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ABSTRACT

In a risk exchange, participants trade a privately owned risk for a share in a
pool. If participants agree on a valuation rule, it can be decided whether or not,
according to the given rule, these trades take place at equal value. If equality of
values holds for all participants, then the exchange is said to be “financially fair”.
It has been shown by Bithimann and Jewell (1979) that, under mild assumptions,
the constraint of financial fairness singles out a unique solution among the set of
all Pareto efficient risk exchanges. In this paper, we find that an analogous state-
ment is true if we limit ourselves to linear exchanges. Conditions are provided
for existence and uniqueness of linear sharing rules that are both financially
fair and Pareto efficient among all linear sharing rules. The performance of the
linear rule is compared to that of the general (nonlinear) rule in a number of
specific cases.
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1. INTRODUCTION

Pooling of risks is a classical topic in actuarial science. A discussion of the
early contributions of de Finetti and Borch is given by Seal (1969), and a
textbook treatment is available for instance in Rotar (2007, Ch. 12). Research
interest in recent years has focused in particular on efficient risk sharing
between agents whose preferences are described by monetary valuation
functionals (Chateauneuf et al., 2000; Barrieu and El Karoui, 2005; Filipovic
and Svindland, 2008; Jouini et al., 2008).

A specific motivation for the present paper is the sharing of investment risks
within a collective pension fund. Risk sharing agreements embedded in pen-
sion schemes in various countries, and in particular in the Netherlands, have
been surveyed by Chen and Beetsma (2015). The typical Dutch occupational
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pension scheme may be described briefly as follows. Participants pay contribu-
tions during their working life, and receive benefits after retirement in the form
of an indexed annuity. The fund needs to meet solvency requirements, and there-
fore the level of indexation that is applied in a given year depends, via the fund-
ing ratio, on realized investment returns as well as on other economic indicators
such as interest rates. Because indexation is applied to accrued rights as well as
to benefits, participants who are not yet retired take a share in risk bearing. The
question arises what would be a reasonable way of allocating the investment
risk, given different attitudes toward risk among the participants. For instance,
indexation could be made age-dependent, as discussed by Molenaar and Ponds
(2012/13).

In a discussion of risk sharing agreements within a collective, attention
should be paid to the possible presence of cross-subsidies between (groups of)
participants. Here, one needs to distinguish between transfers ex ante and trans-
fers ex post. It is in the nature of risk sharing that, after resolution of uncer-
tainty, transfers between agents may take place in the sense that agents receive
amounts that are different from their early expectations. Before uncertainty is
resolved, the situation of participants in an investment collective may be de-
scribed by saying that they hold contingent claims that are specified by the risk
sharing agreement, and which they have acquired on the basis of the contribu-
tions they have paid. According to the principle of absence of arbitrage (and
assuming no subsidies from outside, nor any draining), the net present value
of the investment pool must be equal to the sum of the contributions brought
in by the participants, and it must also be equal to the sum of the net present
values of the contingent claims held by the participants. The equality of the
sums however does not imply equality between the value of the contribution
and the value of the claim for each participant individually. If, for some parti-
pants, this equality does not hold, then the risk sharing system effectively gen-
erates ex ante transfers of value between agents. The notion of financial fairness
that is used in this paper comes down to the requirement of absence of such
transfers.

As a simple example of the type of situation that is of interest in the present
paper, consider the following. Two investors are owners of projects in which they
have invested a certain amount of money and which will generate an uncertain
return at a given moment in the future. The investors may choose to pool the
projects, which means that they will share the total revenue according to a cer-
tain rule which is determined in advance. For instance, they may agree to take a
fixed percentage each, corresponding to the amounts that they invested; this is a
financially fair rule, which will be referred to as the proportional rule. The agents
may also agree to a somewhat more elaborate scheme, in which they each receive
a fixed amount plus a fixed percentage of the amount (possibly negative) that
remains after the fixed amounts have been subtracted from the actually realized
revenue. This is called a /inear allocation rule. Proportional rules are completely
determined by the constraint of financial fairness, but linear rules are not; the
remaining degrees of freedom can be used to find agreements that are relatively
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more suitable given possible differences in risk appetite between the two agents.
Finally, the agents may also use a nonlinear rule in which the amounts allocated
to the agents are determined as general (i.e., not necessarily linear) functions of
the realized revenue. In Section 4 of this paper, several situations of the above
type will be analyzed, featuring various specifications of the preferences of the
two investors and various degrees of correlation between the two investment
projects.

The risk sharing contracts that we analyze here are supposed to be con-
cluded between agents who have access to the same information, so that we
do not have a situation of the principal/agent type, and neither do we con-
sider complications arising from moral hazard. It may furthermore be noted
that the notion of financial fairness that we use is different from notions of
fairness typically used in the literature on fair division (see for instance Brams
and Taylor, 1996). Financial fairness is a time-indexed notion, since it is based
on net present values. In this paper, we only consider single-period models.
Multiperiod risk sharing problems under financial fairness are discussed by
Bao et al. (2017).

We use the term “risk” in this paper to refer to an uncertain monetary out-
come, without necessarily a negative connotation. Given the motivation of the
paper as a study of pooled investments, positive values of the random outcome
are interpreted as gains, rather than as losses. The results of the paper can be
applied, mutatis mutandis, to pooling of underwriting risk between insurance
companies.

To define financial fairness, we need a valuation operator; moreover, the net
present values of agents’ stakes must be available. Furthermore, information
on agents’ preferences is required to define Pareto efficiency. For the purpose
of valuation, we assume that a valuation operator is given in the usual form
of a risk-neutral measure. Preferences are taken to be of the traditional von
Neumann-Morgenstern type (expected utility).

The perspective in this paper is essentially that of a social planner who fixes,
possibly on the basis of consultations of the participants in the collective, all
ingredients of the risk sharing situation such as the agents’ utility functions and
the pricing measure. Agents are modeled as price-takers. Risk sharing with en-
dogenous prices leads to the notion of general equilibrium; the use of exogenous
prices, as applied here, can be considered appropriate for the analysis of collec-
tives that form only a small part of the general economy.

Collectives that operate under financial fairness might be called “fixed-
value” syndicates, as opposed to the “fixed-weight” syndicates that are the
main object of study in the classical paper by Wilson (1968). In Wilson’s pa-
per, a particular Pareto efficient solution is selected by assigning weights to
agents, so that a combined utility function can be formed; these weights are
assumed to be fixed. Under financial fairness, particular Pareto solutions are
singled out on the basis of claim values (ownership rights) that are associated
to the agents; weights are determined implicitly, as a function of the claim
values.

https://doi.org/10.1017/asb.2018.25 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2018.25

998 JOHANNES M. SCHUMACHER

An allocation rule is said to be a Pareto efficient and financially fair ( PEFF)
solution 1f it is financially fair, and Pareto efficient even among allocation rules
that are possibly not financially fair. If we would be looking for risk sharing
contracts that are Pareto efficient within the class of financially fair solutions,
then uniqueness in general cannot be expected. However, the notion of a PEFF
solution is based on the stronger requirement that Pareto efficiency should hold
regardless of financial fairness. Existence and uniqueness of PEFF solutions for
collectives of expected-utility agents was proved, under mild assumptions, by
Bithimann and Jewell (1979), who made use of an idea by Gale (1977) (see also
Gale and Sobel, 1979). An efficient algorithm for computing PEFF solutions
was proposed by Pazdera et al. (2017). The proof of convergence of the algo-
rithm in this paper is based on nonlinear Perron—Frobenius theory, and leads
to an existence and uniqueness proof for PEFF solutions that is different from
the one provided by Biihlmann and Jewell (1979).

Linear allocation rules,! as already defined above, are quite common in prac-
tice. For von Neumann—Morgenstern agents, a necessary and sufficient condi-
tion for a linear allocation rule to be Pareto efficient among all allocation rules
is that, subject to the linear rule, the agents should all have the same cautious-
ness with respect to the pooled risk (Huang and Litzenberger, 1985).> This con-
dition is satisfied when the agents in the collective have identical preferences
and the allocation is purely proportional, when the agents all have constant
absolute risk aversion, and when they all have constant relative risk aversion
with the same risk aversion coefficient. In other cases, however, such as the case
of power utility agents with different risk aversion coefficients, the condition is
typically not satisfied, which means that linear allocation rules are not Pareto
efficient.

A weaker notion of Pareto efficiency that may be applied to linear allocation
rules is efficiency within the restricted class of all /inear rules. In this paper, we
answer the question whether within this class there is an analogous result to
the theorem proved by Bithimann and Jewell (1979) on the uniqueness of PEFF
allocation rules. In other words, within the class of linear allocation rules that are
Pareto efficient in the weaker sense, does financial fairness single out a unique
solution? Sufficient conditions are provided below under which the answer to
this question is positive. While these conditions are somewhat more restrictive
than in the analogous case of general (possibly nonlinear) allocation rules, they
are still satisfied for a broad class of utility functions.

This theoretical result leads to a uniquely determined linear allocation rule
for a wide range of risk sharing situations. The performance of this linear rule
(the linPEFF solution) may be compared to the performance of the nonlinear
rule that can be derived from an application of Pareto efficiency and financial
fairness in the fully nonlinear context (the general PEFF solution). In a second
part of the paper, we carry out computations for a few particular cases in order
to obtain an indication of the circumstances under which there are substantial
advantages to working with a nonlinear rule rather than with the simpler linear
rule.
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The paper is organized as follows. Following this introduction, there is a
section in which the problem is formulated in mathematical terms. The main
theoretical result follows in Section 3. Section 4 presents a comparison of the
performance of the linPEFF rule to the general (nonlinear) PEFF rule in a
number of special cases. Conclusions follow in Section 5. There is an appendix
containing some additional material and most of the proofs.

2. PROBLEM SETTING

We consider a collective consisting of n agents. The collective is owner of a risk
X, which is defined as a random variable on a measurable space (€2, ). On
this space, we work with two measures, which are denoted by P and Q. The
measure P is the “real-world” measure that is used by the agents to evaluate
expected utility. The measure Q serves to define a notion of “financial fairness”.
Both measures are exogenously given and are not agent dependent. The measure
0O may be market-defined, but, for instance in cases in which no relevant market
for the risk X exists, it can also be interpreted as an accounting measure that is
accepted by the members of the collective for the purposes of internal valuation.
Since we will work in a single-period setting, there is no loss of generality in
assuming that the interest rate is zero. The quantity E€[Z], where the symbol
E9 denotes expectation under the measure Q, then provides what will be simply
referred to as the “value” (economic value, or accounting value) at time 0 of a
random payoff Z occurring at time 1.

Standard financial theory dictates that the real-world measure P and the
valuation measure Q should be equivalent in order to prevent arbitrage. There
are situations, though, in which (due for instance to transaction costs or legal
constraints) the participants in the collective are not free to trade the risks they
share within the collective on an outside market.> Under such circumstances,
the equivalence requirement becomes less stringent. Therefore, no assumption
on the relation between P and Q will be made in this paper; in general, the
two measures are even allowed to be mutually singular. Of course, the case in
which equivalence does hold is still allowed. All properties of random variables
mentioned below are defined with respect to the real-world measure P, unless
stated otherwise. In particular, expectation under the real-world measure P is
denoted simply by the symbol E.

It will be assumed throughout that the risk X is nondegenerate. As men-
tioned above, positive values of X are interpreted as gains. Appropriate sign
changes can be made to cover the case in which the risk X represents a liability.
For convenience, it will also be assumed throughout that the risk X can only
take finitely many values. This assumption is not essential; however, it simplifies
some of the proofs considerably. In order to interpret E2[X] meaningfully as
the value of the risk X, it is required that X has finite expectation under Q;
since the measure Q in fact does not appear as such in the final problem for-
mulation (Problem 2.9 below), this will not be stated as a separate assumption.
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The assumptions on the pooled risk X can be summarized as follows for future
reference.

Assumption 2.1. The risk X is a finitely discrete nondegenerate random variable.

An allocation rule is a collection of functions ( NGy Wa (~)) satisfying the
feasibility constraint

Y o =x, 2.1
i=1

for all x. The meaning of these functions is that y;(x) is the amount received by
agent i when the realized outcome of the risk X is x. As a result, the risk faced
by agent i after allocation is the random variable ¥, := y;(X). An allocation
rule is said to be /inear if all allocation functions are of the form

yi(x) =a;x+b;,

where a; and b; are constants. For a linear rule, the feasibility constraint (2.1)
holds if and only if the conditions

Xn:aizl, ibl:o, (2.2)
i=l i=l

are satisfied. When all coefficients b; are equal to zero, we speak of a proportional
allocation rule.

It will be assumed in this paper that all agents are of the von Neumann—
Morgenstern type, which means that their preferences can be described in terms
of expected utility. In other words, the expected utility derived by agent i from a
risk Y; is given by E[u; (Y;)], where u;(-) is agent i’s utility function. The following
assumptions will be used.

Assumption 2.2. The utility functions of all agents belong to the class of real-
valued functions u(x) with the following properties:

i. The functionu(x) is defined on a domain of the form (L, 00), where L is either
finite or equal to —oo.

ii. The function u(x) is strictly increasing, strictly concave, and twice continu-
ously differentiable.

il limxiL M/(X) = Q.

An important function associated to the utility function is the Arrow-Pratt co-
efficient of risk aversion r(x) = —u”(x)/u’'(x). Under the assumptions stated
above, the coefficient of risk aversion is a continuous function defined on the
interval (L, co). We will use the following assumption on the behavior of the
coefficient of risk aversion in the range of large losses.

Assumption 2.3. For all agents who can tolerate arbitrarily large losses (i.e., the
lower bound of the domain of their utility function is —oo ), the coefficient of risk
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aversion r (x) satisfies
lim xr(x) = —o0. (2.3)
X——00

This assumption states that, for all agents, either the domain of the utility func-
tion is bounded below, or the condition (2.3) holds, which expresses that the
coefficient of risk aversion should not tend to zero too quickly when the losses
that are considered are becoming increasingly large. A rough summary of the as-
sumption is therefore that agents should be sufficiently risk averse toward large
losses. The condition (2.3) is clearly satisfied in the case of constant absolute
risk aversion (exponential utility). This implies that in fact all utility functions
in the hyperbolic absolute risk aversion (HARA) class are covered by Assump-
tion 2.3, since the domains of the non-exponential utility functions in this class
are bounded below.

The relevant attributes of agents in this paper consist not only of prefer-
ence specifications but also of what we call claim values. The claim values of the
agents will be denoted by v;. These numbers represent ownership rights of the
agents. A typical situation is that the agents hold risks X; which are the uncertain
outcomes of what we shall refer to as the agents’ projects. The risk X arises as
the pooled project; in other words, we have X = Y | X;. The numbers v; are
determined as the project values: v; = E2[X;].

An allocation rule is said to be financially fair (with respect to the given pric-
ing measure Q and the claim values v;) if

Ey(0]=v; (G=1,...,n). (2.4)

In the interpretation given above, this condition becomes E€[y;(X)] = E9[X;],
which means that agents do not incur an immediate loss or gain in value by
trading their private risk X; for a share in the pool. Of course, there may still be
a change in the risk profiles of the agents, which, if the allocation rule is properly
constructed, can be beneficial to all.

For linear allocation rules y;(x) = a;x + b;, financial fairness means that
the relation a; EQ[X] + b; = v; is satisfied for all agents i. Due to the feasibil-
ity constraints (2.2), this can only hold if E2[X] = }_7_, v;. Of course, this is
automatically satisfied when X = )" | X; and v; = E é[X Alternatively, one
can take the claim values v; as primitive inputs, and define the number v as their
sum:

V= ivi. (2.5)
i=I

Then, a financially fair linear allocation rule can be defined as one of the form
;i (x) = a;x + b;, where the numbers a; and b; satisfy the relation a;v + b; = v;
for all i. This means that b; = v; — a;v. If b; is defined in this way, then the
constraint Y ._, b; = 0 is satisfied when ) ;_, @; = 1, and the generalform of a
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financially fair linear allocation rule becomes
Yi(x) = v +ai(x —v), (2.6)

where Y a; = 1 and v is defined by (2.5).

In this way, it becomes possible to avoid reference to the valuation measure
Q altogether in the problem formulation in the case of linear allocation rules.
This route will be followed below (Problem 2.9). The rule (2.6) can be read as
an agreement between the members of the collective to divide the payoff of the
pooled project according to the values (vy, ..., v,) in case the outcome of the
project is equal to v, and to divide deviations from that outcome (positive or
negative) in proportion to the numbers a;.

The numbers a; are referred to as the participation coefficients. It is not
imposed a priori that these coefficients should lie between 0 and 1, but from
Lemma 3.4 it follows that, to achieve efficiency, they must. The problem is to
choose the participation coefficients in relation to the risk appetites of the mem-
bers of the collective.

Remark 2.4. Generally speaking, it is easier to establish financial fairness for lin-
ear allocation rules than to do the same for nonlinear rules. Evaluation of the left-
hand side of (2.4) requires the application of a general pricing operator, which
may be involved. If the pricing rule is linear, then agents only need to agree on the
numbers v;, rather than on the full pricing measure Q. In the case of a proportional
rule (b; = 0 for all i), the coefficients a; in a financially fair rule must be equal to
v; /v, and so in this case it is already sufficient if agents agree on these ratios. The
relative simplicity of establishing financial fairness may be one of the reasons for
the popularity of linear allocation rules and of proportional allocation rules.

Let L; € R U {—o0} denote the lower bound of the domain of the utility
function u; used by agent i.* The following assumptions will be used on the
relations between the lower bounds L;, the claim values v;, and the minimum
of the risk X.

Assumption 2.5. The lower bounds L; satisfy the inequality Y '_, L; < min X.
Assumption 2.6. For each agenti € {1, ..., n}, the inequality L; < v; holds.

Assumption 2.7. The sum of the claim values exceeds the minimum of the pooled
risk, i.e., v > min X.

Without Assumption 2.5, it is not possible to find an allocation rule
(31(), ..., yu(x)) that is admissible in the sense that for all of the agents all
of the possible outcomes are in the domain of their utility function, i.e.,

min y;(X) > L; forall i. 2.7

If at least one of the lower bounds L, is equal to —oo, then the sum of the lower
bounds is taken to be equal to —oo as well, and the assumption is automatically
satisfied. Assumption 2.6 ensures that ¢; = 0 (no participation in the pooled
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risk) is an admissible choice for each agent. Finally, Assumption 2.7 is satis-
fied automatically when the valuation measure Q is equivalent to the statistical
measure P, as must be the case (by absence of arbitrage) when Q represents
market valuation. The assumption is less compelling when Q is an agreed-upon
(accounting) measure, and cases in which it is not satisfied will be included
below. Assumptions 2.5 and 2.6, however, will be maintained throughout the
paper.
Define for each agent i a positive (or infinite) number a@; by

vi — L if L and min X
- - ;> —00 <v
ai =43 v—min X ' (2.8)
(%) otherwise.

Then, every rule with participation coefficients a; € [0, a;) for all i is admissible.
It must be possible to satisfy the constraint Y ;_; a; = 1. This is guaranteed by
Assumption 2.5, as shown by the following lemma.

Lemma 2.8. Under Assumption 2.5, we have Y _, a; > 1, where a; is defined in

(2.8).
Proof. If min X > v, then @; = oo for all i, so that the claim is valid. Assume
now that min X < v. If thereisi € {1, ..., n} such that L; = —o0o, then @; = 00

and again the claim holds. Finally, assume that ; > —oo for all i. We have

n n
Z(Ui_Li) = U—ZL,' > v—min X > 0.
i=1

i=1

It follows that )7, @; > 1 also in this case. [

An allocation rule is said to be Pareto efficient if there is no allocation rule
that provides a Pareto improvement, meaning that no agent is worse off, and
at least one agent is better off. If we have a linear allocation rule which is such
that there is no linear rule that provides a Pareto improvement, then we say that
the given allocation rule is Pareto efficient within the class of all linear allocation
rules, or more briefly that the rule is linearly Pareto efficient. An allocation rule is
said to be linearly PEFF (linPEFF) if it satisfies both linear Pareto efficiency and
financial fairness. For easy reference, we formally state the problem of finding
linPEFF rules as follows.

Problem 2.9. Given a risk X and n agents with utility functions u;(-) and claim
rights v;, find a vector of participation coefficients (ay, ..., a,) such that the
allocation rule (2.6), with > *_v; = v, is Pareto efficient among all linear
allocation rules.

As discussed above, since we are dealing here with linear allocations, no explicit
mention of the pricing measure Q is needed in the problem formulation; it is
enough to have the claim values v; as input data.
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In order to find conditions for existence and uniqueness of solutions to Problem
2.9, we translate the problem into a set of equations for the parameters a;. We
start (analogously to the approach of Borch, 1962) by parameterizing the linear
allocation rules that are Pareto efficient among all linear allocation rules. For
this purpose, introduce weights «; that are attached to the agents, and consider
the optimization problem

max ZaiE[u,-(a,-X—l- bl)] subject to Z?:l a; = 1, Z?:l b,’ =0.

(@i,bi)i=1....n

(3.1)
Since we have assumed that the utility functions are strictly concave and strictly
increasing, and since the constraint set is convex, it follows (see for instance Bar-
rieu and Scandolo, 2008) that a linear allocation rule is Pareto efficient among
all linear allocation rules if and only if, for some weight vector («;, ..., «;) with
a; > 0 for all 7, it is a solution to the optimization problem (3.1). From the as-
sumed strict concavity of the utility functions, it follows that the solution to the
weighted optimization problem is unique and can be found from the first-order
conditions. The Lagrangian function is

ZaiE[u,-(aiX—l- b)) — X(Zai - 1) - ,qu,-,
i=1 i=1

i=1

i=1

where A and u are Lagrange multipliers. Therefore, the first-order conditions
can be written as

o; E[Xu}(a; X + b))] = 1 (i=1,...,n), (3.2)
O[[E[M;(a,’X-i-bi)]:,u (l= 1,...,1’!). (33)

In other words, the pair of parameter vectors (ay, ..., a,) and (b, ..., b,) satis-
fying (2.2) represents a linearly Pareto efficient solution if and only if there exist
ap, ..., a,, with a; > 0 for all i, and real numbers A, x such that the conditions
(3.2)—(3.3) are satisfied. This leads to the following conclusion (see the appendix
for a proof).

Theorem 3.1. A linear allocation rule given by the parameter vectors (ay, . . ., a,)
and (by, ..., by) is Pareto efficient among all linear allocation rules if and only if
there is a constant c, not depending on the agent index i, such that

E[Xuj(a; X+ b)]
@ X+by

(3.4)

foralli=1,...,n

Condition (3.4) is notably different from Borch’s condition for Pareto effi-
ciency of general allocation rules. The condition given by Borch (1962) is that
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an allocation rule (y;(x), ..., y,(x)) is Pareto efficient if and only if there exists
a function ¢(x), not depending on the agent index i, and positive constants «;
such that

a;u; (yi(x) = e(x), (3.5)

for all xin the support of Xand foralli =1, ..., n. One of the differences is that
the condition (3.4) depends on the probabilities of the outcomes of X, whereas
Borch’s condition does not. A heuristic discussion of the relation between the
“linear” condition (3.4) and the “nonlinear” condition (3.5) is given in Section
A in the appendix.

Remark 3.2. Since Pareto efficiency among linear allocation rules is a weaker
condition than Pareto efficiency among all allocation rules, the condition (3.4)
should be a consequence of (3.5) in case y;(x) = a;x + b;. To see this ex-
plicitly, define for each i, and for a given set of allocation functions y(x) =
(11(X), ..., (X)), a function f7(x) by

i)
JE = Bt o

For each i, the random variable f?(X) is positive and satisfies E[f)(X)] = 1,
therefore, it defines a change of measure from the measure P to a new measure P!
(see the remark below for an interpretation of P!). If (3.5) holds, then, for all
i=1,...,n,

(3.6)

) = wni(x) c(x) _ W™
l Eu;(yi(X)]  Elou;(y:(X)]  Elc(X]
so that in particular f(x) = f; (x) for all i and j. In other words, P;" = P}

for all i and j. Conversely, if P = P} for all i and j, then it follows that
[ ) = f7(x) = (say) f7(x) for all x in the support of X and for all i and j,
so that Borch’s condition is satisfied with c¢(x) = f(x) and a; = 1/ E[u};(y;(X))].
Borch’s condition is therefore equivalent to the condition that the measures P, are
the same for all i. Another equivalent formulation is that E![Z] = E/y.[Z] for all

i,j =1,...,n and for all o (X)-measurable random variables Z, where Ely de-
notes expectation under P.. This last formulation allows direct comparison with
the condition for linear Pareto efficiency (3.4), which, using y;(x) = a;x+ b;, can
be rewritten as the condition that E}[X] = E[[X] foralli,j=1,...,n.

Remark 3.3. The random variable f;'(X) can be interpreted in terms of indiffer-
ence pricing. Agent i’s marginal indifference price 7;(Z) (see for instance Car-
mona (2009) ) for a contingent payoff Z to be obtained from the risk pool, given
the allocation y;(X), is the price at which agent i is neither inclined to buy nor
inclined to sell a small quantity of the payoff Z, i.e.,

d
— E[ui(3i/(X) + e(Z— 7(2)))] =0.

de

=
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From this, one finds that n;(Z) = E[f; (X)Z] = E[Z]. Consequently, the random
variable f'(X) can be described as the indifference pricing kernel for agent i
associated to the allocation rule (y1 (X), ..., (x)). Borch’s efficiency condition
is that indifference prices of all contingent claims on the risk pool are the same for
all agents. In contrast, the condition (3.4) requires only that the indifference price
of total risk X should be the same for all agents. This is natural because only the
total risk is traded in a linear risk exchange, aside from cash which is always priced
the same.

We have not assumed a priori that the participation coefficients g; in a linear
allocation rule should be positive. By the characterization in Theorem 3.1, we
can prove that positivity of these coefficients must hold in all Pareto efficient
rules, in fact even in all linearly Pareto efficient rules. Since the sum of the a;’s
must be equal to 1, this also shows that the participation coefficients in an effi-
cient rule must lie between 0 and 1.

Lemma 3.4. If a linear allocation rule given by parameter vectors (ai, . . ., a,) and
(b1, ..., by) is linearly Pareto efficient, then the parameters a; are all positive.

Proof. Suppose that the linear allocation rule given by (ay,...,a,) and
(by, ..., by,) is Pareto efficient among all linear allocation rules. The rule must
then satisfy the condition (3.4), from which it follows that

Cov(X, uj(a; X + b)) = (¢ — E[X]) E[u;(a; X + b;)], (3.7)

for all i. The sign of the right-hand side in this expression is the same for all i,
since Eu}(a; X+ b;)] is always positive, and the factor ¢ — E[ X] does not depend
on i. The sign of the left-hand side is positive if @; is negative and vice versa,
since the random variables X and u}(a; X + b;) are comonotonic in the first case
and countermonotonic in the latter case.’ The left-hand side is zero if «; is zero.
From the feasibility constraint Z;’zl a; = 1, it follows that at least one of the
coefficients a¢; must be positive. Consequently, the relation (3.7) implies that all
of those coefficients must be positive. [ |

Remark 3.5. From the reasoning used in the proof, it also follows that the constant
¢ appearing in (3.4) must be less than E[X].

Among the Pareto efficient solutions as determined by Theorem 3.1, we now
want to look for allocation rules that satisfy the financial fairness condition
(2.4), and hence are of the form (2.6). We arrive at the following conclusion.

Theorem 3.6. A vector (ay, ..., a,) provides a solution to Problem 2.9 if and only

if
Za,- = 1, (38)
i=1

and, for some constant c,
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FIGURE 1: Example of computation of participation coefficients. The level ¢ is adjusted to ensure that the
numbers on the horizontal axis corresponding to the locations of intersections with the indifference price

curves add up to 1. Parameter values are as follows (referring to Table 1 for utility parameters):

X ~ 100 - Lognormal(0.25, 0.2) (discretized on range [74.3,181.7]), v; = 40, v, = 30, v3 = 40, CARA: ¢ = 0.2,
power: y =4,b =0, SAHARA: y =2, 8 =5, d = 30. Solution: a; = 32.5%, a, = 40.3%, a3 = 27.2%.

E[ Xuj(ai(X —v) + v;)]

E[u;(ai(X— v) + vi)]
foralli.

(3.9)

A possible approach to solving this set of equations is the following. For a
given initial guess of the constant ¢, find corresponding values a; (i =1, ..., n)
such that (3.9) holds. Verify whether these values satisfy condition (3.8). If not,
adapt the constant ¢ and try again. This idea is illustrated in Figure 1.° In com-
parison, the procedure to compute the general (nonlinear) PEFF solution is
considerably more complicated, as can be expected since there are many more
unknowns in the general PEFF case than in the linPEFF case. The problem to be
solved in the general case can be formulated as follows: determine positive con-
stantso; (i = 1, ..., n) and continuous functions c¢(x) and y;(x) (i = 1,...,n)

such that, forall xandalli =1, ..., n,

Yo =x

i=1

o (3 (%) = ¢(x),
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Sufficient conditions for unique solvability of this set of equations were obtained
by Gale (1977), Gale and Sobel (1979), and Biihlmann and Jewell (1979). An
iterative computational procedure for the computation of solutions has been
proposed by Pazdera et al. (2017).

Sufficient conditions for existence and uniqueness of solutions to the lin-
PEFF equations (3.8)—(3.9) will now be discussed. In order to simplify the no-
tation, write

E[Xu(a;(X —v) 4+ v;)]

= Eluj(a;:(X —v) +v)] 10

The functions a; — El” [X] are defined on the intervals [0, @;), where the con-
stants a; are defined by (2.8). In the theorem below, a function defined on an
interval [a, b] is said to be “piecewise monotonic” if there exists a partitioning
of the interval of definition into finitely many intervals such that the function is
monotonic on each of these subintervals. An example of a continuously differen-
tiable function that is not piecewise monotonic is the one defined by f(0) = 0
and f(x) = x’sin(1/x) for x # 0 on the interval [—1, 1]. The assumption of
piecewise monotonicity does not seem unduly restrictive for actuarial applica-
tions. The proof of the theorem is given in the appendix.

Theorem 3.7. Under assumptions 2.1, 2.2, 2.3, 2.5, 2.6, and 2.7, Problem 2.9 ad-
mits a solution if all functions a; — E;"[X] are piecewise monotonic. If all func-
tions a; +— E["[X] are strictly monotonic, then the solution is determined uniquely.

A sufficient condition for unique solvability that is stated more directly in
terms of the utility functions can be given as follows. The proof can be found in
the appendix.

Corollary 3.8. Under assumptions 2.1, 2.2, 2.3, 2.5, 2.6, and 2.7, Problem 2.9
admits a unique solution if the functions x — (x — v)r; (ai (x — v) + v;) defined
on [min X, oo) are strictly increasing in x for all i and for all fixed values of a; €
[0, a;).

The condition in the corollary is clearly satisfied if all agents have constant
absolute risk aversion. Another situation of particular interest is the one in
which agents’ preferences are described by shifted power utility (see Table 2).
The coefficients of absolute risk aversion are in this case given by functions of
the form
Vi
— L

ri(y) = s
Y

with y; > 0, so that

Yi(x —v)
ai(x—v)+v — L’

(x —v)ri(ai(x —v) +v;) =

The denominator of the expression on the right-hand side is positive by con-
struction for x > min X and 0 < @; < a;. As x increases from min X, the
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numerator is first negative and then positive. We can conclude that the expres-
sion above describes part of an increasing branch of a hyperbola. In particular,
it follows that the sufficient condition of the corollary is satisfied for collectives
of shifted power utility agents.

Remark 3.9. As noted above, one may imagine situations in which Assumption
2.7 is not satisfied. In case the sum of the claim values is exactly equal to the
minimal value of the risk X, one can verify that a sufficient condition for existence
of a solution to Problem 2.9 is that lim,_, « u;(x) = 0 for all agents i. This is, of
course, a quite common condition for utility functions. The asymptotic condition
of Assumption 2.3 is not needed in this case. When the sum of the claim values is
less than the minimum of the risk X, the asymptotic condition of Assumption 2.3
should be replaced by an asymptotic condition that applies to large gains rather
than to large losses, namely

lim xr(x) = oo. (3.11)
X—> 00

It can be shown that satisfaction of this property by the utility functions of all
agents, in combination with assumptions 2.1, 2.2, 2.5, 2.6, and the assumption
min X > v, is sufficient for the existence of a solution to Problem 2.9. The proof
is analogous to the proof of Theorem 3.7 that is given in the appendix. Condition
(3.11) may be compared to the condition of “reasonable asymptotic elasticity”,
which has been introduced by Kramkov and Schachermayer (1999), and which,
under regularity conditions, can be formulated as the condition limy_, o, xr(x) > 0
( Biagini and Guasoni, 2011 ). Clearly, (3.11) is a strengthening of the reasonable
asymptotic elasticity condition.

4. PARTICULAR CASES

While there are typically no efficient linear allocation rules unless agents are
equicautious, the deviation of linear rules from efficiency may be small. In prac-
tice, then, the simpler linear allocation rule may still be preferred. In this section,
we consider financially fair risk sharing between agents of different types in a
few specific cases, in order to gain insights into the circumstances under which
the benefits from nonlinear risk sharing could be substantial.

We use agents of four different types, namely constant absolute risk aversion,
power utility, SAHARA utility, and kinked utility. The marginal utilities and
risk aversion functions corresponding to these types are listed in Table 1. The
SAHARA type and the kinked type are taken from Chen et al. (2011) and Dai
and Schumacher (2009), respectively. An offset is introduced, since we interpret
the argument of the utility function as the revenues received by a given agent as a
result of the joint project with outcome X; in general, we can expect that agents
do have other sources of wealth in addition to the revenues from the project. The
offset appears explicitly in power utility and in kinked utility as a parameter b
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TABLE 1

UTILITY SPECIFICATIONS.

Type Marginal Utility Risk Aversion Constraints
CARA exp(—ax) o a>0
Power (x+b)77 y/(x+b) y>0,x>—b

SAHARA (x—d+/B+(—-d)?)7"  y/(VB+ (x—d)?) y >0

el(x+b)y7 (x<dy)

Kinked (x+b)77 (dy < x <dy) Lb 06 +0s) T N L,Z ’
x4+ b) (x> db) A *

See Wuerth and Schumacher (2011) on how to represent risk aversion in the kinked case. Symbol
8. denotes the Dirac delta function located at z.

(basis wealth); in the case of SAHARA utility, it is included in the location pa-
rameter d. Kinked utility differs from power utility by jumps in risk aversion at
two levels, which are thought of as “minimally satisfactory” and “satisfactory”,
respectively. The specification of kinked utility does not satisfy the smoothness
conditions that have been imposed in the theorems above; the nonsmoothness
does not lead to numerical problems, however, and we conjecture that all results
can be extended.

In the first three examples, we work with two agents who are both owners of
(a discretized version of) a lognormal risk. The risks correspond to investments
in a Black—Scholes world on a five-year horizon. We allow for varying degrees
of correlation between the two risks.

The benefit of risk sharing will be quantified in terms of the agents’ reser-
vation prices for taking part in the proposed collective. This is the maximum
amount that a given agent would rationally be willing to pay for participation
in the pool in the absence of alternative forms of risk sharing. Let the risk held
by agent i in autarky be denoted by X;. Then, the reservation price is computed
as the number ¢; such that

Elu;(X)] = E[u;(Y; — ¢, 4.1)

where Y; represents the agent’s claim risk that ensues from the proposed risk
sharing agreement.” In general, there is no a priori guarantee that the number
¢; 1s positive. It may happen that the constraint of financial fairness, in combi-
nation with the characteristics of agents participating in a proposed pool, works
in such a way that the risk sharing agreement is not beneficial for one or more
of the participants. In this case, if we interpret the allocation rule as a proposal
that is made to a group of individuals acting rationally, then the proposal would
fail. Changing from a linear allocation rule to a more general nonlinear rule may
then bring better results. If the participants are willing to accept deviations from
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financial fairness to a certain extent, then of course even wider possibilities open
up. Generally speaking, whether it is a good idea for a given group of individ-
uals or companies to form a risk sharing collective depends on many factors,
including the degree of dependence between their risk exposures and the spread
in their attitudes toward risk. It is beyond the scope of this paper to address this
issue formally, but the examples below may provide some indications. We do
find that ¢; is positive for all agents at least in some cases.

It should be noted that reservation prices use evaluation of utility at a claim
of the form Y, — ¢, whereas we have formulated Pareto efficiency in terms of
expected utility arising from the claim Y; itself. The evaluation by reservation
prices is therefore not quite the same as the evaluation used in the definition
of efficiency. As a result, reservation prices associated to a solution that is not
Pareto efficient may be higher for all agents than reservation prices for an ef-
ficient solution, in particular when the proposed inefficient solution is actually
close to efficiency.

In the examples, the projects owned by the agents produce an approximately
lognormally distributed outcome and have economic value v; equal to 50. The
complete specifications are given in Table 2. The risk-neutral measure Q is con-
structed in such a way that the risks are also approximately lognormal under
QO with the same correlation. The interest rate is taken to be zero for simplicity;
in other words, the expectations of the outcomes of the two autarky projects
under Q are both equal to 50. The pooled risk X is formed simply as the sum of
the two autarky projects; this means that some possible benefits of cooperation,
such as accessibility of a wider range of investment opportunities, are ignored.
Three possible forms of risk sharing agreements are considered:

e the proportional scheme, which divides the outcome of X proportionally
among the participants on the basis of the ratio of the agent’s claim value
to the value of the total risk;

o the inPEFF rule;

e the general PEFF rule (i.e., not restricted by linearity).

The proportional scheme is determined completely by the financial fairness con-
straint. Each agent receives the percentage of the total claim that is equal to
the value of the agents’ autarky project relative to the total value of the pooled
projects. In the first series of examples, the proportional rule therefore is simply
that each agent receives one-half of the outcome of the pooled risk.

We consider situations in which the risks are uncorrelated, partially corre-
lated, and fully correlated. When the correlation is less than complete, agents
enjoy a diversification benefit from pooling. Even in the case of full correlation,
however, agents may still benefit from forming a collective when they have differ-
ent attitudes toward risk. In this case, the beneficial effect comes purely from the
redistribution of risk, which is possible even under the constraints of financial
fairness and a linear sharing rule.

In our first example, we consider risk sharing between a CARA agent and a
power utility agent. The risk aversion coefficient of the CARA agent is 0.04. For
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TABLE 2

PROJECT SPECIFICATIONS.

Project 1 X = X exp( (n— %az) T+ UﬁZl)
Project 2 X> = Xy exp( (n— %02) T+ovT(pZ +1—=p? Zz)>
c e . Z | P Z]] 9 ( /L|: 1 ] )
Distribution ~ N(0, b), ~N(—— .
[Zz} ©.2) [Zz oLyaT=prasm "
Parameters Xio=X0=50, w=005 o0c=02

The correlation p may take several values, as discussed in the specific examples. Symbol I,
denotes the 2 x 2 unit matrix. Actual distributions used are discrete approximations of the
indicated lognormal distributions.

TABLE 3

RESERVATION PRICES FOR RISK SHARING BETWEEN A CARA AGENT AND A POWER UTILITY AGENT.

0 0.5 1
Correlation CARA Power CARA Power CARA Power
Proportional 4.83 7.00 2.19 2.98 0 0
linPEFF 4.79 9.37 0.54 7.34 —-2.98 5.82
Nonlinear PEFF 493 9.28 0.88 7.06 -2.39 5.30
linPEFF Coefficient 67% 33% 68% 32% 69% 31%

Parameters: « = 0.04 (CARA agent), y = 5, b = 10 (power utility agent). Autarky projects as specified
in Table 2. The final row shows the coefficients ¢; in the linear risk sharing rule (2.6).

the power utility agent, we take the risk aversion parameter y equal to 5, and
we set the offset (basis wealth) equal to 10. Relative to the project value 50, this
offset is fairly small; such a relationship might occur when the agent’s project
represents pension savings. The absolute risk aversion of agent 2 is decreasing;
at the 5% quantile of the distribution of the agent’s risk under autarky, the
coefficient value is a bit more than 0.13, whereas at the 95% quantile, it is a bit
less than 0.04. Broadly speaking, this agent is therefore more risk averse than the
CARA agent. The reservation prices are shown in Table 3 for different values
of the correlation coefficient.® The table also shows the risk sharing coefficients
corresponding to the linPEFF solution in percentages of the deviation of the
total risk from its benchmark value.

In the case of full correlation, the proportional scheme comes down to the
same as autarky, and therefore the corresponding reservation prices are zero.
Both the linear and the general PEFF scheme will reallocate the risk toward
the CARA agent, as may be expected from the fact that this agent is less risk
averse. Due to the absence of a diversification effect, the CARA agent does not
benefit from the transfer of risk; rationally speaking, the pool can therefore not
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TABLE 4

RESERVATION PRICES FOR RISK SHARING BETWEEN A CARA AGENT AND A SAHARA AGENT.

0 0.5 1
Correlation CARA SAHARA CARA SAHARA CARA SAHARA
Proportional 7.00 7.14 3.00 3.07 0 0
linPEFF 5.69 8.22 2.48 3.56 0.51 —0.51
Nonlinear PEFF 3.97 9.79 —0.67 6.76 —-3.74 3.96
linPEFF Coefficient  57% 43% 52% 48% 49% 51%

Parameters: « = 0.1 (CARA agent), y = 2, 8 = 5,d = 60 (SAHARA agent). Autarky projects as
specified in Table 2. The final row shows the coefficients ¢; in the linear risk sharing rule (2.6).

be formed. When correlation is higher, pooling does become attractive also for
the CARA agent. In the uncorrelated case, both agents profit substantially, but
itis still the less risk averse agent who benefits most. There is not much difference
between results from linear or nonlinear risk sharing.

In the second example, we consider risk sharing between a CARA agent and
a SAHARA agent. The CARA agent has risk aversion coefficient 0.1. Parame-
ters for the SAHARA agent are chosen in such a way that the risk aversion of
the SAHARA agent is higher than 0.1 in the vicinity of the critical level d = 60,
but is otherwise less than that. Overall, the agents can be described as approx-
imately equally risk averse. Results are shown in Table 4. The agents benefit in
about the same way from proportional risk sharing, as long as there is less than
full correlation. Application of the linPEFF rule is not advantageous for the
SAHARA agent in the case of full correlation, but is beneficial to both when
the correlation is 0.5 or zero. The results of the nonlinear PEFF rule are quite
different; there are strong advantages to this rule for the SAHARA agent at all
levels of correlation, but the CARA agent will not be willing to participate on
these terms unless the correlation is quite low.

For the third example, we introduce an agent with kinked utility, and we
consider risk sharing between this agent and a power utility agent. The latter
agent in fact has the same utility function as the first, but without the kinks. Out
of these two, the kinked utility agent is therefore to be considered as the one who
is globally more risk averse. Unlike the situation in the first two examples, both
agents profit from risk sharing even in the case of full correlation. In this case,
the benefits from risk sharing are purely due to the reshaping of the distributions
of the risks confronting the agents, rather than to diversification. The positive
effects of diversification are clearly noticeable in the situations of incomplete
correlation. From the results shown in the table, not much difference is to be
seen between the linear rule and the nonlinear rule. Actually, in the case of zero
correlation, both agents associate a higher reservation price to the linear rule
than to the nonlinear rule. As noted before, this may happen because evaluation
in terms of reservation prices does not match entirely with evaluation in terms
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TABLE 5
RESERVATION PRICES FOR RISK SHARING BETWEEN A POWER UTILITY AGENT AND A KINKED UTILITY
AGENT.
. 0 0.5 1
Correlation
Power Kinked Power Kinked Power Kinked
Proportional 2.85 4.54 1.34 2.03 0 0
linPEFF 5.14 3.42 2.50 2.20 0.24 1.16
Nonlinear PEFF 5.08 3.36 2.44 2.23 0.21 1.26

linPEFF Coefficient ~ 70% 30% 69% 31% 67% 33%

Parameters: y = 2, b = 50 (power utility agent), y =2, b = 50,7 = 0.5, d; = 40, d, = 60
(kinked utility agent). Autarky projects as specified in Table 2. The final row shows the
coefficients «; in the linear risk sharing rule (2.6).

of utility. Direct calculation confirms that the utility level of the kinked utility
agent is in fact higher under the nonlinear rule than under the linear rule.

The results may be illustrated graphically. Figure 2 shows the allocations,
in each of the three examples, according to the linPEFF rule and according to
the general PEFF rule, all in the situation in which the value of the correlation
coefficient between the autarky projects is 0.5. The values of the pooled risk X
on the horizontal axis cover the distribution of X from the 0.5% quantile to the
99.5% quantile. In the first example, it is seen that the linPEFF rule and the
nonlinear PEFF rule are almost identical across a wide range of outcomes. The
allocation function of the CARA agent is generally steeper, because this agent
is less risk averse in the example than the power utility agent. Only in the case
of very high outcomes, the nonlinear rules deviates and divides the outcomes
more equally between the agents than the linear rule would do. In the second
example, the risk aversion of the SAHARA agent is high in the vicinity of the
outcome 60, which roughly corresponds to the outcome 120 for the total risk.
As a consequence, the allocation function of the SAHARA agent is more flat in
this region, which necessarily means that the curve of the other agent is steeper
there. Both in the regions below and above, the situation is reversed. The plot
for the third example shows that the allocations according to the linear and the
nonlinear allocation rules are broadly in line with each other, which explains that
the reservation prices for these rules are similar. However, the nonlinear rule is
able to keep the outcome for the kinked utility agent exactly at the critical levels
40 and 60 across certain ranges of the outcomes of total risk. By its nature, the
linear rule cannot duplicate this behavior.

The linear rule and the nonlinear rule can also be compared by means of
what might be called the profit/loss share of agents. Given an allocation function
¥;(x), the profit/loss share is defined by

Yi(x) — yi(v) '

X—10

(4.2)

a;(x) =
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FIGURE 2: Monetary allocations in the three examples.

With this definition, the allocation rule can be written as

Yi(x) = ai(x)(x —v) + v + ¢, (4.3)
where ¢; := y;(v) — v; is called the “compensation”. Written in this form, the
nonlinear rule can be compared more easily to the linear rule (2.6). Specifically,
in the linear rule the profit/loss share is constant and the compensation is zero.
In the nonlinear rule, the percentage share of each agent in the loss or gain of
the realized outcome with respect to the benchmark value v depends on how
large the deviation is. For instance, the plot corresponding to the first example in
Figure 3 shows a decreasing profit/loss share for the CARA agent, which means
that this agent takes a larger percentage of gains than of losses. The agent is com-
pensated for that first by the fact that, for small gains, the percentage allocated
is still higher than would follow from the linear rule, and second by the compen-
sation amount that appears in (4.3). In the second example, the profit/loss share
shows a nonmonotonic behavior. The same is true, and even more so, in the third
example. In the latter two examples, the profit/loss share varies approximately
between 50% and 80%, which may be viewed as a substantial difference between
the linear and the nonlinear rule.

For a final set of examples, we now look at a situation with three agents and
focus in particular on the impacts of the basis wealth (see footnote 4) and the
capital brought in by each of the agents. The agents’ preferences are supposed to
be given by shifted power utility, and their autarky projects are as in the previous
examples. It will be assumed that the driving risk for these projects is the same
as the one for the pooled project; this represents a situation in which the benefits
of cooperation arise only from risk redistribution, without additional support
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Example 1: P/L share agent C (compensation 0.97) Example 2: P/L share agent C (compensation -2.3) Example 3: P/L share agent P (compensation -0.9)
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FIGURE 3: Profit/loss shares in the three examples. The dashed line corresponds to the linPEFF rule.

from diversification. The evaluation measure Q relates to the statistical measure
P in the same way as before.

The results for four different cases are shown in Table 6. As a benchmark,
first consider a situation in which all agents are the same except for their coeffi-
cients of risk aversion. Unsurprisingly, the linPEFF redistribution calls for the
least risk averse agent to carry most of the risk. This agent, however, would not
participate voluntarily, in contrast to the other two agents. If it is assumed that
the basis wealth differs among the three agents in the sense that the least risk
averse agent has the largest basis wealth (top right panel in Table 6), then the
difference in risk tolerance becomes larger and, consequently, even more risk is
shifted to the least risk averse agent. The least risk averse agent, whose pockets
have become deeper compared to the first case, now finds the agreement attrac-
tive relative to autarky. The most risk averse agent hardly participates in the risk
anymore after redistribution, and a very substantial benefit for this agent results.

The bottom left panel shows a situation where basis wealth is the same for
all agents, but the agents bring in different amounts of capital, with the largest
amount being supplied by the least risk averse agent. Relative to the amount of
capital brought in, the benefit of the most risk averse agent is still the largest,
while participation of the least risk averse agent depends on the possibility of
coercion. Again, a larger basis wealth for the least risk averse agent makes the
linPEFF solution acceptable to all, as shown in the bottom right panel.

The difference between the linear solution and the general (nonlinear) so-
lution is fairly small in all four cases, and graphs are not shown. Compared to
the linPEFF solution, the general PEFF solution typically allocates a some-
what larger amount to the most risk tolerant agent for high outcomes as well
as for low outcomes, whereas the other two agents are slightly better off from
the PEFF solution than from the linPEFF solution in the case of intermediate
outcomes.
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PEFF RISK SHARING OF AN APPROXIMATELY LOGNORMAL RISK BETWEEN THREE POWER UTILITY AGENTS.

Agent 1 2 3 Agent 1 2 3
Vi 2 5 10 Vi 2 5 10
b; 50 50 50 b; 100 50 10
v; 50 50 50 v; 50 50 50
part. coeff. 61.5%  25.6%  12.8% part. coeff. 74.7%  19.6% 5.8%
res. pr. lin. —-1.2 1.7 8.7 res. pr. lin. 1.9 24 18.6
res. pr. nonlin. -1.5 2.0 8.9 res. pr. nonlin. 1.8 2.6 18.6
Agent 1 2 3 Agent 1 2 3
Vi 2 5 10 Vi 2 5 10
b; 50 50 50 b; 100 50 10
v; 80 50 20 v; 80 50 20
part. coeff. 70.7%  21.8% 7.5% part. coeff. 80.3%  17.3% 2.5%
res. pr. lin. —0.8 2.2 1.3 res. pr. lin. 1.0 2.6 55
res. pr. nonlin. -0.9 2.4 1.4 res. pr. nonlin. 0.9 2.7 5.5

The symbols y; and b; refer to relative risk aversion and basis wealth respectively (see Table 1); v; denotes
claim value. The last three rows in each panel indicate the participation coefficients in the linPEFF
solution (i.e. the percentage of risk borne by each of the agents), the reservation prices of the linPEFF
solution relative to autarky, and the reservation prices of the general (nonlinear) PEFF solution, also relative to
autarky.

5. CONCLUSIONS

The main theoretical contributions of this paper are the introduction of the
notion of linearly PEFF (linPEFF) solutions to risk sharing problems, and
the proof of existence and uniqueness of such solutions for single-period
problems under suitable conditions. Given the fact that in many situations
we have both a unique linPEFF solution and a unique general (nonlin-
ear) PEFF solution, it becomes of interest to investigate the relations be-
tween these solutions in particular situations. A few examples have been
worked out.

Generally speaking, the benefits of risk sharing can be due both to a diversi-
fication effect and to a redistribution effect. The latter effect may even be present
when agents are confronted with identical risks, and it arises from the fact that a
risk sharing rule can modify the distributions of all of the participants, possibly
in a way that is better for all. The particular cases that have been worked out
show that a positive effect for all occurs sometimes, but not always. The results of
the examples suggest that, compared to the redistribution effect, diversification
is a stronger and more robust driver of risk sharing benefits. In the situations
that we have considered, the agent who benefits most from pooling tends to be
the one who is most risk averse.

Concerning the difference between linear and nonlinear rules of risk shar-
ing, it appears that often the linear rule is quite competitive with the nonlinear
rule. Since the linear rule is easier to compute and to implement, this observa-
tion might motivate the use of linPEFF rules. In situations in which particular
levels are important to agents, as in the third example, the nonlinear rule may
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nevertheless have a psychological advantage, even if the difference with the lin-
ear rule is not large in utility terms.
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NOTES

1. Strictly speaking, these rules should be called “affine” rather than “linear”, but we will stay
with the entrenched terminology.

2. The notion of cautiousness was introduced by Wilson (1968). It is defined, for sufficiently
differentiable utility functions, as the first derivative of the coefficient of absolute risk tolerance,
which by itself is the inverse of the Arrow—Pratt coefficient of absolute risk aversion.

3. It may be argued that, if a liquid market exists in which the relevant risks can be traded freely,
there would be little reason for collectives to form. As a result of this, the analysis of collectives is
relevant in particular in situations in which such perfect market conditions are not present.

4. It should be taken into account that the argument taken by the utility function is the outcome
to agent i of the risk sharing agreement, while the agent may typically be expected to have other
sources of income as well. Therefore, it is reasonable to include an offset representing basis wealth
in the argument of the utility function. Examples are given in Section 4.

5. Positivity of the covariance for nondegenerate comonotonic variables follows from
Hoffding’s covariance equality (Hoffding, 1994).

6. The figure also serves to show some special features that may apply to the indifference price of
the pooled risk as a function of the participation coefficient, such as a limited domain of definition
(see (2.8)) and non-monotonicity.

7. The reservation price ¢; cannot be compared directly to the indifference price of total risk
7;(X) that was discussed in Remark 3.3. The reservation price is a fixed amount that arises from
the comparison of two discrete alternatives: participation in a pool with a given allocation rule, or
autarky. The indifference price 7; (X) is a price per unit of total risk; it presupposes participation
in the pool, and it arises from comparison of alternatives that differ only infinitesimally.

8. The correlations as shown in the tables for the examples are the correlations between the
lognormal risks, which differ slightly from the correlations p appearing in Table 2. The relation
of the parameter p to the correlation py of the project outcomes is given by p = o2 log(1 +
px(exp(c?) — 1)).

9. Since in this paper, the risk Xis interpreted as an uncertain gain, rather than as an uncertain
loss, there are sign differences with respect to the definition of the Esscher premium in the insurance
literature. The quantity used here should perhaps be termed “Esscher value” rather than “Esscher
premium”.
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APPENDIX

A.1. Proof of Theorem 3.1

For brevity, write s; = E[Xu)(a; X + b;)] and t; = Eu;(a; X + b;)]. Note that #; > 0 for all 5.
We need to show that the following conditions are equivalent: (i) there exist o; > 0, A, and u
such that ;s; = A and «;t; = p for all i; (ii) there is a constant ¢ such that s;/# = ¢ foralli. If
(1) holds, then the constant u must be positive, and (ii) is satisfied with ¢ = A/u. Conversely,
if (ii) holds, then in (i) we can take o; = 1/;, A = ¢, and u = 1.

A.2. Connection to the Borch criterion

The aim of this section is to provide an intuitive understanding of the relation between Borch’s
well-known criterion for Pareto efficiency on the one hand, and on the other hand the crite-
rion for Pareto efficiency within the class of linear allocation rules as given in Theorem 3.1.
For this purpose, introduce the class of conditionally linear allocation rules, which is defined
as follows. Suppose that the range of possible values of total risk X has been subdivided into
a finite number of non-overlapping intervals 4, k = 1, ..., N. An allocation rule is said to be
conditionally linear (with respect to these sets) if there exist constants a* and ¥ (i = 1, ..., n,
k=1,..., N)with

doaf=1, Y bf=0  (k=1,....N),
i=1 i=1
such that the claim allocated to agent i is given by
N
70 = Y L afx+b)).
k=1
Since the set of allocation functions defined in this way is convex, the set of Pareto efficient

solutions can be determined by optimizing a weighted sum of agents’ preference functions
subject to the feasibility constraints. Using weights «;, the first-order conditions for optimal-

ity are that there should exist constants A, and u; (k= 1, ..., N) such that
o E[Xul (%) | X € A] = A, (A1)
o Eu (Y) | X € A = s, (A2)
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fori = 1,...,nand k = 1,..., N. These two conditions may be replaced by the second
condition together with the requirement that there are constants ¢, such that

E[Xu;(Y) | X € A
Elui(Y) | X € A

= (ks (A3)

for all i and k. This condition expresses that an allocation-induced adjusted conditional ex-
pectation of the pooled risk X should be the same for all agents.

Heuristically, Borch’s rule can be derived from this by considering what happens when
the sets Ay are reduced to singletons. The index k& may then be replaced by the argument x,
and we write A(x), u(x), and c(x) instead of Ak, uy, and ¢,. Since, we are conditioning on
the outcome of X, the expectation symbols in (A1) and (A2) can be dropped, and the two
conditions become

a; xu; (3, (%) = A(X),
o;u; (Y (%) = pu(x).

The first condition is implied by the second one (take A(x) = xu(x)), so that only the second
condition needs to be retained. This is Borch’s condition. Therefore, the classical result of
Borch can be viewed as a limit case of the efficiency condition for conditionally linear allo-
cation rules when the number N of sets A4 tends to infinity. In contrast, Theorem 3.1 of this
paper is concerned with the case N = 1. In this situation, it is condition (A2) which becomes
redundant. In this way, Borch’s condition and the condition of Theorem 3.1 can be viewed as
representing opposite ends of a range of efficiency conditions. At both extremes, the general
conditions simplify, albeit in different ways.

A.3. Properties of the generalized Esscher transform

To support the analysis in Section 3, in this section some properties are derived of the mapping
g(@) = E[Xu'(a X))/ Elw (@ X)), (Ad)

where u is a utility function of the type described in Assumption 2.2. The analysis applies to
functions occurring in the condition (3.9) for linPEFF solutions after a reparametrization.
In the special case u(x) = —e ™", the right-hand side of (A4) is known as the Esscher premium
with parameter a corresponding to the risk X.> Generalized Esscher premium principles of
the form E[Xh(X)]/E[h(X)] were studied for instance by Kamps (1998).

The random variable u’'(a X)/ E[u’(a X)] is positive, and its expectation is 1; therefore, it
can be taken as a Radon-Nikodym derivative that defines a change of measure from P to
a new measure P?. Corresponding operators, such as expectation and covariance, will be
indicated by superscript «. In particular, we write

oy FLXU@X)]

E'[X] = ————— =g(a). (AS5)
Elu'(a X)]

The Arrow—Pratt coefficient of risk aversion associated to the utility function u(x) is denoted

by r(x). The assumptions on the random variable X in the lemma below correspond via

reparametrization to the application in the main text.
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Lemma A.1. Let X be a discrete random variable with finitely many possible values, satisfying
min X < 0. Let u be a utility function that satisfies the conditions of Assumption 2.2, with
L < 0 where L denotes the left boundary of the domain of u. Define

5o { L/(min X) if L is finite

o0 if L=—o0.

The following properties hold.

i. The function g(a) = E°[X] is continuous on the interval [0, ).
ii. We have E°[X] = E[X], and E°[X] < E[X] for a > 0.
iil. If L is finite, then
lelgtl; E‘[X] = min X. (A6)
If L = —o0, then the statement ( A6) holds under the asymptotic condition (2.3 ).
iv. The function g(a) = E°[X] is differentiable on the interval (0, @), and its derivative is
given by
dE[X]
da

Proof. Continuity, differentiability, and the relation E°[X] = E[X] are verified imme-
diately. Since the marginal utility u’ is strictly decreasing, the variables X and u'(a X) are
countermonotonic for any fixed nonnegative value of a. Given also that X is nondegenerate,
the inequality Cov(X, #'(a X)) < 0 holds for ¢ > 0, which implies (ii). Let x; = min X <
X < .-+ < xy denote the possible values of X. By the definition of the number a, condition
(iii) in Assumption 2.2, and the assumption min X < 0, we have

= —Cov'(X, Xr(aX)). (A7)

lim ' (ax)) = oo.
a—a

If L > —oo, then lim,_,; u'(ax;) = u'((x/x1) L) for k > 2 with x; < 0, and lim,,_,; ' (ax;) <
u'(0) for k with x; > 0, so that

u'(ax)

=0 forallk>2. (A8)
a—a u’(axl
This implies (A6). In the case in which L = —oo and the assumption (2.3) is satisfied, the
relation (A8) follows from the proof of Lemma 3 in Mari¢ and Tomi¢ (1990). Finally, the
derivative g’(«) can be calculated as follows:
dE[X]  d E[Xu'(aX)]
da  da Eu(aX)]

_ E[X*u" (a X)] B E[Xu"(a X)]

Ew@n]  Ew@x) @]

_ E[X*r(aX)u'(a X)] N E[Xr(aX)u'(a X)] E[Xu'(aX)]
N Elw(aX)] Ew@X]  Ew(@X)]

= —E‘[Xr@X)] + E‘[Xr(a )| E‘[X]

= — Cov'(X, Xr(aX)). u

https://doi.org/10.1017/asb.2018.25 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2018.25

LINEAR VERSUS NONLINEAR ALLOCATION RULES 1023

The lemma above contains extensions of results that were obtained for the case u(x) =
—e ™~ (the Esscher principle) by van Heerwaarden et al. (1989). In particular, the formula
(A7) is a generalized version of Equation (4) in the cited paper.

Remark A.2. The quantity lim,_, ., —xr(x) may be referred to as the asymptotic coefficient
of relative risk aversion for large losses. The reader may wonder what can be said about the
limit lim,_, o, E°[ X] when this asymptotic coefficient is finite, rather than infinite as assumed in
the lemma above. Using techniques as in Mari¢ and Tomié (1990 ), one can calculate that

e ELXR(X)]
lim E'[X]= Eh0] (A9)
where
— Y)Y
o={ 3 652

andy = lim,_, o, —xr(x). If the coefficient of risk aversion tends to zero faster than 1/|x| as x
tends to —oo, so that the asymptotic coefficient of relative risk aversion for large losses is equal
to zero, then lim,_, o, E°[X] = E[X| X < 0). This is a Tail-Value-at-Risk (expected value of
the outcome conditional on exceedance of a certain level toward the adverse side ).

A.4. Proof of Theorem 3.7

For the proof of Theorem 3.7, we make use of a result that is known as the “mountain climb-
ing theorem” (Homma, 1952; Whittaker, 1966). The name is derived from the interpretation
of the theorem as a positive answer to the question whether it is possible for two climbers,
both starting at sea level and climbing different sides of a mountain, to reach the top while
coordinating their movements in such a way that at all times they are at the same altitude.
We need in fact a version with # climbers rather than two, but this requires only a straightfor-
ward modification of the graph-theoretic proof as given by Tucker (1995); see also Pak (2010,
Theorem 5.5, Exc. 5.24). The theorem can be stated as follows.

Lemma A.3. Let n continuous and piecewise monotonic functions f; from [0, 1] to [0, 1] be
given, with f;(0) = 0 and f;(1) = 1 for all i. Then, there exist continuous functions g; from
[0, 1] zo [0, 1], with g;(0) = O and g;(1) = 1 foralli = 1,...,n, such that f,(g(x)) =
fr(g(x)) =+ = fulgu(x) forall 0 < x < 1.

Theorem 3.7 may now be proven as follows. Assume first that the domains of the utility

functions of all agents are bounded below. In this case, all upper bounds ; are finite. It follows

from Lemma A.1 that for each i/ we can define a continuous function f; from [0, 1] to [0, 1]
by

E[X] - E"[X]

Ji) =1 E[X]—min X

1 fort=1.

for0<t<1

To these functions, we can apply the mountain climbing theorem. We then obtain continuous
functions g; with g;(0) = 0 and g; (1) = 1 such that

EO[X]=... = E#&O[X]  forall0<7<1.

Define "
hty =" a@gi ).
i=1
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The function /(¢) is continuous; moreover, it satisfies #(0) = 0 and /(1) = Y7 @ > 1 (see
Lemma 2.8). Therefore, there exists * € (0, 1) such that /4 (z*) = 1. A solution to Problem 2.9
is now obtained by setting @; = a,g;(t*) fori =1, ..., n.

In the case in which not all lower bounds L; are finite and condition (2.3) applies, we
know by Lemma A.1 that E;"[ X] converges to min X as ; tends to infinity for agents i such
that I; = —oo. One can then define a corresponding continuous function f; from [0, 1] to
[0, 1], as in the argument above, this time using a suitable continuous transformation which
maps the interval [0, oo] to [0, 1], such as % arctan x. The proof then follows by the same
reasoning as above.

If it is assumed that all functions a; — E;"[ X] are strictly monotonic, then for each value
of ¢ there can be at most one solution ¢; to the Equation (3.9). The functions ¢; (¢) implicitly
defined by (3.9) are strictly increasing as ¢ is decreased from its maximal value E[ X], and they
converge to > ,_, @ > 1. Consequently, there exists a uniquely determined value ¢* at which
>y ai(c*) = 1. The vector (a;(¢*), ..., a,(c*)) then defines the unique solution to Problem
2.9. This completes the proof.

Remark A.4. The condition of strict monotonicity of the functions a; — E;"[X] can be weak-
ened to strict monotonicity of these functions on the interval [0, min(a;, 1)).

Remark A.5. An additional case in which existence of solution can be proven, without the con-
dition (2.3 ), is the following. Suppose there exist a constant a > 1 and an agent i with a; > a
such that E['[X] > E}[X] for all0 < &; < &, and E}[X] > ES[X] for all agents j with
a; > a. Without loss of generality, let the index of the agent appearing in the condition be 1.
Fori=1,...,n, define

& = minfa; | E“[X] = E/[X]}.

Note that Y";_, a; > 1. The argument in the case of L; > —oo for all i can now be followed with
the constants a; instead of a;.

A.5. Proof of Corollary 3.8
It follows from item (iv) of Lemma A.1 that

dE;% = —Cov" (X — v, (X —v)ri(a;(X —v) + v)),

where the superscript a; refers to the measure that has Radon—-Nikodym derivative u/ (a,»(X —
v)+v;)/ E[u;(a;(X—v)+v;)] with respect to P. Under the condition stated in the corollary, the
variables X — v and (X — v)r;(a; (X — v) 4+ v;) are comonotonic, which implies that the right-
hand side in the expression above is negative. Consequently, the quantity E;'[X] is strictly
monotonically decreasing in «¢;, and the statement follows from Theorem 3.7.
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