radiation, an appropriate feed structure with a
90°phase difference should be employed to simultaneously excite
J1/],. As shown in Fig. 3, the maximum currents of modes J,/J,
concentrate at the central patches and the minor currents distribute
at the surrounding patches. On the contrary, the maximum cur-
rents of modes J;/] 4 are located at the four corners patches of the
metasurface. Based on the above analysis, the feed structure should
be positioned under the center patches of the metasurface, so that
modes J,/J, can be excited efficiently, while modes J;/] 4 are diffi-
cult to be excited. A slot antenna is employed as the feed structure
in this paper.

Figure 5 shows the configuration of the proposed antenna. It
is composed of a metasurface aforementioned on the top sub-
strate and a slot antenna on the bottom substrate. A stepped
microstrip feedline is used to feed a tilted cross-slot on the ground
plane. Both substrates have a relative dielectric constant of 4.4
and a loss tangent of 0.03. Numerical simulations are carried
out using CST Microwave Studio. Following are the final opti-
mized parameters of the antenna: [, = 24.4 mm, [;; = 14.4 mm,
wy=1.4mm, [;= 16 mm, wy= 1.5 mm, l; = 16 mm, wy = 1 mm,
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Figure 3. Current distributions and radiation patterns for J; and J, at 4.3 GHz, and J; and J, at 4.75 GHz.

https://doi.org/10.1017/51759078723000909 Published online by Cambridge University Press


https://doi.org/10.1017/S1759078723000909

International Journal of Microwave and Wireless Technologies

Characteristic Angle(deg)
g 8 8 B
1 1 1 1

140 +

120

100

3.0 3.5 4.0 4.5 5.0

Frequency(GHz)

6.0

Figure 4. Characteristic angle for the first four modes.

hy = 3.2 mm, and h, = 0.8 mm, respectively. The S;; and AR of
the antenna with/without the metasurface are depicted in Fig. 6.
It is observed that the slot antenna without the metasurface has
a —10 dB IBW of 6.79% (4.51-4.83 GHz), and a 3 dB ARBW
of 3.44% (4.57-4.73 GHz). When the metasurface is loaded, the
IBW of the antenna is 30.54% (3.44-4.68 GHz), and the ARBW
is 28.43% (3.56-4.74 GHz). By combining the resonance modes

of the metasurface and slot antenna, the wideband CP radiation
is achieved.

To illustrate the CP mechanism, the surface current distribution
of the metasurface at 4.3 GHz and the slot antenna at 4.65 GHz are
illustrated in Fig. 7. It can be seen that the current at both 4.3 and
4.65 GHz rotates in the clockwise direction for different phases. As
a result, the left-hand CP radiation is formed.

The influences of the structural parameters on the antenna
performance are also conducted. It is found that the metasurface
element length w,, and the slot length [; play an important role.
The S;; and AR for different w,, are given in Fig. 8. It can be seen
that w,, mainly affects the AR while the S;; are insensitive to w,,,.
When w,, increases from 10 to 11 mm, the ARBW is expanded
from 4.55% (4.3-4.5 GHz) to 27.54% (3.6-4.75 GHz). The CP per-
formance deteriorates when w,, reaches up to 12 mm. Figure 9
shows the S;; and AR with different [, . It is observed that, when [,
increases from 13.4 to 14.4 mm, both the IBW and ARBW increase.
When I; reaches up to 15.4 mm, the IBW increases while the
ARBW decreases.

Measurement results and discussions

To demonstrate the performance of the proposed antenna, a proto-
type of the antenna is fabricated and measured, as shown in Fig. 10.
The S, is measured by an Agilent N5221A vector network analyzer,
and the far-field radiation performance, which contains the AR,
gain, and radiation patterns, is measured by using a Lab-Volt 8092
antenna training and measuring system in a microwave anechoic
chamber.

Metasurface

W
Figure 5. Configuration of the antenna, (a) side view; (b) top view; (c) 4
bottom view. (b) (c)
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Figure 9. S;; and AR for different [, (a) S13, (b) AR.
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Figure 10. Photograph of the antenna, (a) top view; (b) back view.
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Figure 11. Simulated and measured results of the antenna, (a) S;;; (b) AR.

Figure 11 plots the measured and simulated S;; and AR of the
antenna. It can be seen that reasonable agreement between the
simulation and measurement results is obtained. The simulated
and measured —10 dB IBW is 30.5% (3.44-4.68 GHz) and 31.3%
(3.47-4.76 GHz), respectively. The simulated and measured 3 dB
ARBW is 28.4% (3.56-4.74 GHz) and 33.3% (3.5-4.9 GHz), respec-
tively. The discrepancy is mainly caused by the deviation of the
dielectric constant and the effect of the subminiature version A
(SMA) connector.

The simulated and measured far-field radiation patterns in xoz
and yoz planes are plotted in Fig. 12. It is obvious that the proposed
antenna realizes the left-hand CP radiation along +z-direction in
the operating bandwidth. Figure 13 shows the simulated and mea-
sured antenna gains varying as frequency. The measured peak gain
in the CP bandwidth reaches 6.9 dBic. It is noted that the gain after
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4.25 GHz decreases, which is caused by the increasing right-hand
CP component.

Finally, a performance comparison of the reported and pro-
posed CP metasurface antennas is provided in Table 1. It is obvious
that the size of proposed antenna is the smallest except [13].
Compared to the antenna in literature [13], the antenna in this
work has a wider AR bandwidth.

Conclusion

A low-profile wideband CP metasurface antenna has been demon-
strated experimentally. The modes behavior of the metasurface is
investigated by the CMA, and two required degenerate modes of
the metasurface are excited by the slot antenna to generate CP
radiation. Combined with the resonance mode of the slot antenna
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Figure 12. Normalized radiation patterns in xoz plane (left side) and yoz plane (right side), (a) at 3.75 GHz; (b) at 4.2 GHz; (c) at 4.65 GHz.

and metasurface, broadband CP radiation is realized. The fabri-  33.3% (3.5-4.9 GHz), respectively. The overlapping CP bandwidth
cated antenna with a low profile of 0.046)\, exhibits a measured  can cover the C-band downlink spectrum, and the simple design
wide —10 dB IBW of 31.3% (3.47-4.76 GHz) and a 3 dB ARBW of  can be easily integrated into the communication devices.
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Figure 13. Gains of the antenna.

Table 1. Performance of CP metasurface antennas
Ref. Size (\o°) Fre. (GHz) IBW (%) ARBW (%)
[10] 0.93 x 0.93 x 0.024 1.4 17 14.5
[11] 1x1x0.07 5.5 28.2 20.9
[12] 0.72 x 0.72 x 0.068 2.15 16.67 17.43
[13] 0.48 x 0.48 x 0.057 5.9 43.22 22
[14] 1.3 x 1.3 x0.067 5.2 38.8 14.3
[15] 0.86 x 0.86 x 0.063 4.75 34.7 22.4
[16] 1.1 x 1.1 x 0.093 27.5 34.7 20.1
Proposed 0.64 x 0.64 x 0.046 3.5 313 333
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