P 78. Prove that a field is formally real if and only if -1 is not a sum of fourth powers.

I. G. Connell, McGill University

SOLUTIONS

P64. Find all solutions of

$$
\tan ^{-1} 1+\tan ^{-1} 2+\ldots+\tan ^{-1} n=\frac{k \pi}{2}
$$

Leo Moser, University of Alberta
(A partial solution was published in vol. 6, no.3.)
Solution by Robert Breusch, Amherst College.
n
If $\Pi(1+i s)=a+i b$, then a and b are clearly integers. $\mathrm{s}=1$

Since ${ }_{\mathrm{n}=1}^{\mathrm{n}}(1+\mathrm{is})=\prod_{\mathrm{s}=1}^{\mathrm{n}}\left(1+\mathrm{s}^{2}\right)^{1 / 2} \cdot \exp \left(\mathrm{i} . \sum_{\mathrm{n}=1}^{\mathrm{tan}} \tan ^{-1} \mathrm{~s}\right)$, the given n
condition implies that Π ($1+i s$) is either real, or purely $\mathrm{s}=1$
imaginary, and in any case that its absolute value is an integer.
It follows that $R=\Pi \quad n\left(1+s^{2}\right)$ is a square, and thus that R $\mathrm{s}=1$
contains each one of its distinct prime factors at least twice. Any prime whose square divides one of the factors of R, must be $\leq n$, and any prime which divides two distinct factors, $1+\mathrm{s}_{1}^{2}$ and $1+\mathrm{s}_{2}^{2}$, must divide either $s_{1}-\mathrm{s}_{2}$ or $\mathrm{s}_{1}+\mathrm{s}_{2}$, and thus must be $\leq 2 n$. It follows:

$$
\begin{equation*}
\mathrm{R} \text { contains no primes }>2 \mathrm{n} \text {. } \tag{1}
\end{equation*}
$$

Let p represent primes $\equiv 1(\bmod 4)$, and q primes $\equiv 3$ (mod 4). To every p, and to every positive integer t, there exists precisely one integer s , such that $(\mathrm{t}-1)(\mathrm{p} / 2)<\mathrm{s}<\mathrm{t}(\mathrm{p} / 2)$ and $s^{2} \equiv-1(\bmod p)$. Thus, among the n factors of R, there will be $[n /(p / 2)]+\theta_{2 n}(p)$ divisible by p, where $\theta_{2 n}(p)$, like all the following $\theta^{\prime} \mathrm{s}$, is 0 or 1 . Of these, $\left[2 n / \mathrm{p}^{2}\right]+\theta_{2 n}\left(\mathrm{p}^{2}\right)$ will be divisible by p^{2}, etc. Thus the total multiplicity of p in R will be

$$
\sum_{r}\left[2 n / p^{r}\right]+\sum_{r} \theta_{2 n}\left(p^{r}\right),
$$

with r such that $p^{r} \leq n^{2}+1<(2 n)^{2}$. Calling the second sum for the moment σ; we see that $p^{\sigma}<(2 n)^{2}$. Since R contains the factor 2 precisely $[(n+1) / 2]$ times, it follows from (1), with

$$
a_{2 n}(v)=\underset{r}{\Sigma}\left[2 n / v^{r}\right],
$$

that

$$
\begin{equation*}
R<2^{(n+1) / 2} \cdot \quad \Pi p^{a} 2 n^{(p)} \cdot(2 n)^{2 \cdot \pi_{1}(2 n)} \tag{2}
\end{equation*}
$$

where $\pi_{i}(2 n)(i=1$ or 3$)$ stands for the number of primes $\leq 2 n$ and $\equiv \mathrm{i}(\bmod 4)$; thus $\pi_{1}(2 n)=\pi(2 n)-\pi_{3}(2 n)$, where for convenience, $\pi(2 n)$ denotes the number of odd primes $\leq 2 n$.

Clearly

$$
1<R / \underset{s=1}{n}\left(s^{2}\right)=\binom{2 n}{n} \cdot R /(2 n)!.
$$

$$
\left.\left\lvert\, \begin{array}{c}
2 n \\
n
\end{array}\right.\right)<2^{2 n}, \quad \text { and }(2 n)!=2^{a} 2 n^{(2)} \cdot \prod_{p \leq 2 n} p^{a} 2 n^{(p)} \cdot \prod_{q \leq 2 n}^{a} q^{a n}(q)
$$

It is easily seen that $a_{2 n}(2)>2 n-2-\log (2 n) / \log 2$, and thus
$2^{a} 2 n^{(2)}>2^{2 n} /(8 n)$. It follows from this and (2), that
$1<\left\{2^{2 n} 2^{(n+1) / 2}(2 n)^{2 \cdot \pi(2 n)}\right\} /\left\{\left(2^{2 n} / 8 n\right) \cdot \prod_{q \leq 2 n} q^{a_{2 n}(q)} \cdot(2 n)^{2 \pi_{3}(2 n)}\right\}$
or
(3) $\prod_{q \leq 2 n}\left\{q^{a} 2 n^{(q)} \cdot(2 n)^{2}\right\}<n \cdot 2^{(n+7) / 2} \cdot(2 n)^{2 \pi(2 n)}$.

Now
$\log \left\{q^{a_{2 n}(q)} \cdot(2 n)^{2}\right\}>\left\{a_{2 n}(q)+\log (2 n) / \log q\right\} \cdot \log q>2 n \cdot \Sigma \log q / q^{r}$

$$
\left(q^{r} \leq 2 n\right) .
$$

It follows from (3) that
2n. $\quad \Sigma \log q / q^{r}<2 . \pi(2 n) \cdot \log (2 n)+(n+7)(\log 2) / 2+\log n$. $q^{r} \leq 2 n$

But $\pi(2 n) \cdot \log (2 n)<1.26 \cdot(2 n)$;
[see, e. g., J.B. Rosser and L. Schoenfeld, Approximate Formulas for some Functions of Prime Numbers, Illinois J. vol.6, pp.64-93].

Thus

$$
\begin{align*}
\Sigma \log q / q^{r} & <2.52+(\log 2) / 4+(\log n+2.45) /(2 n) \tag{x}\\
\mathrm{q}^{\mathrm{r}} \leq 2 \mathrm{n} & <2.8 \text { for } 2 \mathrm{n} \geq 1000 .
\end{align*}
$$

But it is just a matter of patience to show that $\quad \Sigma \quad \log q / q^{r}>2.9$.

$$
q^{r} \leq 1000
$$

Thus R cannot be a square for $n \geq 500$. Therefore $n<500$.
$36^{2}+1=1297$ is a prime greater than $2 n$; thus $n<36$.

Again, $10^{2}+1=101$ is a prime $>2 n$; by (1), R cannot contain this factor, thus $n<10$.

Finally, $4^{2}+1=17$ is not contained in $s^{2}+1$ for
$4<s<10$, and thus $n \leq 3$. But for $n=3, R=2 \cdot 5 \cdot 10$ is a square, and

$$
\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=2(\pi / 2) .
$$

P 66. "Gauss' Lemma" (§ 23, vol. 1 of Modern Algebra by Vander Waerden) is essentially equivalent to the statement that a unique factorization domain R has the following property:
$(*) \quad\left\{\begin{array}{l}\text { If } K \text { is the field of quotients } \\ \text { of } R \text {, then a polynomial over } R \\ \text { which factors over } K \text { factors } \\ \text { over } R .\end{array}\right.$
Show that the following converse holds: if R is a domain in which every element can be expressed as a product of irreducible elements - for example if R is Noetherian - and if R has property (*), then R is a unique factorization domain.

Carl Riehm, McGill University
Solution by L. Carlitz, Duke University.
Assume that R is not a unique factorization domain but that every element of R can be expressed as a product of prime elements. Then there exist elements $a, b, c, p \in R$ such that $\mathrm{pa}=\mathrm{bc}, \mathrm{p}$ prime and $\mathrm{p} \dagger \mathrm{b}, \mathrm{p} \dagger \mathrm{c}$. Consider the product

$$
(p x+b)(p x+c)=p^{2} x^{2}+p(b+c) x+b c,
$$

where \mathbf{x} is an indeterminate. Thus we have the following factorization in $\mathrm{K}[\mathrm{x}]$:

$$
f(x)=p x^{2}+(b+c) x+a=(p x+b)\left(x+\frac{c}{p}\right)
$$

Now assume that $f(x)$ admits of a factorization in $R[x]$; then we must have

$$
p x^{2}+(b+c) x+a=(p x+r)(x+s) \quad(r, s \in R)
$$

Equating coefficients we get

$$
r+p s=b+c, r(p s)=b c
$$

It follows that either $r=b, p s=c$ or $r=c, p s=b$. Since either alternative violates $p \dagger b, p \dagger c$ we have a contradiction.

Also solved by J.D. Dixon, and the proposer.
Editor's comment: Property ($*$) restricted to monic polynomials is equivalent to R being integrally closed in K (for any domain R).

P67. Let

$$
C=\lim _{n \rightarrow \infty}\left[\sum_{j=1}^{n} \frac{1}{j}-\ln n\right]
$$

(the Euler-Mascheroni constant) and let x be a real variable. Determine the following limit:

$$
\lim _{x \rightarrow 0} x^{-2}\left\{C+\mathcal{R}\left(\Gamma^{\prime}(i x) / \Gamma(i x)\right)\right\}
$$

where $R=$ real part of.
H. G. Helfenstein, University of Ottawa

Solution by A. E. Livingston, University of Alberta.
We have

$$
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-C-\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{z+n}\right)
$$

for $z \neq 0,-1,-2, \ldots$ [E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge (1952), p. 247].

Thus,

$$
\mathrm{x}^{-2}\left\{C+\mathcal{R}\left(\Gamma^{\prime}(i x) / \Gamma(i x)\right)\right\}=\sum_{n=1}^{\infty} \frac{1}{n|i x+n|^{2}} \rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

as $\mathrm{x} \rightarrow 0$.
(A perhaps more elegant but somewhat longer solution to this problem can be obtained by observing that the desired limit is

$$
\lim _{x \rightarrow 0} x^{-2} \ell\left[\int_{0}^{1}\left(1-t^{i x}\right) /(1-t) d t\right]
$$

Now write $[0,1]$ as $\left[0, e^{-\pi}\right] \cup\left[e^{-\pi}, 1\right]$ and apply Lebesgue's Principle of Dominated Convergence on $\left[0, e^{-\pi}\right]$, and the Principle of Monotonic Convergence on $\left[e^{-\pi}, 1\right]$. The result is $2^{-1} \int_{0}^{1} \ln ^{2} t /(1-t) d t$, which is easily seen to have the value $\left.\Sigma_{1}^{\infty} 1 / n^{3}.\right)$

Editor's comment: From $\Gamma(z+1)=z \Gamma(z)$ one obtains

$$
\frac{\Gamma^{\prime}(z+1)}{\Gamma^{\prime}(z+1)}=\frac{1}{z}+\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

and therefore

$$
\mathscr{R}\left(\frac{\Gamma^{\prime}(i x+1)}{\Gamma^{(i x+1)}}\right)=\mathscr{R}\left(\frac{\Gamma^{\prime}(i x)}{\Gamma^{(i x)}}\right)
$$

when \mathbf{x} is real. From Whittaker and Watson we have,

$$
C+\frac{\Gamma^{\prime}(i x+1)}{\Gamma(i x+1)}=\int_{0}^{1}\left(1-t^{i x}\right) /(1-t) d t
$$

This observation is necessary since the principle of dominated
convergence cannot be applied (near $t=0$) to the corresponding integral for $C+\Gamma^{\prime}(i x) / \Gamma(i x)$.

Also solved by J.S. Muldowney and the proposer.

P 68. Find all solutions of

$$
\varphi\left(2^{2^{n}}-1\right)=\varphi\left(2^{2^{n}}\right),
$$

where φ is Euler's function.

David Klarner, University of Alberta

Solution by H. L. Abbott, University of Alberta.

Since φ is a multiplicative function and $2^{2^{i}}+1$ and $2^{2^{j}}+1$ are relatively prime if $i \neq j$, our problem is reduced to solving for n the following equation:

$$
\begin{equation*}
\prod_{i=0}^{n-1} \varphi\left(2^{2^{i}}+1\right)=2^{2^{n}-1} \tag{1}
\end{equation*}
$$

It is well known that $2^{2^{5}}+1$ is divisible by 641 , so that $\varphi\left(2^{2^{5}}+1\right)$ is not a power of 2 . Hence (1) has no solutions for $n \geq 6$. For $0 \leq i \leq 4, \quad 2^{2^{i}}+1$ is a prime, and hence for $1 \leq \mathrm{n} \leq 5$ we have

$$
\prod_{i=0}^{n-1} \varphi\left(2^{2^{i}}+1\right)=\prod_{i=0}^{n-1} 2^{2^{i}}=2^{2^{n}-1} .
$$

The only solutions are therefore $n=0,1,2,3,4,5$. (The solution $\mathrm{n}=0$ is not covered by the above argument, but is easily seen to be a solution of the original equation.)

Also solved by W.J. Blundon, L. Carlitz, J.D. Dixon, L. Moser and the proposer.

P69. It is a familiar fact that a cyclic permutation of length n can be written as a product of $n-1$ transpositions. Show that it cannot be done so more economically.

I. Connell, McGill University

Solution by John Dixon, California Institute of Technology.

Since an n -cycle generates a transitive permutation group, the result to be proved is implied by the stronger assertion: n-2 transpositions cannot generate a transitive permutation group of degree n. The latter statement is proved as follows.

Suppose the transpositions $\left(a_{i} b_{i}\right)(i=1,2, \ldots, s)$
generate a transitive permutation group G on the symbols $1,2, \ldots, n$. We define an associated graph whose vertices are labelled 1 to n and whose edges are $\left(a_{i}, b_{i}\right)(i=1,2, \ldots, s)$. The fact that G is transitive implies that the graph is connected.

We now prove by induction on n that a connected graph with n vertices must have $\geq n-1$ edges ($n \geq 2$). Each vertex must have at least one incident edge. If every vertex has at least two incident edges, then the graph clearly has $\geq \mathrm{n}$ edges. On the other hand, if one vertex has only one edge, then after removing this vertex and the corresponding edge, we have a graph with $\mathrm{n}-1$ vertices which is also connected. By the induction hypothesis, this latter graph has $\geq \mathrm{n}-2$ edges. Therefore, the original graph has $\geq \mathrm{n}-1$ edges.

Also solved by L. Carlitz, H. Gonshor and C. Riehm; they generalized the problem in other directions.

P 70. Prove that every finite abelian group is isomorphic to a subgroup of the multiplicative group of integers relatively prime to $\mathrm{m}, \bmod \mathrm{m}$, for suitable m .

Carl Riehm, McGill University
Solution by H. Gonshor, Rutgers University.

According to a well known theorem in number theory,
prime numbers have primitive roots. In algebraic language this says that the multiplicative group of integers prime to P is cyclic. The order is $\mathrm{P}-1$.

Furthermore if M and n are relatively prime then the multiplicative group of integers prime to Mn is the direct sum of the multiplicative group of integers prime to M and the multiplicative group of integers prime to n. Hence the multiplicative group of integers prime to $P_{1}, P_{2}, \ldots, P_{n}$ is the direct sum of the cyclic groups of order $P_{1}-1, P_{2}-1, \ldots, P_{n}-1$.

Every finite abelian group is a direct sum of cyclic groups. Let the cyclic groups involved have orders $r_{1}, r_{2}, \ldots, r_{n}$. We now choose primes $P_{1}, P_{2}, \ldots, P_{n}$ all distinct so that $r_{i} \mid P_{i}-1$. This can always be done since for fixed r the arithmetic progression $1+n r$ contains infinitely many primes by Dirichlet's theorem. By elementary group theory the cyclic group of order r_{i} is a subgroup of the cyclic group of order $P_{i}-1$; hence the direct sum of cyclic groups of orders r_{i} is a subgroup of the direct sum of cyclic groups of order $P_{i}-1$.
Thus the given abelian group is a subgroup of the multiplicative group of integers prime to $P_{1}, P_{2}, \ldots, P_{n}$. This proves a stronger form of the statement of the problem, - namely that m may be chosen so that it has no repeated prime factors.

Also solved by J. O. Brooks, L. Carlitz and the proposer.
Editor's comment: The result appears as a theorem in Shanks, Number Theory, vol. 1 (Spartan, 1962), p. 96. There is a standard elementary proof, using cyclotomic polynomials, of the special case of Dirichlet's theorem that $1+n r_{i}(n=1,2, \ldots)$ contains infinitely many primes. However the r_{i} above may actually be taken to be prime powers, and for this case Shanks gives a completely elementary proof, using only Fermat's theorem.

