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Abstract

Functional-language compilers often perform optimizations based on beta and delta reduction.

To avoid speculative optimizations that can blow up the code size, we might wish to use

only shrinking reduction rules guaranteed to make the program smaller: these include dead-

variable elimination, constant folding, and a restricted beta rule that inlines only functions

that are called just once. The restricted beta rule leads to a shrinking rewrite system that

has not previously been studied. We show some efficient normalization algorithms that are

immediately useful in optimizing compilers; and we give a confluence proof for our system,

showing that the choice of normalization algorithm does not affect final code quality.

Capsule Review

When the λ-calculus is used as an intermediate language for compilation, compile-time

simplification of lambda terms is usually necessary in order to obtain compact and efficient

object code. Unfortunately, different simplifications can interact, making it difficult to know

in which order simplifications should be made. Also, unless done with care, simplifications

may take a long time to perform. This paper addresses both problems. It provides a useful

set of simple reductions that are Church–Rosser, and several algorithms for simplifying terms

efficiently. Most of the results of this paper are immediately useful; no-one should implement

a lambda simplifier without first reading this paper.

1 Introduction

The lambda calculus is a language of functions, so one of the most useful opti-

mizations we can perform in a lambda-calculus-based language is function inlining.

Inlining a function eliminates the expense of a procedure call, and instantiating

the function arguments may enable other optimizations. But indiscriminate inlining

leads to the evaluation of the entire program at compile time, which can lead to

code blowup or nonterminating compilation.

A simple solution to this problem is to inline only those functions that are used

exactly once and whose actual parameters are just atoms (variables or literals).

After the function has been inlined, its definition can be deleted, resulting in a
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516 A. W. Appel and T. Jim

smaller program. It makes sense to perform this optimization in concert with other

optimizations that are guaranteed to make the code smaller, such as dead-variable

elimination and δ-reduction (the evaluation of side-effect-free primitive operators

whose arguments are constants).

All of these optimizations either depend critically on the usage counts of variables,

or change the usage counts of variables, or both. Thus there is a challenge in applying

them simultaneously and efficiently. We have previously described (Appel and Jim,

1989; Appel, 1992) the Contract phase of the Standard ML of New Jersey compiler,

which implements these optimizations by a naive algorithm. The naive Contract is

effective: it improves the speed of the generated code by a factor of 2.5 (Appel, 1992,

p. 183). However, it is also expensive in terms of compile time.

In this paper, we describe simple and practical improvements to the Contract

algorithm that allow it to accomplish the same result in less time. Because our new

algorithms do their optimizing rewrites in a different order than the old algorithm,

we have also found it reassuring to prove that our rewrite system is confluent – thus,

all the algorithms produce the same output.

2 Syntax

The intermediate code of our compiler is a lambda calculus based on continuation-

passing style (CPS). A representative subset of the language is defined by the

following grammar:

M ::= let f(x1, . . . , xn) = M in N recursive function definition

| f(a1, . . . , an) function application

| let r = 〈a1, . . . , an〉 in M record creation

| let x = #i(a) in M record field selection

Here M and N range over terms, f, x, and r range over variables, and a ranges over

atoms. The only primitive operators we treat here are record creation and selection,

and the only atoms here are variables.

Of course, the calculus used by the compiler has more kinds of atoms (such as

integer constants), and many more primitive operators. But the δ-rules for primitives

such as arithmetic, branching, and constructor discrimination can be implemented

in much the same way as the record primitives we discuss here. And all side

effects and ‘observation’ of side effects are restricted to particular primitives (they

are syntactically evident), so side effects do not complicate optimizations such as

dead-variable elimination. Thus our selection of primitives, while limited, suffices to

illustrate the complexities of shrinking optimizations.

The syntax of our CPS language enforces an important property: every inter-

mediate value computed by a program is named in the program. In particular, the

allowable arguments of functions and primitives are severely restricted. For example,

f(λxM) is not a CPS term; anonymous (nameless) functions are prohibited, because

they compute a value (a closure). And f(g(x)) is not a CPS term, because the

value computed by g(x) is not named. The way to write such programs in our CPS

language is to first name the complex argument (λxM or g(x)), then pass the name
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as the argument. Besides names, the only other permissible arguments are literals –

in other words, all arguments are atoms.

Atomic arguments simplify the task of deciding when to inline. For example,

inlining a function application f(M) in a less restricted language may not be sound,

because M may have side effects or be nonterminating; but it is always semantics-

preserving to inline a function with atomic arguments. And it is easy to calculate

the size of inlined function bodies: substituting atoms for formal parameters does

not change the size of a term.

Indeed there are several intermediate codes now in use that require function

arguments to be atoms: our own CPS (Appel and Jim, 1989) (but not the CPS of

Steele (1978) or Kranz (1987)); the Bform of Tarditi (1997) (but not the A-normal

form of Flanagan et al. (1993)); and the ‘core language’ used by Peyton Jones (1992).

The continuation-passing of our CPS language is not relevant to the shrinking

reductions we describe in this paper. For example, Tarditi defines similar reductions

in his Bform intermediate language, which is a direct-style calculus. But β-reduction

is easier to express in CPS than in Bform, and we have implemented our algorithms

in SML/NJ, which uses CPS. So CPS permits both a simpler exposition and real-

world performance evaluation.

3 Rewriting rules

A substitution is a finite mapping from variables to atoms (but not to terms in

general). A substitution may be written as {x1 7→ a1, . . . , xn 7→ an} where the xi are

distinct; we use σ to range over substitutions. The application of a substitution to

a term is defined as usual (avoiding the capture of free variables), and is written

postfix (Mσ or M{x1 7→ a1, . . . , xn 7→ an}). Note that if M is a term and σ is a

substitution, then Mσ is a term of the same size as M.

A context C[·] is a ‘term with a hole’; C[M] indicates the term obtained by filling

the hole of C[·] with the term M, possibly capturing free variables of M.

The dead-variable-elimination rules delete definitions that are not used:

(let z(x1, . . . , xn) = N in M) → M

(let z = 〈a1, . . . , an〉 in M) → M

(let z = #i(a) in M) → M

where z is not free in M or N

The record selection rule is a kind of constant-folding on field-selection expres-

sions: (
let r = 〈a1, . . . , an〉
in C[ let x = #i(r) in M ]

)
→
(

let r = 〈a1, . . . , an〉
in C[ M{x 7→ ai} ]

)
For soundness, we must ensure that if the atom ai is a variable, then it is not

captured by a binding in the context C[·]; and that C[·] does not rebind r. This is

accomplished by requiring that all bound variables be distinct from each other and

from free variables. As an added benefit, this also simplifies the implementation of

substitution in our compiler.
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The inlining rule replaces a function call with the body of the function:(
let f(x1, . . . , xn) = M

in C[ f(a1, . . . , an) ]

)
→
(

let f(x1, . . . , xn) = M

in C[ M ′{x1 7→ a1, . . . , xn 7→ an} ]

)
where M ′ is obtained from M by renaming all bound variables to ‘fresh’ variables.

Renaming is necessary to preserve distinct bindings.

These rules are the CPS equivalent of the β- and δ-rules of the lambda calculus. In

principle, we could use them to do ‘computation’ on CPS, though it is more common

to use CPS as an intermediate representation for optimization before translation to

machine language.

The demands of optimization are different from those of computation. In par-

ticular, we demand that optimization terminate. A simple way of guaranteeing

termination is to use only shrinking reductions, those that make the term smaller.

Clearly the dead-variable rules and the record-selection rule are shrinking reductions.

But the inlining rule is not a shrinking reduction.

We are not willing to abandon inlining, because it is such a useful optimization.

Therefore we adopt the following shrinking inlining rule for functions called exactly

once: (
let f(x1, . . . , xn) = M

in C[ f(a1, . . . , an) ]

)
→ C[ M{x1 7→ a1, . . . , xn 7→ an} ],

where f does not appear in C[·], M, or in {a1, . . . , an}. Shrinking inlining combines

inlining with dead-variable elimination – once the function is inlined into its single

call site, it becomes dead and its definition can be deleted. Notice that in contrast

to the general inlining rule, renaming is not required, because no duplication of the

bindings in M has occurred.

We can simplify our implementation of shrinking inlining by requiring that any

function called exactly once have its definition deleted. We do this by adding the

following recursive-dead-function rule:(
let f(x1, . . . , xn) = C[ f(a1, . . . , an) ]

in M

)
→M

where f does not appear in C[·], M, or in {a1, . . . , an}. Although we could have

written a more general recursive-dead-function rule (permitting f to be free in C[·]
or ai), these cases don’t come up much and we prefer to keep our algorithms simple.

We write M → N if N is obtained from M by transforming some subterm by one

of our shrinking reductions: dead-variable elimination, including recursive-dead-

function elimination; record selection; and shrinking inlining. We write →∗ for the

reflexive and transitive closure of the relation →. A term M is in shrink-normal form

if there is no term N such that M → N.

Our shrinking reduction system is confluent, or Church–Rosser:

Theorem (Confluence)

If M0 →∗ M1 and M0 →∗ M2, there is some M3 such that M1 →∗ M3 and M2 →∗ M3.

Proof

See Appendix A.
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census (∆, let f(x1, . . . , xn) = M in N ) =

census(∆,M); census(∆, N)

census (∆, f(a1, . . . , an) ) =

Countapp[σ(f)]← Countapp[σ(f)] + ∆

Countesc[σ(ai)]← Countesc[σ(ai)] + ∆, 1 ≤ i ≤ n

census (∆, let r = 〈a1, . . . , an〉 in M ) =

Countesc[σ(ai)]← Countesc[σ(ai)] + ∆, 1 ≤ i ≤ n
census(∆,M)

census (∆, let x = #i(a) in M ) =

Countapp[σ(a)]← Countapp[σ(a)] + ∆

census(∆,M)

Fig. 1. Gathering usage counts; use ∆ = +1 to increment.

The important consequence of confluence is that every CPS program has a unique

shrink-normal form. So although the three Contract algorithms we describe in this

paper apply the shrinking reductions in very different orders, the final output will be

identical. Therefore in comparing the algorithms, we only have to compare running

times, and not the programs produced by the algorithms.

We have also proved confluence for shrinking reductions on ordinary lambda

calculus – where function arguments can be terms, not just atoms (Appel and Jim,

1994).

4 A naive Contract algorithm

The Contract phase of our compiler does just the shrinking reductions: dead-variable

elimination, record-field selection, and inlining of functions called only once. Because

we compile ML, our optimizer can assume that programs are well typed, so that

no program applies a function to the wrong number of arguments, or selects a

nonexistent field from a record.

Redexes of the shrinking inlining rule depend on a rather global property: to

determine whether an application f(a) should be inlined requires knowing whether

f has any other uses.

Thus, contraction is implemented in two passes. The census pass (figure 1) gathers

the usage count of each variable, and the contract pass (figure 2) performs the

reductions.

The census and contract passes use several global mapping tables:

Bind A table mapping function variables to (argument,body) pairs, and record

variables to tuples of atoms;

σ A substitution mapping variables to atoms;

Countapp A table mapping function variables to their number of occurrences in

function-call position, and record variables to their number of occurrences in

selected-from position.

Countesc A table mapping variables to their number of occurrences as record fields

or function arguments.
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contract ( let f(x1, . . . , xn) = M in N ) =

Bind[f]← ((x1, . . . , xn),M)

if Countapp[f] ≤ 1 and Countesc[f] = 0

then contract(N)

else let f(x1, . . . , xn) = contract(M) in contract(N)

contract ( f(a1, . . . , an) ) =

if Countapp[σ(f)] = 1 and Countesc[σ(f)] = 0

and Bind[σ(f)] = ((x1, . . . , xn),M)

then σ ← σ + {x1 7→ σ(a1), . . . , xn 7→ σ(an)}; contract(M)

else σ(f)(σ(a1), . . . , σ(an))

contract ( let r = 〈a1, . . . , an〉 in N ) =

Bind[r]← 〈a1, . . . , an〉
if Countesc[r] = 0

then contract(N)

else let r = 〈σ(a1), . . . , σ(an)〉 in contract(N)

contract ( let x = #i(a) in N ) =

if Countapp[x] + Countesc[x] = 0

then contract(N)

else if Bind[σ(a)] = 〈b1, . . . , bn〉
then σ ← σ + {x 7→ σ(bi)}; contract(N)

else let x = #i(σ(a)) in contract(N)

Fig. 2. Performing reductions (old algorithm).

The contraction of a redex often produces new redexes. For example, our record

selection rule removes a reference to a record, which may then become a candidate

for dead-variable elimination. This sort of dependency makes it difficult to perform

all contractions in one pass.

In fact, if we consider a ‘pass’ over an expression tree as ‘down to the leaves and

then back up to the root’, it is provably impossible to produce a shrink-normal form

in one down-and-up pass (Appel, 1992, pp. 78–80), or any constant number of such

passes (see section 6). At most we will need a linear number of passes, since each

pass removes at least one node from the expression tree.

We were led astray by this theorem. We reasoned that if a bounded number

of passes could not do the job, then several passes are necessary; and thus any

reasonable multi-pass algorithm would suffice. Therefore we used the following

strategy in our code optimizer:

repeat

Initialize σ, Bind, Countapp, and Countesc, to empty.

Gather usage counts (census).

Perform contractions based on usage counts (contract).

until no redexes left.

The Glasgow Haskell optimizer uses the same methodology, described by Santos

(1995) as ‘Analyse–Simplify–Iterate’.
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As contractions were done, we did not update the usage counts to reflect the

changed program. Since usage counts can increase (by shrinking inlining or record

selection) as well as decrease (by any shrinking rule), this might seem dangerous.

But the two rules that depend on usage counts are dead-variable elimination and

shrinking inlining. The usage count of a dead variable can never increase, so dead-

variable elimination is safe with non-updated usage counts; and if Countesc[f] = 0

then Countapp[f] can only decrease, so shrinking inlining is safe with nonupdated

usage counts.

The real problem is that the algorithm iterates too many times before reaching

shrink-normal form. In practice, the last several iterations of the algorithm contract

very few redexes, so we adjusted the algorithm to be

repeat

Initialize σ, Bind, Countapp, and Countesc, to empty.

Gather usage counts (census).

Perform contractions based on usage counts (contract).

until only a dozen contractions done in this round.

This loop was a major part of Standard ML of New Jersey’s optimizer, up to

SML/NJ version 0.96. But as we will show in this paper, keeping the usage counts

current is easy and practical, and greatly improves the speed of the compiler.

5 A better Contract

We have recently improved the Contract phase to be a quasi-one-pass algorithm.

We do this by recording the effect of each optimization on usage counts, and by

changing the order in which optimizations are applied. As a result we contract the

vast majority of redexes in one pass, resulting in a program with very few shrinking

redexes. Our New Contract algorithm uses ncontract (figure 3) in place of contract,

but with the same census function of figure 1.

The first improvement is to carefully maintain usage counts. For example,

• In dead-variable elimination: if let f(x) = M is deleted because f is a dead

variable, the usage counts of the free variables of M are decremented.

• In δ-reduction: when we replace

let r = 〈~a〉
in C[ let x = #i(r) in M ]

by let r = 〈~a〉 in C[ M{x 7→ ai} ], we decrement the count of r and adjust the

count of ai according to how many times x appears in M.

• In shrinking inlining: a definition let f(~x) = M is removed and an occurrence

f(~a) is replaced by M{~x 7→ ~a}; so the usage count of each ai is adjusted

according to how many times xi is used in M.

Previously, we had not adjusted usage counts while doing reductions. Typically,

Contract would overestimate usage counts, thereby doing fewer inlinings and dead-

variable eliminations than it otherwise could have.
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The second improvement concerns the order in which we perform dead-variable

elimination. The ‘old’ Contract, encountering an expression such as

let r = 〈a1, . . . , an〉 in M

during its recursive descent, checks whether r is dead before processing M. We can

achieve better results by performing dead-variable elimination both before and after

processing M.

• We remove a dead r before processing M because it decrements the usage

counts of the ai. This can enable other optimizations; for example, if an ai is

a function called only from M, its usage count decreases and we may be able

to inline the function.

• A reference to r may occur in M, but be removed during the processing of M.

Thus the earliest we can remove r is after processing M. Removing r may now

cause one of the ai to become dead, cascading this optimization on the way

up. It turns out to be quite common to have long chains of variables that can

be removed going up.

Our adjustment of usage counts forces us to handle recursive-dead-function and

shrinking-inlining redexes more carefully. Consider a definition let f(~x) = M in N

where Countapp[f] = 1 and Countesc[f] = 0. This is either a recursive-dead-function

or shrinking-inlining redex; it doesn’t matter to the old Contract, which simply

discards M and recurs on N. But the new Contract must distinguish the two cases:

if f is a dead function, the usage counts of variables in M must be decremented,

while if f is inlined, they should not be decremented.

The way we tell the difference is by recurring on N, and arranging for Bind[f] to

be set to a special token, inlined, if f is inlined. Upon return, Bind[f] is examined

and census(−1,M) called if it is not inlined. In either case, M is discarded as in the

old Contract.

Finally, consider let f(~x) = M in N where Countapp[f] > 1 or Countesc[f] > 0.

There is no recursive-dead-function or shrinking-inlining redex. But it could be that

during ncontract(N), the counts of f decrease because of other reductions. So when

ncontract(N) returns, we check for three cases:

• Bind[f] = inlined, meaning that during ncontract(N) the counts of f decreased

and then f(~a) was found and was replaced by M{xi 7→ ai}. We must now

remove f(~x) = M without adjusting the counts of variables in M.

• Bind[f] 6= inlined, but the counts of f are now zero. We can delete f(~x) = M

and perform census(−1,M).

• Bind[f] 6= inlined, and f still has occurrences. We now perform ncontract(M);

but any occurrence of f(~a) that we might find within M must not be inlined,

because it is a recursive call. To disable inlining of f we set Bind[f] ← ()

before calling ncontract(M).

Because ncontract adjusts usage counts and performs dead-variable elimination

both before and after each recursive call, for some inputs the number of passes
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ncontract ( let f(x1, . . . , xn) = M in N ) =

Bind[f]← ((x1, . . . , xn),M)

if Countapp[f] = 0 and Countesc[f] = 0

then census(−1,M); ncontract(N)

else if Countapp[f] = 1 and Countesc[f] = 0

then N ′ ← ncontract(N)

if Bind[f] 6= inlined then census(−1,M)

N ′

else N ′ ← ncontract(N)

if Bind[f] = inlined then N ′

else if Countapp[f] = 0 and Countesc[f] = 0

then census(−1,M); N ′

else Bind[f]← ()

let f(x1, . . . , xn) = ncontract(M) in N ′

ncontract ( f(a1, . . . , an) ) =

if Countapp[σ(f)] = 1 and Countesc[σ(f)] = 0

and Bind[σ(f)] = ((x1, . . . , xn),M)

then σ ← σ + {x1 7→ σ(a1), . . . , xn 7→ σ(an)}
Countapp[σ(ai)]← Countapp[σ(ai)] + Countapp[xi]− 1, 1 ≤ i ≤ n
Countapp[σ(f)]← 0

Bind[σ(f)]← inlined

ncontract(M)

else σ(f)(σ(a1), . . . , σ(an))

ncontract ( let r = 〈a1, . . . , an〉 in N ) =

Bind[r]← 〈a1, . . . , an〉
if Countapp[r] = 0 and Countesc[r] = 0

then Countesc[σ(ai)]← Countesc[σ(ai)]− 1, i ≤ 1 ≤ n
ncontract(N)

else N ′ ← ncontract(N)

if Countapp[r] = 0 and Countesc[r] = 0

then Countesc[ai]← Countesc[ai]− 1, i ≤ 1 ≤ n
N ′

else let r = 〈σ(a1), . . . , σ(an)〉 in N ′

ncontract ( let x = #i(a) in N ) =

if Countapp[x] = 0 and Countesc[x] = 0

then Countapp[σ(a)]← Countapp[σ(a)]− 1; ncontract(N)

else if Bind[σ(a)] = 〈b1, . . . , bn〉
then σ ← σ + {x 7→ σ(bi)}

Countapp[σ(bi)]← Countapp[σ(bi)] + Countapp[x]

Countesc[σ(bi)]← Countesc[σ(bi)] + Countesc[x]

Countapp[σ(a)]← Countapp[σ(a)]− 1

ncontract(N)

else N ′ ← ncontract(N)

if Countapp[x] + Countesc[x] = 0

then Countapp[σ(a)]← Countapp[σ(a)]− 1

N ′

else let x = #i(σ(a)) in N ′

Fig. 3. Performing reductions (new algorithm).
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Table 1. Compile-time improvement

Compile time Run time

Program Old % New % Ratio Old New

Barnes-Hut 57.9 26 54.9 21 0.95 30.57 29.31
Boyer 25.1 20 24.7 22 0.98 2.72 2.76
CML-sieve 37.6 42 33.1 30 0.88 34.58 32.91
Knuth-B. 23.7 47 19.1 33 0.81 7.56 7.30
Lex 41.8 44 35.9 34 0.86 10.45 10.48
Life 7.2 50 6.3 28 0.88 1.46 1.42
Mandelbrot 0.54 13 0.51 11 0.94 17.52 16.97
Yacc 157.3 36 132.8 23 0.84 4.39 4.27
Ray 17.3 36 15.5 16 0.89 23.53 22.75
Simple 82.2 57 63.6 40 0.77 15.53 16.26
VLIW 236.6 50 183.9 33 0.78 13.69 13.10
Average 0.87

Total compile time, percentage of compile time taken by optimization, and execution time
are shown for each benchmark under ‘old’ (multi-pass contract) and ‘new’ (one-pass contract)
compilers. The optimizations are Contract as well as eta-reduction and speculative inlining
(Appel, 1992, Ch. 6 & 7).

required by the new Contract to reach shrink-normal form is a factor of N better

than that of the old Contract, where N is the input size.

Figure 4 shows an example of how ncontract finds more redexes in one pass. In

a compilation of the SML-Lex lexical analyser generator, the old Contract (solid

circles) reduces 1839 redexes in the first pass, 722 redexes in the second pass, 85 in

the third, and so on. The new Contract (white circles) reduces 2621 in the first pass,

so that only 43 are left for all remaining passes. Although we have not reduced all

the redexes in just one pass, there are so few remaining that a second pass is not

justified by the expected return.

Table 1 shows that using the new Contract, all of the benchmark programs (from

the benchmark set used by Shao and Appel (1994)) are compiled faster, by an

average of 13%.
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The quality of the code generated by the new Contract seems to be just as good

as that of the code generated by the old Contract: execution time decreases by

1.8%± 2.8% – the average decrease in execution time is less than the variance. This

is as expected: the new algorithm typically contracts as many redexes in its one

round as the old algorithm contracts in three.

Why is there any change in execution time at all? Neither algorithm reduces

programs completely to shrink-normal form (because the required extra rounds of

Contract would be too expensive (Appel, 1992, p. 192)); each leaves a (slightly

different) set of residuals.

6 Asymptotic complexity of Contract

Both the old and the new Contract algorithms reduce expressions to shrink-normal

form in worst case time complexity Θ(N2).

The upper bound is easily established by considering separately the cost of finding

redexes and the cost of performing contractions. We find a redex by making a down-

and-up pass over the expression tree. Each pass takes time Θ(N) and finds at least

one redex (if shrink-normal form has not yet been reached). Contracting a redex

makes the graph smaller, so there are at most N contractions, and therefore at most

N passes. This gives an upper bound of O(N2) on the time spent finding redexes.

The cost of performing a contraction (substitution and updating usage counts) is at

worst O(N), and there are at most N contractions to perform, so the total cost of

performing contractions is O(N2). The cost of the algorithm as a whole is the sum

of these costs, or O(N2).

A simple example demonstrates the Ω(N2) behavior:

let f1(x1, y1, z1) = h(z1)

f2(x2, y2, z2) = h(z2)
...

fN(xN, yN, zN) = h(zN)

g1() = f2

g2() = f1(g1, f2, f3)

g3() = f2(g2, f3, f4)
...

gN() = fN−1(gN−1, fN, x)

in h(gN)

In the ith pass of the new Contract, the body of fi is inlined in the application

fi(gi, fi+1, fi+2) because the usage count of fi is 1. On the ith upward pass, function

gi is deleted because it is a dead variable, reducing the usage count of fi+1 to 1.

Thus N passes are required to reach shrink-normal form, each taking linear time,

giving Ω(N2) as the lower bound.

This pathological case cannot be typical, given the data in figure 4. A much more

typical case, on which the old Contract took N passes and the new Contract takes
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one pass, is:

let r1 = 〈x, x〉
r2 = 〈r1, x〉
...

rN = 〈rN−1, x〉
in h(x)

7 A linear-time Contract

We also have an algorithm that reduces expressions to shrink-normal form in linear

time, in the worst case. The idea is to represent a program as a doubly linked tree

of nodes, and maintain a doubly linked list of the occurrences of each variable. The

use of in-place updating allows us to contract redexes in any order, freeing us from

the restrictions of the down-and-up passes of Contract.

We have not implemented this algorithm. It spends all its time doing in-place up-

dates of doubly linked lists and of expression tree nodes. This style of programming,

while implementable straightforwardly in ML using ref variables, does not mesh

well with the rest of our compiler. There is a significant advantage, in ease of correct

implementation and readability, in a style of optimization that uses rewriting by

structural induction. The new Contract described in this paper is easily implemented

in such a style; the linear-time algorithm is not. But there are implementation styles

in which doubly linked lists are natural, and our algorithm establishes the exact

complexity of the problem.

Formally, programs are represented as expression trees. We use D,E, F, . . . to range

over expressions, which are the nodes of the trees. We use v, w, x, . . . to range over

binding occurrences of variables, and a, b, c, . . . to range over nonbinding occurrences

of variables. Binding occurrences of variables will be called simply variables, while

nonbinding occurrences will be called occurrences.

We navigate the expression tree via the following functions:

var maps each occurrence to its binding variable;

occ maps each variable to its set of occurrences (represented as a doubly linked

list);

def maps each variable to the expression that binds it; and

site maps each occurrence to the smallest expression containing the occurrence

(recall that an occurrence is not an expression).

rec indicates, for each occurrence c, whether it is a recursive occurrence. In the

term C[let f(x) = N in M], the occurrences of f within N are recursive and

the occurrences of f in M are not recursive.

For example, the program fragment

let v = 〈q, r〉
in let w = #1(v)

in w(v, r)
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is represented by the following expression tree fragment:

D = let v = 〈a, b〉 in E,

E = let w = #1(c) in F,

F = d(e, f),

where

var(a) = q,

var(b) = var(f) = r,

var(c) = var(e) = v,

var(d) = w,

occ(v) = {c, e},
occ(w) = {d},
def (v) = site(a) = site(b) = D,

def (w) = site(c) = E,

site(d) = site(e) = site(f) = F.

Our example program fragment contains a δ-redex that can be reduced by: (1)

deleting the definition of w; and (2) substituting q for w. The reduction can be

carried out in the expression tree by: (1) updating E to F in D; and (2) updating

the set of occurrences of q, by

occ(var(a)) := occ(var(a)) ∪ occ(w).

(Recall that q = var(a).)

This update can be performed in constant time, even if var(a) is not known. The

occurrence a is part of the doubly linked occurrence list of some unique variable, in

this case, q. We can splice the doubly linked list occ(w) next to a inside occ(q), all

without knowing q.

The reason we might not know var(a) is that it is too expensive, in general, to

update the var function to maintain the invariant g ∈ occ(x) iff var(g) = x, for any

occurrence g and variable x. In our update above, for example, it would require

visiting all the elements of occ(w); and we might have to perform var updates many

times for a single occurrence. We describe below how we obtain var when necessary

while staying within our linear time bound.

Figures 5 and 6 show the algorithm. The algorithm maintains a set of redexes,

each of which has one of the following forms:

inline (v) marks a function bound to v that can be inlined;

dead (v) marks a variable v that has no occurrences (and is therefore a dead

variable), or that has only a recursive occurrence (and is therefore a

recursive dead function); and

select (a) marks an occurrence a of a record which is being selected.

The initial redex set is obtained by the same census function used by all our

Contract algorithms, modified to mark recursive occurrences as rec. Redexes in

the set may be removed and reduced in any order, and reduction may add newly

discovered redexes to the set.
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delete(a) =

; remove a from occurrence list

occ(var(a)) := occ(var(a))− {a}
; check for new redexes

if | occ(var(a)) | ≤ 1

compute v = var(a)

if | occ(v) | = 0

add dead(v) to redex set

if occ(v) = {c},
and site(c) is c(~cj),

and def (v) is let v(~wi) = E in F

if rec(c)

add dead(v) to redex set

else add inline(v) to redex set

subst(w, a) =

; check for new record redexes

if rec(a) ; a is a recursive occurrence

for each b in occ(w)

rec(b) := true

if var(a) defined ; a is a record

for each b in occ(w)

var(b) := var(a) ; var update

if site(b) is let x = #i(b) in D

add select(b) to redex set

; perform substitution

occ(var(a)) := occ(var(a)) ∪ occ(w)

Fig. 5. Auxiliary functions for the linear-time algorithm.

while redex set is not empty

remove r from redex set

case r of

dead(v) :

if def (v) is D is let v(~wi) = E in F

splice F in place of D in expression tree

for each occurrence a in E

delete(a)

if def (v) is D is let v = 〈b1, . . . , bn〉 in E

splice E in place of D in expression tree

for 1 ≤ i ≤ n
delete(bi)

inline(v) :

def (v) is D is let v(w1, . . . , wk) = E in F

occ(v) is {a}
site(a) is G is a(b1, . . . , bk)

splice F in place of D in expression tree

splice E in place of G in expression tree

for 1 ≤ i ≤ k
subst(wi, bi)

delete(bi)

select(a) :

; a is a record, so var(a) is defined

var(a) is v

def (v) is let v = 〈b1, . . . , bn〉 in D

site(a) is E is let x = #i(a) in F

splice F in place of E in the expression tree

subst(x, bi)

delete(a)

Fig. 6. The linear-time Contract algorithm.
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Much of the work is done by the two auxiliary functions, delete and subst. Delete(a)

removes a from the occurrence list of var(a). This can be done in constant time,

just as for the update above. Deleting an occurrence can create new dead-variable

or function inlining redexes, so delete also checks for this. This involves testing the

cardinality of occurrence sets; but we only need to know whether the cardinality is

zero, one, or greater than one. This test can be done in constant time on doubly

linked lists. Delete also computes var(a), but only when the occurrence list has length

1 or less. If we give each occurrence list a “header” node that indicates the var value,

we can compute var from an occurrence just by searching down the list. When the

list is of length 1 this takes constant time. Thus delete as a whole is a constant time

operation.

Subst(w, a) substitutes var(a) for w by updating the occurrence list of var(a), as

described above. Subst can create new select redexes: var(a) may be bound to a

record, and some occurrence b of w may be selected from. When we later need to

reduce the redex select(b), we will have to compute var(b). In this case, b may be

only one of many occurrences of the record variable, so that we cannot use the

trick of searching down the occurrence list for the header node. Instead, we will

faithfully maintain var for every occurrence of a record. This means updating var

for an occurrence in subst when splicing it into the occurrence list of a record. Once

an occurrence is bound to a record, it can never be rebound; so a var update will

be performed at most once per occurrence. Thus the total cost of maintaining var

for records is at most O(N).

Similarly, we propagate the rec property as occurrences are substituted. Consider

a term C[ let v(x) = N in M ], where the occurrences of v within N are marked rec

and the occurrences within M are unmarked. When we perform a reduction within

N or M, this may create more occurrences of v; for example, N or M might be

C1[ let r = 〈cv〉 in C2[ let w = #1(r) in K ] ]

where cv is an occurrence of v, and K contains occurrences ei of w that now become

occurrences of v. If r = 〈cv〉 was within N, then cv would have been marked rec and

subst(w, cv) will mark all the ei rec; and if r = 〈cv〉 was within M, then cv would not

have been rec and the ei will stay non-rec. An occurrence acquires the rec property

at most once, so the total cost of rec propagation is linear.

We can now analyse the total running time of the algorithm. It is the sum of the

times needed to reduce each redex.

To reduce a redex dead(v), we must first remove its defining expression from the

expression tree, which takes constant time. We must also traverse the definition of v,

removing each occurrence in the definition from its occurrence list. Traversing a

dead definition takes time linear in the size of the definition. But we can delete any

given definition or occurrence only once; so over a complete run of the algorithm,

the total time spent reducing dead-variable redexes is O(N).

Reducing a redex inline(v) involves deleting a call expression a(b1, . . . , bk) from the

expression tree (constant time), and performing k substitutions and deletions. But

any call can be inlined at most once; so the total time spent on inlining is O(N),

plus the cost of the var updates performed by subst.
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The reduction of a redex select(a) involves one substitution and one deletion, and

at most O(N) select redexes can be reduced by the program. Thus the total time

spent on select redexes is O(N), plus the cost of the var updates performed by subst.

We have already seen that the total cost of var updates is O(N), and so the

algorithm runs in worst-case linear time. Since it is trivial to construct an example

with c ·N redexes, the time complexity is Θ(N).

8 Eta-reduction

In our intermediate language, eta-reduction is the ‘copy propagation’ of function

definitions. A definition of the form

let f(x1, . . . , xn) = g(x1, . . . , xn)

simply assigns a new name f to the function g; we can remove the definition of f, and

use g for f in the rest of the program – provided that g 6∈ {f, x1, . . . , xn}. The result

is a smaller program, and thus we consider eta-reduction a shrinking reduction. Eta

redexes can be introduced by the programmer, but are more commonly introduced

by code transformations performed by the compiler.

Contracting an eta redex can create further redexes:

let f(x) = let g(y) = h(y)

in g(x)

in . . .

Here we can reduce one eta redex, removing the definition of g and using h instead;

this produces a new redex, f(x) = h(x).

In contrast with the Contract phase, however, our Eta phase can produce an

eta-normal form in at most two passes. In the first pass, we maintain a renaming

map, and traverse the expression from root to leaves and back. When we reach a

function definition f(x1, . . . , xn) = M, we first reduce M, obtaining M ′. If M ′ is of

the form g(x1, . . . , xn), we have found an eta redex, so we remove the definition for

f and record that we should use g in place of f in the renaming map.

This strategy can fail to produce an eta-normal form in some cases involving

mutually recursive functions, for example:

let f(x1, . . . , xn) = M

and g(y1, . . . , yn) = f(y1, . . . , yn)

in N.

Here we first traverse M, obtaining M ′; then remove the definition of g; and finally

traverse N, renaming g to f. However, g may still appear in M ′; we may need to

traverse M ′, renaming g to f.

This seems to be a pathological special case, so our strategy is to defer the traversal

of any such M ′ to a second pass (this also avoids a possible quadratic blowup in

execution time). In compiling the 75,000-line SML/NJ compiler, the second pass of

Eta is never invoked.

Our original implementation combined the Eta and Contract phases. But our

current implementation keeps the phases separate, for two reasons.
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First, we alternate Contract with other optimization passes that do speculative

inlining and loop-invariant analysis; we iterate this alternation several times. But

none of these optimizations introduce new eta redexes; so it suffices to do Eta just

once, before the other optimizations.

Second, combining Eta and Contract results in a nonconfluent system. For exam-

ple, the program

let f(x) = M

in let h(y) = N

in let g(z) = f(z)

in h(g)

rewrites by inlining f to

let h(y) = N

in let g(z) = M{x 7→ z}
in h(g)

and by η-reducing g to

let f(x) = M

in let h(y) = N

in h(f).

No sequence of reductions can join the two.

The failure of confluence results in a system that is harder to analyze and debug;

indeed, our combined Contract-Eta was never free of bugs, and was discarded several

years ago.

9 Further work

It should be possible to formally relate each of our three algorithms to the rewriting

system, and therefore to prove the algorithms correct. This will probably be easier

for the linear time algorithm (which performs one reduction at a time) than for the

tree-walk algorithms (which perform reductions incrementally).

10 Conclusion

Our improvements to the Contract phase of Standard ML of New Jersey yield an

algorithm that reduces ‘almost all’ shrink redexes in linear time. Our improved Eta

phases reduces all eta redexes in linear time. The algorithms that they replace both

took worst-case quadratic time. The new algorithms allow us to greatly reduce the

number of Contract and Eta passes performed by the compiler, without compromis-

ing the speed of the generated code. Furthermore, our rewriting system is confluent

(Church–Rosser), so the optimizations are nicely deterministic.

A Proof of confluence

We now prove confluence for a class of untyped term rewriting systems that gener-

alizes the shrinking rewrite system of section 3. Confluence is typically achieved by
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imposing some syntactic restrictions on the form of rules used to define the system.

However, it is difficult to formulate a simple set of restrictions on rules that permit

all of the rules we have in mind; and not all rewriting systems are defined by rules.

Therefore, we will instead specify properties that the rewriting relation as a whole

must satisfy to guarantee confluence.

The main results can be stated as follows.

Definition

A rewriting relation is a shrinking rewriting relation if it is substitutive, compati-

ble, includes shrinking inlining, dead-function elimination, recursive-dead-function

elimination, and satisfies Properties 1–5 below.

Confluence follows from the following stronger result. Let→r be the reflexive (but

not transitive) closure of →, so M →r M
′ if M →M ′ or M ≡M ′.

Theorem (Diamond Property)

Suppose → is a shrinking rewriting relation. If M0 →r M1 and M0 →r M2, there is

some M3 such that M1 →r M3 and M2 →r M3.

Theorem

The rewriting relation of section 3 is a shrinking rewriting relation, and therefore,

confluent.

We now develop the necessary technical machinery for the proof of the Diamond

Property. As we introduce each of the Properties 1–5, we will show that the system

of section 3 satisfies it.

We fix a set of constants, ranged over by δ. Typical δ’s include record selection

and creation operators, numerals and arithmetic functions, etc. The CPS terms are

generated by the following grammar.

M ::= let f(x1, . . . , xn) = M in N recursive function definition

| f(a1, . . . , an) function application

| let x1, . . . , xn = δ(a1, . . . , am) in M primitive operation

Note that we allow primitive operations to return more than one result. For

example, we might want

(let quot , rem = 9÷ 2 in N)→ N{quot 7→ 4, rem 7→ 1}.

We use some standard concepts (free and bound variables, occurrences, subterms,

etc.) without formal definition; the interested reader may consult Barendregt (1984).

We write fv(M) for the free variables of M, and M ⊂ N to indicate that M is a

subterm of N. We consider terms to be equal modulo renaming of bound variables.

We have already mentioned that we require, in any mathematical context, that

all bound variables be distinct from each other and from free variables; this is a

standard requirement, sometimes called the Variable Convention.
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We informally introduced the concept of a syntactic context as a ‘term with a

hole’. We formalize that idea by the following grammar.

C[·] ::= [·]
| let f(x1, . . . , xn) = C[·] in M

| let f(x1, . . . , xn) = M in C[·]
| let x1, . . . , xn = δ(a1, . . . , am) in C[·]

If C[·] is a context, then C[M] is the term obtained by replacing the hole of C[·]
by M, possibly capturing free variables of M; we omit a formal definition. Note

that an atom a is not a CPS term, so C[a] is not well defined.

In our proof we will need contexts with more than one distinct hole. For example,

C[·]1[·]2 ≡ let f(x1, . . . , xn) = [·]1 in [·]2

is a context with two distinct holes, which may be filled with two different terms, as

in

C[M]1[N]2 ≡ let f(x1, . . . , xn) = M in N.

We sometimes abbreviate C[·]1[·]2 by C[·][·]. See Barendregt (1984, §14.4) for a

formal definition of this sort of context.

A (term) rewriting relation is a binary relation on terms. A rewriting relation

R is compatible if whenever (M,N) ∈ R, then (C[M], C[N]) ∈ R for every context

C[·]. The compatible closure of a rewriting relation R is the least compatible relation

containing R. The kernel of a compatible rewriting relation R is the least relation

whose compatible closure is R. If (∆,∆′) is in the kernel of R then ∆ is called

a redex and ∆′ a contractum (of ∆). If → is a compatible rewriting relation, we

write M
∆→ M ′ to indicate that M rewrites to M ′ by contracting redex ∆, that is,

we have M ≡ C[∆] and M ′ ≡ C[∆′] for some context C[·] and contractum ∆′ of

∆.

The domain of a substitution {~x 7→ ~a} consists of the variables ~x, and its range

consists of the atoms ~a. A substitution σ may be applied to: an atom a yielding an

atom aσ; a sequence of atoms~a yielding a sequence of atoms~aσ; a term M yielding

a term Mσ; or a context C[·] yielding a context (Cσ)[·]. A rewriting relation R is

substitutive if whenever (∆,∆′) ∈ R, then (∆σ,∆′σ) ∈ R for any substitution σ.

Two standard results about substitutions will be useful.

Lemma 1

If no variable in the domain or range of σ is bound in C[·], then

(C[M])σ ≡ (Cσ)[Mσ]

for any term M.

Lemma 2

If no variable of ~x appears in the domain or range of σ, then

(M{~x 7→~a})σ ≡ (Mσ){~x 7→~aσ}

for any term M and atoms ~a.
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We now develop the Properties needed for confluence. Our first Property says that

every reduction deletes a definition, and that reduction is invariant with respect to

certain changes in the syntax of terms. In stating the Property, we use D to range

over definitions (f(~x) = M or ~x = δ(~a)), and we say f(~x) = M defines the variables

{f}, and ~x = δ(~a) defines the variables {~x}.

Property 1

A rewriting relation → satisfies Property 1 if, whenever M
∆→ M ′ and ∆ is not a

shrinking inlining redex, there exist a substitution σ, a unique context C[·], and a

unique term (let D in N) such that

M ≡ C[ let D in N ]
∆→ C[ Nσ ] ≡M ′,

the domain of σ contains only variables defined by D, and C[ let D inN ′ ]→ C[ N ′σ ]

for any term N ′ that contains no more variables defined by D than N.

The term (let D in N) in Property 1 will be called the focus of the redex ∆, and Nσ

will be called the focal replacement of ∆. For example, in the system of Section 3,

we have the following focuses and focal replacements.

• If ∆ is a dead-variable-elimination redex (let D in N), the focus of ∆ is ∆ and

the focal replacement of ∆ is N. Note, here we may take the substitution σ to

be the empty (identity) substitution.

• If ∆ is a record selection redex (let r = 〈~a〉 in C[ let x = #i(r) in N ]), the

focus of ∆ is the subterm (let x = #i(r) in N) and the focal replacement of ∆

is N{x 7→ ai}.

It will be useful to extend this terminology to shrinking inlining redexes.

• If ∆ is a shrinking inlining redex (let f(~x) = N in C[ f(~a) ]), the focus of ∆ is

∆, and the focal replacement of ∆ is C[ N{~x 7→~a} ].

Intuitively, the first part of Property 1 says that every rewrite rule of the system

deletes a definition, and the focus of a redex is defined to be the smallest subterm

containing the deleted definition. When a redex is contracted, only the focus is

affected; the portion of the term outside of the focus is unchanged. Usually the

focus of the redex is the redex itself, and the focal replacement is the contractum of

the redex; but not always, as in the case of record selection.

To verify the second part of Property 1 for the system of section 3, we consider

two cases.

• If C[ let D in N ]→ C[ N ] by dead-variable elimination, then N contains no

variables defined by D. And C[ let D in N ′ ]→ C[ N ′ ] for any N ′ containing

no variables defined by D.

• If C[ let x = #i(r) in N ] → C[ N{x 7→ ai} ] by record selection, then

C[ let x = #i(r) in N ′ ] → C[ N ′{x 7→ ai} ] for any N ′, regardless of the

variables it contains.
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The next Property concerns the reduction of a redex properly containing its focus,

e.g. record selection. Like Property 1, it states that such reductions are invariant

under certain syntactic modifications to terms.

In a term (let D in N), we call the definition D the head and N the body. We say a

definition is dominant in a context if its scope includes the hole of the context. Note

that if ∆ is a redex with focus F 6≡ ∆ in term C[F], then the head of ∆ is dominant

in C[·].

Property 2

A rewriting relation → satisfies Property 2 if, whenever ∆ is a redex with focus

F 6≡ ∆ and focal replacement F ′, then

C1[ (C2[ F ])σ ]→ C1[ (C2[ F ′ ])σ ]

for any C1[·], C2[·], and σ such that the head of ∆ is dominant in C1[·], and the

domain of σ includes no variable appearing in C1[·].

For the system of section 3, the only case in which F 6≡ ∆ is when ∆ is a record

selection redex. In this case, C1[·], F , and F ′ have the following forms:

C1[·] ≡ C[ let r = 〈~a〉 in C ′[·] ],

F ≡ let x = #i(r) in N,

F ′ ≡ N{x 7→ ai},

and we want to verify that

C1[ (C2[ let x = #i(r) in N ])σ ]→ C1[ (C2[ N{x 7→ ai} ])σ ].

We assume that x does not appear in σ (else rename x). Then since r is not in the

domain of σ, we have (let x = #i(r) in N)σ ≡ (let x = #i(r) in (Nσ)). And since ai is

not in the domain of σ, by Lemma 2 we have (N{x 7→ ai})σ ≡ (Nσ){x 7→ ai}. This

is enough to verify the reduction.

The following lemma summarizes an important special case of Property 2.

Lemma 3

Suppose → satisfies Property 2, and ∆ is a redex with focus F 6≡ ∆ and focal

replacement F ′. Then C[F]→ C[F ′] for any context C[·] in which the head of ∆ is

dominant.

Because of the shrinking inlining and dead-function rules, we must keep track

of the number of occurrences in function position of a variable during the course

of a reduction (e.g. in the term f(a), f is in function position and a is not). The

next property gives conditions guaranteeing that occurrences in function position

decrease. It holds for our shrinking rewrite system, but not for rewrite systems in

general; for example, it fails under the unrestricted inlining rule.

Property 3

A rewriting relation→ satisfies Property 3 if, whenever a variable f has n occurrences

in function position in a term M, and no other occurrences, and M → M′, then f

has n or less occurrences in function position in M ′, and no other occurrences.
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Our final two properties concern overlaps, which can be particularly troublesome

in proving confluence. The first property states that when overlaps occur, they do

so in a harmless manner. The second states that a harmful kind of overlap does not

occur. In practice, these two properties are the most difficult to prove of a rewrite

system, because the number of cases to consider is quadratic in the number of rules.

Property 4

A rewriting relation → satisfies Property 4 if, whenever two redexes have the same

focus, then they have the same focal replacement. So, if ∆1 and ∆2 have the same

focus, M
∆1→M1, and M

∆2→M2, then M1 ≡M2.

For the system of Section 3, a case analysis shows that if two distinct redexes

have the same focus, then one redex is a record selection redex

∆1 ≡ let r = 〈~a〉 in C[ let x = #i(r) in N ],

and the other redex is a dead-variable-elimination redex

∆2 ≡ (let x = #i(r) in N).

That is, ∆2 is the focus of ∆1. Since x does not appear in N, the focal replacement,

N{x 7→ ai}, of ∆1 is the same as the focal replacement, N, of ∆2, as desired.

Property 5

A rewriting relation → satisfies Property 5 if, whenever F = (let D in N) is the focus

of a redex in a term M, F ′ is the focus of a second redex, ∆′, in M, and F ′ is a

proper subterm of F , then D is not the head of ∆′.

If F ′ ≡ ∆′, then ∆′ is a proper subterm of F , so D is not the head of ∆′. Thus

to verify Property 5, it is sufficient to consider those cases where F ′ 6≡ ∆′. For the

system of Section 3, the only such case is when ∆′ is a record selection redex. By way

of contradiction, assume D is the head r = 〈~a〉 of ∆′. Then the focus (let D in N) can

only be a dead-variable redex. But the record selection focus F ′ ⊂ N must contain

r, contradiction.

Proof of the Diamond Property

If M0 ≡ M1 or M0 ≡ M2 the result follows trivially. So assume M0
∆1→ M1 and

M0
∆2→ M2 for some redexes ∆1 and ∆2, with focuses F1 and F2, respectively. We

consider the following cases.

If F1 and F2 are disjoint, then M0, M1, and M2 have the following forms:

M0 ≡ C[ F1 ][ F2 ],

M1 ≡ C[ F ′1 ][ F2 ],

M2 ≡ C[ F1 ][ F ′2 ].

Here F ′1 and F ′2 are the focal replacements of F1 and F2, respectively.

Define M3 ≡ C[ F ′1 ][ F ′2 ]. If F2 ≡ ∆2, then M1
∆2→M3 by compatibility. If F2 6≡ ∆2,

then the head of ∆2 is dominant in C[F1][·] and therefore also in C[F ′1][·]. Then

M1 →M3 by Lemma 3. The same argument shows that M2 →M3.
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If F1 and F2 coincide, then by Property 4, M1 ≡ M2, so it is sufficient to choose

M3 ≡M1.

Otherwise the focus of one redex is properly contained in the focus of another;

we assume without loss of generality that F1 contains F2. Let F ′2 be the focal

replacement of F2. We consider the following cases.

• If F1 is not a shrinking inlining redex, and F2 is contained in the body of F1,

then M0, M1, and M2 have the following forms:

M0 ≡ C1[ let D in C2[ F2 ] ],

M1 ≡ C1[ (C2[ F2 ])σ ],

M2 ≡ C1[ let D in C2[ F ′2 ] ].

Here D is the head of F1 and σ is the substitution predicted by Property 1.

Define M3 ≡ C1[ (C2[ F ′2 ])σ ].

If ∆2 ⊂ C2[F2], then M1
∆2σ→ M3 by compatibility and substitutivity.

Otherwise F2 6≡ ∆2, and the head of ∆2 is dominant in C1[·] (the head of ∆2 is

not D by Property 5). Then M1 →M3 by Property 2.

Let y be a variable defined by D. Note that if y does not appear in C2[ F2 ],

it appears nowhere in M0. Then by Property 3, y does not appear in C2[ F ′2 ],

so M2 →M3 by Property 1.

• If F1 is a dead-function-elimination redex and F2 is contained in the head of

F1, then M0, M1, and M2 have the following forms:

M0 ≡ C1[ let f(~x) = C2[ F2 ] in M ],

M1 ≡ C1[ M ],

M2 ≡ C1[ let f(~x) = C2[ F ′2 ] in M ].

Define M3 ≡ C1[ M ]; then M1 →r M3 by reflexivity.

Since f is a dead function, it has at most one occurrence in function position

in C2[ F2 ], and no other occurrences anywhere in M0. Then by Property 3,

f has at most one occurrence in function position in C2[ F ′2 ], and no other

occurrences in M2. So M2 →M3 by eliminating the dead function f.

• If F1 is a shrinking inlining redex and F2 is contained in the head of F1, then

M0, M1, and M2 have the following forms:

M0 ≡ C1[ let f(~x) = C2[ F2 ] in C3[ f(~a) ] ],

M1 ≡ C1[ C3[ (C2[ F2 ]){~x 7→~a} ] ],

M2 ≡ C1[ let f(~x) = C2[ F ′2 ] in C3[ f(~a) ] ].

Define M3 ≡ C1[ C3[ (C2[ F ′2 ]){~x 7→~a} ] ].

Since f has a single occurrence in function position in M0, and no other

occurrences in M0, by Property 3 the same is true of f in M2. So M2 → M3

by shrinking inlining.

If ∆2 ⊂ C2[F2], then M1

∆2{~x7→~a}→ M3 by compatibility and substitutivity.

Otherwise F2 6≡ ∆2, and the head of ∆2 is dominant in C1[·] (the head of ∆2 is
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not f(~x) = C2[ F2 ] by Property 5). Therefore, the head of ∆2 is also dominant

in C1[ C3[·] ], and M1 →M3 by Property 2.

• If F1 is a shrinking inlining redex and F2 is contained in the body of F1 disjoint

from the inlining site, then M0, M1, and M2 have the following forms:

M0 ≡ C1[ let f(~x) = M in C2[ F2 ][ f(~a) ] ],

M1 ≡ C1[ C2[ F2 ][ M{~x 7→~a} ] ],

M2 ≡ C1[ let f(~x) = M in C2[ F ′2 ][ f(~a) ] ].

Define M3 ≡ C1[ C2[ F ′2 ][ M{~x 7→~a} ] ].

Since f has a single occurrence in function position in M0, and no other

occurrences in M0, by Property 3 the same is true of f in M2. So M2 → M3

by shrinking inlining.

If F2 ≡ ∆2, then M1
∆2→M3 by compatibility.

If F2 6≡ ∆2, then the head of ∆2 must be dominant in C1[ let f(~x) =

M in C2[·][ f(~a) ] ], and cannot be f(x) = M by Property 5. Therefore

the head of ∆2 is dominant in C1[ C2[·][ M{~x 7→ ~a} ] ]. So by Lemma 3,

M1 →M3.

• If F1 and F2 are shrinking inlining redexes, and the inlining site of F1 appears

in the head of F2, then M0, M1, and M2 have the following forms:

M0 ≡ C1[ let f(~x) = M in C2[ let g(~y) = C3[ f(~a) ] in C4[ g(~b) ] ] ],

M1 ≡ C1[ C2[ let g(~y) = C3[ M{~x 7→~a} ] in C4[ g(~b) ] ] ],

M2 ≡ C1[ let f(~x) = M in C2[ C4[ (C3[ f(~a) ]){~y 7→~b} ] ] ].

Define M3 ≡ C1[ C2[ C4[ (C3[ M{~x 7→~a} ]){~y 7→~b} ] ] ].

Then M1 →M3 by shrinking inlining.

Note that ~y and ~b are not bound in C3[·], and are disjoint from ~x. Then by

Lemmas 1 and 2,

(C3[ f(~a) ]){~y 7→~b} ≡ (C3{~y 7→~b})[ f(~a{~y 7→~b}) ],

(C3[ M{~x 7→~a} ]){~y 7→~b} ≡ (C3{~y 7→~b})[ M{~x 7→~a{~y 7→~b}} ].

So M2 →M3 by shrinking inlining.

• If F1 and F2 are shrinking inlining redexes, and the inlining site of F1 appears

in the body of F2, then M0, M1, and M2 have the following forms:

M0 ≡ C1[ let f(~x) = M in C2[ let g(~y) = N in C3[ f(~a) ][ g(~b) ] ] ],

M1 ≡ C1[ C2[ let g(~y) = N in C3[ M{~x 7→~a} ][ g(~b) ] ] ],

M2 ≡ C1[ let f(~x) = M in C2[ C3[ f(~a) ][ N{~y 7→~b} ] ] ].

Define M3 ≡ C1[ C2[ C3[ M{~x 7→ ~a} ][ N{~y 7→ ~b} ] ] ]. Note that f does not

appear in N{~y 7→ ~b}, and g does not appear in M{~x 7→ ~a}. Then M1 → M3

and M2 →M3 by shrinking inlining.

• If F1 is a shrinking inlining redex, F2 is a dead-function redex, and the head

of F2 contains the inlining site of F1, then M0, M1, and M2 have the following
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forms:

M0 ≡ C1[ let f(~x) = M in C2[ let g(~y) = C3[ f(~a) ] in N ] ],

M1 ≡ C1[ C2[ let g(~y) = C3[ M{~x 7→~a} ] in N ] ],

M2 ≡ C1[ let f(~x) = M in C2[ N ] ].

Define M3 ≡ C1[ C2[ N ] ]. Then M2 →M3 by eliminating the dead function f.

Since g is a dead function, it has at most one occurrence in function position

in C3[ f(~a) ], and no other occurrences anywhere in M0. Then by Property 3,

g has at most one occurrence in function position in C3[ M{~x 7→ ~a} ], and

no other occurrences anywhere in M1. So M1 → M3 by eliminating the dead

function g.

• If F1 is a shrinking inlining redex, F2 is not a shrinking inlining redex, and

the inlining site of F1 is in the body of F2, then M0, M1, and M2 have the

following forms:

M0 ≡ C1[ let f(~x) = M in C2[ let D in C3[ f(~a) ] ] ],

M1 ≡ C1[ C2[ let D in C3[ M{~x 7→~a} ] ] ],

M2 ≡ C1[ let f(~x) = M in C2[ (C3[ f(~a) ])σ ] ].

Here σ is the substitution predicted by Property 1.

Define M3 ≡ C1[ C2[ (C3[ M{~x 7→~a} ])σ ] ].

Because f is not in the domain of σ, and no variable of M is in the domain

of σ, we have

(C3[ f(~a) ])σ ≡ (C3σ)[ f(~aσ) ],

(C3[ M{~x 7→~a} ])σ ≡ (C3σ)[ M{~x 7→~aσ} ].

Then M2 →M3 by shrinking inlining.

Let y be a variable defined by D. Note that if y does not appear in C3[ f(~a) ],

then it appears nowhere in M0. Then by Property 3, y does not appear in

C3[ M{~x 7→~a} ], so M1 →M3 by Property 1.

2
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