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Abstract. In this paper, we study spectral properties and local spectral properties
of ∞-complex symmetric operators T . In particular, we prove that if T is an ∞-
complex symmetric operator, then T has the decomposition property (δ) if and only
if T is decomposable. Moreover, we show that if T and S are ∞-complex symmetric
operators, then so is T ⊗ S.

2010 Mathematics Subject Classification. Primary 47A11; Secondary 47B25.

1. Introduction. Let L(H) be the algebra of bounded linear operators on a
separable complex Hilbert space H. If T ∈ L(H), we write σ (T), σp(T), σap(T), and
σsu(T) for the spectrum, the point spectrum, the approximate point spectrum, and the
surjective spectrum of T , respectively.

A conjugation on H is an antilinear operator C : H → H with C2 = I which
satisfies 〈Cx, Cy〉 = 〈y, x〉 for all x, y ∈ H. For any conjugation C, there is an
orthonormal basis {en}∞n=0 for H such that Cen = en for all n (see [6] for more details).
An operator T ∈ L(H) is said to be complex symmetric if there exists a conjugation
C on H such that T = CT∗C. In this case, we say that T is complex symmetric
with conjugation C. This concept is due to the fact that T is a complex symmetric
operator if and only if it is unitarily equivalent to a symmetric matrix with complex
entries, regarded as an operator acting on an l2-space of the appropriate dimension (see
[6]).

In 1970, J. W. Helton [9] initiated the study of operators T ∈ L(H) which satisfy
an identity of the form

m∑
j=0

(−1)m−j
(

m
j

)
T∗jTm−j = 0. (1)
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In view of complex symmetric operators, using the identity (1), we define m-
complex symmetric operators as follows; an operator T ∈ L(H) is said to be an m-
complex symmetric operator if there exists some conjugation C such that

m∑
j=0

(−1)m−j
(

m
j

)
T∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is m-complex symmetric with

conjugation C. Set �m(T) := ∑m
j=0(−1)m−j

(
m
j

)
T∗jCTm−jC. Then, T is an m-complex

symmetric operator with conjugation C if and only if �m(T) = 0. Note that

T∗�m(T) − �m(T)(CTC) = �m+1(T). (2)

By (2), if T is m-complex symmetric with conjugation C, then T is n-complex
symmetric with conjugation C for all n ≥ m. It is clear that a 1-complex symmetric
operator is complex symmetric. We now introduce the class of ∞-complex symmetric
operators. An operator T ∈ L(H) is called an ∞-complex symmetric operator with
conjugation C if

lim sup
m→∞

‖�m(T)‖ 1
m = 0.

An operator T ∈ L(H) is called a finite-complex symmetric operator if T is m-
complex symmetric for some m ≥ 1. All normal operators, algebraic operators of
order 2, Hankel matrices, finite Toeplitz matrices, all truncated Toeplitz operators,
some Volterra integration operators, nilpotent operators of order k, and nilpotent
perturbations of Hermitian operator are included in the class of m-complex symmetric
operators. We refer the reader to [5–8, 10, 11], and [2] for more details. The class
of ∞-complex symmetric operators is the large class which contains finite-complex
symmetric operators.

EXAMPLE 1.1. Let C be the canonical conjugation on H given by

C

( ∞∑
n=0

xnen

)
=

∞∑
n=0

xnen,

where {en} is an orthonormal basis of H. Given any ε > 0, choose a positive integer N
such that 1

N < ε. Fix any m > N. If W is the weighted shift on H defined by Wen =
1

2m+n en+1 (n = 0, 1, 2, . . .) for such m, then T = I + W is an ∞-complex symmetric
operator. Indeed, since W is a quasinilpotent operator, σ (W ) = {0}, and �m(T) =
�m(W ), it follows from Theorem 3.2 that

‖�m(T)‖ 1
m = ‖�m(W )‖ 1

m

≤
⎛
⎝ m∑

j=0

(
m
j

)
‖W ∗j‖‖CW m−jC‖

⎞
⎠

1
m

≤
⎛
⎝ m∑

j=0

(
m
j

)
‖W ∗‖j‖W‖m−j

⎞
⎠

1
m

≤
[

2m
(

1
2m

)m] 1
m

= 1
2m−1

<
1
N

< ε.
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By taking limsup as m → ∞ in the above inequality, we get that

lim sup
m→∞

‖�m(T)‖ 1
m ≤ ε.

Since ε is arbitrary, it follows that T is an ∞-complex symmetric operator.

The paper is organized as follows. In Section 3, we focus on spectral properties
and local spectral properties of ∞-complex symmetric operators T . In particular, we
show that if T is an ∞-complex symmetric operator, then T has the decomposition
property (δ) if and only if T is decomposable. In Section 4, we prove that if T and S
are ∞-complex symmetric operators, then so is T ⊗ S. As some applications, we give
several examples of such operators.

2. Preliminaries. An operator T ∈ L(H) is said to have the single-valued extension
property (or SVEP) if for every open subset G of � and any H-valued analytic function
f on G such that (T − λ)f (λ) ≡ 0 on G, we have f (λ) ≡ 0 on G. For an operator
T ∈ L(H) and for a vector x ∈ H, the local resolvent set ρT (x) of T at x is defined
as the union of every open subset G of � on which there is an analytic function
f : G → H such that (T − λ)f (λ) ≡ x on G. The local spectrum of T at x is given by
σT (x) = � \ ρT (x). We define the local spectral subspace of an operator T ∈ L(H) by
HT (F) = {x ∈ H : σT (x) ⊂ F} for a subset F of �. An operator T ∈ L(H) is said to
have Bishop’s property (β) if for every open subset G of � and every sequence {fn} of
H-valued analytic functions on G such that (T − λ)fn(λ) converges uniformly to 0 in
norm on compact subsets of G, we get that fn(λ) converges uniformly to 0 in norm
on compact subsets of G. Given an operator T ∈ L(H) and a closed set F ⊆ �, let
XT (F) consist of all x ∈ H such that there exists an analytic function f : � \ F → H
that satisfies

(T − λ)f (λ) = x

for all λ ∈ � \ F. The space XT (F) is called glocal spectral subspace of T . In particular,
if T has the SVEP, then XT (F) = HT (F) holds. In general, XT (F) is strictly smaller
than the corresponding HT (F). We say that T has the decomposition property (δ) if for
every open cover {U, V} of �, the decomposition

H = XT (U) + XT (V )

holds. An operator T ∈ L(H) is said to be decomposable if for every open cover {U, V}
of � there are T-invariant subspaces X and Y such that

H = X + Y, σ (T |X ) ⊂ U, and σ (T |Y ) ⊂ V .

It is well-known that

Decomposable ⇒ Bishop’s property (β) ⇒ SVEP.

In general, the converse implications do not hold (see [12] and [3] for more details).

3. ∞-complex symmetric operators. In [2], the authors have studied spectral
relations for an m-complex symmetric operator on H. In this section, we provide
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several spectral properties of ∞-complex symmetric operators. Recall that for any
x, y ∈ H, two vectors x and y are C-orthogonal if 〈Cx, y〉 = 0.

THEOREM 3.1. Let T ∈ L(H) be an ∞-complex symmetric operator with conjugation
C and let λ and μ be any distinct eigenvalues of T. Then, eigenvectors of T corresponding
to λ and μ are C-orthogonal. Moreover, if {xn} and {yn} are sequences of unit vectors
such that limn→∞(T − λ)xn = 0 and limn→∞(T − μ)yn = 0, then limnk→∞〈Cxnk , ynk〉 =
0 where 〈Cxnk , ynk〉 is any convergent subsequence of 〈Cxn, yn〉.

Proof. Let λ and μ be distinct eigenvalues of T with respect to the corresponding
unit eigenvectors x and y, respectively. Since Tx = λx and Ty = μy, it follows that
CTC(Cx) = λCx and so

〈�m(T)Cx, y〉 =
〈⎛
⎝ m∑

j=0

(−1)m−j
(

m
j

)
T∗jCTm−jC

⎞
⎠ Cx, y

〉

=
〈⎛
⎝ m∑

j=0

(−1)m−j
(

m
j

)
T∗j

λ
m−j

⎞
⎠ Cx, y

〉
= 〈(T∗ − λ)mCx, y〉

= 〈Cx, (T − λ)my〉 =
〈

Cx,

m∑
j=0

(−1)m−j
(

m
j

)
Tjλm−jy

〉

= 〈Cx, (μ − λ)my〉 = (μ − λ)m〈Cx, y〉. (3)

Moreover, since ‖C‖ = 1, it follows from (3) that

|(μ − λ)||〈Cx, y〉| 1
m = |(μ − λ)m〈Cx, y〉| 1

m

= |〈�m(T)Cx, y〉| 1
m ≤ ‖�m(T)Cx‖ 1

m ‖y‖ 1
m ≤ ‖�m(T)‖ 1

m .

By taking limsup as m → ∞ in the above inequality, we obtain 〈Cx, y〉 = 0.
Let {xn} and {yn} be sequences of unit vectors such that limn→∞(T − λ)xn = 0 and

limn→∞(T − μ)yn = 0. Then, limn→∞(CTC − λ)Cxn = 0 and so limn→∞(Tl − μl)yn =
0 and limn→∞(CTlC − λ

l
)Cxn = 0 for every l ∈ �. If 〈Cxnk , ynk〉 is any convergent

subsequence of 〈Cxn, yn〉 such that limk→∞〈Cxnk , ynk〉 = a, then it suffices to show that
a = 0. Note that for each fix m ≥ 1, the following relations hold:

|(μ − λ)ma| = lim
nk→∞

∣∣(μ − λ)m〈Cxnk , ynk〉
∣∣

=
∣∣∣∣∣∣

m∑
j=0

(−1)m−j
(

m
j

)
λ

m−j
μj lim

nk→∞〈Cxnk , ynk〉
∣∣∣∣∣∣

=
∣∣∣∣∣∣

m∑
j=0

(−1)m−j
(

m
j

)
lim

nk→∞〈(CTm−jC)Cxnk , Tjynk〉
∣∣∣∣∣∣

=
∣∣∣∣∣∣ lim
nk→∞〈

⎛
⎝ m∑

j=0

(−1)m−j
(

m
j

)
T∗jCTm−jC

⎞
⎠ Cxnk , ynk〉

∣∣∣∣∣∣
= lim

nk→∞ |〈�m(T)Cxnk , ynk〉| ≤ ‖�m(T)‖. (4)
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Since T is an ∞-complex symmetric operator, it follows from (4) that

|(μ − λ)| lim
m→∞ |a| 1

m = lim sup
m→∞

|(μ − λ)ma| 1
m ≤ lim sup

m→∞
‖�m(T)‖ 1

m = 0.

Since λ and μ are distinct values, a = 0. Hence, limnk→∞〈Cxnk , ynk〉 = 0. �

THEOREM 3.2. Let Q be a quasinilpotent operator. Then, T = aI + Q is an ∞-
complex symmetric operator for all a ∈ �.

Proof. We first show that �k(T) = �k(Q) for all k ∈ �. If k = 1, it is true clearly.
Assume that it holds when k = m. Then, it holds

�m+1(T) = T∗�m(T) − �m(T)(CTC)
= T∗�m(Q) − �m(Q)(CTC)
= (aI + Q∗)�m(Q) − �m(Q)(C(aI + Q)C)
= Q∗�m(Q) − �m(Q)(CQC) = �m+1(Q).

Therefore, �k(T) = �k(Q) for all k ∈ �. We next prove lim sup ‖�m(Q)‖ 1
m = 0. Since

Q is quasinilpotent, for a given ε with 0 < ε < 1, there exists n0 such that ‖Qn‖ < εn

for all n ≥ n0. Let M = max{‖Q‖, ‖Q2‖, . . . , ‖Qn0−1‖} and m be sufficiently large. We
may assume M ≥ 1. Then, we have

�m(Q) =
n0−1∑
j=0

(−1)m−j
(

m
j

)
Q∗jCQm−jC

+
m−n0∑
j=n0

(−1)m−j
(

m
j

)
Q∗jCQm−jC

+
m∑

j=m−n0+1

(−1)m−j
(

m
j

)
Q∗jCQm−jC.

Therefore, we obtain that

‖�m(Q)‖ ≤ M
n0−1∑
j=0

(
m
j

)
‖Qm−j‖

+
m−n0∑
j=n0

(
m
j

)
‖Q∗j‖ · ‖Qm−j‖ + M

m∑
j=m−n0+1

(
m
j

)
‖Q∗j‖

< M
n0−1∑
j=0

(
m
j

)
εm−j + M

m−n0∑
j=n0

(
m
j

)
εj · εm−j + M

m∑
j=m−n0+1

(
m
j

)
εj

= Mεm
( n0−1∑

j=0

(
m
j

)
ε−j +

m−n0∑
j=n0

(
m
j

)
+

m∑
j=m−n0+1

(
m
j

)
εj−m

)

≤ Mεmε1−n0

( n0−1∑
j=0

(
m
j

)
+

m−n0∑
j=n0

(
m
j

)
+

m∑
j=m−n0+1

(
m
j

))

= Mεmε1−n0 2m,
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due to the fact that max{1, ε−1, . . . , ε1−n0} = ε1−n0 ≥ 1. Hence,

lim sup
m→∞

‖�m(Q)‖ 1
m ≤ 2ε.

Since ε is arbitrary, lim supm→∞ ‖�m(Q)‖ 1
m = 0. This completes the proof. �

REMARK 3.3. Let T be an m-complex symmetric operator with a conjugation C.
If λ is an eigenvalue of T, then λ is an eigenvalue of T∗ (see [2]). However, if T is an ∞-
complex symmetric operator, this does not hold. For example, let C be the conjugation
on H given by

C

( ∞∑
n=0

xnen

)
=

∞∑
n=0

(−1)n+1xnen,

where {en} is an orthonormal basis ofH and let W be the weighted shift onH defined by
Wen = 1

n+1 en+1 (n = 0, 1, 2, . . .). If T = λI + W ∗, then T is an ∞-complex symmetric
operator by Theorem 3.2. Moreover, (T − λI)e0 = W ∗e0 = 0, but (T∗ − λI)Ce0 =
WCe0 = We0 = e1 �= 0.

THEOREM 3.4. If {Tn} is a sequence of commuting ∞-complex symmetric operators
with conjugation C such that limn→∞ ‖Tn − T‖ = 0, then T is also ∞-complex symmetric
with conjugation C.

Proof. We first claim that if T and Q are in L(H) with TQ = QT , then

‖�m(T + Q)‖ ≤ Km(
max
l≤n≤m

‖�n(T)‖ + max
l≤n≤m

‖Q‖n),
where K = max{K1, K2} with K1 = 2(2‖Q‖ + 1) and K2 = 2(2‖T‖ + ‖Q∗‖ + 1). In
fact, since

[(a + b) − (c + d)]m = [(a − c) + (b − d)]m

=
m∑

i=0

(−1)i
(

m
i

)
[(a − c) + b]m−idi

=
m∑

i=0

m−i∑
j=0

(−1)i
(

m
i

)(
m − i

j

)
bj(a − c)m−i−jdi

=
∑

m1+m2+m3=m

(
m

m1, m2, m3

)
bm3 (a − c)m1 dm2 ,

it follows that

�m(T + Q) =
∑

m1+m2+m3=m

(
m

m1, m2, m3

)
Q∗m3�m1 (T)CQm2 C.

Let l = [ m
3 ] be the integer part of m

3 . Put

Mi =
∑

m1+m2+m3=m and mi≥l

(
m

m1, m2, m3

)
‖Q∗m3�m1 (T)CQm2 C‖
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for i = 1, 2, 3. Since m1 + m2 + m3 = m, it follows that mj ≥ l for some j = 1, 2, 3.

Therefore, we get that

‖�m(T + Q)‖ ≤
∑

m1+m2+m3=m

(
m

m1, m2, m3

)
‖Q∗m3�m1 (T)CQm2 C‖

≤ M1 + M2 + M3. (5)

We will estimate the constant Mi. Then, we have

M1 =
∑

m1+m2+m3=m and m1≥l

(
m

m1, m2, m3

)
‖Q∗m3�m1 (T)CQm2 C‖

≤
∑

m1+m2+m3=m and m1≥l

(
m

m1, m2, m3

)
‖Q∗‖m3‖�m1 (T)‖‖Q‖m2

≤ max
l≤n≤m

‖�n(T)‖ ·
∑

m1+m2+m3=m and m1≥l

(
m

m1, m2, m3

)
‖Q∗‖m3‖Q‖m2

= max
l≤n≤m

‖�n(T)‖ · (‖Q∗‖ + ‖Q‖ + 1)m

= max
l≤n≤m

‖�n(T)‖ · (2‖Q‖ + 1)m

= max
l≤n≤m

‖�n(T)‖ ·
(

K1

2

)m

. (6)

Since ‖�k(T)‖ ≤ 2k‖T‖k for all k, it follows from a similar method of (6) that

M2 ≤ max
l≤n≤m

‖Q‖n ·
∑

m1+m2+m3=m and m2≥l

(
m

m1, m2, m3

)
‖Q∗‖m3‖�m1 (T)‖

≤ max
l≤n≤m

‖Q‖n ·
∑

m1+m2+m3=m and m2≥l

(
m

m1, m2, m3

)
‖Q∗‖m3 (2‖T‖)m1

≤ max
l≤n≤m

‖Q‖n · (2‖T‖ + ‖Q∗‖ + 1)m

= max
l≤n≤m

‖Q‖n ·
(

K2

2

)m

and

M3 ≤ max
l≤n≤m

‖Q‖n ·
∑

m1+m2+m3=m and m3≥l

(
m

m1, m2, m3

)
‖�m1 (T)‖‖Q‖m2

≤ max
l≤n≤m

‖Q‖n ·
∑

m1+m2+m3=m and m3≥l

(
m

m1, m2, m3

)
(2‖T‖)m1‖Q‖m2

≤ max
l≤n≤m

‖Q‖n · (2‖T‖ + ‖Q‖ + 1)m

= max
l≤n≤m

‖Q‖n ·
(

K2

2

)m

.

Hence, (5) implies that

‖�m(T + Q)‖ ≤
(

K1

2

)m

max
l≤n≤m

‖�n(T)‖ + 2
(

K2

2

)m

max
l≤n≤m

‖Q‖n

≤ Km(
max
l≤n≤m

‖�n(T)‖ + max
l≤n≤m

‖Q‖n),
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where K = max{K1, K2} with K1 = 2(2‖Q‖ + 1) and K2 = 2(2‖T‖ + ‖Q∗‖ + 1). So
this completes the proof of the claim.

If TnTk = TkTn for all positive integers k, n, then TTn = TnT for all n ≥ 1. Given
0 < ε < 1, there exists n0 such that ‖T − Tn0‖ ≤ ε and ‖�n(Tn0 )‖ ≤ εn for all n ≥ n0.
By the above claim, for m ≥ 3n0 and l = [ m

3 ] ≥ n0, we get that

‖�m(T)‖ 1
m = ‖�m(Tn0 + T − Tn0 )‖ 1

m

≤ K
(

max
l≤n≤m

‖�n(Tn0 )‖ + max
l≤n≤m

‖T − Tn0‖n) 1
m

≤ 2
1
m Kε

l
m (= 2

1
m Kε

1
m [ m

3 ]).

Since ε is arbitrary, lim supm→∞ ‖�m(T)‖ 1
m = 0. Hence, T is ∞-complex symmetric

with conjugation C. �

PROPOSITION 3.5. Let R and T be in L(H) and let C be a conjugation on H. Assume
that T is a complex symmetric operator with conjugation C and RT = TR. Then, the
following statements hold:

(i) RT is an m-complex symmetric operator with conjugation C if and only if R is
an m-complex symmetric operator on ran(Tm).

(ii) If R is an ∞-complex symmetric operator with conjugation C, then RT is an
∞-complex symmetric operator with conjugation C.

Proof. (i) Since T∗ = CTC and RT = TR, it follows that

�m(RT) =
m∑

j=0

(−1)m−j
(

m
j

)
(RT)∗jC(RT)m−jC

=
m∑

j=0

(−1)m−j
(

m
j

)
R∗jT∗jCTm−jRm−jC

=
m∑

j=0

(−1)m−j
(

m
j

)
R∗jT∗jCTm−jCCRm−jC

= T∗m

⎡
⎣ m∑

j=0

(−1)m−j
(

m
j

)
R∗m−jCRm−jC

⎤
⎦ = T∗m

�m(R). (7)

If RT is an m-complex symmetric operator with conjugation C, then from (7),
we have 〈T∗m�m(R)Tmx, x〉 = 0 and therefore 〈�m(R)Tmx, Tmx〉 = 0 for all
x ∈ H. Hence, R is an m-complex symmetric operator on ran(Tm). If R is an
m-complex symmetric operator, then from (7), we have �m(RT) = 0 and hence
RT is an m-complex symmetric operator.

(ii) If R is an ∞-complex symmetric operator with conjugation C, then we obtain
from (7) that

‖�m(RT)‖ 1
m = ‖T∗m

�m(R)‖ 1
m ≤ ‖T∗‖‖�m(R)‖ 1

m .

Therefore, we have lim supm→∞ ‖�m(RT)‖ 1
m = 0. Hence, RT is an ∞-complex

symmetric operator. �

https://doi.org/10.1017/S0017089516000550 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000550


ON ∞-COMPLEX SYMMETRIC OPERATORS 43

THEOREM 3.6. Let R and T be in L(H) and let C be a conjugation on H. If TS = ST
and S∗(CTC) = (CTC)S∗ for a conjugation C, then

�m(T + S) =
m∑

j=0

(
m
j

)
�j(T) · �m−j(S), (8)

where �0(T) = �0(S) = I. In particular, if T and S are m-complex symmetric and n-
complex symmetric, respectively, then T + S is (m + n − 1)-complex symmetric.

Proof. We will prove (8) by induction. If m = 1, then it is clear. So we consider
m = 2. Since TS = ST and S∗(CTC) = (CTC)S∗, it follows from (2) that

�2(T + S) = (T∗ + S∗)�1(T + S) − �1(T + S)[C(T + S)C]
= (T∗ + S∗)(�1(T) + �1(S)) − [�1(T) + �1(S)][CTC + CSC]
= �2(T) + T∗�1(S) − �1(S)CTC + S∗�1(T) − �1(T)CSC + �2(S)
= �2(T) + 2�1(T)�1(S) + �2(S)

=
2∑

j=0

(
m
j

)
�j(T) · �2−j(S),

where �0(T) = �0(S) = I. Therefore, (8) is true for m = 2. We assume that (8) holds
for m > 2. Since

R∗�m(R) − �m(R) CRC = �m+1(R)

for arbitrary R ∈ L(H), it follows that

�m+1(T + S) = (T∗ + S∗)�m(T + S) − �m(T + S) C(T + S)C

= (T∗ + S∗)
m∑

j=0

(
m
j

)
�j(T)�m−j(S)

−
m∑

j=0

(
m
j

)
�j(T)�m−j(S) C(T + S)C

= T∗
m∑

j=0

(
m
j

)
�j(T)�m−j(S) +

m∑
j=0

(
m
j

)
�j(T)S∗�m−j(S)

−
m∑

j=0

(
m
j

)
�j(T)CTC�m−j(S) −

m∑
j=0

(
m
j

)
�j(T)�m−j(S) CSC

=
m∑

j=0

(
m
j

)
[T∗�j(T) − �j(T)CTC]�m−j(S)

+
m∑

j=0

(
m
j

)
�j(T)[S∗�m−j(S) − �m−j(S) CSC]

=
m∑

j=0

(
m
j

)
�j+1(T)�m−j(S) +

m∑
j=0

(
m
j

)
�j(T)�m+1−j(S)

=
m+1∑
j=0

(
m + 1

j

)
�j(T)�m+1−j(S),
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where �0(T) = �0(S) = I. Therefore, it holds for every m ∈ �. Using (8), we get the
last statement. So this completes the proof. �

We next consider the decomposability of an ∞-complex symmetric operator. Put
F∗ := {z̄ : z ∈ F} for any set F in �.

THEOREM 3.7. Let T ∈ L(H) be an ∞-complex symmetric operator with conjugation
C. Then, the following statements hold:

(i) XCTC(F) ⊂ XT∗ (F) for every closed set F in �.
(ii) T has the decomposition property (δ) if and only if T is decomposable.

Proof. (i) Let F be a closed set in � and let x ∈ XCTC(F). Then, there exists
an analytic function f : � \ F → H that satisfies (CTC − λ)f (λ) = x for all
λ ∈ � \ F.

CLAIM. The infinite series

g(λ) :=
∞∑

n=0

(−1)n�n(T)
f (n)(λ)

n!

is uniformly convergence on all compact subset of � \ F and �0(T) = I .

Choose any μ ∈ � \ F. Set E = {z ∈ � : |z − μ| < δ} where δ is the distance
from μ to F . Choose a t ∈ � with t < δ such that the disc D = {z ∈ � : |z − μ| ≤
t} is contained in � \ F. Since f is continuous on the compact set D, it follows
that K = sup{‖f (ξ )‖ : ξ ∈ D} is finite. For each λ ∈ D0 � D, where D0 = {z ∈
� : |z − μ| ≤ s} with s < t and n ∈ �, Cauchy’s integral formula yields that

‖ f (n)(λ)
n!

‖ = ‖ 1
2π i

∫
∂D

f (ξ )dξ

(ξ − λ)n
‖ ≤ 1

2π

∫
∂D

‖f (ξ )‖|dξ |
(|ξ − μ| − |μ − λ|)n

≤ Kt
(t − s)n+1

.

Since T is an ∞-complex symmetric operator, it follows that

lim sup
m→∞

sup
λ∈D0

‖�m(T)
f (m)(λ)

m!
‖ 1

m ≤ lim sup
m→∞

sup
λ∈D0

‖�m(T)‖ 1
m [

Kt
(t − s)m+1

]
1
m = 0.

Therefore, the series in claim converges uniformly on D0 by the root test. Since
all compact subset of � \ F can be covered by a finite number of such D0, it
follows that g(λ) converges uniformly on compact subset of � \ F .
By Claim, g : � \ F → H is an analytic function in � \ F . Moreover, since
(CTC − λ)f (λ) = x, by induction, we have

(CTC − λ)f (n)(λ) = nf (n−1)(λ) (9)

for every positive integer n. Since

(T∗ − λ)�m(T) = �m+1(T) + �m(T)(CTC − λ),

it follows from (9) that

(T∗ − λ)g(λ) =
∞∑

m=0

(−1)m(T∗ − λ)�m(T)
f (m)(λ)

m!
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=
∞∑

m=0

(−1)m[�m+1(T) + �m(T)(CTC − λ)]
f (m)(λ)

m!

=
∞∑

m=0

(−1)m�m+1(T)
f (m)(λ)

m!

+(−1)0�0(T)(CTC − λ)
f (0)(λ)

0!

+
∞∑

m=1

(−1)m�m(T)(CTC − λ)
f (m)(λ)

m!

=
∞∑

m=0

(−1)m�m+1(T)
f (m)(λ)

m!
+ (CTC − λ)f (λ)

+
∞∑

m=1

(−1)m�m(T)
f (m−1)(λ)
(m − 1)!

= x.

Hence, (T∗ − λ)g(λ) = x on � \ F and therefore XCTC(F) ⊂ XT∗(F).
(ii) Since T is decomposable if and only if T and T∗ has the decomposition

property (δ) by [12, Theorems 1.2.29 and 2.5.5], it suffices to show that if T has
the decomposition property (δ), then T∗ has the decomposition property (δ).
Let {U, V} be an arbitrary open cover of � and F ⊆ U and G ⊆ V be selected
closed sets whose interiors still cover �. Then, F ∩ σ (T∗) and G ∩ σ (T∗) are
compact such that F ∩ σ (T∗) ⊆ U and G ∩ σ (T∗) ⊆ V .

CLAIM. For a closed set F in �, CXT (F) = XCTC(F∗) holds.

Let F be a closed set in � and let x ∈ XCTC(F). Then, there exists an analytic
function f : � \ F → H that satisfies (CTC − λ)f (λ) = x for all λ ∈ � \ F. This
yields that (T − λ)Cf (λ) = Cx and so (T − λ)Cf (λ) = Cx for every λ ∈ � \ F∗.
Since Cf (λ) is an analytic in � \ F∗, it follows that Cx ∈ XT (F∗) and therefore
x ∈ CXT (F∗). Thus, XCTC(F) ⊆ CXT (F∗). The converse inclusion holds by a
similar method.
Moreover, since T has the decomposition property (δ), it follows that {U, V} is
an open cover of � such that H = XT (U) + XT (V ). From the above claim, we
get that

H = CH = CXT (U) + CXT (V ) = XCTC(U∗) + XCTC(V∗).

Hence, CTC also has the decomposition property (δ). Thus by (i), we get that

H = XCTC(F) + XCTC(G) ⊆ XT∗ (F) + XT∗(G)
⊆ XT∗ (F ∩ σ (T∗)) + XT∗(G ∩ σ (T∗)) ⊆ XT∗ (U) + XT∗(V ).

Thus, XT∗(U) + XT∗ (V ) = H. Hence, T∗ has the decomposition property (δ).
So this completes the proof. �

Let us recall that an operator X ∈ L(H) is called a quasiaffinity if it has trivial
kernel and dense range. An operator S ∈ L(H) is said to be a quasiaffine transform
of an operator T ∈ L(H) if there is a quasiaffinity X ∈ L(H) such that XS = TX .
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Furthermore, two operators S and T are quasisimilar if there are quasiaffinities X and
Y such that XS = TX and SY = YT . A closed subspace M is hyperinvariant for T if
it is invariant for every operator in {T}′ = {S ∈ L(H) : TS = ST} of T . Next, we give
various useful results from Theorem 3.7 and [12].

COROLLARY 3.8. Let T ∈ L(H) be an ∞-complex symmetric operator. If T has the
decomposition property (δ), then the following statements hold:

(i) If F ⊂ � is closed, then the operator S =: T/HT (F), induced by T, on the quotient
space H/HT (F) satisfies σ (S) ⊂ σ (T) \ F.

(ii) If M is a spectral maximal space of T, then M = HT (σ (T |M)).
(iii) f (T) is decomposable where f is any analytic function on some open neighbourhood

of σ (T).
(iv) If T has real spectrum on H, then exp(iT) is decomposable.
(v) If σ (T) is not singleton and S ∈ L(H) is quasisimilar to T, then S has a non-trivial

hyperinvariant subspace.
(vi) σ (T) = σap(T) = σsu(T) = ∪{σT (x) : x ∈ H}.

4. Tensor products of ∞-complex symmetric operators. Let H1 ⊗ H2 denote the
completion (endowed with a sensible uniform cross-norm) of the algebraic tensor
product H1 ⊗ H2 of H1 and H2 where H1 and H2 are separable complex Hilbert
spaces. For operators T ∈ L(H1) and S ∈ L(H2), we define the tensor product operator
T ⊗ S on L(H1 ⊗ H2) by

(T ⊗ S)

⎛
⎝ n∑

j=1

αjxj ⊗ yj

⎞
⎠ =

n∑
j=1

αjTxj ⊗ Syj.

Then, it is well known that T ⊗ S ∈ L(H1 ⊗ H2). Since T ⊗ S = (T ⊗ I)(I ⊗ S) =
(I ⊗ S)(T ⊗ I) and T ⊗ I = ⊕∞

n T , it is clear that an operator T is an m-complex
symmetric operator with conjugation C if and only if T ⊗ I and I ⊗ T are m-complex
symmetric operators with conjugation C. We replace the notation �m(T ; C) with
�m(T) as follows if necessary:

�m(T ; C) =
m∑

j=0

(−1)m−j
(

m
j

)
T∗jCTm−jC.

Similarly, for conjugations C and D on H, we define C ⊗ D on H ⊗ H by

(C ⊗ D)

⎛
⎝ n∑

j=1

αjxj ⊗ yj

⎞
⎠ =

n∑
j=1

αjCxj ⊗ Dyj.

Then, C ⊗ D is a conjugation on H ⊗ H (see Lemma 4.6 or [6, Lemma 6]). In this
section, we prove the following results.

THEOREM 4.1. Let T and S be an m-complex symmetric operator and n-complex
symmetric operator with conjugations C and D, respectively. Then, T ⊗ S is an (m + n −
1)-complex symmetric operator with conjugation C ⊗ D.

https://doi.org/10.1017/S0017089516000550 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000550


ON ∞-COMPLEX SYMMETRIC OPERATORS 47

THEOREM 4.2. Let T and S be ∞-complex symmetric operators with conjugations C
and D, respectively. Then, T ⊗ S is an ∞-complex symmetric operator with conjugation
C ⊗ D.

COROLLARY 4.3. Let T and S be ∞-complex symmetric operators with conjugations
C and D, respectively. Then, (T ⊗ S)∗ has the property (β) if and only if T ⊗ S is
decomposable.

Proof. The proof follows from Theorem 4.2 and [12]. �
Recall that an operator T ∈ L(H) is called a 2-normal operator if T is unitarily

equivalent to an operator matrix of the form
(

N1 N2

N3 N4

)
∈ L(H ⊕ H) where Ni are

mutually commuting normal operators for i = 1, 2, 3, 4.

COROLLARY 4.4. If T is an m-complex symmetric operator with a conjugation C and
S is a 2-normal operator, then T ⊗ U∗NU is an m-complex symmetric operator where

S = U∗NU with N =
(

N1 N2

N3 N4

)
and a unitary U.

Proof. If S is a 2-normal operator, then there exists a unitary operator U such that

S = U∗NU where N =
(

N1 N2

N3 N4

)
. Thus, S is a complex symmetric operator from [8,

Theorem 1]. Hence, T ⊗ U∗NU is an m-complex symmetric operator from Theorem
4.1. �

EXAMPLE 4.5. Let C be a conjugation given by C(z1, z2, z3) = (z1, z2, z3) on �3.

Assume that N is normal and T =
⎛
⎝0 1 0

0 0 2
0 0 0

⎞
⎠ on �3. Then, T is a 5-complex symmetric

operator with conjugation C from [2, Example 3.2]. Hence, T ⊗ N =
⎛
⎝0 N 0

0 0 2N
0 0 0

⎞
⎠ is

5-complex symmetric from Theorem 4.1.

Before the proof of Theorems 4.1 and 4.2, we first recapture the following lemma
from [1].

LEMMA 4.6 [1]. If C and D be conjugations on H, then C ⊗ D is a conjugation on
H ⊗ H.

Assume that operators T, S ∈ L(H) satisfy TS = ST and S∗(CTC) = (CTC)S∗.
Since S∗j(CTkC) = (CTkC)S∗j holds for all j, k ∈ � and

(ab − cd)m = [(a − c)b + c(b − d)]m =
m∑

j=0

(
m
j

)
(a − c)m−jbm−jcj(b − d)j,

it follows that

�m(TS) =
m∑

j=0

(−1)m−j
(

m
j

)
(TS)∗jC(TS)m−jC

= [(T∗ − CTC)S∗ + CTC(S∗ − CSC)]m
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=
m∑

j=0

(
m
j

)
(T∗ − CTC)m−jS∗m−jCTjC(S∗ − CSC)j

=
m∑

j=0

(
m
j

)
�m−j(T)S∗m−jCTjC�j(S), (10)

where �m(T) = (T∗ − CTC)m.
From (10), we have the following result.

LEMMA 4.7. Let T and S be m-complex symmetric and n-complex symmetric with
conjugation C, respectively. If T commutes with S and S∗(CTC) = (CTC)S∗, then TS
is (m + n − 1)-complex symmetric with conjugation C.

Proof. From (10), it holds

�m+n−1(TS) =
m+n−1∑

j=0

(
m + n − 1

j

)
�m+n−1−j(T) · S∗m+n−1−j · CTjC · �j(S).

(i) If 0 ≤ j ≤ n − 1, then m + n − 1 − j ≥ m and hence �m+n−1−j(T) = 0.
(ii) If n ≤ j, then �j(S) = 0.

Therefore, �m+n−1(TS) = 0. This completes the proof. �

Proof of Theorem 4.1. By Lemma 4.6, C ⊗ D is a conjugation on H ⊗ H. It is
clear that T ⊗ I and I ⊗ S are m-complex symmetric and n-complex symmetric with
conjugation C ⊗ D, respectively. Since operators T ⊗ I and I ⊗ S satisfy

(T ⊗ I)(I ⊗ S) = (I ⊗ S)(T ⊗ I) and

(I ⊗ S)∗
(
(C ⊗ D)(T ⊗ I)(C ⊗ D)

) = (
(C ⊗ D)(T ⊗ I)(C ⊗ D)

)
(I ⊗ S)∗,

it follows from Lemma 4.7 that (T ⊗ I)(I ⊗ S) = T ⊗ S is (m + n − 1)-complex
symmetric with conjugation C ⊗ D. This completes the proof. �

LEMMA 4.8. Let T and S be ∞-complex symmetric operators with conjugation
C. Assume that TS = ST and S∗(CTC) = (CTC)S∗. Then, TS is an ∞-complex
symmetric operator with conjugation C.

Proof. Suppose that T and S are ∞-complex symmetric operators. Then, for a
given 0 < ε < 1, there exist N1 and N2 such that ‖�n1 (T)‖ ≤ εn and ‖�n2 (S)‖ ≤ εn for
n1 ≥ N1 and n2 ≥ N2. Put N = max{N1, N2}. Then, it suffices to show that there is a
constant K > 0 such that for m ≥ 2N,

‖�m(TS)‖ ≤ Kmε
m
2 .

Put l = [ m
2 ] denote the integer part of m

2 . Then by Equation (10), we have
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�m(TS; C) =
l∑

j=0

(
m
j

)
�m−j(T ; C)S∗m−jCTjC�j(S; C)

+
m∑

j=l+1

(
m
j

)
�m−j(T ; C)S∗m−jCTjC�j(S; C). (11)

For j ≤ l = [ m
2 ], m − j ≥ [ m

2 ] = l ≥ N, ‖�m−j(T)‖ ≤ εm−j ≤ εl holds. Since ‖C‖ = 1,
‖�j(S)‖ ≤ 2j‖S‖j for all j ≥ 1. Thus by (11), we obtain

‖
l∑

j=0

(
m
j

)
�m−j(T ; C)S∗m−jCTjC�j(S; C)‖

≤
l∑

j=0

(
m
j

)
‖�m−j(T ; C)‖‖S∗m−j‖‖CTjC‖‖�j(S; C)‖

≤
l∑

j=0

(
m
j

)
εm−j‖S‖m−j‖Tj‖(2j‖S‖j)

≤ εl‖S‖m
m∑

j=0

(
m
j

)
‖T‖j2j = εl‖S‖m(1 + 2‖T‖)m. (12)

Similarly, for j ≥ l + 1 ≥ N, ‖�j(S)‖ ≤ εl, we get

‖
m∑

j=l+1

(
m
j

)
�m−j(T ; C)S∗m−jCTjC�j(S; C)‖ ≤ εl‖T‖m(1 + 2‖S‖)m. (13)

From (12) and (13), we know that for n ≥ 2N

‖�m(TS; C)‖ ≤ ε[ m
2 ](‖S‖m(1 + 2‖T‖)m + ‖T‖m(1 + 2‖S‖)m)

.

Thus, lim supm→∞ ‖�m(TS; C)‖ 1
m = 0. Hence, TS is an ∞-complex symmetric

operator with conjugation C. �
Proof of Theorem 4.2. It is clear that T ⊗ I and I ⊗ S are ∞-complex symmetric

operators on H ⊗ H, respectively. Since C ⊗ D is a conjugation on H ⊗ H by Lemma
4.6 and (T ⊗ I, I ⊗ S) is a commuting pair and satisfies

(I ⊗ S)∗
(
(C ⊗ D)(T ⊗ I)(C ⊗ D)

) = (
(C ⊗ D)(T ⊗ I)(C ⊗ D)

)
(I ⊗ S)∗,

it follows from Lemma 4.8 that (T ⊗ I)(I ⊗ S) = T ⊗ S is an ∞-complex symmetric
operator with conjugation C ⊗ D. �
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2. M. Chō, E. Ko and J. Lee, On m-complex symmetric operators, Mediterranean J. Math.

13 (2016) 2025–2038.
3. I. Colojoara and C. Foias, Theory of generalized spectral operators (Gordon and Breach,

New York, 1968).
4. B. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437 (2012), 307–318.
5. S. R. Garcia, Aluthge transforms of complex symmetric operators and applications,

Int. Eq. Op. Th. 60 (2008), 357–367.
6. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans.

Amer. Math. Soc. 358 (2006), 1285–1315.
7. S. R. Garcia and M. Putinar, Complex symmetric operators and applications II, Trans.

Amer. Math. Soc. 359 (2007), 3913–3931.
8. S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators,

Trans. Amer. Math. Soc. 362 (2010), 6065–6077.
9. J. W. Helton, Operators with a representation as multiplication by x on a Sobolev space,

in Hilbert Space Operators, Colloquia Math. Soc. (Janos B., Editor) vol. 5 (Tihany, Hungary,
1970), 279–287.

10. S. Jung, E. Ko, M. Lee and J. Lee, On local spectral properties of complex symmetric
operators, J. Math. Anal. Appl. 379 (2011), 325–333.

11. S. Jung, E. Ko and J. Lee, On complex symmetric operator matrices, J. Math. Anal.
Appl. 406 (2013), 373–385.

12. K. Laursen and M. Neumann, An introduction to local spectral theory (Clarendon Press,
Oxford, 2000).

https://doi.org/10.1017/S0017089516000550 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000550

