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Abstract. In this paper, we investigate the asymptotic distribution of a class of multi-
plicative functions over arithmetic progressions without the Ramanujan conjecture. We also
apply these results to some interesting arithmetic functions in automorphic context, such as
coefficients of automorphic L-functions, coefficients of their Rankin–Selberg.

1. Introduction

Problems concerning the asymptotic distribution of arithmetic functions in arithmetic
progressions are very classical in analytic number theory, and appear all over the place. Let
q be a positive integer and a be an integer prime to q, and let {an}∞n=1 be an arithmetic
sequence of complex numbers. Define

S(x; a, q) =
∑
n≤x

n≡a (mod q)

an.

One expects the sequence to be generally well distributed in residue classes to modulo q,
namely

S(x; a, q) =
1

ϕ(q)

∑
n≤x

(a,q)=1

an + small error, (1.1)

where ϕ is Euler’s function. For example, if an = Λ(n), the von Mangoldt function, the
Siegel–Walfisz theorem says that for any q ≤ logA x∑

n≤x
n≡a (mod q)

Λ(n) =
x

ϕ(q)
+O

(
x exp(−cA

√
log x)

)
,

where A is any real number and cA is some constant depending only on A. If an = τk(n), the
number of representations of n as the product of k factors, (1.1) holds for q ≤ xθk−ε with

θ2 =
2

3
, θ3 =

1

2
+

1

82
, θ4 =

1

2
, . . .

See the details in [10]. Another example is an = λf (n), the normalized Fourier coefficients

of a holomorphic cusp form f , Smith [23] showed that (1.1) holds uniformly for q ≤ x
2
3 .

Moreover, Murty gave some interesting remarks on Smith’s work and said “It is likely that
the methods of [23] are applicable for coefficients of Dirichlet series attached to automorphic
representation of higher GL(n,AQ)” at the end of this paper.
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Let d ≥ 2 be an integer, and let F(d) be the set of all cuspidal automorphic representations
π of GL(d) over Q with trivial central character. Let qπ denote the arithmetic conductor
of π. For each π ∈ F(d), the corresponding L-function is defined by absolutely convergent
Dirichlet series as

L(s, π) =
∞∑
n=1

λπ(n)n−s

for Re s > 1. Motivated by the remarks of Murty as above, it is interesting to study the
distribution of Dirichlet coefficients λπ(n) in arithmetic progressions∑

n≤x
n≡a (mod q)

λπ(n). (1.2)

In general, one needs to replace the congruence n ≡ a (mod q) in (1.2) by a character sum
of additive or multiplicative characters modulo q. Smith [23] chose to use the additive
characters and then investigated the properties of generating series of λf (n)e(an/q) including
the analytical continuation and functional equation, where e(x) := exp(2πix) for any x ∈ R.
However, for the higher rank case on GL(d), the functional equation of Dirichlet series
∞∑
n=1

λπ(n)e(an/q)n−s is complicated and lacks a little symmetry structure (see [17] for details).

Hence, in contrast to the work of Smith, we shall replace the congruence in (1.2) by a
character sum of multiplicative characters, and can prove the following result.

Theorem 1.1. If π ∈ F(d) with (q, aqπ) = 1, then we have∑
n≤x

n≡a (mod q)

λπ(n)�

{
τd(q)x

1− 1
d if q ≤ x

1
d ,

τd2(q)x
1− d+1

d2+1 log x if q ≤ x
2

d2+1 .

Assume the generalized Ramanujan conjecture holds for π, then we have∑
n≤x

n≡a (mod q)

λπ(n)� τd(q)
(
q
d−1
2 log q + x1−

2
d+1

)
for q ≤ x2/(d+1). The implied constants all depend on π only.

Another important arithmetic function is the coefficient λπ×π̃(n) of the Rankin–Selberg
L-function L(s, π × π̃), where π̃ denotes the contragredient of π ∈ F(d). This example is
also our motivation for using the multiplicative characters to detect the congruence.

Theorem 1.2. If π ∈ F(d) with (q, aqπ) = 1, then we have∑
n≤x

n≡a (mod q)

λπ×π̃(n) =
cπ,q
ϕ(q)

x+O
(
τd2(q)q

d2−1
2 log q

)
+O

(
τd2(q)x

d2−1

d2+1

)

for q ≤ x
2

d2+1 , where cπ,q is defined by cπ,q = Res
s=1

(
L(s, π × π̃)

)∏
p|q
L(1, πp × π̃p)−1, and the

implied constant depends on π only.

As in the argument of Theorem 1.1, if the coefficients λπ(n) of L-functions are not all
non-negative, we can produce a formula for

∑
n≤x λπ(n) in terms of a sum of λπ(n) over a
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short interval. Our next goal is to strengthen Theorem 1.1 for special cases by improving
some related estimates over short intervals.

Let k and N be positive integers with k even and N square-free, and Γ0(N) be the group

of matrices γ =

(
a b
c d

)
∈ SL(2,Z) with the condition c ≡ 0(modN). Let H∗k(N) denote

the set of arithmetically normalized primitive cusp forms of weight k for Γ0(N) which are
eigenfunctions of all the Hecke operators. Any f ∈ H∗k(N) has a Fourier expansion at infinity
given by

f(z) =
∞∑
n=1

λf (n)n
k−1
2 e(nz),

where λf (1) = 1 and the eigenvalues λf (n) ∈ R. Deligne’s bound gives

|λf (n)| ≤ τ(n) (1.3)

for all n ≥ 1, where we put as usual τ2(n) = τ(n). The eigenvalues λf (n) enjoy the multi-
plicative property

λf (m)λf (n) =
∑
d|(m,n)
(d,N)=1

λf

(mn
d2

)

for all integers m,n ≥ 1. In particular, λf (n) are multiplicative. The Hecke L-function
L(s, f) associated to f has the Euler product representation

L(s, f) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
ψ0(p)

p2s

)−1
,

where ψ0 denotes the principal character modulo N . We rewrite the Euler product as

L(s, f) =
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
,

where αf (p), βf (p) are complex numbers with{
αf (p) = εpp

− 1
2 , βf (p) = 0 if p|N,

αf (p) = βf (p), |αf (p)| = |βf (p)| = 1 if p - N

and εp ∈ {±1}. For each d ≥ 1, we define the twisted d-th symmetric power L-function by
the degree d+ 1 Euler product

L(s, symdf) =
∏
p

∏
0≤j≤d

(
1− αf (p)

d−jβf (p)
j

ps

)−1
:=
∑
n≥1

λsymdf (n)

ns
. (1.4)

Note that L(s, sym1f) = L(s, f).
Recently, Newton and Thorne [19, Theorem B] proved that if d ≥ 1, then the d-th symmet-

ric power lift symdf corresponds to a cuspidal automorphic representation of GL(d+ 1,AQ)
with trivial central character. Moreover, for each prime p, let θp ∈ [0, π] be the unique
angel such that λf (p) = 2 cos θp. The Sato–Tate conjecture states that the sequence {θp}
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is equidistributed in the interval [0, π] with respect to the measure dµST := (2/π) sin2 θdθ.
Equivalently, for any continuous function g ∈ C([0, π]), one has∑

p≤x
p-N

g(θp) ∼
(∫ π

0

g(θ)dµST

) x

log x
as x −→∞. (1.5)

This is now a theorem of Barnet-Lamb, Geraghty, Harris and Taylor [1].
For this special arithmetic function λsymdf (n) on GLd+1, we get the following result.

Theorem 1.3. Let f ∈ H∗k(N) and λsymdf (n) be the coefficients of L(s, symdf). For
(q, aN) = 1, we have∑

n≤x
n≡a (mod q)

λsymdf (n)� τd+1(q)
(
q
d
2 (log q)1−γd + x

d
d+2 (log x)−γd

)

for q ≤ x
2
d+2 , where γd = 1 − 4(d+1)

d(d+2)π
cot
(

π
2(d+1)

)
> 0.15, and the implied constant depends

on f and d.

Remark 1.1. For any fixed f ∈ H∗k(N) and (q, aN) = 1, Smith [23] obtained a uniform
estimate ∑

n≤x
n≡a (mod q)

λf (n)� τ(q)x
1
3 log x

for q ≤ x2/3. Compared this with the case d = 1 in Theorem 1.3, it is obvious that our result
is of a smaller size.

2. The main result

All these results in the theorems above are some specific applications of our technical for-
mulae in Theorem 2.1 below. To state this core result, we need to describe the situation that
we consider. Inspired by the series of works [5–8] of Duke and Iwaniec who have developed
several techniques for estimating the coefficients of L-functions that satisfy standard func-
tional equations, this paper here is to investigate the average order of a class of multiplicative
functions over arithmetic progressions under some similar conditions.

(A1) Euler product and Dirichlet series. Let A = {Ap} be a sequence of square
complex matrices of order d indexed by primes, with monic characteristic polynomial
Pp(x) = PAp (x) ∈ C[x] and roots αj(p). Then our general L-function L(s,A) will be
given by

L(s,A) =
∏
p

d∏
j=1

(
1− αj(p)

ps

)−1
=
∞∑
n=1

an
ns
, (2.1)

where we assume that the product and the series are absolutely convergent for
Re(s) > 1. Note that |αj(p)| ≤ p for all p, which is implied by the convergence
of the Euler product for Re s > 1.

(A2) Analytic continuation. There is some m = m(A) such that L(s,A) can be con-
tinued analytically over all of C except possibly for a pole of order m at s = 1.
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(A3) Functional equation. Let a Gamma factor ∆(s) be defined by

∆(s) =
d∏
j=1

ΓR(s+ µj),

where ΓR(s) = π−s/2Γ(s/2), and µj is an arbitrary complex number with Reµj > −1
for each 1 ≤ j ≤ d. The complete L-function

Λ(s,A) := q
s
2
A∆(s)L(s,A)

has finite order, and satisfies the functional equation

Λ(1− s,A) = ωAΛ(1− s̄,A).

where qA is a positive integer and ωA is a complex number with |ωA| = 1, which are
called the arithmetic conductor and root number of A, respectively.

(A4) GL(1) twists. Let χ(mod q) be a primitive Dirichlet character with q > 1 and
(q, qA) = 1. The twisted L-function

L(s,A⊗ χ) =
∏
p

d∏
j=1

(
1− αj(p)χ(p)

ps

)−1
=
∞∑
n=1

anχ(n)

ns

can be analytically continued to be an entire function. Moreover, the complete L-
function

Λ(s,A⊗ χ) := q
s
2
A⊗χ∆

(
s+ κsgn(χ)

)
L(s,A⊗ χ)

has finite order, and satisfies the functional equation

Λ(s,A⊗ χ) = ωA⊗χΛ(1− s̄,A⊗ χ), (2.2)

where qA⊗χ > 0 and ωA⊗χ is a complex number with |ωA⊗χ| = 1. We emphasize that
the Gamma factor of A ⊗ χ depends on the parity of χ, but not on the characters
χ. For (q, qA) = 1, we also assume that qA⊗χ = qA q

d and the root number ωA⊗χ is
given by

ωA⊗χ = ηA,sgn(χ)χ(qA)
(τ(χ)
√
q

)d
,

where ηA,sgn(χ) with |ηA,sgn(χ)| = 1 depends on A and the parity of χ only, τ(χ) is the
Gauss sum

τ(χ) =
∑

b (mod q)

χ(b)e
( b
q

)
.

Some hypotheses about the size of the coefficients have to be assumed in order to prove
our result. The Ramanujan conjecture (RC for short) states that for any ε > 0, an � nε

for all n ≥ 1. As is well known, RC has been proved only for a limited class of functions
(the Hecke L-functions, and the L-functions coming from the cuspidal holomorphic forms for
congruence groups, see Deligne [4]), although it is generally believed that all the L-functions
appearing in number theory should satisfy RC. For example, it is conjectured to hold for the
L-functions associated with cuspidal automorphic representations on GL(d). In general, only
some rather weak estimates for the coefficients are at our disposal. Hence, it is interesting
to consider the possibility of obtaining some results under some weaker assumptions instead
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of RC. We introduce the following notation: sj,A(p) denotes the j-th elementary symmetric
function of the roots α1(p), . . . , αd(p), that is

sj,A(p) =
∑

1≤i1<···<ij≤d

αi1(p) · · ·αij(p). (2.3)

Hypothesis H(θd): For all primes p with (p, qA) = 1, one has

|αj(p)| ≤ pθd and sj,A(p)� pmin{j,d−j}θd for any 1 ≤ j ≤ d.

Hypothesis S: There exists some bA > 0 such that the first moment of absolute values of
the coefficients satisfies the bound∑

n≤x

|an| � x(log x)bA−1.

Our main result states as follows.

Theorem 2.1. Let L(s,A) be an L-function satisfying the conditions (A1)–(A4) with d ≥ 2,
and let (q, aqA) = 1. Then under Hypothesis H(θd) with θd < 1 − 1

d
and Hypothesis S, we

have ∑
n≤x

n≡a (mod q)

an =M0(x; q) +O
(τ(q)

q
y(log x)m−1

)
+O

(
τd(q)q

d−1
2 (log q)bA

)

+O

(
τd(q)

(qx
y

) d−1
2

(log x)bA−1
)

+O
( ∑
x<n≤x+O(y)
n≡a (mod q)

|an|
)
,

where y is an arbitrary real number with 0 < y < x, M0(x; q) is defined by

M0(x; q) =
1

ϕ(q)
Res
s=1

(1

s
L(s,A⊗ χ0)x

s
)
.

In addition, if an ≥ 0, we have∑
n≤x

n≡a (mod q)

an = M0(x; q) +O
(
τd(q)q

d−1
2 (log q)bA

)
+O

(
τd(q)x

d−1
d+1 (log x)max{bA,m}−1

)
.

We note that the implied constants above depend on A, including the degree d, the parameters
µj and the arithmetic conductor qA of A.

Under Hypothesis H(θd) with 1 − 1
d
≤ θd < 1 and Hypothesis S, the above two assertions

hold provided that τd(q) is replaced by τd+1(q) in the error terms.

Remark 2.1. Chandrasekharan and Narasimhan [3] established these results for q = 1. Under
some additional assumptions on functional equations for additive twists of L-functions, Smith
[21] investigated the analogous problem as in Theorem 2.1 for some positive integers q.
However, the lack of a good symmetry structure for these functional equations could increase
the difficulty of applications, such as in [21,22]. We here take full advantage of multiplicative
twists of L-function in this aspect.

In the modern sense, one may apply the Voronöı formula of an to study its distribution
over arithmetic progressions. However, the corresponding formulae are intricate and con-
strained for most of our interest objects an, such as general divisor functions, coefficients of
automorphic L-functions and their Rankin–Selberg convolutions.
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The paper is organized as follows. In Section 3, we state a few background results we shall
need, including a fact in multiplicative number theory, and some properties about general
L-functions. In Sections 4, we prove Theorem 2.1. In order to apply this theorem to the
automorphic context, we introduce some related knowledge on automorphic L-functions and
their Rankin–Selberg in Section 5. Finally, in Section 6, we explore all various of applications
and give the proofs of Theorems 1.1–1.3.

3. Preliminaries

In this section, we present the results and tools needed in our proofs.
The common tool in complex analysis is the method of contour integration, which could

give a direct link between the summation associated to an arithmetic function and the
corresponding Dirichlet series. The following lemma is a standard contour integration (see
[14, Lemma 1], for example).

Lemma 3.1. If k is any positive integer and c > 0, then

1

2πi

∫
(c)

xs

s(s+ 1) · · · (s+ k)
ds =

{
1
k!

(1− 1
x
)k if x ≥ 1,

0 if 0 ≤ x ≤ 1.

Now we start to recall and show some uniform estimates for various analytic quantities
related to an individual L-function. It turns out that most results for the L-function are
expressed conveniently in terms of the analytic conductor. Put

q∞(s) =
d∏
j=1

(|s+ µj|+ 3).

Then the analytic conductor qA⊗χ(s) is defined by (see, for example, [11, equation (5.6)])

qA⊗χ(s) = qA⊗χq∞(s) = qA⊗χ

d∏
j=1

(|s+ µj|+ 3).

We first state the approximate functional equation, which expresses L(s,A ⊗ χ) in the
critical strip as a sum of two Dirichlet series.

Lemma 3.2. Let χ(mod q) be a primitive Dirichlet character with q > 1 and (q, qA) = 1.
For 0 ≤ Re s ≤ 1, there exists a smooth function Vs such that

L(s,A⊗ χ) =
∞∑
n=1

anχ(n)

ns
Vs

( n

X
√
qA⊗χ

)
+ ωA⊗χ(s)

∞∑
n=1

an χ(n)

n1−s V1−s

( nX
√
qA⊗χ

)
,

where X is an arbitrary positive real number, and

ωA⊗χ(s) = ωA⊗χq
1
2
−s
A⊗χ

∆(1− s+ κsgn(χ))

∆(s+ κsgn(χ))
.

The function Vs and its partial derivatives V
(k)
s (k = 1, 2, . . .) satisfy, for any C > 0, the

following uniform growth estimates at 0 and ∞:

Vs(x) =

 1 +O
((

x
q∞(s)

)C)
O
((

1 + x
q∞(s)

)−C)
,

V (k)
s (x) = O

((
1 +

x

q∞(s)

)−C)
,

where the implied constants depend only on C, k and d.
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Proof. This follows from [11, Theorem 5.3, Proposition 5.4] in the same manner. �

Lemma 3.3. Let χ is any Dirichlet character (mod q) with (q, qA) = 1, and let s = σ + it.
Then we have, for −ε ≤ σ ≤ 1 + ε and |t| ≥ 1,

L(s,A⊗ χ)�A (q|t|)d(1−σ)+ε.

Proof. Assume χ(mod q) is induced by a primitive character χ1(mod r), then

L(s,A⊗ χ) = L(s,A⊗ χ1)
∏
p| q
r

d∏
j=1

(
1− αj(p)χ1(p)

ps

)
.

Recall that |αj(p)| ≤ p in Condition (A1). Thus, we have, for −ε ≤ σ ≤ 1 + ε and |t| ≥ 1,∏
p| q
r

d∏
j=1

(
1− αj(p)χ1(p)

ps

)
�
∏
p| q
r

(
1 + p1−σ

)d
≤
(q
r

)d(1−σ)+ε
.

Moreover, the convexity bound of L(s,A⊗ χ1) states

L(s,A⊗ χ1)� qA⊗χ1(s)
1−σ
2

+ε �A (r|t|)
d(1−σ)

2
+ε

for −ε ≤ σ ≤ 1 + ε and |t| ≥ 1 (see [11, equation (5.20)]). Finally, combining these results
above, we conclude Lemma 3.3. �

4. Proof of Theorem 2.1

For technical convenience, one usually works with the weighted sum

A%(x; q, a) =
1

Γ(%+ 1)

∑′

n≤x
n≡a (mod q)

an(x− n)%, (4.1)

where (q, aqA) = 1, % is a sufficiently large integer, and the symbol ′ indicates that the last
term has to be multiplied by 1/2 if % = 0 and x = n. Detecting the congruence condition in
(4.1) by the multiplicative characters χ(mod q), we obtain the identity∑′

n≤x
n≡a (mod q)

an(x− n)% =
1

ϕ(q)

∑
χ(mod q)

χ(a)
∑′

n≤x

anχ(n)(x− n)%.

Each character χ(mod q) can be induced by a primitive character χ(mod r) with r|q. Note
that the character for χ(mod q) with the case r = 1 is principle. Thus, we get

Γ(%+ 1)A%(x; q, a) =
1

ϕ(q)

∑
r|q

∑∗

χ(mod r)

χ(a)
∑′

n≤x
(n,q/r)=1

anχ(n)(x− n)%

=
1

ϕ(q)

∑
r|q

∑∗

χ(mod r)

χ(a)
∑
h|(q/r)

µ(h)χ(h)h%
∑′

n≤x/h

ahnχ(n)
(x
h
− n

)%
=

1

ϕ(q)

∑
hr|q

µ(h)h%
∑∗

χ(mod r)

χ(a)χ(h)
∑′

n≤x/h

ahnχ(n)
(x
h
− n

)%
,

(4.2)

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


9

where the formula ∑
d|n

µ(d) =

{
1 if n = 1,
0 otherwise

is used to relax the coprimality condition (n, q/r) = 1 above.
The transformation of the innermost sum over n requires factoring the arithmetic function

ahn. To this end, we exploit the Euler product for L(s,A). Write

L(s,A) =
∏
p

d∏
j=1

(1− αj(p)/ps)−1 :=
∏
p

L(s,Ap).

With the notation sj,A(p) as in (2.3), the reciprocal of the local L-function can be given by

L(s,Ap)−1 = 1− s1,A(p)p−s + s2,A(p)p−2s + · · ·+ (−1)dsd,A(p)p−ds.

Thus, we have(
1− s1,A(p)p−s + s2,A(p)p−2s + · · ·+ (−1)dsd,A(p)p−ds

)( ∞∑
ν=0

apνp
−νs
)

= 1.

Hence for all ν ∈ Z, we obtain the recursive relation

apν − s1,A(p)apν−1 + s2,A(p)apν−2 + · · ·+ (−1)dsd,A(p)apν−d = δ0ν

subject to the convention that apν = 0 for negative ν. Notice that h is square-free. Now if
we suppose h =

∏
p, we get by the recursion and multiplicativity

∞∑
n=1

ahnn
−s =

∏
p|h

( ∞∑
ν=0

apν+1p−νs
)∏

p-h

L(s,Ap)

=L(s,A)
∏
p|h

(
L(s,Ap)−1

∞∑
ν=0

apν+1

pνs

)
=L(s,A)

∏
p|h

(
s1,A(p)− s2,A(p)p−s + · · ·+ (−1)d−1sd,A(p)p−(d−1)s

)
.

Hence it is clear that ahn factors as follows

ahn =
∑
cm=n

a(h, c)am, (4.3)

where a(h, c) is defined for c|hd−1 by

a(h, c) =
∑

h=h0h1···hd−1

d−1∏
j=0

∏
p|hj

(−1)jsj+1,A(p)

with h0, h1, . . . , hd−1 mutually coprime such that

c =
(∏
p|h1

p
)(∏

p|h2

p
)2
· · ·
( ∏
p|hd−1

p
)d−1

.

Using the above formulas and Hypothesis H(θd), one can show that

a(h, c)� h
dθd
2

+ε. (4.4)
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10 YUJIAO JIANG AND GUANGSHI LÜ

Inserting the identity (4.3) into the innermost sum over n in the last line of (4.2), we get

1

Γ(%+ 1)

∑′

n≤x/h

ahnχ(n)
(x
h
− n

)%
=
∑
c|hd−1

a(h, c)c%χ(c)B%

( x
ch
, χ
)
,

where

B%(y, χ) =
1

Γ(%+ 1)

∑′

m≤y

amχ(m)(y −m)%.

Next, we turn to evaluate the summation B%(y, χ). By Condition (A1), it is known that
L(s,A⊗ χ) converges absolutely for Re s ≥ 1 + ε. Then it follows from Lemma 3.1 that

B%(y, χ) =
1

2πi

∫
(1+ε)

Γ(s)

Γ(%+ 1 + s)
L(s,A⊗ χ)y%+sds,

where % is a sufficiently large integer compared to d. Using the analytic properties (A2), (A5)
of L(s,A ⊗ χ) and the bound in Lemma 3.3, we could move the line of integration to
Re s = −ε < 0, change the variable from s to 1− s and apply the functional equation (2.2)
to get

B%(y, χ) = δr1 Res
s=1

( Γ(s)

Γ(%+ 1 + s)
L(s,A)y%+s

)
+

1

Γ(%+ 1)
L(0,A⊗ χ)y% + E%(y, χ), (4.5)

where δr1 denotes the diagonal symbol of Kronecker and

E%(y, χ) =
ωA⊗χ
2πi

∫
(1+ε)

Γ(1− s)∆
(
s+ κsgn(χ)

)
Γ(%+ 2− s)∆

(
1− s+ κsgn(χ)

)y%+1−sq
s− 1

2
A⊗χL(s,A⊗ χ)ds.

Denote the contributions of these three terms on the right hand side of (4.5) to the sum
A%(x; q, a) by M%(x; q), H%(x; q) and S%(x; q), respectively. This is to say

A%(x; q, a) = M%(x; q) +H%(x; q) + S%(x; q), (4.6)

where

M%(x; q) =
1

ϕ(q)

∑
h|q

µ(h)
∑
c|hd−1

a(h, c) Res
s=1

( Γ(s)

Γ(%+ 1 + s)
L(s,A)

( x
ch

)%+s)
,

H%(x; q) =
1

Γ(%+ 1)ϕ(q)

∑
hr|q

µ(h)
∑
c|hd−1

a(h, c)
∑∗

χ(mod r)

χ(ach)L(0,A⊗ χ)x%,

S%(x; q) =
1

ϕ(q)

∑
hr|q

µ(h)
∑
c|hd−1

a(h, c)(ch)%
∑∗

χ(mod r)

χ(ach)E%

( x
ch
, χ
)
.

(4.7)

We introduce the difference operator

∆%
yF (x) =

%∑
v=0

(−1)%−vCv
%F (x+ vy),

where y is a positive parameter less than x and Cv
% denotes the binomial coefficient. If F

has % derivatives, then one has

∆%
yF (x) =

∫ x+y

x

dt1

∫ t1+y

t1

dt2 · · ·
∫ t%−1+y

t%−1

F (%)(t%)dt%, (4.8)

where F (%) is the %-th derivative of F .
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We first apply the operator ∆%
y to A%(x; q, a) and obtain

∆%
yA%(x; q, a) =

∑′

n≤x
n≡a (mod q)

an
∆%
y(x− n)%

Γ(%+ 1)
+

%∑
v=0

(−1)%−vCv
%

∑′

x<n≤x+vy
n≡a (mod q)

an(x+ vy − n)%.

Since
1

Γ(%+ 1)
∆%
y(x− n)% = y%,

we get

∆%
yA%(x; q, a) = y%A0(x; q, a) +O%

(
y%

∑
x<n≤x+%y
n≡a (mod q)

|an|
)
. (4.9)

Furthermore, if an ≥ 0, then A0(x; q, a) is monotone. Thus, it follows from (4.8) that

∆%
yA%(x− %y; q, a) ≤ y%A0(x; q, a) ≤ ∆%

yA%(x; q, a). (4.10)

Next, we shall apply the operator ∆%
y to M%(x; q), H%(x; q) and S%(x; q), separately. From

now on, we assume that the implied constant in the notation � or O is allowed to depend
on A, % for convenience.

4.1. Computation of ∆%
yS%(x; q). By the Dirichlet series expression of L(s,A ⊗ χ)), we

can rewrite E%(y, χ) as

E%(y, χ) = ωA⊗χq
%+ 1

2
A⊗χ

∞∑
n=1

an χ(n)

n1+%
J

(
ny

qA⊗χ

)
, (4.11)

where

J(x) =
1

2πi

∫
(c)

Γ(1− s)∆
(
s+ κsgn(χ)

)
Γ(%+ 2− s)∆

(
1− s+ κsgn(χ)

)x%+1−sds.

We shall deal with the integral J(x) by means of the following result (see [3, equations (4.5)
and (4.11)] or [14, Theorem 3]).

Lemma 4.1. With the notation as before, suppose d ≥ 2. Let 0 ≤ % ∈ Z and c ∈ R. Then
for suitable choices c and %, we have

J(x) = O
(
x

1
2
+(1− 1

d)%−
1
2d

)
and J (%)(x) = O

(
x

1
2
− 1

2d

)
.

Combining (4.11) with the expression of S%(x; q) in (4.7), we conclude

S%(x; q) =
1

ϕ(q)

∑
hr|q

µ(h)
∑
c|hd−1

a(h, c)(ch)%
∞∑
n=1

an
n1+%

∑∗

χ(mod r)

χ(anch)ωA⊗χq
%+ 1

2
A⊗χJ

(
nx

chqA⊗χ

)
.

Recall that

qA⊗χ = qA r
d and ωA⊗χ = ηA,sgn(χ)χ(qA)

(τ(χ)√
r

)d
for (r, qA) = 1. Since the ηA,sgn(χ) and J(x) depend on the parity of χ, but not on the character
itself, we need to break up the sum over χ separately into even and odd characters. We put

K±(a, r) =
1

2

∑∗

χ(mod r)

(1± χ(−1))χ(a)
(τ(χ)√

r

)d
.

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


12 YUJIAO JIANG AND GUANGSHI LÜ

Moreover, we display the dependence by writing J+ and J− respectively in place of J . Thus,
we have

S%(x; q) =
1

ϕ(q)

∑
hr|q

µ(h)
∑
c|hd−1

a(h, c) (chqAr
d)% (qAr

d)
1
2

×
∑
±

ηA,sgn(χ)

∞∑
n=1

an
n1+%

K±(anchqA, r)J±

(
nx

chqArd

)
.

Lemma 4.2. Let K±(a, r) be as above with (a, r) = 1. Then we have

|K±(a, r)| ≤ ϕ(r)r−
1
2 τd(r).

Proof. It is clear that

K±(a, r) =
1

2
(K(a, r)±K(−a, r)) , (4.12)

where

K(a, r) =
∑∗

χ(mod r)

χ(a)
(τ(χ)√

r

)d
.

In fact, K(a, r) appears in a long list of literature, such as the series works of Duke and
Iwaniec about estimating coefficients of L-functions (see [5–9]), the work of Luo, Rudnick
and Sarnak on the Selberg conjecture [16] and the work of Luo about nonvanishing of GL(d)
L-functions [15]. It plays a key role in making these remarkable achievements.

As in the proof of [9], by the definition of Gauss sum, we infer that

r
d
2K(a, r) =

∑∗

χ(mod r)

χ(a)

 ∑
b(mod r)

χ(b)e

(
b

r

)d

.

Changing the order of summation and using the relation [11, equation (3.8)]∑∗

χ mod r

χ(m) =
∑

l|(m−1,r)

ϕ(l)µ
(r
l

)
when (r,m) = 1, we get

r
d
2K(a, r) =

∑
lk=r

ϕ(l)µ(k)
∑∗

b1,...,bd(mod r)
b1···bd≡a(mod l)

e

(
b1 + · · ·+ bd

r

)

=
∑
lk=r

(l,k)=1

ϕ(l)µ(k)d+1
∑∗

b1,...,bd(mod l)
b1···bd≡a(mod l)

e

(
(b1 + · · ·+ bd)k

r

)
.

Note that the innermost sum is the generalized Kloosterman sum for which Deligne [4] has

established the bound τd(l)l
d−1
2 . Employing Deligne’s bound, we directly have

|r
d
2K(a, r)| ≤

∑
lk=r

ϕ(l)τd(l)l
d−1
2 ≤ ϕ(r)r

d−1
2 τd(r)

∑
k|r

1

ϕ(k)k
d−1
2

� ϕ(r)r
d−1
2 τd(r),

which implies this lemma from (4.12). �
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We continue to compute ∆%
yS%(x; q). Now we apply the operator ∆%

y to S%(x; q) and obtain
from Lemma 4.2 that

∆%
yS%(x; q)� 1

ϕ(q)

∑
hr|q

|µ(h)|
∑
c|hd−1

|a(h, c)|(chrd)%r
d
2

×
∑
±

∞∑
n=1

|an|
n1+%

∣∣K±(anchqA, r)
∣∣ ∣∣∣∣∆%

yJ±

(
nx

chqArd

)∣∣∣∣
� 1

ϕ(q)

∑
hr|q

|µ(h)|
∑
c|hd−1

|a(h, c)|(chrd)%ϕ(r)r
d−1
2 τd(r)

×
∑
±

∞∑
n=1

|an|
n1+%

∣∣∣∣∆%
yJ±

(
nx

chqArd

)∣∣∣∣ .

(4.13)

By definition of the operator ∆%
y and Lemma 4.1, one easily has

∆%
yJ±(x) =

 O(|J±(x)|) = O
(
x

1
2
+(1− 1

d)%−
1
2d

)
,

O(y%|J (%)
± (x)|) = O

(
y%x

1
2
− 1

2d

)
.

Thus, we have

∆%
yJ±

(
nx

chqArd

)
�A min

{( nx

chrd

) 1
2
+(1− 1

d)%−
1
2d
,
( ny

chrd

)% ( nx

chrd

) 1
2
− 1

2d

}
.

We divide the innermost summation in (4.13) into two parts by the parameter z > 0, which
shall be chosen later. For any ε > 0, under Hypothesis S, we get

∑
n>z

|an|
n1+%

∣∣∣∣∆%
yJ±

(
nx

chqArd

)∣∣∣∣�∑
n>z

|an|
n1+%

( nx

chrd

) 1
2
+(1− 1

d)%−
1
2d

�
( x

chrd

) 1
2
+(1− 1

d)%−
1
2d
z

1
2
− %
d
− 1

2d (log z)bA−1,

and ∑
n≤z

|an|
n1+%

∣∣∣∣∆%
yJ±

(
nx

chqArd

)∣∣∣∣�∑
n≤z

|an|
n1+%

( ny

chrd

)% ( nx

chrd

) 1
2
− 1

2d

�
( y

chrd

)% ( xz

chrd

) 1
2
− 1

2d
(log z)bA−1.

On taking z = chrdxd−1

yd
, we have

∞∑
n=1

|an|
n1+%

∣∣∣∣∆%
yJ±

(
nx

chqArd

)∣∣∣∣� ( y

chrd

)%(x
y

) d−1
2

(log x)bA−1.
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Inserting this into (4.13) and applying the estimate (4.4) yield

∆%
yS%(x; q)�

(
x

y

) d−1
2 y%(log x)bA−1

ϕ(q)

∑
hr|q

|µ(h)|
∑
c|hd−1

|a(h, c)|ϕ(r)r
d−1
2 τd(r)

�
(
x

y

) d−1
2 y%(log x)bA−1

ϕ(q)

∑
hr=q

h
dθd
2

+εϕ(r)r
d−1
2 τd(r).

(4.14)

It is easy to deduce

∆%
yS%(x; q)�

(
qx

y

) d−1
2

y%(log x)bA−1τd(q)

when θd < 1− 1
d
, and

∆%
yS%(x; q)�

(
qx

y

) d−1
2

y%(log x)bA−1τd+1(q)

when 1− 1
d
≤ θd < 1.

4.2. Computation of ∆%
yH%(x; q).

Lemma 4.3. Let (r, aqA) = 1. Then we have∑∗

χ(mod r)

χ(a)L(0,A⊗ χ)� ϕ(r)r
d−1
2 τd(r)(log r)bA .

Proof. By the approximate functional equation in Lemma 3.2 with X = r−d/3, we have

L(0,A⊗χ) =
∑

n≤rd/6+ε
anχ(n)V0

( n

q
1/2
A rd/6

)
+ωA⊗χ(0)

∑
n≤r5d/6+ε

an χ(n)

n
V1

( n

q
1/2
A r5d/6

)
+O(r−2020).

We average the approximate functional equation over all primitive characters (mod r). Thus,
the sum ∑∗

χ(mod r)

χ(a)L(0,A⊗ χ)

is decomposed into two parts T1 and T2 with negligible error O(r−2019). Since L(s,A) is
absolutely convergent for Re s > 1, we get

T1 = r
∑

n≤rd/6+ε
|an| � r

d
6
+1+ε. (4.15)

To treat the contribution of T2, we first note that ωA⊗χ(s) and Vs depend on the parity of
χ, but not on the characters χ. Similar to the previous argument for S%(x; q), we break up
the sum T2 over χ separately into even and odd characters, and then get

T2 =
∑

n≤r5d/6+ε
(n,r)=1

an
n

∑∗

χ(mod r)

χ(an)ωA⊗χ(0)V1

( n

q
1/2
A r5d/6

)

�r
d
2

∑
±

∑
n≤r5d/6+ε
(n,r)=1

|an|
n
|K±(naqA, r)|.
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Using Hypothesis S and Lemma 4.2, we therefore have

T2 � ϕ(r)r
d−1
2 τd(r)(log r)bA . (4.16)

Collecting (4.15) and (4.16), Lemma 4.3 immediately follows. �

If the operator ∆%
y acts on H%(x; q), then we obtain from Lemma 4.3 that

∆%
yH%(x; q) =

1

Γ(%+ 1)ϕ(q)

∑
hr|q

µ(h)
∑
c|hd−1

a(h, c)y%
∑∗

χ(mod r)

χ(ach)L(0,A⊗ χ)

� y%

ϕ(q)

∑
hr|q

|µ(h)|
∑
c|hd−1

|a(h, c)|ϕ(r)r
d−1
2 τd(r)(log r)bA .

Similar to the previous estimate for (4.14), we get

∆%
yH%(x; q)� y%q

d−1
2 τd(q)(log q)bA

when θd < 1− 1
d
, and

∆%
yH%(x; q)� y%q

d−1
2 τd+1(q)(log q)bA

when 1− 1
d
≤ θd < 1.

4.3. Computation of ∆%
yM%(x; q). By the relation (4.3), we have

M%(x; q) =
1

ϕ(q)
Res
s=1

( Γ(s)

Γ(%+ 1 + s)
L(s,A⊗ χ0)x

%+s
)
,

where χ0 is the principle character (mod q). Let Cε be a cycle with a center at s = 1 and a
radius of ε. Then M%(x; q) can also be written as

M%(x; q) =
1

ϕ(q)

1

2πi

∫
Cε

Γ(s)

Γ(%+ 1 + s)
L(s,A⊗ χ0)x

%+sds.

In dealing with ∆%
yM%(x; q), the identity (4.8) immediately implies

∆%
yM%(x; q) =

∫ x+y

x

dt1

∫ t1+y

t1

dt2 · · ·
∫ t%−1+y

t%−1

M0(t%; q)dt%.

By introducing the change of variables tj 7→ y vj + tj−1 for 1 ≤ j ≤ % with t0 = x, we have

∆%
yM%(x; q) = y%

∫ 1

0

· · ·
∫ 1

0

M0(x+ y(v1 + · · ·+ v%); q)dv1 · · · dv%.

Then the first mean value theorem for integrals implies that

∆%
yM%(x; q) = y%M0(x+ ξy; q)

for some 0 < ξ < %. From the differential form of the mean value theorem, we have

∆%
yM%(x; q) = y%M0(x; q) + ξy%+1M

′

0(x+ ξ1y; q)

for some 0 < ξ1 < ξ, where M
′
0(x; q) is the derivative of M0(x; q) given by

M
′

0(x; q) =
1

ϕ(q)

1

2πi

∫
Cε
L(s,A⊗ χ0)x

s−1ds.

We can rewrite L(s,A⊗ χ0) as

L(s,A⊗ χ0) = Gq(s,A)L(s,A),
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where

Gq(s,A) =
∏
p|q

d∏
j=1

(
1− αj(p)

ps

)
.

For any j ≥ 0, we obtain from general Leibniz rule that

q

ϕ(q)
G(j)
q (1,A)� (log q)j

∏
p|q

(
1 +

1

p1−θd

)d(
1− 1

p

)−1
� τ(q)(log q)j

if θd < 1. The residue theorem then yields

M
′

0(x; q) =
1

ϕ(q)
Res
s=1

(
Gq(s,A)L(s,A)xs−1

)
�1

q
(|G(m−1)

q (1,A)|+ |Gq(1,A)|(log qx)m−1)

�τ(q)(log qx)m−1

q
.

Thus, we have

∆%
yM%(x; q) = y%

(
M0(x; q) +O

(
τ(q)

q
y(log x)m−1

))
.

At last, we just note that these terms do not exist when the pole order m of L(s,A) at s = 1
equals zero, which means that L(s,A) is an entire function.

4.4. The finishing touches. We first assume θd < 1 − 1
d
. Applying the operator ∆%

y to
both sides of (4.6), we have

∆%
yA%(x; q, a) = ∆%

yM%(x; q) + ∆%
yH%(x; q) + ∆%

yS%(x; q).

Collecting these estimates of ∆%
yM%(x; q), ∆%

yH%(x; q) and ∆%
yS%(x; q) as in Sections 4.1–4.3,

it follows that

∆%
yA%(x; q, a)

y%
=M0(x; q) +O

(
τ(q)

q
y(log qx)m−1

)
+O

(
q
d−1
2 τd(q)(log q)bA

)
+O

(
τd(q)

(
qx

y

) d−1
2

(log x)bA−1

)
.

(4.17)

Thus, we conclude the first assertion of Theorem 2.1 from (4.9).
In addition an ≥ 0, the differential form of the mean value theorem gives

M0(x; q)−M0(x− %y; q)�ymax
ξ�1
|M ′

0(x+ ξy; q)|

�τ(q)

q
y(log qx)m−1.

From the estimates (4.17), it is easy to derive that

∆%
yA%(x− %y; q, a) and ∆%

yA%(x; q, a)

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


17

are equal to

M0(x; q) +O

(
τ(q)

q
y(log qx)m−1

)
+O

(
q
d−1
2 τd(q)(log q)bA

)
+O

(
τd(q)

(
qx

y

) d−1
2

(log x)bA−1

)
.

(4.18)

Using the inequalities (4.10), we then infer A0(x; q, a) also asymptotically equals (4.18). On

taking y = qx
d−1
d+1 , we finally derive

A0(x; q, a) = M0(x; q) +O
(
q
d−1
2 τd(q)(log q)bA

)
+O

(
τd(q)x

d−1
d+1 (log x)max{bA,m}−1

)
,

which completes the proof of the second assertion in Theorem 2.1.
If 1 − 1

d
≤ θd < 1, we get analogous conclusions, where the only difference is that the

divisor function τd(q) in the error terms is replaced by τd+1(q).

5. Background on automorphic L-functions and their Rankin–Selberg

We are mainly interested in some arithmetic functions arising from cuspidal automorphic
representations. So we recall and show some standard facts about L-functions related to
cuspidal automorphic representations in this section. We refer the reader to [24, Section 2]
for a more detailed overview.

5.1. Standard L-functions. For π = ⊗pπp ∈ F(d) with d ≥ 2, the standard L-function
L(s, π) associated to π is of the form

L(s, π) =
∏
p<∞

L(s, πp) =
∞∑
n=1

λπ(n)

ns
.

The Euler product and Dirichlet series converge absolutely for Re(s) > 1. For each (finite)
prime p, the inverse of the local factor L(s, πp) is a polynomial in p−s of degree ≤ d

L(s, πp)
−1 =

d∏
j=1

(
1− αj,π(p)

ps

)
for suitable complex numbers αj,π(p). With this convention, we have αj,π(p) 6= 0 for all j
whenever p - qπ, and it might be the case that αj,π(p) = 0 for some j when p | qπ, where
qπ is the arithmetic conductor of π. At the archimedean place of Q, there are d complex
Langlands parameters µj,π from which we define

L(s, π∞) =
d∏
j=1

ΓR(s+ µj,π).

For all primes p, it is known that there exists a constant

θd ∈
[
0,

1

2
− 1

d2 + 1

]
(5.1)

such that

|αj,π(p)| ≤ pθd and Re(µj,π) ≥ −θd
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for all j. Furthermore, for any unramified prime p and any 1 ≤ j ≤ d, one has

p−θd ≤ |αj,π(p)| ≤ pθd and |Re(µj,π)| ≤ θd. (5.2)

The generalized Ramanujan conjectures assert that θd may be taken as 0.
With all the local factors defined as above, we can turn to the functional equation. The

contragredient π̃ of π ∈ F(d) is also an irreducible cuspidal automorphic representation in
F(d). Thus, we have {

αj,π̃(p) : 1 ≤ j ≤ d
}

=
{
αj,π(p) : 1 ≤ j ≤ d

}
for each p <∞, and {

µj,π̃ : 1 ≤ j ≤ d
}

=
{
µj,π : 1 ≤ j ≤ d

}
.

Define the completed L-function

Λ(s, π) = qs/2π L(s, π)L(s, π∞).

Thus, Λ(s, π) extends to an entire function. Moreover, Λ(s, π) is bounded in vertical strips
and satisfies a functional equation of the form

Λ(s, π) = ωπΛ(1− s, π̃),

where ωπ is a complex number of modulus 1.

5.2. Rankin–Selberg L-functions. Now we turn to the Rankin–Selberg L-functions. Let
π = ⊗pπp ∈ F(d) and π′ = ⊗pπ′p ∈ F(d′). The Rankin–Selberg L-function L(s, π × π′)
associated to π and π′ is of the form

L(s, π × π′) =
∏
p

L(s, πp × π′p) =
∞∑
n=1

λπ×π′(n)

ns
.

The Euler product and Dirichlet series converge absolutely for Re(s) > 1. For each (finite)
prime p, the inverse of the local factor L(s, πp × π′p) is a polynomial in p−s of degree ≤ dd′

L(s, πp × π′p)−1 =
d∏
j=1

d′∏
j′=1

(
1− αj,j′,π×π′(p)

ps

)
(5.3)

for suitable complex numbers αj,j′,π×π′(p). With θd as in (5.1), we have the pointwise bound

|αj,j′,π×π′(p)| ≤ pθd+θd′ . (5.4)

If p - qπ or p - qπ′ , then we have the equality of sets{
αj,j′,π×π′(p) : j ≤ d, j′ ≤ d′

}
=
{
αj,π(p)αj′,π′(p) : j ≤ d, j′ ≤ d′

}
. (5.5)

At the archimedean place of Q, there are dd′ complex Langlands parameters µj,j′,π×π′ from
which we define

L(s, π∞ × π′∞) = π−
dd′s
2

d∏
j=1

d′∏
j′=1

Γ
(s+ µj,j′,π×π′

2

)
.

These parameters satisfy the equality{
µj,j′,π̃×π̃′

}
=
{
µj,j′,π×π′

}
for 1 ≤ j ≤ d, 1 ≤ j′ ≤ d′ and the pointwise bound

Re(µj,j′,π×π′) ≥ −θd − θd′ . (5.6)
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The complete L-function

Λ(s, π × π′) = q
s/2
π×π′L(s, π × π′)L(s, π∞ × π′∞)

has a meromorphic continuation and is bounded (away from its poles) in vertical strips.
Under our normalization on the central characters, Λ(s, π×π′) is entire if and only if π̃ 6= π′.
Moreover, Λ(s, π × π′) satisfies the functional equation

Λ(s, π × π′) = ωπ×π′Λ(1− s, π̃ × π̃′),

where ωπ×π′ is a complex number of modulus 1.
Finally, we recall some estimates for π′ = π̃. It is known from [13, Lemma 3.1] that

|λπ(n)|2 ≤ λπ×π̃(n) (5.7)

hold for all positive integer n. Moreover, L(s, π × π̃) extends to the complex plane with a
simple pole at s = 1. Hence, Landau’s lemma [2, Theorem 3.2] gives∑

n≤x

λπ×π̃(n) = cπx+Oπ

(
x
d2−1

d2+1

)
(5.8)

for some constant cπ > 0.

5.3. Twists. Let χ(mod q) be a primitive Dirichlet character with (q, qπ) = 1. As is well
known, χ corresponds to a Hecke character of the idele class group A×/Q× trivial on R×+, so
χ is of the form χ = ⊗pχp.

We apply the Rankin–Selberg theory described above to the following situation: Fix π in
F(d) with m ≥ 2, and let χ be a primitive Dirichlet character modulo q. Take π′ = χ. The
twisted L-function is given by

L(s, π ⊗ χ) =
∞∑
n=1

λπ(n)χ(n)

ns
.

The corresponding complete L-function

Λ(s, π ⊗ χ) = (qπq
d)s/2L(s, π∞ × χ∞)L(s, π ⊗ χ)

has an analytic continuation to the whole complex plane and satisfies the following functional
equation:

Λ(s, π ⊗ χ) = ωπ⊗χΛ(1− s, π̃ ⊗ χ),

where L(s, π∞ × χ∞) is given by

L(s, π∞ ⊗ χ∞) =
d∏
j=1

ΓR
(
s+ µj,π⊗χ

)
.

Similarly, if we take π′ = π̃(χ) := π̃ ⊗ χ, then we have

L(s, π × π̃(χ)) =
∞∑
n=1

λπ×π̃(n)χ(n)

ns
.

The complete L-function

Λ(s, π × π̃(χ)) = (qπ×π̃q
2d)s/2L(s, π∞(χ∞)× π̃∞)L(s, π × π̃(χ))
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has an analytic continuation to the whole complex plane and satisfies the following functional
equation:

Λ(s, π × π̃(χ)) = ωπ×π̃(χ)Λ(1− s, π × π̃(χ)),

where

L(s, π∞ × π̃∞(χ∞)) =
d∏
j=1

d∏
j′=1

ΓR
(
s+ µj,j′,π×π̃(χ)

)
.

Due to the work of Müller and Speh [18, Proof of Lemma 3.1], all local Langlands param-
eters µj,π⊗χ and µj,j′,π×π̃(χ) depend on π and the parity of χ at most (see also [24, Proof of
Lemma 2.1]). Moreover, the relatively explicit expressions of ωπ⊗χ and ωπ×π̃(χ) are required.
We adopt the argument of Barthel–Ramakrishnan [2, Proposition 4.1] or Luo–Rudnick–
Sarnak [16, Lemma 2.1] and show the following result.

Lemma 5.1. Let π ∈ F(d), and let χ(mod q) be a primitive Dirichlet character with (q, qπ) =
1. Then we have

ωπ⊗χ = ηπ,sgn(χ)χ(qπ)τ(χ)dq−
d
2 ,

where ηπ,sgn(χ) depends on π and the parity of χ only, and |ηπ,sgn(χ)| = 1.

Proof. Let the ε-factor be defined by

L(s, π∞ ⊗ χ∞)L(s, π ⊗ χ) = ε(s, π ⊗ χ)L(1− s, π∞ ⊗ χ∞)L(1− s, π ⊗ χ).

By the functional equation, the relation between the ε-factor and the root number is

ε(s, π ⊗ χ) = (qπq
d)

1
2
−sωπ⊗χ.

Moreover, it can be written as a product of local factors by fixing an additive character
ψ =

∏
p≤∞ ψp:

ε(s, π ⊗ χ) =
∏
p≤∞

ε(s, πp ⊗ χp, ψp). (5.9)

If p - qπq, where πp and χp are both unramified, then

ε(s, πp ⊗ χp, ψp) = 1. (5.10)

Suppose that pr(χp) ‖ q, in which case χp is ramified with conductor pr(χp). By as-
sumption, πp is the canonical component of πq = Ind (GLd, B;µ1, . . . , µd) where B is the
Borel subgroup of GLm and µj(x) = |x|uj are unramified characters. Then πq ⊗ χp =
Ind (GLd, B;χµ1, . . . , χµd). Thus, we have

ε(s, πp ⊗ χp, ψp) =
d∏
j=1

ε(s, µj ⊗ χp, ψp)

=
d∏
j

ε (s, µjχp, ψp)

=
d∏
j

ε (s+ uj, χp, ψp) ,

where the abelian ε-factor (for χ primitive) is given by

ε (s, χ, ψq) = τ(χ)p−r(χp)s.

https://doi.org/10.4153/S0008414X24000312 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000312


21

Since ε(s, πp, ψp) = 1 and the central character of π is trivial, which means that
∑m

j=1 uj = 0,
we have

ε(s, πp ⊗ χp, ψp) =
d∏
j

τ(χ)p−r(χp)(s+uj)

= τ (χ, ψp)
d p−dr(χp)sε(s, πp, ψp).

(5.11)

Suppose that pr(πp) ‖ qπ, in which case χp is unramified given by χp(x) = |x|vp . With this
given, we have

ε(s, πp ⊗ χp, ψp) = ε(s+ vp, πp, ψp)

= ωπpp
r(πp)( 1

2
−s−vp)

= χ
(
pr(πp)

)
ε(s, πp, ψp),

(5.12)

Consider the archimedean place. It is known from [12] that ε(s, π∞, ψ∞) and ε(s, π∞ ⊗
χ∞, ψ∞) are constants, hence equal to the corresponding values at s = 1/2. Since χ∞(x) =
sgn(x)|x|v∞ , the constant ε(s, πp ⊗ χp, ψp) depends only on π and the parity of χ.

Finally, inserting (5.10), (5.11) and (5.12) into (5.9), we get

ε(s, π ⊗ χ) =

(∏
p|q

τ (χ, ψp)
d p−dr(χp)sε(s, πp, ψp)

)(∏
p|qπ

χ
(
pr(πp)

)
ε(s, πp, ψp)

)

×
ε∞(1

2
, π∞ ⊗ χ∞, ψ∞)

ε∞(1
2
, π∞, ψ∞)

ε∞(s, π∞, ψ∞)

=cπ,sgn(χ)χ(qπ)τ(χ)mq−dsε(s, π),

(5.13)

where cπ,sgn(χ) := ε∞(1/2, π∞ ⊗ χ∞, ψ∞)/ε∞(1/2, π∞, ψ∞) is a constant depending on π and
the parity of χ only. Thus, the relation (5.13) of ε-factors gives

ωπ⊗χ =

(∏
p|q

τ (χ, ψp)
d p−dr(χp)sε(s, πp, ψp)

)(∏
p|qπ

χ
(
pr(πp)

)
ε(s, πp, ψp)

)

×
ε∞(1

2
, π∞ ⊗ χ∞, ψ∞)

ε∞(1
2
, π∞, ψ∞)

ε∞(s, π∞, ψ∞)

=cπ,sgn(χ)χ(qπ)τ(χ)dq−
d
2ωπ,

which implies |cπ,sgn(χ)| = 1 in turn. On putting ηπ,sgn(χ) = cπ,sgn(χ)ωπ, we complete the proof
of this lemma. �

Similar to Lemma 5.1, we can also show the following lemma.

Lemma 5.2. Let π ∈ F(d) be a cuspidal automorphic representation of GL(d) of conduc-
tor qπ with trivial central character, and χ(mod q) be a primitive Dirichlet character with
(q, qπ) = 1. Then we have

ωπ×π̃(χ) = ηπ×π̃,sgn(χ)χ(qπ×π̃)τ(χ)d
2

q−
d2

2 ,

where ηπ×π̃,sgn(χ) depends on π and the parity of χ only, and |ηπ×π̃,sgn(χ)| = 1.
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6. Applications of Theorems 2.1

6.1. Proof of Theorem 1.2. From the discussion in Section 5, we see that the Rankin–
Selberg L-function L(s, π × π̃) satisfies Conditions (A1)–(A3) with m = 1, and its twisted
L-function L(s, π ⊗ χ) satisfies Condition (A4), where the later follows from Lemma 5.2.

Next, we discuss the sizes of various types for the coefficients λπ×π̃(n). The asymptotic
formula (5.8) yields Hypothesis S with bπ×π̃ = 1. Since the central character of π is trivial,
one has

sd,π(p) = α1,π(p)α2,π(p) · · ·αd,π(p) = 1

for all primes p with (p, qπ) = 1. Then it follows from (5.2) and (5.5) that

|αj,j′,π×π′(p)| ≤ p2θd , sj,π×π̃(p)� p2min{j,d2−j}θd

for any prime p with (p, qπ) = 1 and any 1 ≤ j ≤ d2, which implies Hypothesis H(θd2) with
θd2 = 2θd ≤ 1 − 2

d2+1
< 1 − 1

d2
. Therefore, we can apply Theorem 2.1 to the non-negative

coefficients λπ×π̃(n), and then obtain∑
n≤x

n≡a (mod q)

λπ×π̃(n) =M0(x; q) +Oπ

(
τd2(q)q

d2−1
2 log q

)
+Oπ

(
τd2(q)x

d2−1

d2+1

)
,

where the main term is given by

M0(x; q) =
1

ϕ(q)
Res
s=1

(1

s
L
(
s, π × π̃(χ0)

)
xs
)
.

Since
L
(
s, π × π̃(χ0)

)
= L(s, π × π̃)

∏
p|q

L(s, πp × π̃p)−1

and L(s, π × π̃) has a simple pole at s = 1, we have

M0(x; q) =
1

ϕ(q)
Res
s=1

(
L(s, π × π̃)

)∏
p|q

L(1, πp × π̃p)−1x.

This completes the proof of Theorem 1.2.

6.2. Proof of Theorem 1.1. Similar to the argument in Section 6.1, we can apply Theorem
2.1 to the coefficients λπ(n). By applying the Cauchy–Schwarz inequality, (5.7) and (5.8),
we get ∑

x<n≤x+y
n≡a (mod q)

|λπ(n)| �π

(xy
q

)1/2
(6.1)

for any q ≤ y ≤ x, which yields Hypothesis S with bπ = 1. Since L(s, π) is entire, the main
term and the first error term do not exist when applying Theorem 2.1. Thus, we obtain∑

n≤x
n≡a (mod q)

λπ(n)�π τd(q)q
d−1
2 log q + τd(q)

(qx
y

) d−1
2

+
∑

x<n≤x+O(y)
n≡a (mod q)

|λπ(n)|. (6.2)

Inserting the bound (6.1) and taking y = qx1−
2
d , we get the first bound∑

n≤x
n≡a (mod q)

λπ(n)�π τd(q)x
1− 1

d
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for q ≤ x
1
d .

Moreover, it follows from Theorem 1.2 that∑
x<n≤x+y
n≡a (mod q)

λπ×π̃(n)�π
cπ,q
ϕ(q)

y +O
(
τd2(q)q

d2−1
2 log q

)
+O

(
τd2(q)x

d2−1

d2+1

)

for q ≤ x
2

d2+1 . By (5.3) and (5.4), the constant cπ,q satisfies

cπ,q �π

∏
p|q

(
1 + p

− 2
d2+1

+ε)d2 � τ(q).

Note that q/ϕ(q)� log q. Further, we get from (5.7) that∑
x<n≤x+y
n≡a (mod q)

|λπ(n)| � τd2(q) log x

(
y

q
+

√
y

q
· x

1
2
− 1
d2+1

)

for q ≤ x
2

d2+1 . On taking y = qx
1− 2d

d2+1 , the estimate (6.2) gives the second bound∑
n≤x

n≡a (mod q)

λπ(n)� τd2(q)x
1− d+1

d2+1 log x

for q ≤ x
2

d2+1 .
Assume the Ramanujan conjecture holds for π, the Brun–Titchmarsh inequality (see Shiu

[20, Theorem 1]) yields ∑
x<n≤x+y
n≡a (mod q)

|λπ(n)| ≤ y

ϕ(q) log x
exp

(∑
p≤x
p-q

|λπ(p)|
p

)
(6.3)

provided that q ≤ y1−ε and xε ≤ y ≤ x. By Mertens’ theorem and the prime number
theorem for Rankin–Selberg L-function L(s, π × π̃) (see [13, Page 630]), one has∑

p≤x

|λπ(p)|
p

�
(∑
p≤x

1

p

) 1
2
(∑
p≤x

λπ×π̃(p)

p

) 1
2 � log log x.

Inserting this estimate into (6.3), we obtain∑
x<n≤x+y
n≡a (mod q)

|λπ(n)| � y

ϕ(q)

provided that q ≤ y1−ε and xε ≤ y ≤ x. Substitute this into (6.2) and taking y = qx1−
2
d+1 ,

the last assertion follows.

6.3. Proof of Theorem 1.3. We begin with evaluating the summation about λsymdf (n) in
a short interval.

Lemma 6.1. Let f ∈ H∗k(N) and λsymdf (n) be the coefficients of L(s, symdf). For (q, aN) =
1, we have ∑

x<n≤x+y
n≡a (mod q)

|λsymdf (n)| � y

ϕ(q)(log x)γd
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provided that q ≤ y1−ε and xε ≤ y ≤ x, where γd = 1− 4(d+1)
d(d+2)π

cot
(

π
2(d+1)

)
and 0.15 < γd <

0.19.

Proof. Let

Ud(cos θp) =
sin((d+ 1)θp)

sin θp
be the d-th Chebyshev polynomial of the second type. One can easily check via (1.4) that

λsymdf (p) = Ud(cos θp), p - N.
By the Sato–Tate conjecture (1.5) and a straightforward calculation of Maple, we get∑

p≤x
p-q

|λsymdf (p)| ≤
∑
p≤x
p-N

|λsymdf (p)|+O(1)

∼
(∫ π

0

| sin((d+ 1)θ)|
sin θ

dµST

) x

log x

∼ 4(d+ 1)

d(d+ 2)π
cot

(
π

2(d+ 1)

)
x

log x
.

Hence, we derive by partial summation and substituting this into (6.3) that∑
x<n≤x+y
n≡a (mod q)

|λsymdf (n)| � y

ϕ(q)(log x)γd
,

where γd = 1 − 4(d+1)
d(d+2)π

cot
(

π
2(d+1)

)
. It is clear that γd is strictly increasing. Thus, for any

d ≥ 1, we have

0.15 < 1− 8

3π
= γ1 ≤ γd ≤ lim

d→∞
γd = 1− 8

π2
< 0.19.

�

Finally, the proof of Theorem 1.3 is completed if we combine the first assertion of Theorem

2.1 with Lemma 6.1, the choice y = qx
d
d+2 and the fact q/ϕ(q) ≤ τ(q).
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