<u>P 78.</u> Prove that a field is formally real if and only if -1 is not a sum of fourth powers.

I.G. Connell, McGill University

SOLUTIONS

P 64. Find all solutions of

 $\tan^{-1}1 + \tan^{-1}2 + \ldots + \tan^{-1}n = \frac{k\pi}{2}$.

Leo Moser, University of Alberta

(A partial solution was published in vol. 6, no. 3.)

Solution by Robert Breusch, Amherst College.

n If Π (1+is) = a + ib, then a and b are clearly integers. s = 1n n $(1+is) = \Pi (1+s^2)^{1/2}$. exp(i. Σ tan⁻¹s), the given Since s = 1 s =1 condition implies that Π (1+is) is either real, or purely s = 1 imaginary, and in any case that its absolute value is an integer. It follows that $R = \Pi (1+s^2)$ is a square, and thus that R contains each one of its distinct prime factors at least twice. Any prime whose square divides one of the factors of R, must be < n, and any prime which divides two distinct factors, $1 + s_1^2$ and $1 + s_2^2$, must divide either $s_1 - s_2$ or $s_1 + s_2$, and thus must be < 2n. It follows:

(1) R contains no primes > 2n.

Let p represent primes $\equiv 1 \pmod{4}$, and q primes $\equiv 3 \pmod{4}$. To every p, and to every positive integer t, there exists precisely one integer s, such that (t-1)(p/2) < s < t(p/2) and $s^2 \equiv -1 \pmod{p}$. Thus, among the n factors of R, there will be $[n/(p/2)] + \theta_{2n}(p)$ divisible by p, where $\theta_{2n}(p)$, like all the following θ 's, is 0 or 1. Of these, $[2n/p^2] + \theta_{2n}(p^2)$ will be divisible by p^2 , etc. Thus the total multiplicity of p in R will be

$$\sum_{r} [2n/p^{r}] + \sum_{r} \theta_{2n}(p^{r}),$$

with r such that $p^{r} \le n^{2} + 1 < (2n)^{2}$. Calling the second sum for the moment σ , we see that $p^{\sigma} < (2n)^{2}$. Since R contains the factor 2 precisely [(n+1)/2] times, it follows from (1), with

 $a_{2n}(v) = \sum_{r} [2n/v^{r}],$

that

(2)
$$R < 2^{(n+1)/2}$$
. $\prod_{\substack{p \le 2n}} p^{a} 2n^{(p)}$. $(2n)^{2} \pi 1^{(2n)}$

where $\pi_i(2n)$ (i = 1 or 3) stands for the number of primes $\leq 2n$ and $\equiv i \pmod{4}$; thus $\pi_1(2n) = \pi(2n) - \pi_3(2n)$, where for convenience, $\pi(2n)$ denotes the number of odd primes $\leq 2n$.

Clearly

$$1 < R / \prod_{s=1}^{n} (s^2) = {2n \choose n} \cdot R/(2n)!$$

$$\binom{2n}{n} < 2^{2n}$$
, and $(2n)! = 2^{2n}$. If p $\binom{2n}{p \leq 2n}$ $\frac{1}{p \leq 2n}$

It is easily seen that $a_{2n}(2) > 2n - 2 - \log(2n)/\log 2$, and thus

 $2^{a_{2n}(2)} > 2^{2n}/(8n)$. It follows from this and (2), that

$$1 < \left\{ 2^{2n} 2^{(n+1)/2} (2n)^{2 \cdot \pi (2n)} \right\} / \left\{ (2^{2n}/8n) \cdot \prod_{\substack{q \le 2n}} q^{2n} (2n)^{2 \cdot \pi (2n)} \right\}$$

or

(3)
$$\prod_{q \leq 2n} \left\{ q^{a_{2n}(q)}, (2n)^{2} \right\} < n \cdot 2^{(n+7)/2}, (2n)^{2\pi(2n)}$$

Now

$$\log \left\langle q^{a} 2n^{(q)} \cdot (2n)^{2} \right\rangle > \left\langle a_{2n}(q) + \log(2n)/\log q \right\rangle \cdot \log q > 2n \cdot \sum_{r} \log q/q^{r}$$
$$(q^{r} \leq 2n) \cdot$$

It follows from (3) that

2n. $\Sigma \log q/q^r < 2. \pi(2n) \cdot \log(2n) + (n+7)(\log 2)/2 + \log n \cdot q^r < 2n$

But $\pi(2n)$. log(2n) < 1.26 \cdot (2n);

[see, e.g., J.B. Rosser and L. Schoenfeld, Approximate Formulas for some Functions of Prime Numbers, Illinois J. vol. 6, pp. 64-93].

Thus

(4)
$$\Sigma \log q/q^{2} < 2.52 + (\log 2)/4 + (\log n + 2.45)/(2n)$$

 $q^{r} \le 2n$
 $< 2.8 \text{ for } 2n \ge 1000.$

But it is just a matter of patience to show that $\Sigma = \log q/q^r > 2.9$. $q^r \le 1000$ Thus R cannot be a square for $n \ge 500$. Therefore n < 500.

 $36^2 + 1 = 1297$ is a prime greater than 2n; thus n < 36.

Again, $10^2 + 1 = 101$ is a prime > 2n; by (1), R cannot contain this factor, thus n < 10.

Finally, $4^2 + 1 = 17$ is not contained in $s^2 + 1$ for 4 < s < 10, and thus n < 3. But for n = 3, $R = 2 \cdot 5 \cdot 10$ is a square, and

$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = 2(\pi/2) .$$

P 66. "Gauss' Lemma" (§ 23, vol. 1 of Modern Algebra by Van der Waerden) is essentially equivalent to the statement that a unique factorization domain R has the following property:

(*) If K is the field of quotients of R, then a polynomial over R which factors over K factors over R.

Show that the following converse holds: if R is a domain in which every element can be expressed as a product of irreducible elements - for example if R is Noetherian - and if R has property (*), then R is a unique factorization domain.

Carl Riehm, McGill University

Solution by L. Carlitz, Duke University.

Assume that R is not a unique factorization domain but that every element of R can be expressed as a product of prime elements. Then there exist elements $a, b, c, p \in R$ such that pa = bc, p prime and p $\dagger b$, p $\dagger c$. Consider the product

$$(px+b)(px+c) = p^2 x^2 + p(b+c)x + bc$$
,

where x is an indeterminate. Thus we have the following factorization in K[x]:

$$f(x) = px^{2} + (b+c)x + a = (px+b)(x+\frac{c}{p}).$$

Now assume that f(x) admits of a factorization in R[x]; then we must have

$$px^{2} + (b+c)x + a = (px+r)(x+s)$$
 (r, $s \in R$).

Equating coefficients we get

r + ps = b + c, r(ps) = bc.

It follows that either r = b, ps = c or r = c, ps = b. Since either alternative violates $p \dagger b$, $p \dagger c$ we have a contradiction.

Also solved by J.D. Dixon, and the proposer.

Editor's comment: Property (*) restricted to monic polynomials is equivalent to R being integrally closed in K (for any domain R).

P 67. Let

$$C = \lim_{n \to \infty} \left[\sum_{j=1}^{n} \frac{1}{j} - \ell n n \right]$$

(the Euler-Mascheroni constant) and let x be a real variable. Determine the following limit:

$$\lim_{x\to 0} x^{-2} \{ C + \mathcal{R}(\Gamma'(ix)/\Gamma(ix)) \} ,$$

where \mathcal{R} = real part of.

H.G. Helfenstein, University of Ottawa

Solution by A.E. Livingston, University of Alberta.

We have

$$\frac{\Gamma'(z)}{\Gamma(z)} = -C - \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{z+n} \right)$$

for $z \neq 0$, -1, -2, ... [E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge (1952), p. 247]. Thus,

$$x^{-2} \{C + \mathcal{R}(\Gamma'(ix)/\Gamma(ix))\} = \sum_{n=1}^{\infty} \frac{1}{n |ix+n|^2} \rightarrow \sum_{n=1}^{\infty} \frac{1}{n^3}$$

as $x \rightarrow 0$.

(A perhaps more elegant but somewhat longer solution to this problem can be obtained by observing that the desired limit is

$$\lim_{\mathbf{x}\to 0} \mathbf{x}^{-2} \mathcal{R}\left[\int_{0}^{1} (1-t^{i\mathbf{x}})/(1-t) dt\right].$$

Now write [0,1] as $[0,e^{-\pi}] \cup [e^{-\pi},1]$ and apply Lebesgue's Principle of Dominated Convergence on $[0,e^{-\pi}]$, and the Principle of Monotonic Convergence on $[e^{-\pi},1]$. The result is $2^{-1} \int_{0}^{1} ln^{2} t/(1-t) dt$, which is easily seen to have the value

 Σ_1^{∞} 1/n³.)

Editor's comment: From $\Gamma(z+1) = z\Gamma(z)$ one obtains

$$\frac{\Gamma'(z+1)}{\Gamma(z+1)} = \frac{1}{z} + \frac{\Gamma'(z)}{\Gamma(z)}$$

and therefore

$$\mathcal{R}\left(\frac{\Gamma'(\mathrm{ix}+1)}{\Gamma(\mathrm{ix}+1)}\right) = \mathcal{R}\left(\frac{\Gamma'(\mathrm{ix})}{\Gamma(\mathrm{ix})}\right)$$

when x is real. From Whittaker and Watson we have,

$$C + \frac{\Gamma'(ix+1)}{\Gamma(ix+1)} = \int_{0}^{1} (1-t^{ix})/(1-t)dt$$

This observation is necessary since the principle of dominated

convergence cannot be applied (near t=0) to the corresponding integral for $C + \Gamma'(ix)/\Gamma(ix)$.

Also solved by J.S. Muldowney and the proposer.

P 68. Find all solutions of

$$\varphi(2^{2^n} - 1) = \varphi(2^{2^n})$$
,

where φ is Euler's function.

David Klarner, University of Alberta

Solution by H. L. Abbott, University of Alberta.

Since φ is a multiplicative function and $2^{2^{1}} + 1$ and $2^{2^{j}} + 1$ are relatively prime if $i \neq j$, our problem is reduced to solving for n the following equation:

(1)
$$\prod_{i=0}^{n-1} \varphi(2^{2^{i}}+1) = 2^{2^{n}-1}$$

It is well known that $2^{2^{5}} + 1$ is divisible by 641, so that $\varphi(2^{2^{5}} + 1)$ is not a power of 2. Hence (1) has no solutions for $n \ge 6$. For $0 \le i \le 4$, $2^{2^{i}} + 1$ is a prime, and hence for $1 \le n \le 5$ we have

$$\prod_{i=0}^{n-1} \varphi(2^{2^{i}} + 1) = \prod_{i=0}^{n-1} 2^{2^{i}} = 2^{2^{n}-1}.$$

The only solutions are therefore n=0, 1, 2, 3, 4, 5. (The solution n=0 is not covered by the above argument, but is easily seen to be a solution of the original equation.)

Also solved by W.J. Blundon, L. Carlitz, J.D. Dixon, L. Moser and the proposer.

<u>P 69</u>. It is a familiar fact that a cyclic permutation of length n can be written as a product of n-1 transpositions. Show that it cannot be done so more economically.

I. Connell, McGill University

Solution by John Dixon, California Institute of Technology.

Since an n-cycle generates a transitive permutation group, the result to be proved is implied by the stronger assertion: n-2 transpositions cannot generate a transitive permutation group of degree n. The latter statement is proved as follows.

Suppose the transpositions $(a_i b_i)$ (i = 1, 2, ..., s) generate a transitive permutation group G on the symbols 1,2,...,n. We define an associated graph whose vertices are labelled 1 to n and whose edges are (a_i, b_i) (i=1,2,...,s). The fact that G is transitive implies that the graph is connected.

We now prove by induction on n that a connected graph with n vertices must have $\geq n-1$ edges $(n \geq 2)$. Each vertex must have at least one incident edge. If every vertex has at least two incident edges, then the graph clearly has $\geq n$ edges. On the other hand, if one vertex has only one edge, then after removing this vertex and the corresponding edge, we have a graph with n-1 vertices which is also connected. By the induction hypothesis, this latter graph has $\geq n-2$ edges. Therefore, the original graph has > n-1 edges.

Also solved by L. Carlitz, H. Gonshor and C. Riehm; they generalized the problem in other directions.

<u>P 70.</u> Prove that every finite abelian group is isomorphic to a subgroup of the multiplicative group of integers relatively prime to m, mod m, for suitable m.

Carl Riehm, McGill University

Solution by H. Gonshor, Rutgers University.

According to a well known theorem in number theory,

prime numbers have primitive roots. In algebraic language this says that the multiplicative group of integers prime to P is cyclic. The order is P-1.

Furthermore if M and n are relatively prime then the multiplicative group of integers prime to Mn is the direct sum of the multiplicative group of integers prime to M and the multiplicative group of integers prime to n. Hence the multiplicative group of integers prime to P_1, P_2, \ldots, P_n is the direct sum of the cyclic groups of order $P_1-1, P_2-1, \ldots, P_n-1$.

Every finite abelian group is a direct sum of cyclic groups. Let the cyclic groups involved have orders r_1, r_2, \ldots, r_n . We now choose primes P_1, P_2, \ldots, P_n all distinct so that $r_i | P_i - 1$. This can always be done since for fixed r the arithmetic progression 1+nr contains infinitely many primes by Dirichlet's theorem. By elementary group theory the cyclic group of order r_i is a subgroup of the cyclic group of order $P_i - 1$; hence the direct sum of cyclic groups of orders r_i is a subgroup of the direct sum of cyclic groups of order $P_i - 1$. Thus the given abelian group is a subgroup of the multiplicative group of integers prime to P_1, P_2, \ldots, P_n . This proves a stronger form of the statement of the problem, - namely that m may be chosen so that it has no repeated prime factors.

Also solved by J. O. Brooks, L. Carlitz and the proposer.

Editor's comment: The result appears as a theorem in Shanks, Number Theory, vol. 1 (Spartan, 1962), p. 96. There is a standard elementary proof, using cyclotomic polynomials, of the special case of Dirichlet's theorem that $1+nr_i$ (n=1,2,...) contains infinitely many primes. However the r_i above may actually be taken to be prime powers, and for this case Shanks gives a completely elementary proof, using only Fermat's theorem.