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Abstract

We study the asymptotic growth rate of the labels of high-degree vertices in weighted
recursive graphs (WRGs) when the weights are independent, identically distributed,
almost surely bounded random variables, and as a result confirm a conjecture by
Lodewijks and Ortgiese (‘The maximal degree in random recursive graphs with random
weights’, preprint, 2020). WRGs are a generalisation of the random recursive tree and
directed acyclic graph models, in which vertices are assigned vertex-weights and where
new vertices attach to m ∈N predecessors, each selected independently with a proba-
bility proportional to the vertex-weight of the predecessor. Prior work established the
asymptotic growth rate of the maximum degree of the WRG model, and here we show
that there exists a critical exponent μm such that the typical label size of the maximum-
degree vertex equals nμm(1+o(1)) almost surely as n, the size of the graph, tends to infinity.
These results extend results on the asymptotic behaviour of the location of the maximum
degree, formerly only known for the random recursive tree model, to the more general
weighted multigraph case of the WRG model. Moreover, for the weighted recursive
tree model, that is, the WRG model with m = 1, we prove the joint convergence of the
rescaled degree and label of high-degree vertices under additional assumptions on the
vertex-weight distribution, and also extend results on the growth rate of the maximum
degree obtained by Eslava, Lodewijks, and Ortgiese (Stoch. Process. Appl. 158, 2023).
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1. Introduction

The weighted recursive graph (WRG) model is a weighted multigraph generalisation of
the random recursive tree model in which each vertex has a (random) weight and out-degree
m ∈N. The graph process (Gn, n ∈N) is initialised with a single vertex 1 with vertex-weight
W1, and at every step n ≥ 2, vertex n is assigned vertex-weight Wn and m half-edges and is
added to the graph. Conditionally on the weights, each half-edge is then independently con-
nected to a vertex i in {1, . . . , n − 1} with probability Wi/

∑n−1
j=1 Wj. The case m = 1 yields the

weighted recursive tree (WRT) model, first introduced by Borovkov and Vatutin [3, 4]. In this
paper we are interested in the asymptotic behaviour of the vertex labels of vertices that attain
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the maximum degree in the graph, when the vertex-weights are independent and identically
distributed (i.i.d.) bounded random variables. This was formerly only known for the random
recursive tree model [2], a special case of the WRT which is obtained when Wi = 1 for all
i ∈N.

After the introduction of the WRT model by Borovkov and Vatutin, Hiesmayr and Işlak
studied the height, depth, and size of the tree branches of this model. Mailler and Uribe Bravo
[13], as well as Sénizergues [17] and Sénizergues and Pain [14, 15], study the weighted profile
and height of the WRT model. Mailler and Uribe Bravo consider random vertex-weights with
particular distributions, whereas Sénizergues and Pain allow for a more general model with
sequences of both deterministic and random weights.

Iyer [9] and the more general work by Fountoulakis and Iyer [8] study the degree distribu-
tion of a large class of evolving weighted random trees, of which the WRT model is a particular
example, and Lodewijks and Ortgiese [12] study the degree distribution of the WRG model.
In both cases, an almost sure limiting degree distribution for the empirical degree distribution
is identified. Lodewijks and Ortgiese [12] also study the maximum degree and the labels of
the maximum-degree vertices of the WRG model for a large range of vertex-weight distribu-
tions. In particular, we distinguish two main cases in the behaviour of the maximum degree:
when the vertex-weight distribution has unbounded support, and when it has bounded sup-
port. In the former case the behaviour and size of the labels of maximum-degree vertices are
mainly controlled by a balance of vertices being old (i.e. having a small label) and having a
large vertex-weight. In the latter case, because the vertex-weights are bounded, the behaviour
is instead controlled by a balance of vertices being old and having a degree which significantly
exceeds their expected degree.

Finally, Eslava, Lodewijks, and Ortgiese [7] describe the asymptotic behaviour of the maxi-
mum degree in the WRT model in more detail (compared to [12]) when the vertex-weights are
i.i.d. bounded random variables, under additional assumptions on the vertex-weight distribu-
tion. In particular, [7] outlines several classes of vertex-weight distributions for which different
higher-order behaviour is observed.

In this paper we identify the growth rate of the labels of vertices that attain the maximum
degree, assuming only that the vertex-weights are almost surely bounded. Setting

θm := 1 +E [W] /m and μm := 1 − (θm − 1)/(θm log θm),

we show that the labels of vertices that attain the maximum degree are almost surely of the
order nμm(1+o(1)). This confirms a conjecture by Lodewijks and Ortgiese [12, Conjecture 2.11],
improves a recent result of Banerjee and Bhamidi [2] for the location of the maximum degree
in the random recursive tree model (which is obtained by setting E [W] = 1, m = 1, so that
μ1 = 1 − 1/(2 log 2)) from convergence in probability to almost sure convergence, and extends
their result to the WRG model. Furthermore, for the WRT model, that is, the case m = 1, under
an additional assumption on the vertex-weight distribution, we are able to provide a central
limit theorem for the rescaled labels of uniform vertices v1, . . . , vk with k ∈N, conditionally
on the event that the in-degree of vertex vi is at least di for each i ∈ [k], for a range of values
of the di. Finally, for several specific cases of vertex-weight distribution, we prove the joint
convergence of the rescaled degree and label of high-degree vertices to a marked point process.
The points in this marked point process are defined in terms of a Poisson point process on R,
and the marks are Gaussian random variables. These additional assumptions on the vertex-
weight distribution are similar to the assumptions made by Eslava, Lodewijks, and Ortgiese in
[7] to provide higher-order asymptotic results for the growth rate of the maximum degree in
the WRT model, but relax a particular technical condition used in [7], and our results allow for
an extension of their results as well.
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Notation. Throughout the paper we use the following notation: we let N := {1, 2, . . .} denote
the natural numbers, set N0 := {0, 1, . . .} to include zero, and let [t] := {i ∈N : i ≤ t} for
any t ≥ 1. For x ∈R, we let �x� := inf{n ∈Z : n ≥ x} and �x	 := sup{n ∈Z : n ≤ x}. For x ∈R,
k ∈N, we let (x)k := x(x − 1) · · · (x − (k − 1)) and (x)0 := 1 and use the notation d̄ to denote
a k-tuple d = (d1, . . . , dk) (the size of the tuple will be clear from the context), where the
d1, . . . , dk are either numbers or sets. For sequences (an, bn)n∈N such that bn is positive
for all n, we say that an = o(bn), an = ω(bn), an ∼ bn, or an =O(bn) if limn→∞ an/bn = 0,
if limn→∞ |an|/bn = ∞, if limn→∞ an/bn = 1, or if there exists a constant C > 0 such that

|an| ≤ Cbn for all n ∈N, respectively. For random variables X, (Xn)n∈N we let Xn
d−→ X,

Xn
P−→ X, and Xn

a.s.−→ X respectively denote convergence in distribution, convergence in prob-
ability, and almost sure convergence of Xn to X. We let � : R→ (0, 1) denote the cumulative
density function of a standard normal random variable, and for a set B ⊆R we abuse this
notation to also define �(B) := ∫

B φ(x) dx, where φ(x) := �′(x) denotes the probability den-
sity function of a standard normal random variable. It will be clear from the context which
of the two definitions is to be applied. Finally, we use the conditional probability measure
PW(·) := P(·|(Wi)i∈N) and conditional expectation EW [·] := E [·|(Wi)i∈N], where the (Wi)i∈N
are the i.i.d. vertex-weights of the WRG model.

2. Definitions and main results

We define the weighted recursive graph (WRG) as follows.

Definition 2.1. (Weighted recursive graph.) Let (Wi)i≥1 be a sequence of i.i.d. copies of a
random variable W such that P(W > 0) = 1, let m ∈N, and set

Sn :=
n∑

i=1

Wi.

We construct the weighted recursive graph (WRG) as follows:

1. Initialise the graph with a single vertex 1, the root, and assign to the root a vertex-weight
W1. We let G1 denote this graph.

2. For n ≥ 1, introduce a new vertex n + 1 and assign to it the vertex-weight Wn+1 and m
half-edges. Conditionally on Gn, independently connect each half-edge to some vertex
i ∈ [n] with probability Wi/Sn. Let Gn+1 denote this graph.

We treat Gn as a directed graph, where edges are directed from new vertices towards old ver-
tices. Moreover, we assume throughout this paper that the vertex-weights are bounded almost
surely.

Remark 2.1.

(i) Note that the edge connection probabilities remain unchanged if we multiply each
weight by the same constant. In particular, we assume without loss of generality (in
the case of bounded vertex-weights) that x0 := sup{x ∈R | P(W ≤ x) < 1} = 1.

(ii) It is possible to extend the definition of the WRG to the case of random out-degree.
Specifically, we can allow that vertex n + 1 connects to every vertex i ∈ [n] indepen-
dently with probability Wi/Sn, and the results presented in this paper still hold under
this extension.
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Throughout, for any n ∈N and i ∈ [n], we write

Zn(i) := in-degree of vertex i in Gn.

This paper presents the asymptotic behaviour of the labels of high-degree vertices, the
maximum-degree vertices in particular. To that end, we define

In := inf{i ∈ [n] : Zn(i) ≥Zn(j) for all j ∈ [n]}. (2.1)

We now present our first result, which confirms [12, Conjecture 2.11].

Theorem 2.1. (Labels of the maximum-degree vertices.) Consider the WRG model as in
Definition 2.1 with vertex-weights (Wi)i∈N, which are i.i.d. copies of a positive random vari-
able W such that x0 := sup{x > 0 : P(W ≤ x) < 1} = 1. Let θm := 1 +E [W] /m and recall In

from (2.1). Then
log In

log n
a.s.−→ 1 − θm − 1

θm log θm
=: μm.

Remark 2.2.

(i) The result also holds for Ĩn := sup{i ∈N : Zn(i) ≥Zn(j) for all j ∈ [n]}, so that all ver-
tices that attain the maximum degree have a label that is almost surely of the order
nμm(1+o(1)). In fact, the result holds for vertices with ‘near-maximum’ degree as
well—that is, for vertices with degree logθm

n − in, where in → ∞ and in = o(log n).

(ii) As discussed in Remark 2.1(ii), the result presented in Theorem 2.1, including the
additional results discussed in Item (i) above, also holds in the case of random
out-degree.

When we consider the weighted recursive tree (WRT) model, that is, the WRG model as
in Definition 2.1 with m = 1, we can provide higher-order results for the labels of high-degree
vertices. Here, high-degree means that the degree diverges with n. These results are already
known for the random recursive tree model, as proved by the author in [11]. To extend these
higher-order results to the more general WRT model, additional assumptions on the vertex-
weight distribution are required, which are as follows.

Assumption 2.1. (Vertex-weight distribution.) The vertex-weights W, (Wi)i∈N are i.i.d. strictly
positive random variables whose distribution satisfies the following condition:

(C1) The essential supremum of the distribution is one; x0 := sup{x ∈R : P(W ≤ x) < 1} = 1.

Additionally, we may require the following conditions:

(C2) There exist a, c1 > 0, τ ∈ (0, 1), and x0 ≥ 1 such that P(W ≥ 1 − 1/x) ≥ ae−c1xτ
for all

x ≥ x0.

(C3) There exist C, ρ > 0 and x0 ∈ (0, 1) such that P(W ≤ x) ≤ Cxρ for all x ∈ [0, x0].

Finally, we may assume the vertex-weights satisfy one of the following cases:

Atom: The vertex-weights follow a distribution that has an atom at one, i.e. there
exists q0 ∈ (0, 1] such that P(W = 1) = q0. Note that q0 = 1 recovers the random
recursive tree model.
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Beta: The vertex-weights follow a beta distribution: for some α, β > 0 and with 
 the
gamma function,

P(W ≥ x) =
∫ 1

x


(α + β)


(α)
(β)
sα−1(1 − s)β−1 ds, x ∈ [0, 1]. (2.2)

Gamma: The vertex-weights follow a distribution that satisfies, for some b ∈R, c1 > 0,
and τ ≥ 1 such that b ≤ 0 if τ > 1 or bc1 ≤ 1 when τ = 1,

P(W ≥ x) = (1 − x)−be−(x/(c1(1−x)))τ , x ∈ [0, 1). (2.3)

Remark 2.3.

(i) Condition C1 naturally follows from the model definition, and is also stated in
Remark 2.1(i). Condition C2 provides a family of vertex-weight distributions for which
we can prove a central-limit-theorem-type result for the labels of high-degree vertices.
Informally, for vertex-weights with a tail distribution that decays at a sub-exponential
rate as it approaches one, it holds that

P

(
Zn(v) ≥ d, v ≥ n exp(−(1 − θ−1)d + x

√
(1 − θ−1)2d)

)
≈ P (Zn(v) ≥ d) (1 − �(x)),

where θ := θ1 = 1 +E [W], v is a vertex selected uniformly at random from [n], x ∈R

is fixed, and d = d(n) is an integer-valued sequence that diverges with n. This general
result can be used to prove the desired result.
Condition C3 follows from [7]. There, this condition is necessary to make it possible to
precisely determine the asymptotic behaviour of P(Zn(v) ≥ d), where d = d(n) ∈N is an
integer-valued sequence and v is a vertex selected uniformly at random from [n]. It is
only needed here in a part of Theorem 2.2.

(ii) The gamma case derives its name from the fact that X := (1 − W)−1 is distributed as
a gamma random variable, conditionally on X ≥ 1. The condition on the parameters
ensures that the probability density function is non-negative on [0,1).

(iii) We observe that both the atom and beta cases satisfy Conditions C1 and C2, whereas
the gamma case does not satisfy Condition C2. Indeed, the behaviour observed in the
latter case is different from the behaviour observed for vertex-weight distributions that
do satisfy Condition C2. More broadly speaking, from the perspective of extreme value
theory, any distribution that falls within the Weibull maximum domain of attraction
satisfies Condition C2 (e.g. the beta distribution), as do a large range of distributions with
bounded support that fall within the Gumbel maximum domain of attraction (e.g. W =
1 − 1/X, with X a log-normal random variable, conditionally on X ≥ 1). An example
of a vertex-weight whose distribution does not satisfy Condition C2 is W = 1 − 1/X,
where X is a standard normal random variable, conditionally on X ≥ 1, which is similar
to the gamma case with τ = 2. For more details on the precise classification of these
domains, we refer to [16].

The following result identifies the rescaling of the label of high-degree vertices (where high-
degree denotes a degree that diverges to infinity with n). In particular, it outlines behaviour
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outside of the range of Theorem 2.1, both for degrees that are smaller and degrees that are
larger than the maximum degree.

Theorem 2.2. (Central limit theorem for high-degree vertex labels.) Consider the WRT model,
that is, the WRG model as in Definition 2.1 with m = 1, with vertex-weights (Wi)i∈N which
satisfy Conditions C1 and C2 in Assumption 2.1. Fix k ∈N, let (di)i∈[k] be k integer-valued
sequences that diverge as n → ∞, and define

ci := lim sup
n→∞

di

log n
, i ∈ [k].

First, assume ci ∈ [0, 1/ log θ ) for all i ∈ [k]. Then the tuple(
log vi − (log n − (1 − θ−1)di)√

(1 − θ−1)2di

)
i∈[k]

,

conditionally on the event Zn(vi) ≥ di for all i ∈ [k], converges in distribution to (Mi)i∈[k], which
are k independent standard normal random variables. If we additionally assume that Condition
C3 of Assumption 2.1 holds, then the result holds for (ci)i∈[k] ∈ [1/ log θ, θ/(θ − 1))k as well.

Remark 2.4.

(i) Theorem 2.2 covers vertex-weight distributions that fall in the atom and beta cases
as well. As observed in Remark 2.3(iii), such distributions already satisfy Conditions
C1 and C2 (the other families of distributions outlined in (iii) are also covered by
Theorem 2.2).

(ii) Condition C3 allows us to extend Theorem 2.2 to a wider range of degrees di, as it
enables us to use [7, Proposition 5.1] (given as Proposition 3.1). This result provides
an asymptotic expression for P(Zn(v) ≥ d), where v is a vertex selected uniformly at
random from [n]. This result can be avoided when the degrees di are not too large (i.e.
� log (n)/ log θ ), so that Condition C3 is not required in those cases. We observe that
the beta case satisfies Condition C3.

The following corollary is an immediate result from Theorem 2.2.

Corollary 2.1. With the same definitions and assumptions as in Theorem 2.2, additionally
assume that for each i ∈ [k],

|di − ci log n| = o
(√

log n
)
.

Then the tuple (
log vi − (1 − ci(1 − θ−1)) log n√

ci(1 − θ−1)2 log n

)
i∈[k]

,

conditionally on the event Zn(vi) ≥ di for all i ∈ [k], converges in distribution to (Mi)i∈[k],
which are k independent standard normal random variables. Assuming that Condition C3 of
Assumption 2.1 holds allows us to extend the result to ci ∈ [1/ log θ, θ/(θ − 1)) for all i ∈ [k]
as well.

Remark 2.5. In both Theorem 2.2 and Corollary 2.1, the same results can be obtained when
working with the conditional event {Zn(vi) = di, i ∈ [k]} rather than {Zn(vi) ≥ di, i ∈ [k]}, with
an almost identical proof.
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Theorem 2.2 is very general, in the sense that Condition C2 is a mild condition satisfied
by a wide range of distributions. In contrast, the behaviour of the maximum degree is much
more dependent on the precise behaviour of the vertex-weight distribution (see, for example,
[7, Theorems 2.6 and 2.7]). The labels of high-degree vertices are much less influenced by
the underlying vertex-weight distribution. We provide a heuristic explanation of this fact in
Section 3.

When more precise information regarding the vertex-weight distribution is available, as in
the atom, beta, and gamma cases, even more can be proved. We state a result for the atom
case here. It shows the distributional convergence of degrees and their labels in the WRT under
proper rescaling. Let us set θ := θ1, μ := μ1 = 1 − (θ − 1)/(θ log θ ), and define σ 2 := 1 −
(θ − 1)2/(θ2 log θ ).

Theorem 2.3. (Degrees and labels in the atom case.) Consider the WRT model, that is, the
WRG model as in Definition 2.1 with m = 1, with vertex-weights (Wi)i∈N which satisfy the
atom case in Assumption 2.1. Let v1, v2, . . . , vn be the vertices in the tree in decreasing order
of their in-degree (where ties are split uniformly at random), let di

n and �i
n denote respectively

the in-degree and the label of vi for i ∈ [n], and fix ε ∈ [0, 1]. Let εn := logθ n − �logθ n	,
and let (nj)j∈N be a positive, diverging integer sequence such that εnj → ε as j → ∞. Finally,
let (Pi)i∈N be the points of the Poisson point process P on R with intensity measure λ(x) =
q0θ

−x log θ dx, in decreasing order, and let (Mi)i∈N be a sequence of i.i.d. standard normal
random variables. Then, as j → ∞,⎛⎝di

nj
− �logθ nj	,

log (�i
nj

) − μ log nj√
(1 − σ 2) log nj

⎞⎠
i∈[nj]

d−→ (�Pi + ε	, Mi)i∈N.

Remark 2.6. We can view the convergence result in Theorem 2.3 in terms of the weak conver-
gence of marked point processes. Indeed, we can order the points in the marked point process

MP (n) :=
n∑

i=1

δ
(Zn(i)−�logθ n	,(log i−μ log n)/

√
(1−σ 2) log n)

in decreasing order with respect to the first argument of the tuples, where δ is a Dirac measure.

Moreover, Theorem 2.3 extends [7, Theorem 2.5] to a wider range of vertex-weight dis-
tributions. Specifically, let us define Z

∗ := Z∪ {∞} and M#
Z∗×R

,M#
Z∗ , to be the spaces of

boundedly finite measures on Z
∗ ×R and Z

∗, respectively, and define T : M#
Z∗×R

→M#
Z∗

for MP ∈M#
Z∗×R

by T(MP) := ∑
(x1,x2)∈MP δx1 . T(MP) is the restriction of the marked

process MP to its first coordinate, i.e. to the ground process P := T(MP). Since T is
continuous and MP (n) ∈M#

Z∗×R
, it follows from the continuous mapping theorem that

Theorem 2.3 implies Theorem 2.5 in [7] without the need for Condition C3.
Similar results hold in the beta case as well. In the gamma case slightly different behaviour

is observed, with additional higher-order terms required in the rescaling of the labels of high-
degree vertices. We have deferred the results regarding these two cases to Section 7, since
they are similar in nature to Theorems 2.2 and 2.3 but of independent interest. Moreover, the
results in Theorems 2.2 and 2.3, as well as the results presented in Section 7, also hold when
we consider the WRT with random out-degree, as discussed in Remark 2.1.
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Discussion, open problems, and outline of the paper
For the proof of Theorem 2.1, only the asymptotic growth-rate of the maximum degree of

the WRG model, as proved by Lodewijks and Ortgiese in [12, Theorem 2.9, bounded case]
(given as Theorem 3.1 here), is required to prove the growth rate of the location of the max-
imum degree in the WRG model. The proof uses a slightly more careful approach than the
proof of [12, Theorem 2.9, bounded case], which allows us to determine the range of vertices
which attain the maximum degree.

In recent work by Eslava, Lodewijks, and Ortgiese [7], more refined asymptotic behaviour
for the maximum degree is presented for the WRT model, that is, the WRG model with m = 1,
under additional assumptions on the vertex-weight distribution. Here we refine the proofs of [7]
to allow for an extension of the results there and to obtain higher-order results for the location
of high-degree vertices. Whether any of these results can be extended to the case m > 1 is an
open problem to date.

Finally, more involved results can be proved for the random recursive tree model. There,
the joint convergence of the labels and depths of and the graph distance between high-degree
vertices can be obtained, as shown by the author in [11, Theorems 2.2 and 2.4]. The analysis of
the random recursive tree in [11] relies heavily on a different construction of the tree compared
to the WRG and WRT models, which can be viewed as a construction backward in time. This
methodology can be applied to the random recursive tree only, and allows for a simplification
of the dependence between degree, depth, and label of a vertex. Whether these results can
be extended to the weighted tree case is unclear, but such an extension would surely need a
different approach.

The paper is organised as follows. In Section 3 we provide a short, non-rigorous, and intu-
itive argument as to why the result presented in Theorem 2.1 for the WRG model holds, and
we briefly discuss the approach to proving the other results stated in Section 2. Section 4 is
devoted to proving Theorem 2.1. In Section 5 we introduce some intermediate results related
to the WRT model and use these to prove Theorems 2.2 and 2.3. We prove the intermediate
results in Section 6. We discuss the additional results (similar to Theorems 2.2 and 2.3) for the
beta and gamma cases in Section 7. Finally, the appendix contains several technical lemmas
that are used in some of the proofs.

3. Heuristic ideas behind the main results and preliminary results

In this section we present some heuristic, non-rigorous ideas that underpin the main results,
as presented in Theorems 2.1, 2.2, and 2.3 (as well as the results presented in Section 7), and
we also give some preliminary results required throughout the paper.

3.1. Heuristic ideas

To understand why the maximum degree of WRG model is attained by vertices with
labels of order nμm(1+o(1)), where μm := 1 − (θm − 1)/(θm log θm), we first state the following
observation: for m ∈N, define fm : (0, 1) →R+ by

fm(x) := 1

log θm

(
(1 − x) log θm

θm − 1
− 1 − log

(
(1 − x) log θm

θm − 1

))
, x ∈ (0, 1). (3.1)

It is readily checked that fm has a unique fixed point x∗
m in (0,1), namely x∗

m = μm, and that
fm(x) > x for all x ∈ (0, 1), x �= μm. Then, using a Chernoff bound on Zn(i) (i.e. using a Markov
bound on exp(tZn(i)) for t > 0 and determining the value of t that minimises the upper bound)
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yields
PW

(Zn(i) ≥ logθm
n
) ≤ exp(−logθm

n(ui − 1 − log ui)), (3.2)

where

ui = mWi

logθm
n

n−1∑
j=i

1

Sj
.

Here we use the quantity logθm
n, as this (asymptotically) is the size of the maximum degree.

Let us now assume that i ∼ nβ for some β ∈ (0, 1). By Lemma 3.3, almost surely

n−1∑
j=i

1/Sj = (1 + o(1)) log (n/i)/E [W] = (1 + o(1))(1 − β) log (n)/E [W] ,

so that

ui ≤ m(1 − β) log θm

E [W]
(1 + o(1)) = (1 − β) log θm

θm − 1
(1 + o(1)) < 1

almost surely, where the final inequality holds for all n sufficiently large, as log (1 + x) ≤ x for
all x > −1. Moreover, the o(1) term is independent of i. As x �→ x − 1 − log x is decreasing on
(0,1), we can use the almost sure upper bound on ui in (3.2), combined with (3.1), to obtain

PW
(Zn(i) ≥ logθm

n
) ≤ exp(−fm(β) log n(1 + o(1))).

Note that this upper bound depends on i only via i ∼ nβ . We perform a union bound over
{i ∈ [n] : i ≤ nμm−ε or i ≥ nμm+ε}. As the sum obtained from the union bound can be well
approximated by an integral, we arrive at

P

(
max

i∈[n]\[nμm−ε,nμm+ε]
Zn(i) ≥ logθm

n

)
≤

∫
(0,1)\(μm−ε,μm+ε)

exp((β − fm(β)) log n(1 + o(1))) dβ.

It follows from the properties of the function fm (as stated below (3.1)) that this integral
converges to zero with n.

To obtain the more precise behaviour of the labels of high-degree vertices, as in (among oth-
ers) Theorem 2.2, the precise evaluation of the union bound in the approach sketched above no
longer suffices. Instead, for any k ∈N, we derive in Proposition 5.1 the asymptotic expression

P (Zn(vi) ≥ di, vi > �i, i ∈ [k]) ≈
k∏

i=1

E

[(
W

θ − 1 + W

)di

PW

(
Xi ≤

(
1 + W

θ − 1

)
log (n/�i)

) ]
,

(3.3)
where v1, . . . , vk are k vertices selected uniformly at random from [n] without replacement,
θ := θ1 = 1 +E [W], and Xi ∼ Gamma(di + 1, 1) for each i ∈ [k], under certain assumptions
on the di and �i. Heuristically, this follows from the fact that Sj ≈ jE [W] and

Zn(j) =
n∑

i=j+1

Ber

(
Wj

Si−1

)
≈ Poi

( n∑
i=j+1

Wj

iE [W]

)
≈ Poi

(
Wj

θ − 1
log (n/j)

)
.

By conditioning on the value of v, we thus have (with k = 1 for simplicity and dropping indices)

P (Zn(v) ≥ d, v > �) ≈ P

(
Poi

(
W

θ − 1
log (n/v)

)
≥ d, v > �

)
,
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where we can remove the index of the vertex-weight because it does not influence the probabil-

ity, since the weights are i.i.d. We first observe that v/n
d−→ U, where U is a uniform random

variable on (0,1). Second, we have that T := log (1/U) is a rate-one exponential random vari-
able, independent of everything else. Finally, the duality between Poisson and gamma random
variables via Poisson processes yields that we can approximate the right-hand side by

P

(
X ≤ W

θ − 1
T, T ≤ log (n/�)

)
= P

(
X ≤ TW , TW ≤ W

θ − 1
log (n/�)

)
,

where X ∼ Gamma(d, 1) and TW := WT/(θ − 1). Note that TW is exponential with rate (θ −
1)/W, conditionally on W. Setting x := W log (n/�)/(θ − 1) and conditioning on both W and
X, we obtain

PW(X ≤ TW ≤ x | X) = 1{X≤x}
∫ x

X

θ − 1

W
e−(θ−1)t/W dt = 1{X≤x}

(
e−(θ−1)X/W − e−(θ−1)x/W)

.

Taking the expected value with respect to X then yields

PW(X ≤ TW ≤ x) =
(

1 + θ − 1

W

)−d

PW
(
X′ ≤ x

) − e−(θ−1)x/W
P(X ≤ x),

where X′ ∼ Gamma(d, 1 + (θ − 1)/W), conditionally on W. As X
d= (1 + (θ − 1)/W)X′ ∼

Gamma(d, 1), by substituting the definition of x we obtain(
W

θ − 1 + W

)d

PW

(
X ≤

(
1 + W

θ − 1

)
log (n/�)

)
− �

n
PW

(
X ≤ W

θ − 1
log (n/�)

)
.

Conditions on d and � will allow us to show that the second term is negligible with respect
to the first term and hence is an error term. Taking the expected value with respect to W then
approximately yields (3.3). This result can be used to obtain more precise statements regarding
the label of high-degree vertices, as well as the size of the maximum degree in the tree.

We finally comment on Condition C2 and Theorem 2.2. For vertex-weight distributions
that satisfy this condition, we can show (as in Lemma A.1 in the appendix) that the main
contribution to

P (Zn(v) ≥ d) ≈E

[(
W

θ − 1 + W

)d
]

comes from values of W close to one, namely at W = 1 − Cd−β for some constant C > 0 and
β > 1/2 (or even closer to one). Consequently, one would expect this to be the same for the
right-hand side of (3.3). Substituting this value of W roughly yields (again dropping indices
and setting C = 1 for simplicity)

E

⎡⎣(
W

θ − 1 + W

)d
⎤⎦ P

(
X ≤

(
θ

θ − 1
+ 1

dβ (θ − 1)

)
log (n/�)

)
.

When we set, for z ∈R,

� := n exp
(−(1 − θ−1)(E [X] − z

√
Var(X))

) ≈ n exp
(−(1 − θ−1)(d − z

√
d)),
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this simplifies to

E

[(
W

θ − 1 + W

)d
]
P

(
X −E [X]√

Var(X)
≤ −z + E [X] (1 + o(1))

θdβ
√

Var(X)

)
.

Now, the probability tends to 1 − �(z) by the central limit theorem when d diverges with n,
since E [X] = d + 1 and dβ

√
Var(X) ∼ d1/2+β � d as β > 1/2. This thus shows that log v is

approximately normal and provides the asymptotic mean and variance.
For tail distributions that decay at a faster rate near one, the main contribution to the

expected value is made for W = 1 − d−β with β ≤ 1/2, for which this argument does not
hold. Here, we require additional higher-order terms in the rescaling of the labels of high-
degree vertices. An example of such a family of distributions is presented in the gamma case
of Assumption 2.1. Theorem 7.2 provides, to some extent, the behaviour of the labels in this
case.

3.2. Preliminaries

Here we present some known results that are needed throughout the paper. The first result
states the almost sure convergence of the maximum degree in the WRG model, as in [12,
Theorem 2.9].

Theorem 3.1. (Maximum degree in WRGs with bounded random weights [12].) Consider the
WRG model as in Definition 2.1 with almost surely bounded vertex-weights and m ∈N. Then

max
i∈[n]

Zn(i)

logθm
n

a.s.−→ 1.

The following result concerns the asymptotic behaviour of the limiting (tail) degree
distribution p≥d and pd, defined as

p≥d := E

[(
W

θm − 1 + W

)d
]

, pd := E

[
θm − 1

θm − 1 + W

(
W

θm − 1 + W

)d
]

,

of the weighted recursive graph as d diverges, which combines (parts of) Theorem 2.7 from
[12] and Lemmas 5.5, 7.1, and 7.3 from [7]. For the purposes of this paper, we state the result
for the case m = 1 only.

Theorem 3.2. (Asymptotic behaviour of p≥d [7, 12]). Consider the WRT with vertex-weights
(Wi)i∈N, i.i.d. copies of a non-negative random variable W which satisfies Condition C1. Recall
that θ := θ1 = 1 +E [W]. Then, for any ξ > 0 and d sufficiently large,

(θ + ξ )−d ≤ pd ≤ p≥d ≤ θ−d.

Moreover, consider the different cases in Assumption 2.1:

• If W satisfies the atom case for some q0 ∈ (0, 1],

p≥d = q0θ
−d(1 + o(1)).

• If W satisfies the beta case for some α, β > 0,

p≥d = 
(α + β)


(α)
(1 − θ−1)−βd−βθ−d(1 +O(1/k)

)
.
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• If W satisfies the gamma case for some b ∈R, c1 > 0, and τ = 1 such that bc1 ≤ 1, then

p≥d = Cdb/2+1/4e−2
√

c−1
1 (1−θ−1)d

θ−d(1 +O(1/
√

d)
)
,

with C := ec−1
1 (1−θ−1)/2√πc−1/4+b/2

1 (1 − θ−1)1/4+b/2.

Remark 3.1. The final results which consider the different cases of Assumption 2.1 also hold
for pd instead of p≥d when one adds a multiplicative constant 1 − θ−1 to the right-hand side.

The following proposition provides an asymptotic expression for the tail degree distribution
of k typical vertices under certain conditions [7, Proposition 5.1].

Proposition 3.1. (Distribution of typical vertex degrees [7]). Consider the WRT model, that is,
the WRG as in Definition 2.1 with m = 1, with vertex-weights (Wi)i∈[n] which are i.i.d. copies
of a positive random variable W that satisfies Conditions C1 and C3 of Assumption 2.1. Fix
k ∈N, c ∈ (0, θ/(θ − 1)), and let (vi)i∈[k] be k vertices selected uniformly at random without
replacement from [n]. Then, uniformly over di ≤ c log n, i ∈ [k],

P (Zn(vi) ≥ di, i ∈ [k]) =
k∏

i=1

E

[(
W

E [W] + W

)di
]

(1 + o(1)).

Finally, we have the following three technical lemmas. The first deals with concentration of
sums of i.i.d. random variables and the second with particular multiple integrals that we use in
one of the proofs.

Lemma 3.1. (Bounds on partial sums of vertex-weights [7, Lemma A.2].) Let (Wi)i∈N be i.i.d.
copies of a random variable W with mean E [W] ∈ (0, 1]. Let η ∈ (0, 1), δ ∈ (0, 1/2), k ∈N,
and set ζn := n−δη/E [W]. Consider the events

E(1)
n :=

{ j∑
�=1

W� ∈ ((1 − ζn)E [W] j, (1 + ζn)E [W] j), for all nη ≤ j ≤ n

}
,

E(2)
n :=

{ j∑
�=k+1

W� ∈ ((1 − ζn)E [W] j, (1 + ζn)E [W] j), for all nε ≤ j ≤ n

}
.

Then, for any γ > 0 and any i ∈ {1, 2}, for all n large,

P

((
E(i)

n

)c
)

≤ n−γ .

Lemma 3.2. ([7, Lemma A.4].) For any k ∈N and any 0 < a ≤ b < ∞,∫ b

a

∫ b

x1

· · ·
∫ b

xk−1

k∏
j=1

x−1
j dxk . . . dx1 = (log (b/a))k

k! .

Similarly, for any k ∈N and any 0 < a ≤ b − k < ∞,∫ b

a+1

∫ b

x1+1
· · ·

∫ b

xk−1+1

k∏
j=1

x−1
j dxk . . . dx1 ≥ (log (b/(a + k)))k

k! .
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Lemma 3.3. ([12, Lemma 5.1].) Let (Wi)i∈N be a sequence of strictly positive i.i.d. random
variables which are almost surely bounded. Then there exists an almost surely finite random
variable Y such that

n−1∑
j=1

1

Sj
− 1

E [W]
log n

a.s.−→ Y .

This lemma implies, in particular, that for any i = i(n) such that i diverges with n and i = o(n)
as n → ∞, almost surely,

n−1∑
j=i

1

Sj
= 1

E [W]
log (n/i)(1 + o(1)),

n−1∑
j=1

1

Sj
= 1

E [W]
log (n)(1 + o(1)). (3.4)

4. Location of the maximum-degree vertices

For ease of writing, let us set μm := 1 − (θm − 1)/(θm log θm), where we recall that θm :=
1 +E [W] /m. To make the intuitive idea presented in Section 3 precise, we use a careful
union bound on the events {max1≤i≤nμm−ε Zn(i) ≥ (1 − η) logθm

n} and {maxnμm+ε≤i≤n Zn(i) ≥
(1 − η) logθm

n} for arbitrary and fixed ε > 0 and some sufficiently small η > 0.

Proof of Theorem 2.1. As in the proofs of [12, Theorem 2.9] and [6, Theorem 1], we first
prove the convergence holds in probability, and then discuss how to improve it to almost sure
convergence.

We take η ∈ (0, 1 − log (θm)/(θm − 1)) and write

PW

(∣∣∣ log In

log n
− μm

∣∣∣ ≥ ε

)
≤ PW

({
In ≤ nμm−ε} ∩ {max

i∈[n]
Zn(i) ≥ (1 − η) logθm

n
})

+ PW

(
{In ≥ nμm+ε

} ∩ {max
i∈[n]

Zn(i) ≥ (1 − η) logθm
n
})

+ PW

(
max
i∈[n]

Zn(i) < (1 − η) logθm
n

)
. (4.1)

We start by dealing with the first two terms on the right-hand side, and then use Theorem 3.1
to deal with the final term. The first two probabilities can be bounded from above by

PW

(
max

i∈[nμm−ε]
Zn(i) ≥ (1 − η) logθm

n

)
+ PW

(
max

nμm+ε≤i≤n
Zn(i) ≥ (1 − η) logθm

n

)
. (4.2)

The aim is thus to show that vertices with a label ‘far away’ from nμm are unlikely to have a
high degree. With I−

n := nμm−ε, I+
n := nμm+ε, we first apply a union bound to obtain the upper

bound ∑
i∈[n]\[I−n ,I+n ]

PW
(Zn(i) ≥ (1 − η) logθm

n
)

.

With the same approach that leads to the upper bound in (3.2), that is, using a Chernoff bound
with t = log ((1 − η) logθm

n) − log
(
mWi

∑n−1
j=i 1/Sj

)
, we arrive at the upper bound

∑
i∈[n]\[I−n ,I+n ]

e−t(1−η) logθmn
n−1∏
j=i

(
1 + (

et − 1
)Wi

Sj

)m

≤
∑

i∈[n]\[I−n ,I+n ]

e−(1−η) logθmn(ui−1−log ui), (4.3)
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where

ui := mWi

(1 − η) logθm
n

n−1∑
j=i

1

Sj
.

We now set

δ := min

{
1 − η

2 log θm

(
log θm

(θm − 1)(1 − η)
− 1 − log

(
log θm

(θm − 1)(1 − η)

))
,

− (θm − 1)(1 − η)

2 log θm
W0

(−θ−1/(1−η)
m e−1)},

with W0 the (main branch of the) W Lambert function, the inverse of f : [−1, ∞) →
[−1/e, ∞), f (x) := xex. Note that, when ε is sufficiently small, δ ∈ (0, min{μm − ε, 1 − μm −
ε}). We use this δ to split the union bound in (4.3) into three parts,

R1 :=
�nδ	∑
i=1

e−(1−η) logθmn(ui−1−log ui),

R2 :=
n∑

i=�n1−δ�
e−(1−η) logθmn(ui−1−log ui),

R3 :=
∑

i∈[nδ,n1−δ]\[I−n ,I+n ]

e−(1−η) logθmn(ui−1−log ui), (4.4)

and we aim to show that each of these terms converges to zero with n almost surely. For R1 we
use that, uniformly in i ≤ nδ , almost surely

ui ≤ m

(1 − η) logθm
n

n−1∑
j=1

1

Sj
= log θm

(1 − η)(θm − 1)
(1 + o(1)), (4.5)

where the final step follows from Lemma 3.3. Using the fact that the upper bound is at most 1
by the choice of η and that x �→ x − 1 − log x is decreasing on (0,1), and applying this in R1 in
(4.4), we bound R1 from above by

�nδ	∑
i=1

exp

(
− (1 − η) log n

log θm

(
log θm

(1 − η)(θm − 1)
− 1 − log

(
log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)

= exp

(
log n

(
δ − 1 − η

log θm

(
log θm

(1 − η)(θm − 1)
− 1 − log

(
log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)
,

(4.6)
which converges to zero by the choice of δ. In a similar way, uniformly in n1−δ ≤ i ≤ n, almost
surely

ui ≤ m

(1 − η) logθm
n

n−1∑
j=�n1−δ�

1

Sj
= δ log θm

(1 − η)(θm − 1)
(1 + o(1)), (4.7)
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so that we can bound R2 from above by
n∑

i=�n1−δ�
exp

(
−(1 − η) logθm

n

(
δ log θm

(1 − η)(θm − 1)
− 1 − log

(
δ log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)

= exp

(
log n

(
1 − 1 − η

log θm

(
δ log θm

(1 − η)(θm − 1)
− 1 − log

(
δ log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)
.

(4.8)
Again, by the choice of δ, the exponent is strictly negative, so that the upper bound converges
to zero with n. It remains to bound R3. We aim to approximate the sum by an integral, using the
same approach as in the proof of [12, Theorem 2.9, bounded case]. We first bound ui ≤ m(Hn −
Hi)/((1 − η) logθm

n) =: ũi almost surely for any i ∈ [n], where Hn := ∑n−1
j=1 1/Sj. Then we

define u : (0, ∞) →R and φ : (0, ∞) →R by

u(x) :=
(

1 − log x

log n

)
log θm

(1 − η)(θm − 1)
and φ(x) := x − 1 − log x, x > 0.

For i in [nδ, n1−δ]\[I−
n , I+

n ] such that i = nβ+o(1) for some β ∈ [δ, 1 − δ] (where the o(1) is
independent of β) and x ∈ [i, i + 1),

|φ (̃ui) − φ(u(x))| ≤ |̃ui − u(x)| + | log (̃ui/u(x))|

=
∣∣∣∣∣ log θm

(1 − η)(θm − 1)

(
1 − log x

log n

)
− log θm

(1 − η)(θm − 1) log n

n−1∑
j=i

1

Sj

∣∣∣∣∣
+

∣∣∣∣∣ log

(
E [W]

log n − log x

n−1∑
j=i

1

Sj

)∣∣∣∣∣. (4.9)

By (3.4) and since i diverges with n, we have
∑n−1

j=i 1/Sj − log (n/i)/E [W] = o(1) almost
surely as n → ∞. Applying this to the right-hand side of (4.9) yields

|φ (̃ui) − φ(u(x))| ≤ log θm

(1 − η)(θm − 1)

∣∣∣∣ log x − log i

log n

∣∣∣∣ +
∣∣∣∣ log

(
1 + log x − log i + o(1)

log n − log x

)∣∣∣∣.
Since x ≥ i ≥ nδ and |x − i| ≤ 1, we thus obtain that, uniformly in [nδ, n1−δ]\[I−

n , I+
n ] and x ∈

[i, i + 1), we have |φ(̃ui) − φ(u(x))| = o(1/(nε log n)) almost surely as n → ∞. Applying this
to R3 in (4.4) yields the upper bound∑

i∈[nδ,n1−δ]\[I−n ,I+n ]

e−(1−η)φ(̃ui) logθm n

≤
∑

i∈[nδ,n1−δ]\[I−n ,I+n ]

∫ i+1

i
e−(1−η) logθm n(φ(u(x))+|φ(̃ui)−φ(u(x))|) dx

≤ (1 + o(1))
∫

[nδ,n1−δ]\[I−n I+n ]
e−(1−η)φ(u(x)) logθm n dx. (4.10)
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Using the variable transformation w = log x/ log n and setting U := [δ, 1 − δ]\[μm − ε, μm +
ε] yields

(1 + o(1))
∫

U
exp

(
−log n

1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

))
nw log n dw

= (1 + o(1))
∫

U
exp

(
−log n

(
1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

)
− w

)
+ log log n

)
dw. (4.11)

We now observe that the mapping

w �→ 1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

)
has two fixed points, namely

w(1) := 1 + (1 − η)(θm − 1)

θm log θm
W0

(−θ−η/(1−η)
m e−1),

w(2) := 1 + (1 − η)(θm − 1)

θm log θm
W−1

(−θ−η/(1−η)
m e−1), (4.12)

where we recall that W0 is the inverse of f : [−1, ∞) → [−1/e, ∞), f (x) = xex, also known as
the main branch of the Lambert W function, and where W−1 is the inverse of g : (−∞, −1] →
(−∞, −1/e], g(x) = xex, also known as the negative branch of the Lambert W function.
Moreover, we also have the inequalities

w <
1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

)
, w ∈ (

0, w(2)), w ∈ (w(1), 1),

w >
1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

)
, w ∈ (

w(2), w(1)), (4.13)

and we claim that the following statements hold:

∀ η > 0 sufficiently small, w(2) < μm < w(1), and lim
η↓0

w(1) = lim
η↓0

w(2) = μm. (4.14)

We defer the proof of these inequalities and claims to the end. For now, let us use these
properties and set η sufficiently small so that μm − ε < w(2) < μm < w(1) < μm + ε, so that
U ⊂ [δ, w(2)) ∪ (w(1), 1 − δ]. If we define

φ′
U := inf

w∈U

[
1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

)
− w

]
,

then it follows from the choice of η, from (4.13), and from the definition of U that φ′
U > 0, so

that the integral in (4.11) can be bounded from above by

(1 + o(1)) exp
(
−φ′

U log n + log log n
)
, (4.15)

which converges to zero with n. We have thus established that R1, R2, R3 converge to zero
almost surely as n tends to infinity. Combined, this yields that the upper bound in (4.3)
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converges to zero almost surely, so that, using (4.2), we find that

PW

({
In ≤ nμm−ε} ∩ {max

i∈[n]
Zn(i) ≥ (1 − η) logθm

n
})

+ PW

(
{In ≥ nμm+ε

} ∩ {max
i∈[n]

Zn(i) ≥ (1 − η) logθm
n
}) a.s.−→ 0, (4.16)

We now return to (4.1). Taking the mean yields

lim sup
n→∞

P

(∣∣∣ log In

log n
− μm

∣∣∣ ≥ ε

)
≤ lim sup

n→∞
E

[
PW

({
In ≤ nμm−ε} ∩ {max

i∈[n]
Zn(i) ≥ (1 − η)logθm

n
})

+ PW

(
{In ≥ nμm+ε

} ∩ {max
i∈[n]

Zn(i) ≥ (1 − η) logθm
n
})]

+ lim sup
n→∞

P

(
max
i∈[n]

Zn(i) < (1 − η) logθm
n

)
.

Using the uniform integrability of the conditional probability (this is clearly the case as the
conditional probability is bounded from above by one) combined with (4.16) implies that
the first limsup on the right-hand side equals zero. The second limsup also equals zero by

Theorem 3.1. Since ε > 0 is arbitrary, this proves that log In/ log n
P−→ μm.

Now that we have obtained the convergence in probability of log In/ log n to μm, we
strengthen it to almost sure convergence. We obtain this by constructing the following inequal-
ities: first, for any ε ∈ (0, μm), using the monotonicity of maxi∈[nμm−ε] Zn(i) and logθm

n,

sup
2N≤n

maxi∈[nμm−ε] Zn(i)

logθm
n

= sup
k∈N

sup
2N+(k−1)≤n<2N+k

maxi∈[nμm−ε] Zn(i)

logθm
n

≤ sup
N≤n

maxi∈[2(n+1)(μm−ε)] Z2n+1 (i)

n logθm
2

.

With only a minor modification, we can obtain a similar result for maxnμm+ε≤i≤n Zn(i), where
now ε ∈ (0, 1 − μm). Here, we can no longer use that this maximum is monotone. Rather, we
write

sup
2N≤n

maxnμm+ε≤i≤n Zn(i)

logθm
n

= sup
k∈N

sup
2N+(k−1)≤n<2N+k

maxnμm+ε≤i≤n Zn(i)

logθm
n

≤ sup
k∈N

max2(N+(k−1))(μm+ε)≤i≤2N+k Z2N+k (i)

(N + (k − 1)) logθm
2

= sup
N≤n

max2n(μm+ε)≤i≤2n+1 Z2n+1 (i)

n logθm
2

.

It thus follows that for any η > 0, the inequalities

lim sup
n→∞

maxi∈[nμm−ε] Zn(i)

(1 − η) logθm
n

≤ 1, lim sup
n→∞

maxnμm+ε≤i≤n Zn(i)

(1 − η) logθm
n

≤ 1, PW -a.s., (4.17)
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are implied by

lim sup
n→∞

maxi∈[2(n+1)(μm−ε)] Z2n+1 (i)

(1 − η)n logθm
2

≤ 1, PW − a.s.,

lim sup
n→∞

max2n(μm+ε)≤i≤2n+1 Z2n+1 (i)

(1 − η)n logθm
2

≤ 1, PW − a.s., (4.18)

respectively. We start by proving the first inequality in (4.18). Define

E1
n :=

{
max

i∈[2(n+1)(μm−ε)]
Z2n+1 (i) > (1 − η)n logθm

2

}
,

E2
n :=

{
max

2n(μm+ε)≤i≤2n+1
Z2n+1 (i) > (1 − η)n logθm

2

}
.

Let us abuse notation to write I−
n = 2(n+1)(μm−ε), I+

n = 2n(μm+ε). By a union bound, we again
find

P

(
E1

n ∪ E2
n

)
≤

�2(n+1)δ	∑
i=1

P
(Z2n+1 (i) > (1 − η)n logθm

2
)

+
2n+1∑

i=�2(n+1)(1−δ)�
P

(Z2n+1 (i) > (1 − η)n logθm
2
)

+
∑

i∈[2(n+1)δ,2(n+1)(1−δ)]\[I−n ,I+n ]

P
(Z2n+1 (i) > (1 − η)n logθm

2
)
, (4.19)

and these three sums are the equivalents of R1, R2, R3 in (4.4). We again take η small enough
so that μm − ε < w(2) < μm < w(1) < μm + ε, where we recall w(1), w(2) from (4.12). With the
same steps as in (4.3), (4.5), and (4.6), we obtain that we can almost surely bound the first
sum on the right-hand side from above by

�2(n+1)δ	∑
i=1

exp

(
− (1 − η)n log 2

log θm

(
log θm

(1 − η)(θm − 1)
− 1 − log

(
log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)

= exp

(
n log 2

(
δ − 1 − η

log θm

(
log θm

(1 − η)(θm − 1)
− 1 − log

(
log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)
,

which is summable by the choice of δ. Similarly, using the same steps as in (4.7) and (4.8),
we can almost surely bound the second sum on the right-hand side of (4.19) from above by

2n∑
i=�2(n+1)(1−δ)�

exp

(
− (1 − η)n log 2

log θm

(
δ log θm

(1 − η)(θm − 1)
− 1 − log

(
δ log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)

= exp

(
n log 2

(
1 − 1 − η

log θm

(
δ log θm

(1 − η)(θm − 1)
− 1 − log

(
δ log θm

(1 − η)(θm − 1)

))
(1 + o(1))

)
,

which again is summable by the choice of δ. Finally, the last sum on the right-hand side of
(4.19) can be approximated by an integral, as in (4.10). By the choice of η, we can then use
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the same steps as in (4.11)–(4.15) to obtain the almost sure upper bound

(1 + o(1)) exp
(
−nφ′

U log 2(1 + o(1)) + log n +O(1)
)
,

which again is summable. As a result, PW -almost surely, E1
n ∪ E2

n occurs only finitely often by
the Borel–Cantelli lemma. This implies that both bounds in (4.18) hold, and these imply the
bounds in (4.17). Defining the events

C1
n := {| log In/ log n − μm| ≥ ε}, C2

n := {
In ≤ nμm−ε

}
, C3

n := {
In ≥ nμm+ε

}
,

C4
n := {

max
i∈[n]

Zn(i) > (1 − η) logθm
n
}
,

we can use the same approach as in (4.1) to bound

∞∑
n=1

1C1
n
≤

∞∑
n=1

1C2
n∩C4

n
+ 1C3

n∩C4
n
+ 1(C4

n )c .

By the proof of Theorem 3.1 given in [12], (C4
n )c occurs for finitely many n PW -almost surely

(not just P-almost surely, as follows directly from Theorem 3.1). The bounds in (4.17) imply
that, PW -almost surely, the events C2

n ∩ C4
n and C3

n ∩ C4
n occur for only finitely many n, via

similar reasoning as in (4.2). Combining these statements, we obtain that C1
n occurs only

finitely many times PW -almost surely. As a final step we write

P(∀ ε > 0 ∃ N ∈N : ∀ n ≥ N | log In/ log n − μm| < ε)

=E
[
PW(∀ ε > 0 ∃ N ∈N : ∀ n ≥ N| log In/ log n − μm| < ε)

] = 1,

so that log In/ log n
P-a.s.−−−→ μm.

It remains to prove the inequalities in (4.13) and the claims in (4.14). Let us start with the
inequalities in (4.13). We compute

d

dw

(
w − 1 − η

log θm
φ

(
(1 − w) log θm

(1 − η)(θm − 1)

))
= 1 + 1

θm − 1
− 1 − η

log θm

1

1 − w
,

which equals zero when w = w∗ := 1 − (1 − η)(θm − 1)/(θm log θm), is positive when w ∈
(0, w∗), and is negative when w ∈ (w∗, 1). Moreover, as W0(x) ≥ −1 for all x ∈ [−1/e, ∞) and
W−1(x) ≤ −1 for all x ∈ [−1/e, 0), it follows from the definition of w(1) and w(2) in (4.12) that
w(2) < w∗ < w(1) for any choice of η > 0. This implies both inequalities in (4.13).

We now prove the claims in (4.14). Again using that W0(x) ≥ −1 for all x ∈ [−1/e, ∞)
directly yields w(1) > μm. The inequality w(2) < μm is implied by

W−1
(−θ−η/(1−η)

m e−1) < − 1

1 − η
,

or, equivalently,

−θ−η/(1−η)
m e−1 > − 1

1 − η
e−1/(1−η).

Setting β := 1/(1 − η) yields
θm

e
< β

(
θm

e

)β

.
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This inequality is then satisfied when β ∈ (1, W−1(log (θm/e)θm/e)/ log (θm/e)), or, equiva-
lently, when η ∈ (0, 1 − log (θm/e)/W−1(log (θm/e)θm/e)), as required. By the definition of
w(1) and w(2) in (4.12) and since μm := 1 − (θm − 1)/(θm log θm), the second claim in (4.14)
directly follows from the continuity of W0 and W−1 and since W0(−1/e) = W−1(−1/e) = −1,
which concludes the proof. �

5. Higher-order behaviour of the location of high-degree vertices

In this section we provide more detailed insight into the behaviour of the degree and location
of high-degree vertices in the WRT model, that is, the WRG model with out-degree m = 1.
Under additional assumptions on the vertex-weights, as in Assumption 2.1, we are able to
extend the result of Theorem 2.1 to higher-order results for the location, as well as to all
high-degree vertices, rather than just the maximum-degree vertices.

The approach taken here is an improvement of the methodology used by Eslava, Lodewijks,
and Ortgiese in [7] to study the maximum degree of the WRT model with bounded vertex-
weights. In this section we improve and extend the results of [7].

The approach used in [7] is to obtain a precise asymptotic estimate for the probability that k
vertices v1, . . . , vk, selected uniformly at random without replacement from [n], have degrees
at least d1, . . . , dk, respectively, for any k ∈N. One of the difficulties in proving this estimate
is to show that the probability of this event, conditionally on En := ∪k

i=1{vi ≤ nη} for some
arbitrarily small η > 0, is sufficiently small. On En it is harder to control sums of the first
vi vertex-weights, as one cannot apply the law of large numbers easily, as opposed to when
conditioning on Ec

n . This is eventually overcome by assuming that the vertex-weight distribu-
tion satisfies Condition C3, which limits the range of vertex-weight distributions for which the
results discussed in [7] hold.

Here, we compute an asymptotic estimate for the probability that the degree of vi is at least
di and that vi is at least �i for all i ∈ [k], where the (�i)i∈[k] satisfy �i ≥ nη for all i ∈ [k] and some
η ∈ (0, 1). The two main advantages of considering this event are that the issues described in
the previous paragraph are circumvented, and that for a correct parametrisation of the �i we
obtain some precise results on the location of high-degree vertices.

5.1. Convergence of marked point processes via finite-dimensional distributions

We first discuss some theoretical preparations for proving Theorem 2.3, after which we state
the intermediate results that we need to use in the proofs of Theorems 2.2 and 2.3. Recall the
following notation: di

n and �i
n denote the degree and label, respectively, of the vertex with the

ith-largest degree, i ∈ [n], where ties are split uniformly at random. Let us write θ = θ1 := 1 +
E [W], μ = μ1 := 1 − (θ − 1)/(θ log θ ), and define σ 2 := 1 − (θ − 1)2/(θ2 log θ ). To prove
Theorem 2.3, we view the tuples(

di
n − �logθ n	, log �i

n − μ log n√
(1 − σ 2) log n

)
i∈[n]

as a marked point process, where the rescaled degrees form the points and the rescaled labels
form the marks of the points. Let Z∗ := Z∪ {∞}, and endow Z

∗ with the metric d(i, j) =
|2−i − 2−j| and d(i, ∞) = 2−i for i, j ∈Z. We work with Z

∗ rather than Z, as the sets [i, ∞]
for i ∈Z are then compact, which provides an advantage later on. Let P be a Poisson point
process on R with intensity λ(x) := q0θ

−x log θ dx, and let (ξx)x∈P be independent standard
normal random variables. For ε ∈ [0, 1], we define the ground process Pε on Z

∗ and the marked
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processes MPε on Z
∗ ×R by

Pε :=
∑
x∈P

δ�x+ε	, MPε :=
∑
x∈P

δ(�x+ε	,ξx), (5.1)

where δ is a Dirac measure. Similarly, we can define

P (n) :=
n∑

i=1

δZn(i)−�logθ n	, MP (n) :=
n∑

i=1

δ
(Zn(i)−�logθ n	,(log i−μ log n)/

√
(1−σ 2) log n)

.

We then let M#
Z∗ and M#

Z∗×R
, respectively, be the spaces of boundedly finite measures on

Z
∗ and Z

∗ ×R (which, in this case, corresponds to locally finite measures) equipped with the
vague topology. We observe that P (n) and Pε are random elements of M#

Z∗ , and MP (n) and
MPε are random elements of M#

Z∗×R
. Theorem 2.3 is then equivalent to the weak conver-

gence of MP (nj) to MPε in M#
Z∗×R

along suitable subsequences (nj)j∈N, as we can order the
points in the definition of MP (n) (and MPε) in decreasing order of their degrees (of the points
x ∈P). We remark that the weak convergence of P (nj) to Pε in M#

Z∗ along subsequences when
the vertex-weights of the WRT belong to the atom case is established in [7] (and it is estab-
lished for the particular case of the random recursive tree by Addario-Berry and Eslava in [1]).
We extend these results, among others, to the tuple of degree and label.

The approach we shall use to prove the weak convergence of MP (nj) is to show that its
finite-dimensional distributions (FDDs) converge along subsequences. The FDDs of a ran-
dom measure P are defined as the joint distributions, for all finite families of bounded Borel
sets (B1, . . . , Bk), of the random variables (P(B1), . . . ,P(Bk)); see [5, Definition 9.2.II].
Moreover, by [5, Proposition 9.2.III], the distribution of a random measure P on X is com-
pletely determined by the FDDs for all finite families (B1, . . . , Bk) of disjoint sets from a
semiring A that generates B(X ). In our case, we consider the marked point process MP (n) on
X := Z

∗ ×R; see (5.1). Hence, we let

A := {{j} × (a, b] : j ∈Z, a, b ∈R} ∪ {[j, ∞] × (a, b] : j ∈Z, a, b ∈R}

be the semiring that generates B(Z∗ ×R). The choice of the metric on Z
∗ is convenient, since

now weak convergence in Z
∗ ×R is equivalent to the convergence of the FDDs by [5, Theorem

11.1.VII]. So the weak convergence of the measure MP (nj) to MPε in M#
Z∗×R

is equivalent
to the convergence of the FDDs of MP (nj) to the FDDs of MPε. It thus suffices to prove
the joint convergence of the counting measures of finite collections of disjoint subsets of A. In

particular, the weak convergence of MPnj implies the distributional convergence of X
(nj)
≥j (B) =

MP (n�)([j, ∞)) for any {j} × B ∈A.
Recall the Poisson point process P used in the definition of Pε in (5.1) and enumerate

its points in decreasing order. That is, let Pi denote the ith-largest point of P (with ties broken
uniformly at random). We observe that this is well-defined, since P([x, ∞)) < ∞ almost surely
for any x ∈R. Let (Mi)i∈N be a sequence of i.i.d. standard normal random variables. For {j} ×
B ∈A, we then define
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X(n)
j (B) :=

∣∣∣∣{i ∈ [n] : Zn(i) = �logθ n	 + j,
log i − (log n − (1 − θ−1)(�logθ n	 + j))√

(1 − θ−1)2(�logθ n	 + j)
∈ B

}∣∣∣∣,
X(n)

≥j (B) :=
∣∣∣∣{i ∈ [n] : Zn(i) ≥ �logθ n	 + j,

log i − (log n − (1 − θ−1)(�logθ n	 + j))√
(1 − θ−1)2(�logθ n	 + j)

∈ B

}∣∣∣∣,
X̃(n)

j (B) :=
∣∣∣∣{i ∈ [n] : Zn(i) = �logθ n	 + j,

log i − μ log n√
(1 − σ 2) log n

∈ B

}∣∣∣∣,
X̃(n)

≥j (B) :=
∣∣∣∣{i ∈ [n] : Zn(i) ≥ �logθ n	 + j,

log i − μ log n√
(1 − σ 2) log n

∈ B

}∣∣∣∣,
Xj(B) :=

∣∣∣∣{i ∈N : �Pi + ε	 = j, Mi ∈ B

}∣∣∣∣,
X≥j(B) :=

∣∣∣∣{i ∈N : �Pi + ε	 ≥ j, Mi ∈ B

}∣∣∣∣.
(5.2)

Using these random variables is justified, as X̃(n)
j (B) =MP (n)({j} × B), X̃(n)

≥j (B) =
MP (n)([j, ∞] × B), and Xj(B) =MPε({j} × B) and X≥j(B) =MPε([j, ∞] × B).

Furthermore, when j = o(
√

log n), we have X(n)
j (B) ≈ X̃(n)

j (B), X(n)
≥j (B) ≈ X̃(n)

≥j (B). For any
K ∈N, take any (fixed) increasing integer sequence (jk)k∈[K] with 0 ≤ K′ := min{k : jk+1 = jK}
and any sequence (Bk)k∈[K] with Bk = (ak, bk] ∈B(R) for some ak, bk ∈R and such that
Bk ∩ B� =∅ when jk = j� and k �= �. The conditions on the sets Bk ensure that the elements
{j1} × B1, . . . , {j′K} × BK′ , {jK′+1, . . .} × BK′+1, . . . , {jK, . . .} × BK of A are disjoint. We are
thus required to prove the joint distributional convergence of the random variables(

X̃(n)
j1

(B1), . . . , X̃(n)
j
K
′
(
BK′

)
, X̃(n)

≥j
K
′+1

(
BK′+1

)
, . . . , X̃(n)

≥jK
(BK)

)
, (5.3)

to prove Theorem 2.3.

5.2. Intermediate results

We first state some intermediate results which are required to prove Theorems 2.2
and 2.3; afterwards, we prove these theorems. We defer the proof of the intermediate results to
Section 6.

The first result provides precise and general asymptotic bounds for the joint distribution of
the degree and label of vertices selected uniformly at random from [n]. We recall θ = θ1 :=
1 +E [W]. We then formulate the following result.

Proposition 5.1. (Degree and label of typical vertices.) Consider the WRT model, that is, the
WRG as in Definition 2.1 with m = 1, with vertex-weights (Wi)i∈[n] which are i.i.d. copies
of a positive random variable W that satisfies Condition C1 of Assumption 2.1. Fix k ∈N,
c ∈ (0, θ/(θ − 1)), η ∈ (0, 1), and let (vi)i∈[k] be k vertices selected uniformly at random with-
out replacement from [n]. For non-negative integers (di)i∈[k] such that di ≤ c log n, i ∈ [k],
let (�i)i∈[k] ∈R

k+ be such that they satisfy �i ≤ n exp(−(1 − ζ )(1 − θ−1)(di + 1)) and �i ≥ nη

for all n large, for any ζ > 0 and each i ∈ [k], and let Xi ∼ Gamma(di + 1, 1), i ∈ [k]. Then,
uniformly over di ≤ c log n, i ∈ [k],
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P(Zn(vi) = di, vi > �i, i ∈ [k])

= (1 + o(1))
k∏

i=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)di

PW

(
Xi <

(
1 + W

θ − 1

)
log (n/�i)

)]
.

(5.4)
Moreover, when di = di(n) diverges with n and with X̃i ∼ Gamma(di + �d1/4

i 	 + 1, 1), i ∈ [k],

P(Zn(vi) ≥ di, vi > �i, i ∈ [k])

≤ (1 + o(1))
k∏

i=1

E

[(
W

θ − 1 + W

)di

PW

(
Xi <

(
1 + W

θ − 1

)
log (n/�i)

)]
,

P(Zn(vi) ≥ di, vi > �i, i ∈ [k])

≥ (1 + o(1))
k∏

i=1

E

[(
W

θ − 1 + W

)di

PW

(
X̃i <

(
1 + W

θ − 1

)
log (n/�i)

)]
.

(5.5)

Remark 5.1.

(i) We conjecture that the additional condition that di diverges with n for all i ∈ [k] is suf-
ficient but not necessary for the result in (5.5) to hold, and that a sharper lower bound,
using Xi instead of X̃i, can be achieved. These minor differences arise only because of
the nature of our proof. However, the results in Proposition 5.1 are sufficiently strong
for the purposes of this paper.

(ii) Lemma A.1 and Corollary A.1 in the appendix provide asymptotic estimates for the
probability in (5.5) when the vertex-weight distribution satisfies Condition C2, or satis-
fies the atom, beta, or gamma case from Assumption 2.1, for a particular parametrisation
of di, �i, i ∈ [k].

(iii) Proposition 5.1 also holds when we consider the definition of the WRT model with
random out-degree, as discussed in Remark 2.1(ii). For the interested reader, we refer to
the discussion after the proof of [7, Lemma 5.10] for the (minor) adaptations required,
which also suffice for the proof of Proposition 5.1.

With Proposition 5.1 we can make rigorous the heuristic that the maximum degree is of the
order dn when p≥dn ≈ 1/n, where

p≥d := E

[(
W

θ − 1 + W

)d
]

, d ∈N0, (5.6)

is the limiting tail degree distribution of the WRT model. This is a consequence of the following
lemma.

Lemma 5.1. Consider the WRT model, that is, the WRG as in Definition 2.1 with m = 1, with
vertex-weights (Wi)i∈[n] which are i.i.d. copies of a positive random variable W that satisfies
Condition C1 of Assumption 2.1, and recall θ = θ1 = 1 +E [W]. Fix c ∈ (0, θ/(θ − 1)) and let
(dn)n∈N be a positive integer sequence that diverges with n such that dn ≤ c log n. Then

lim
n→∞ nE

[(
W

θ − 1 + W

)dn
]

= 0 ⇒ lim
n→∞ P

(
max
i∈[n]

Zn(i) ≥ dn

)
= 0.
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Similarly,

lim
n→∞ nE

[(
W

θ − 1 + W

)dn
]

= ∞ ⇒ lim
n→∞ P

(
max
i∈[n]

Zn(i) ≥ dn

)
= 1.

Remark 5.2. Lemma 5.1 can be used to provide precise asymptotic values for the maximum
degree in the WRT model. Under assumptions on the distribution of the vertex-weights, it is
possible to determine values of dn for which either limn→∞ np≥dn = 0 or limn→∞ np≥dn = ∞
is met. In particular, Lemma 5.1 can be used to extend Theorems 2.6–2.7 in [7], as well
as Equation (4.6) in Theorem 4.6 of [7], to a wider range of vertex-weight distributions.
Specifically, in [7], Condition C3 is required for a result equivalent to Lemma 5.1 to hold. This
result is used to prove the aforementioned theorems. Here, however, we do not need Condition
C3 for Lemma 5.1, so that these theorems can be extended to a wider range of vertex-weight
distributions.

We now present a proposition which asymptotically determines the joint factorial moments
of the random variables X(n)

j (B) and X(n)
≥j (B), as in (5.2), when the vertex-weight distribution

satisfies the atom case. It is instrumental for the proof of Theorem 2.3.

Proposition 5.2. Consider the WRT model, that is, the WRG model as in Definition 2.1 with
m = 1, with vertex-weights (Wi)i∈[n] that satisfy the atom case in Assumption 2.1 for some
q0 ∈ (0, 1]. Recall that θ := 1 +E [W] and that (x)k := x(x − 1) · · · (x − (k − 1)) for x ∈R,
k ∈N, and (x)0 := 1. Fix c ∈ (0, θ/(θ − 1)) and K ∈N; let (jk)k∈[K] be a non-decreasing inte-
ger sequence with 0 ≤ K′ := min{k : jk+1 = jK} such that j1 + logθ n = ω(1) and jK + logθ n <

c log n; let (Bk)k∈[K] be a sequence of sets Bk ∈B(R) such that Bk ∩ B� =∅ when jk = j� and

k �= �; and let (ck)k∈[K] ∈N
K
0 . Recall the random variables X(n)

j (B), X(n)
≥j (B) and X̃(n)

j (B), X̃(n)
≥j (B)

from (5.2), and define εn := logθ n − �logθ n	. Then

E

⎡⎣ K′∏
k=1

(
X(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X(n)

≥jk
(Bk)

)
ck

⎤⎦ = (1 + o(1))
K′∏

k=1

(
q0(1 − θ−1)θ−jk+εn�(Bk)

)ck

×
K∏

k=K′+1

(
q0θ

−jK+εn�(Bk)
)ck

.

Moreover, when j1, . . . , jK = o(
√

log n),

E

⎡⎣ K′∏
k=1

(
X̃(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X̃(n)

≥jk
(Bk)

)
ck

⎤⎦ = (1 + o(1))
K′∏

k=1

(
q0(1 − θ−1)θ−jk+εn�(Bk)

)ck

×
K∏

k=K′+1

(
q0θ

−jK+εn�(Bk)
)ck

.

We can interpret the results in Proposition 5.2 as follows. Fix some (jk)k∈[K] and (Bk)k∈[K]
as in the proposition (we note that the jk are allowed to be functions of n, but for simplicity
we do not discuss this case here). Then the result of the proposition tells us that the joint
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factorial moments of the random variables X(n)
jk

(Bk) and X(n)
≥jk

(Bk) are asymptotically equal to

a product of terms (q0(1 − θ−1)θ−jk+εnθ (Bk))ck and (q0θ
−jK+εnθ (Bk))ck , respectively. Since εn

is bounded, it converges along subsequences to some value ε ∈ [0, 1]. Hence, the method of
moments yields that the random variables of interest are asymptotically independent and that
their limits, along certain subsequences, are Poisson random variables. Thus, the number of
vertices with a degree equal to, or at least, jk + logθ n and a label i such that

log i − (log n − (1 − θ−1)(�logθ n	 + jk))√
(1 − θ−1)2(�logθ n	 + jk)

∈ Bk

is asymptotically Poisson distributed. A similar statement can be made for the random variables
X̃(n)

jk
(Bk) and X̃(n)

≥jk
(Bk).

A similar result can be proved for the beta and gamma cases, which we defer to Section 7.

5.3. Proofs of main results

With the intermediate results in hand, we can prove Theorems 2.2 and 2.3.

Proof of Theorem 2.2 subject to Proposition 5.1. We recall that di diverges as n → ∞ for
all i ∈ [k] such that ci := lim supn→∞ di/ log n is strictly smaller than θ/(θ − 1) for all i ∈ [k],
and for (xi)i∈[k] ∈R

k fixed, we define

�i := n exp(−(1 − θ−1)di + xi

√
(1 − θ−1)2di), i ∈ [k].

We first observe that by this definition,{
log vi − (log n − (1 − θ−1)di)√

(1 − θ−1)2di

≥ xi, i ∈ [k]

}
= {vi > �i, i ∈ [k]}.

Furthermore, we note that there exists an η > 0 such that, for all i ∈ [k], we have �i ≥ nη

and �i ≤ n exp(−(1 − ζ )(1 − θ−1)(di + 1)) for all ζ > 0 and all n sufficiently large. Hence,
the conditions in Proposition 5.1 are satisfied. We then write

P (vi ≥ �i, i ∈ [k] |Zn(vi) ≥ di, i ∈ [k]) = P (Zn(vi) ≥ di, vi ≥ �i, i ∈ [k])

P (Zn(vi) ≥ di, i ∈ [k])
.

We now combine Proposition 5.1 with Lemma A.1 in the appendix. As we assume that the
vertex-weight distribution satisfies Conditions C1 and C2 of Assumption 2.1, it follows that

P (Zn(vi) ≥ di, vi > �i, i ∈ [k]) = (1 + o(1))
k∏

i=1

p≥di (1 − �(xi)), (5.7)

where we recall p≥d from (5.6). It thus remains to show that

P (Zn(vi) ≥ di, i ∈ [k]) = (1 + o(1))
k∏

i=1

p≥di . (5.8)

We first assume that ci < 1/ log θ for all i ∈ [k]. We can then take any ε ∈ (0, μ), and for all n
sufficiently large, nμ−ε ≤ n exp(−(1 − θ−1)(di + 1)) holds for all i ∈ [k]. It then follows from
Proposition 5.1 (with �i = nμ−ε for all i ∈ [k]) and Lemma A.2 that

P (Zn(vi) ≥ di, i ∈ [k]) ≥ P
(Zn(vi) ≥ di, vi ≥ nμ−ε, i ∈ [k]

) = (1 + o(1))
k∏

i=1

p≥di . (5.9)

https://doi.org/10.1017/apr.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.52


Location of high-degree vertices in WRG with bounded weights 893

It remains to prove a matching upper bound, for which we use that for any η > 0 small,

P (Zn(vi) ≥ di, i ∈ [k]) ≤ P
(Zn(vi) ≥ di, vi ≥ nη, i ∈ [k]

)
+ P

((
∩k

i=1 {Zn(vi) ≥ di}
)

∩
(

∪k
i=1 {vi < nη}

))
.

(5.10)

The first term on the right-hand side can be dealt with in the same manner as (5.9) by setting
η = μ − ε with ε sufficiently close to μ. We write the second term as

k∑
j=1

∑
S⊆[k]
|S|=j

P
(Zn(vi) ≥ di, i ∈ [k], vj < nη, j ∈ S, vm > nη, m ∈ Sc)

≤
k∑

j=1

∑
S⊆[k]
|S|=j

P
(Zn(vi) ≥ di, vi > nη, i ∈ Sc)

P
(
vj < nη, j ∈ S

)

≤
k∑

j=1

∑
S⊆[k]
|S|=j

(1 + o(1))n−j(1−η)
∏
i∈Sc

p≥di ,

(5.11)

where we use that the uniform vertices (vi)i∈S are independent of everything else, and where
we take care of the other probability in the second line in the same manner as the first
term on the right-hand side of (5.10). We now use Theorem 3.2 to bound p≥d ≥ (θ + ξ )−d =
exp(−d log (θ + ξ )) for any ξ > 0 and d sufficiently large. Since ci < 1/ log θ for all i ∈ [k],
it thus follows that for ξ and η sufficiently small, n−(1−η) = o(p≥di ) for all i ∈ [k]. Hence, the
final line of (5.11) is o(

∏k
i=1 p≥di ). In (5.10), we thus find that

P (Zn(vi) ≥ di, i ∈ [k]) ≤ (1 + o(1))
k∏

i=1

p≥di .

Combined with (5.9), this proves (5.8) and thus the desired result.
To extend the proof to ci ∈ [1/ log θ, θ/(θ − 1)), we observe that the lower bound in (5.9)

is still valid when we choose ε sufficiently close to μ so that nμ−ε ≤ n exp(−(1 − θ−1)(di +
1)) still holds for all i ∈ [k]—to be more precise, when we let ε ∈ (c(1 − θ−1) − (1 − μ), μ),
where c ∈ ( maxi∈[k] ci, θ/(θ − 1)). The upper bound, however, no longer suffices, since the
error terms on the right-hand side of (5.11) no longer decay sufficiently fast. Instead, we require
Condition C3 of Assumption 2.1. With this condition and since ci < θ/(θ − 1) for all i ∈ [k],
we can apply Proposition 3.1. This yields

P (Zn(vi) ≥ di, i ∈ [k]) = (1 + o(1))
k∏

i=1

p≥di .

Combined with (5.7), this implies the same result.
Using Remark A.1(i)–(ii) (together with Proposition 3.1 for the case ci ∈ [1/ log θ, θ/(θ −

1)) for all i ∈ [k]), a similar result can be proved when conditioning on the event {Zn(vi) =
di, i ∈ [k]}, as claimed in Remark 2.5. �
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Proof of Theorem 2.3 subject to Proposition 5.2. As discussed before (5.2), it suffices to
prove the weak convergence of MP (nj) to MPε along subsequences (nj)j∈N such that εnj →
ε ∈ [0, 1] as j → ∞. In turn, this is implied by the convergence of the FDDs, i.e., by the joint
convergence of the counting measures in (5.3).

We recall that the points Pi in the definition of the variables Xj(B), X≥j(B) in (5.2) are
the points of the Poisson point process P with intensity measure λ(x) := q0θ

−x log θ dx in
decreasing order. As a result, as the random variables (Mi)i∈N are i.i.d. and also independent
of P , we have Xj(B) ∼ Poi(λj(B)), X≥j(B) ∼ Poi((1 − θ−1)−1λj(B)), where

λj(B) = q0(1 − θ−1)θ−j+ε�(B) = q0(1 − θ−1)θ−j+ε
P (M1 ∈ B) .

We also recall that (n�)�∈N is a subsequence such that εn�
→ ε as � → ∞. We now take

c ∈ (1/ log θ, θ/(θ − 1)) and for any K ∈N consider any fixed non-decreasing integer sequence
(jk)k∈[K]. It follows from the choice of c and the fact that the jk are fixed with respect to
n that j1 + logθ n = ω(1) and that jK + logθ n < c log n for all large n. Moreover, let K′ :=
min{k : jk+1 = jK} and let (Bk)k∈[K] be a sequence of sets in B(R) such that Bk ∩ B� =∅ when
jk = j� and k �= �.

We obtain from Proposition 5.2 that, for any (ck)k∈[K] ∈N
K
0 , and since j1, . . . , jK are

fixed,

lim
n→∞ E

[
K′∏

k=1

(
X̃(n�)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X̃(n�)

≥jk
(Bk)

)
ck

]
=

K′∏
k=1

λ
ck
jk

K∏
k=K′+1

((1 − θ−1)−1λjk )ck

=E

[
K′∏

k=1

(
Xjk (Bk)

)
ck

K∏
k=K′+1

(
X≥jk (Bk)

)
ck

]
,

where the last step follows from the independence property of (marked) Poisson point pro-
cesses and the choice of the sequences (jk, Bk)k∈[K]. The method of moments [10, Section 6.1]
then concludes the proof. �

6. Proof of intermediate results

In this section we prove the intermediate results introduced in Section 5 that were used to
prove some of the main results presented in Section 2. We start by proving Lemmas 5.1 and 5.2
(subject to Proposition 5.1) and finally prove Proposition 5.1, which requires the most work
and hence is deferred to the end of the section.

Proof of Lemma 5.1 subject to Proposition 5.1. Fix ε ∈ (0 ∨ (c(1 − θ−1) − (1 − μ)), μ).
We note that such an ε exists, since c < θ/(θ − 1). We start with the first implication. By
Theorem 2.1 and a union bound we have

P

(
max
i∈[n]

Zn(i) ≥ dn

)
≤ P

(
max
i∈[n]

Zn(i) ≥ dn, In > nμ−ε

)
+ P

(
In ≤ nμ−ε

)
≤ P

(
max

nμ−ε<i≤n
Zn(i) ≥ dn

)
+ o(1) (6.1)
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≤
n∑

i=�nμ−ε�
P (Zn(i) ≥ dn) + o(1)

= nP
(Zn(v1) ≥ dn, v1 > nγ−ε

) + o(1),

where v1 is a vertex selected uniformly at random from [n]. We now apply Proposition 5.1 with
k = 1, d1 = dn, �1 = nμ−ε (we observe that, since ε < μ and by the bound on dn, the conditions
in Proposition 5.1 for �1 and d1 are satisfied) to obtain the upper bound

P

(
max
i∈[n]

Zn(i) ≥ dn

)
≤ nE

⎡⎣(
W

θ − 1 + W

)dn

PW

(
X ≤

(
1 + W

θ − 1

)
log (n1−μ+ε)

)⎤⎦
(1 + o(1)) + o(1),

where X ∼ Gamma(d + 1, 1). We can simply bound the conditional probability from above by
one, so that the assumption yields the desired implication.

For the second implication, we use the Chung–Erdös inequality. If we let v1, v2 be two
vertices selected uniformly at random without replacement from [n] and set Ai,n := {Zn(i) ≥
dn}, then

P

(
max
i∈[n]

Zn(i) ≥ dn

)
= P

(∪n
i=1Ai,n

) ≥ P

(
∪n

i=�nμ−ε�Ai,n

)
≥

( ∑n
i=�nμ−ε� P

(
Ai,n

) )2∑n
i,j=�nμ−ε� P

(
Ai,n ∩ Aj,n

) .

(6.2)
As in (6.1), we can write the numerator as (nP(Zn(v1) ≥ dn, v1 ≥ nμ−ε))2. The denominator
can be written as

n∑
i,j=�nμ−ε�

i �=j

P
(
Ai,n ∩ Aj,n

) +
n∑

i=�nμ−ε�
P(Ai,n) = n(n − 1)P

(Zn(vi) ≥ dn, vi ≥ nμ−ε, i ∈ {1, 2})

+ nP
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

)
.

By applying Proposition 5.1 to the right-hand side, we find that it equals(
nP

(Zn(v1) ≥ dn, v1 ≥ nμ−ε
))2

(1 + o(1)) + nP
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

)
.

It follows that the right-hand side of (6.2) equals

nP
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

)
nP

(Zn(v1) ≥ dn, v1 ≥ nμ−ε
)

(1 + o(1)) + 1
.

It thus suffices to prove that the implication

lim
n→∞ nE

⎡⎣(
W

θ − 1 + W

)dn
⎤⎦ = ∞ ⇒ lim

n→∞ nP
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

) = ∞ (6.3)

holds to conclude the proof. Again using Proposition 5.1, we have that
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P
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

)
≥E

⎡⎣(
W

θ − 1 + W

)dn

PW

(
X̃ ≤

(
1 + W

θ − 1

)
log (n1−μ+ε)

)⎤⎦ (1 + o(1)),

where X̃ ∼ Gamma(d + �d1/4	 + 1, 1). Hence, it follows from Lemma A.2 in the appendix and
the choice of ε that

nP
(Zn(v1) ≥ dn, v1 ≥ nμ−ε

) ≥ nE

⎡⎣(
W

θ − 1 + W

)dn
⎤⎦ (1 − o(1)),

which implies (6.3) as desired and concludes the proof. �
Proof of Proposition 5.2 subject to Proposition 5.1. Recall that c ∈ (0, θ/(θ − 1)); that μ =

1 − (θ − 1)/(θ log θ ), σ 2 = 1 − (θ − 1)2/(θ2 log θ ); and that we have a non-decreasing inte-
ger sequence (jk)k∈[K] with K′ = min{k : jk+1 = jK} such that j1 + logθ n = ω(1), jK + logθ n <

c log n, as well as a sequence (Bk)k∈[K] such that Bk ∈B(R) and Bk ∩ B� =∅ when jk = j� and

k �= �. Then let (ck)k∈[K] ∈N
K
0 and set M := ∑K

k=1 ck and M′ := ∑K′
k=1 ck.

We define d̄ = (di)i∈[M] ∈Z
M and Ā = (Ai)i∈[M] ⊂B(R)M as follows. For each i ∈ [M], find

the unique k ∈ [K] such that
∑k−1

�=1 c� < i ≤ ∑k
�=1 c�, and set di := �logθ n	 + jk, Ai := Bk. We

note that this construction implies that the first c1-many di and Ai equal �logθ n	 + j1 and B1,
respectively, that the next c2-many di and Ai equal �logθ n	 + j2 and B2, respectively, etc.
Moreover, we let (vi)i∈[M] be M vertices selected uniformly at random without replacement
from [n]. We then define the events

LĀ,d̄ :=
{

log vi − (log n − (1 − θ−1)di)√
(1 − θ−1)2di

∈ Ai, i ∈ [M]

}
,

Dd̄(M′, M) := {Zn(vi) = di, i ∈ [M′],Zn(vj) ≥ dj, M′ < j ≤ M},
Ed̄(S) := {Zn(vi) ≥ di + 1{i∈S}, i ∈ [M]}.

We know from [1, Lemma 5.1] that by the inclusion–exclusion principle,

P
(Dd̄(M′, M)

) =
M′∑
j=0

∑
S⊆[M′]:
|S|=j

(−1)j
P

(Ed̄(S)
)
,

so that intersecting the event LĀ.d̄ in the probabilities on both sides yields

P
(Dd̄(M′, M) ∩LĀ,d̄

) =
M′∑
j=0

∑
S⊆[M′]:
|S|=j

(−1)j
P

(Ed̄(S) ∩LĀ,d̄

)
. (6.4)

We define �d : R→ (0, ∞) by �d(x) := exp
(
log n − (1 − θ−1)d + x

√
(1 − θ−1)2d

)
, x ∈R,

abuse this notation to also write �d(A) := {�d(x) : x ∈ A} for A ⊆R, and note that LĀ,d̄ = {vi ∈
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�di(Ai), i ∈ [M]}. We also observe, since di diverges with n for all i ∈ [M], that �di+1{i∈S}(x) =
�di(x(1 + o(1))) for any i ∈ [M] and x ∈R. This can be extended to the sets (Ai)i∈[M] rather than
x ∈R as well. As a result, we can use Corollary A.1 in the appendix (with the observations
made in Remark A.1) to then obtain

P
(Ed̄(S) ∩LĀ,d̄(S)

) = (1 + o(1))
M∏

i=1

q0θ
−(di+1{i∈S})�(Ai)

= (1 + o(1))qM
0 θ−|S|−∑M

i=1 di

M∏
i=1

�(Ai).

Using this in (6.4) we arrive at

P
(Dd̄(M′, M) ∩LĀ,d̄

) = (1 + o(1))qM
0 θ− ∑M

i=1 di

M∏
i=1

�(Ai)
M′∑
j=0

∑
S⊆[M′]:
|S|=j

(−1)jθ−j

= (1 + o(1))qM
0 θ− ∑M

i=1 di(1 − θ−1)M′ M∏
i=1

�(Ai),

(6.5)

where the 1 + o(1) and the product on the right-hand side are independent of S and j and can
therefore be taken out of the double sum. Now, recall the definition of the variables X(n)

j (B),

X(n)
≥j (B) as in (5.2). Combining (6.4) and (6.5), we arrive at

E

[
K′∏

k=1

(
X(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X(n)

≥jk
(Bk)

)
ck

]
= (n)MP

(Dd̄(M′, M) ∩LĀ.d̄

)

∼ qM
0 θM logθ n−∑M

i=1 di(1 − θ−1)M′ M∏
i=1

�(Ai),

(6.6)
since (n)M := n(n − 1) · · · (n − (M − 1)) = (1 + o(1))nM , and where we recall that an ∼ bn

denotes limn→∞ an/bn = 1. We now recall that there are exactly ck-many di and Ai that equal
�log2 n	 + jk and Bk, respectively, for each k ∈ [K], and that jK′+1 = . . . = jK , so that

M∏
i=1

�(Ai) =
K∏

k=1

�(Bk)ck ,

M logθ n − M′ −
M∑

i=1

di = −
K′∑

k=1

(jk + 1 − εn)ck −
K∑

k=K′+1

(jK − εn)ck,

which, combined with (6.6), finally yields
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E

[
K′∏

k=1

(
X(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X(n)

≥jk
(Bk)

)
ck

]
= (1 + o(1))

K′∏
k=1

(
q0(1 − θ−1)θ−jk+εn�(Bk)

)ck

×
K∏

k=K′+1

(
q0θ

−jK+εn�(Bk)
)ck .

To prove the second result, we observe that for j1, . . . , jK = o(
√

log n),

log vi − (log n − (1 − θ−1)di)√
(1 − θ−1)2di

= log vi − μ log n√
(1 − σ 2) log n

(1 + o(1)) + o(1).

Hence, the same steps as above can be applied to the random variables X̃(n)
j (B), X̃(n)

≥j (B) to
obtain the desired result. �

Finally, we prove Proposition 5.1. This result extends and improves Proposition 3.1 and [7,
Lemma 5.10], which one could think of as an analogous result with �i = nε for all i ∈ [k] and
some ε > 0 small. We split the proof of the proposition into three main parts. We first prove
an upper bound for (5.4), then prove a matching lower bound for (5.4) (up to error terms), and
finally prove (5.5).

Proof of Proposition 5.1, Equation (5.4), upper bound. We assume without loss of general-
ity that �1, . . . , �k are integer-valued. (If they are not, we can use ��1�, . . . , ��k�, which yields
the same result.) By first conditioning on the value of v1, . . . , vk, we obtain

P (Zn(vi) = di, vi > �i, i ∈ [k]) = 1

(n)k

n∑
j1=�1+1

n∑
j2=�2+1

j2 �=j1

· · ·
n∑

jk=�k+1
jk �=jk−1,...,j1

P (Zn(ji) = di, i ∈ [k]) .

If we let Pk be the set of all permutations on [k], we can write the sums on the right-hand
side as

1

(n)k

∑
π∈Pk

n∑
jπ (1)=�π (1)

n∑
jπ (2)=(�π (2)∨jπ (1))+1

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

P (Zn(ji) = di, i ∈ [k]) . (6.7)

To prove an upper bound for this expression, we first consider the identity permutation, i.e.
π (i) = i for all i ∈ [k], and take

1

(n)k

n∑
j1=�1

n∑
j2=(�2∨j1)+1

· · ·
n∑

jk=(�k∨jk−1)+1

P (Zn(ji) = di, i ∈ [k]) . (6.8)

One can think of this as all realisations vi = ji, i ∈ [k], where j1 < j2 < . . . < jk and ji > �i for
all i ∈ [k]. (Later on we will discuss what changes when one uses other choices of π ∈Pk in
(6.7).) Let us introduce the event

E(1)
n :=

{ j∑
�=1

W� ∈ ((1 − ζn)E [W] j, (1 + ζn)E [W] j), ∀ nη ≤ j ≤ n

}
, (6.9)
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where ζn = n−δη/E [W] for some δ ∈ (0, 1/2) and where we recall that nη is a lower bound
for all �i, i ∈ [k], with η ∈ (0, 1). It follows from Lemma 3.1 that P((E(1)

n )c) = o(n−γ ) for any
γ > 0. We can hence bound (6.8) from above, for any γ > 0, by

1

(n)k

n∑
j1=�1

. . .

n∑
jk=(�k∨jk−1)+1

E[PW(Zn(j�) = m�, � ∈ [k]) 1
E(1)

n
] + o(n−γ ). (6.10)

Now, to express the first term in (6.10) we introduce the ordered indices ji < m1,i < . . . <

mdi,i ≤ n, i ∈ [k], which denote the steps at which vertex ji increases its degree by one. Note
that for every i ∈ [k] these indices are distinct by definition, but we also require that ms,i �= mt,h

for any distinct i, h ∈ [k], s ∈ [di], t ∈ [dh] (equality is allowed only when i = h and s = t). We
denote this constraint by adding an asterisk ∗ to the summation symbol. If we also define
jk+1 := n, we can write the first term in (6.10) as

1

(n)k

n∑
j1=�1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

⎡⎢⎢⎣ k∏
t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W�

×
k∏

u=1

ju+1∏
s=ju+1

s�=mi,t,t∈[di],i∈[k]

(
1 −

∑u
�=1 Wj�∑s−1
�=1 W�

)
1

E(1)
n

⎤⎥⎥⎦.

We then include the terms where s = mi,t for i ∈ [dt], t ∈ [k] in the second double product. To
do this, we need to change the first double product to

k∏
t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W� − ∑k

�=1 Wj�1{ms,t>j�}
≤

k∏
t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W� − k

;

that is, we subtract the vertex-weight Wj� in the numerator when the vertex j� has already been
introduced by step ms,t. In the upper bound we use that the weights are bounded from above
by one. We thus arrive at the upper bound

1

(n)k

n∑
j1=�1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W� − k

×
k∏

u=1

ju+1∏
s=ju+1

(
1 −

∑u
�=1 Wj�∑s−1
�=1 W�

)
1

E(1)
n

]
.

(6.11)

For ease of writing, for now we consider only the inner sum, until we actually intend to sum
over the indices j1, . . . , jk later on in (6.16). We use the bounds from the event E(1)

n defined in
(6.9) to bound

ms,t−1∑
�=1

W� ≥ (ms,t − 1)E [W] (1 − ζn),
s−1∑
�=1

W� ≤ sE [W] (1 + ζn).
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For n sufficiently large, we observe that (ms,t − 1)E [W] (1 − ζn) − k ≥ ms,tE [W] (1 − 2ζn),
which yields the upper bound

1

(n)k

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

dt∏
s=1

Wjt

ms,tE [W] (1 − 2ζn)

k∏
u=1

ju+1∏
s=ju+1

(
1 −

∑u
�=1 Wj�

sE [W] (1 + ζn)

)
1

E(1)
n

]
.

We can now bound the indicator from above by one. Moreover, relabelling the vertex-weights
Wjt to Wt for t ∈ [k] does not change the distribution of the terms within the expected value, so
that the expected value remains unchanged. We thus arrive at the upper bound

1

(n)k

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

dt∏
s=1

Wt

ms,tE [W] (1 − 2ζn)

k∏
u=1

ju+1∏
s=ju+1

(
1 −

∑u
�=1 W�

sE [W] (1 + ζn)

)]
.

(6.12)
We bound the final product from above by

ju+1∏
s=ju+1

(
1 −

∑u
�=1 W�

sE [W] (1 + ζn)

)
≤ exp

(
− 1

E [W] (1 + ζn)

ju+1∑
s=ju+1

∑u
�=1 W�

s

)

≤ exp

(
− 1

E [W] (1 + ζn)

u∑
�=1

W� log

(
ju+1

ju + 1

))

=
(

ju+1

ju + 1

)− ∑u
�=1 W�/(E[W](1+ζn))

.

(6.13)

As the weights are almost surely bounded by one, we thus find

ju+1∏
s=ju+1

(
1 −

∑u
�=1 W�

sE [W] (1 + ζn)

)
≤

(
ju+1

ju

)− ∑u
�=1 W�/(E[W](1+ζn))(

1 + 1

ju

)k/(E[W](1+ζn))

=
(

ju+1

ju

)− ∑u
�=1 W�/(E[W](1+ζn))

(1 + o(1)).

Using this upper bound in (6.12) and setting

a′
t := Wt

E [W] (1 + ζn)
, t ∈ [k],

we obtain

1

(n)k

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

(
a′dt

t

dt∏
s=1

1 + ζn

ms,t(1 − 2ζn)

)
k∏

u=1

(
ju+1

ju

)− ∑u
�=1 a′

�

]
(1 + o(1))

= 1

(n)k

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

(
1 + ζn

1 − 2ζn

)− ∑k
t=1 dt

E

[
k∏

t=1

(
a′dt

t (jt/n)a′
t

dt∏
s=1

1

ms,t

)]
(1 + o(1)),

(6.14)
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where in the last step we recall that jk+1 = n. Since dt ≤ c log n for all t ∈ [k], jt > �t > nη for
all t ∈ [k], and ζn = n−δη/E [W], it readily follows that

(
1 + ζn

1 − 2ζn

)− ∑k
t=1 dt

= 1 + o(1), and a′dt
t

(
jt
n

)a′
t

=
(

Wt

E [W]

)dt
(

jt
n

)Wt/E[W]

(1 + o(1)).

(6.15)
We can thus omit the first term from (6.14) as well as use at := Wt/E [W] instead of a′

t at the
cost of an additional 1 + o(1) term. So we obtain

1

(n)k

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

(
adt

t (jt/n)at

dt∏
s=1

1

ms,t

)]
(1 + o(1)).

We then bound this from above even further by no longer constraining the indices ms,t to
be distinct (so that the ∗ in the sum is omitted). That is, for different t1, t2 ∈ [k], we allow
ms1,t1 = ms2,t2 to hold for any s1 ∈ [dt1 ], s2 ∈ [dt2 ]. This also allows us to interchange the sum
and the first product. We bound the sums from above by multiple integrals, which yields

1

(n)k
E

[
k∏

t=1

adt
t (jt/n)at

∫ n

jt

∫ n

x1,t

· · ·
∫ n

xdt−1,t

dt∏
s=1

x−1
s,t dxdt,t . . . dx1,t

]
(1 + o(1)).

Applying Lemma 3.2 with a = jt, b = n, we then obtain

1

(n)k
E

[
k∏

t=1

(n/jt)
−at

(at log (n/jt))dt

dt!

]
(1 + o(1)).

Reintroducing the sums over the indices j1, . . . , jk (which were omitted after (6.11)), we
arrive at

1

(n)k

n∑
j1=�1

. . .

n∑
jk=(�k∨jk−1)+1

E

[
k∏

t=1

(n/jt)
−at

(at log (n/jt))dt

dt!

]
(1 + o(1)). (6.16)

We observe that switching the order of the indices j1, . . . , jk (and their respective bounds
�1, . . . , �k) achieves the same result as permuting the d1, . . . , dk and a1, . . . , ak. Hence, if we
take any π ∈Pk, then as in (6.7) and (6.10),

1

(n)k

n∑
jπ (1)=�π (1)

n∑
jπ (2)=(�π (2)∨jπ (1))+1

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

E

[
PW(Zn(ji) = di, i ∈ [k]) 1

E(1)
n

]

≤ 1

(n)k
E

⎡⎣ n∑
jπ (1)=�π (1)

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

k∏
t=1

(n/jt)
−at

(at log (n/jt))dt

dt!

⎤⎦ .

As a result, reintroducing the sum over all π ∈Pk, we arrive at
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1

(n)k

∑
π∈Pk

n∑
jπ (1)=�π (1)

n∑
jπ (2)=(�π (2)∨jπ (1))+1

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

E

[
PW(Zn(ji) = di, i ∈ [k]) 1

E(1)
n

]

≤ 1

(n)k
E

⎡⎣ ∑
π∈Pk

n∑
jπ (1)=�π (1)

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

k∏
t=1

(n/jt)
−at

(at log (n/jt))dt

dt!

⎤⎦ (1 + o(1))

= 1

(n)k
E

⎡⎢⎢⎢⎣
n∑

j1=�1+1

∑
j2=�2+1

j2 �=j1

. . .

n∑
jk=�k+1

jk �=jk−1,...,j1

k∏
t=1

(n/jt)
−at

(at log (n/jt))dt

dt!

⎤⎥⎥⎥⎦ (1 + o(1)).

We now bound these sums from above by allowing each index ji to take any value in {�i +
1, . . . , n} for all i ∈ [k], independent of the values of the other indices. Moreover, since the
weights W1, . . . , Wk, and hence a1, . . . , ak, are independent, this yields the upper bound

k∏
t=1

E

⎡⎣1

n

n∑
jt=�t+1

(n/jt)
−at

(at log (n/jt))dt

dt!

⎤⎦ (1 + o(1)), (6.17)

so that we can now deal with each sum independently instead of k sums at the same time.
First, we note that (n/jt)at (log (n/jt))dt is increasing on (0, n exp(−dt/at)), maximised at
n exp(−dt/at), and decreasing on (n exp(−dt/at), n] for all t ∈ [k]. To provide the optimal
bound, we want to know whether this maximum is attained in [�t + 1, n] or not—that is,
whether n exp(−dt/at) ∈ [�t + 1, n] or not. To this end, we let

ct := lim sup
n→∞

dt

log n
, t ∈ [k],

and consider two cases:

(1) ct ∈ [0, 1/(θ − 1)], t ∈ [k].

(2) ct ∈ (1/(θ − 1), c), t ∈ [k].

Clearly, when c ≤ 1/(θ − 1) the second case can be omitted, so that without loss of gener-
ality we can assume c > 1/(θ − 1). In the second case, it directly follows that the maximum is
almost surely attained at

n exp(−dt/at) ≤ n exp(−ct log n(θ − 1)(1 + o(1))) = n1−ct(θ−1)(1+o(1)) = o(1),

so that the summand (n/jt)−at (at log (n/jt))dt is almost surely decreasing in jt when �t < jt ≤ n.
In the first case, such a conclusion cannot be made in general and depends on the precise value
of Wt. Therefore, the first case requires a more involved approach. We first assume Case (1)
holds and discuss what simplifications can be made when Case 2 holds afterwards. In Case (1),
we use Lemma A.4 to bound each sum from above by

1

n

n∑
jt=�t+1

(n/jt)
−at

(at log (n/jt))dt

dt! ≤ 1

n

∫ n

�t

(n/xt)
−at

(at log (n/xt))dt

dt! dxt + 1

n
.
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Here, we use that the summand is at most one, since( jt
n

)at (at log (n/jt))dt

dt! = PW(Poi(at, jt) = dt) ≤ 1, (6.18)

irrespective of at ∈ (0, ∞) and jt ∈N, and where Poi(at, jt) is a Poisson random variable with
rate at log (n/jt), conditionally on Wt. In Case (2), the summand on the left-hand side is
decreasing in jt, so that we arrive at an upper bound without the additional error term 1/n.
Using a substitution yt := log (n/xt), we obtain

adt
t

(1 + at)dt+1

∫ log (n/�t)

0

(1 + at)dt+1

dt! ydt
t e−(1+at)yt dyt + 1

n

= adt
t

(1 + at)dt+1
PW(Yt < log (n/�t)) + 1

n
,

(6.19)

where, conditionally on Wt, Yt ∼ Gamma(dt + 1, 1 + at). We recall that we redefined at :=
Wt/E [W] = Wt/(θ − 1). Since Xt := (1 + Wt/(θ − 1))Yt ∼ Gamma(dt + 1, 1), we obtain

θ − 1

θ − 1 + Wt

(
Wt

θ − 1 + Wt

)dt

PW

(
Xt <

(
1 + Wt

(θ − 1)

)
log (n/�t)

)
+ 1

n
. (6.20)

Using this in (6.17), we arrive at an upper bound of the form

k∏
t=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt <

(
1 + W

(θ − 1)

)
log (n/�t)

)
+ 1

n

]
(1 + o(1)),

where we recall that in each term of the product, the additive term 1/n is present only when
dt satisfies Case (1) and can be omitted when dt satisfies Case (2). Moreover, we have omitted
the indices of the weights, as they are all i.i.d. By Lemma A.3 in the appendix, the term 1/n
can be included in the o(1) in the square brackets when dt satisfies Case (1). Thus, we finally
obtain

k∏
t=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt <

(
1 + W

(θ − 1)

)
log (n/�t)

)]
(1 + o(1)), (6.21)

as desired. This concludes the upper bound for the first term in (6.10). Since we can choose
γ arbitrarily large in the second term in (6.10), we can use the same argument as in
Lemma A.3 ((A.33) through (A.36) in particular), but now using that dt ≤ c log n < θ/(θ −
1) log n, to obtain that the second term in (6.10) can be included in the o(1) term of the final
expression of the upper bound, as well in both Case (1) and Case (2), which concludes the
proof of the upper bound. �

We now provide a lower bound for (5.4), which uses many of the definitions and steps
provided in the proof for the upper bound.

Proof of Proposition 5.1, Equation (5.4), lower bound. We define the event

E(2)
n :=

{ j∑
�=k+1

W� ∈ (E [W] (1 − ζn)j,E [W] (1 + ζn)j), ∀ nη ≤ j ≤ n

}
.
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We then again have (6.7) and start by considering the identity permutation, π (i) = i for all
i ∈ [k], as in (6.8), by omitting the second term in (6.10), and using the event E(2)

n instead of
E(1)

n . This yields the lower bound

1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

E[PW(Zn(j�) = m�, � ∈ [k]) 1
E(2)

n
]

≥ 1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

⎡⎢⎢⎣ k∏
t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W�

×
k∏

u=1

ju+1∏
s=ju+1

s�=mi,t,t∈[di],i∈[k]

(
1 −

∑u
�=1 Wj�∑s−1
�=1 W�

)
1

E(2)
n

⎤⎥⎥⎦ .

We omit the constraint s �= m�,i, � ∈ [di], i ∈ [k] in the final product. As this introduces more
multiplicative terms smaller than one, we obtain a lower bound. Then, in the two denominators,
we bound the vertex-weights Wj1 , . . . , Wjk from above by one and below by zero, respectively,
to obtain a lower bound

1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

dt∏
s=1

Wjt∑ms,t−1
�=1 W�1{� �=jt,t∈[k]} + k

×
k∏

u=1

ju+1∏
s=ju+1

(
1 −

∑u
�=1 Wj�∑s−1

�=1 W�1{� �=jt,t∈[k]}

)
1

E(2)
n

]
.

As a result, we can now swap the labels of Wjt and Wt for each t ∈ [k], which again does not
change the expected value, but changes the value of the two denominators to

∑ms,t
�=k+1 W� +

k and
∑ms,t

�=k+1 W�, respectively. After this we use the bounds in E(2)
n on these sums in the

expected value to obtain a lower bound. Finally, we note that the (relabelled) weights Wt,
t ∈ [k], are independent of E(2)

n , so that we can take the indicator out of the expected value.
Combining all of the above steps, we arrive at the lower bound

1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

( Wt

E [W]

)dt
dt∏

s=1

1

ms,t(1 + 2ζn)

×
k∏

u=1

ju+1∏
s=ju+1

(
1 −

∑u
�=1 W�

(s − 1)E [W] (1 − ζn)

)]
P(E(2)

n ).

(6.22)

The 1 + 2ζn in the fraction on the first line arises from the fact that, for n sufficiently large,
(ms,t − 1)(1 + ζn) + k ≤ ms,t(1 + 2ζn). It follows from Lemma 3.1 that P(E(2)

n ) = 1 − o(n−γ )
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for any γ > 0. Similarly to the calculations in (6.13) and using log (1 − x) ≥ −x − x2 for x
small, we obtain an almost sure lower bound for the final product, for n sufficiently large, of
the form

ju+1∏
s=ju+1

(
1 −

∑u
�=1 W�

(s − 1)E [W] (1 − ζn)

)
≥

(
ju+1

ju

)− ∑u
�=1 W�/(E[W](1−ζn))

(1 − o(1)).

Using this in (6.22) yields the lower bound

1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

(1 − o(1))

(
1 − ζn

1 + 2ζn

)∑k
t=1 dt

E

[
k∏

t=1

ãdt
t

( jt
n

)̃at
dt∏

s=1

1

ms,t

]
,

where ãt := Wt/(E [W] (1 − ζn)). Since dt ≤ c log n and jt ≥ �t ≥ nη for all t ∈ [k], and ζn =
n−ηδ/E [W] for some δ ∈ (0, 1/2), we have as in (6.15) that(

1 − ζn

1 + 2ζn

)∑k
t=1 dt

= 1 − o(1), and ãdt
t

( jt
n

)̃at = adt
t

( jt
n

)at
(1 − o(1)),

where at := Wt/E [W]. This yields

1

(n)k

n∑
j1=�1+1

. . .

n∑
jk=(�k∨jk−1)+1

∑∗

ji<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

adt
t

( jt
n

)at
dt∏

s=1

1

ms,t

]
(1 − o(1)).

We now bound the sum over the indices ms,i from below. We note that the expression in the
expected value is decreasing in ms,i, and we restrict the range of the indices to ji + ∑k

t=1 dt <

m1,i < . . . < idi,i ≤ n for all i ∈ [k], but no longer constrain the indices to be distinct (so that we
can drop the ∗ in the sum). In the distinct sums and the suggested lower bound, the numbers of
values the ms,i take on equal

k∏
i=1

(
n − (ji − 1) − ∑i−1

t=1 dt

di

)
and

k∏
i=1

(
n − (ji − 1) − ∑k

t=1 dt

di

)
,

respectively. It is straightforward to see that the former allows for more possibilities than the
latter, as

(b
c

)
>

(a
c

)
when b > a ≥ c. As we omit the largest values of the expected value (since

it decreases in ms,t and we omit the smallest values of ms,t), we thus arrive at the lower bound

1

(n)k

n−∑k
t=1 dt∑

j1=�1+1

. . .

n−∑k
t=1 dt∑

jk=(�k∨jk−1)+1

∑∗

ji+∑k
t=1 dt<m1,i<...<mdi,i≤n,

i∈[k]

E

[
k∏

t=1

adt
t

( jt
n

)at
dt∏

s=1

1

ms,t

]
(1 − o(1)),

where we also restrict the upper range of the indices of the outer sums, as otherwise there would
be a contribution of zero from these values of j1, . . . , jk. We now use techniques similar to
those used for the proof of the upper bound to switch from summation to integration. However,
because of the altered bounds on the range of the indices over which we sum and the fact that
we require lower bounds rather than upper bounds, we face some more technicalities.
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For now, we omit the expected value and focus on the terms

1

(n)k

n−∑k
t=1 dt∑

j1=�1+1

. . .

n−∑k
t=1 dt∑

jk=(�k∨jk−1)+1

∑
ji+∑k

t=1 dt<m1,i<...<mdi,i≤n,

i∈[k]

k∏
t=1

adt
t

( jt
n

)at
dt∏

s=1

1

ms,t
. (6.23)

We start by restricting the upper bound on the k outer sums to n − 2
∑k

i=1 di. This will
prove useful later. We set hk := ∑k

t=1 dt and bound the inner sum over the indices ms,t from
below by

∑
ji+hk<m1,i<...<mdi,i≤n,

i∈[k]

k∏
t=1

dt∏
s=1

1

ms,t
≥

k∏
t=1

∫ n

jt+1+hk

∫ n

x1,t+1
· · ·

∫ n

xdt−1,t+1

dt∏
s=1

x−1
s,t dxdt,t . . . dx1,t.

Applying Lemma 3.2 with a = jt + 1 + hk and b = n, and using that jt ≤ n − 2hk (recall that
we restricted the upper bound on the outer sums in (6.23) to n − 2hk), yields the lower bound

k∏
t=1

adt
t

dt!
(

log

(
n

jt + 2
∑k

i=1 di

))dt

.

Substituting this in (6.23) with the restriction on the outer sum discussed after (6.23) yields

1

(n)k

n−2
∑k

i=1 di∑
j1=�1+1

. . .

n−2
∑k

i=1 di∑
jk=(�k∨jk−1)+1

k∏
t=1

(
jt
n

)at adt
t

dt!
(

log

(
n

jt + 2
∑k

i=1 di

))dt

. (6.24)

To simplify the summation over j1, . . . , jk, we write the summand as

k∏
t=1

((
jt + 2

k∑
i=1

di

)
/n

)at adt
t

dt!
(

log

(
n

jt + 2
∑k

i=1 di

))dt
(

1 − 2
∑k

i=1 di

jt + 2
∑k

i=1 di

)at

.

Using that dt ≤ c log n, jt ≥ �t ≥ nη, and xat ≥ x1/E[W] for x ∈ (0, 1) almost surely, we can write
the last term as (1 − o(1)) almost surely. We then shift the bounds on the range of the sums in
(6.24) by 2

∑k
i=1 di and let �̃i := �i + 2

∑k
t=1 dt for all i ∈ [k], to obtain the lower bound

1

(n)k

n∑
j1=�̃1+1

n∑
j2=(�̃2∨j1)+1

. . .

n∑
jk=(�̃k∨jk−1)+1

(1 − o(1))
k∏

t=1

(
jt
n

)at 1

dt! (at log (n/jt))
dt .

We recall that this lower bound is achieved for the permutation π such that π (i) = i for all
i ∈ [k]. As the product is invariant to permuting the indices t ∈ [k], we can use this in (6.7) to
obtain
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1

(n)k

∑
π∈Pk

n∑
jπ (1)=�π (1)

n∑
jπ (2)=(�π (2)∨jπ (1))+1

· · ·
n∑

jπ (k)=(�π (k)∨jπ (k−1))+1

P (Zn(ji) = di, i ∈ [k])

≥ 1

(n)k

n∑
j1=�̃1+1

n∑
j2=�̃2+1

j2 �=j1

· · ·
n∑

jk=�̃k+1
jk �=j1,...,jk−1

(1 − o(1))
k∏

t=1

E

[( jt
n

)at 1

dt! (at log (n/jt))
dt

]
.

(6.25)

We now want to allow for the indices j1, . . . , jk to have the same value. This way, we can more
easily evaluate the sums. To do this, we distinguish between two cases in terms of the sizes of
d1, . . . , dk, namely Case (1) and Case (2). In Case (1), we subtract all terms where two or more
indices have the same value to avoid creating an upper bound. That is, we write the multiple
sums as

1

(n)k

n∑
j1=�̃1+1

n∑
j2=�̃2+1

· · ·
n∑

jk=�̃k+1

(1 − o(1))
k∏

t=1

E

[( jt
n

)at 1

dt! (at log (n/jt))
dt

]

− 1

(n)k

k∑
m=2

∑
S⊆[k]
|S|=m

∑
i∈S

n∑
ji=�̃i+1

n∑∗

js=�̃s+1
s∈[k]\S

E

⎡⎣∏
u∈S

( ji
n

)au (au log (n/ji))du

du!
∏

s∈[k]\S

( js
n

)ds (as log (n/js))ds

ds!

⎤⎦ .

Here, the ∗ in the final sum on the second line indicates that the indices js with s ∈ [k]\S
are not allowed to have the same value, nor to be equal to ji for any i ∈ S. The error term
on the second line can be bounded from below by bounding the multiple sums from above,
following an approach equivalent to that used in the proof of the upper bound. By (6.18) we
can omit all terms u �= i in the product over u ∈ S, as they can be bounded from above by one.
Furthermore, we can omit the ∗ in the final sum to obtain an upper bound, so that all indices
ji and js, s ∈ [k]\S, can be equal in value. Finally, let us write Si := S\{i}. It then follows from
(6.17)–(6.21) that the error term is at least

−
k∑

m=2

1 + o(1)

nm−1

∑
S⊆[k]
|S|=m

∑
i∈S

∏
t∈[k]\Si

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt ≤

(
1 + W

θ − 1

)
log (n/�̃t)

)]

≥ −C
k∑

m=2

1

nm−1

∑
S′⊆[k]

|S|=k−(m−1)

∏
t∈S′

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt ≤

(
1 + W

θ − 1

)
log (n/�̃t)

)]
,

for some large constant C > 0. It remains to take care of the main term,

1

(n)k

n∑
j1=�̃1+1

n∑
j2=�̃2+1

· · ·
n∑

jk=�̃k+1

(1 − o(1))
k∏

t=1

E

[(
jt
n

)at 1

dt! (at log (n/jt))
dt

]

≥
k∏

t=1

E

⎡⎣1

n

n∑
jt=�̃t+1

(
jt
n

)at 1

dt! (at log (n/jt))
dt

⎤⎦ (1 − o(1)).

(6.26)

We bound each sum from below by an integral, similarly to the proof of the upper bound. We
again consider the two cases used in the upper bound, Case (1) and Case (2). In Case (2), the
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summand is decreasing in jt and hence we can replace the sum by an integral from �t to n. In
Case (1), we use Lemma A.4 and (6.18) to obtain the lower bound

1

n

n∑
jt=�̃t+1

(
jt
n

)at 1

dt! (at log (n/jt))
dt ≥

∫ n

�̃t

(
xt

n

)at 1

dt! (at log (n/xt))
dt dxt − 1

n
.

The same steps as in (6.19) and (6.20) yield that this equals

θ − 1

θ − 1 + Wt

(
Wt

θ − 1 + Wt

)dt

PW

(
Xt <

(
1 + Wt

(θ − 1)

)
log (n/�̃t)

)
− 1

n
.

Using this in (6.26) and combining it with the bound for the error term, we arrive at the final
lower bound

k∏
t=1

E

[
θ − 1

θ − 1 + Wt

(
Wt

θ − 1 + Wt

)dt

PW

(
Xt <

(
1 + Wt

(θ − 1)

)
log (n/�̃t)

)
− 1

n

]
(1 − o(1))

− C
k∑

m=2

1

nm−1

∑
S′⊆[k]

|S|=k−(m−1)

∏
t∈S′

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt ≤

(
1 + W

θ − 1

)
log (n/�̃t)

)]
.

We can replace �̃t with �t at the cost of a 1 − o(1) term, since log (n/�̃t) = log (n/�t) − o(1). It
then follows from Lemma A.3 that both the 1/n term on the first line and that of the second
line can be incorporated into the 1 − o(1) term.

In Case (2), we know that the summand in (6.25) is decreasing in jt for all t ∈ [k]. Hence,
we can omit the smallest values of j1, . . . , jk to obtain a lower bound. This yields

1

(n)k

n∑
j1=�̃1+1

n∑
j2=�̃2+2

· · ·
n∑

jk=�̃k+k

(1 − o(1))
k∏

t=1

E

[(
jt
n

)at 1

dt! (at log (n/jt))
dt

]
,

which can be evaluated in the same manner as in Case (1) to yield the lower bound

k∏
t=1

E

[
θ − 1

θ − 1 + Wt

(
Wt

θ − 1 + Wt

)dt

PW

(
Xt <

(
1 + Wt

(θ − 1)

)
log (n/(�̃t + (t − 1)))

)]
(1 − o(1)).

Again, since log (n/(�̃t + (t − 1))) = log (n/�t) − o(1) for each t ∈ [k], we can replace �̃t + (t −
1) with �t for each t ∈ [k] at the cost of a 1 − o(1) term. We thus conclude that

P(Zn(vi) = di, vi > �i, i ∈ [k])

≥ (1 − o(1))
k∏

t=1

[
E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)dt

PW

(
Xt <

(
1 + W

θ − 1

)
log (n/�t)

)]
,

which concludes the proof of the lower bound. �
We observe that the combination of the upper and lower bounds proves (5.4). What remains

is to prove (5.5).

Proof of Proposition 5.1, Equation (5.5). We prove the two bounds in (5.5) by using (5.4).
We assume that di diverges with n, and we note that if

di ≤ c log n and �i ≤ n exp(−(1 − ξ )(1 − θ−1)(di + 1))
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for any ξ ∈ (0, 1) and for all sufficiently large n, then for any j ∈ [�d1/4
i 	], it also holds that

di + j ≤ c′ log n, and �i ≤ n exp(−(1 − ξ )(1 − θ−1)(di + j + 1)),

for any ξ ∈ (0, 1) and for all sufficiently large n as well, where we can choose c′ ∈ (c, θ/(θ −
1)) arbitrarily close to c. As a result, we can write

P(Zn(vi) ≥ di, vi > �i, i ∈ [k])

≤
d1+�d1/4

1 	∑
j1=d1

· · ·
dk+�d1/4

k 	∑
jk=dk

P (Zn(vi) = ji, vi > �i, i ∈ [k])

+
k∑

t=1

P

(
Zn(vt) ≥ dt + �d1/4

t �,Zn(vi) ≥ di, i �= t, vi > �i, i ∈ [k]
)

.

We first provide an upper bound for the multiple sums on the first line. By (5.4), this equals

d1+�d1/4
1 	∑

j1=d1

· · ·
dk+�d1/4

k 	∑
jk=dk

(1 + o(1))
k∏

i=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)ji

PW

(
Xji <

(
1 + W

θ − 1

)
log (n/�i)

)]
,

where we write Xji ∼ Gamma(ji + 1, 1) instead of Xi to explicitly state the dependence on ji. If
Xji ∼ Gamma(ji + 1, 1) and Xj′i ∼ Gamma(j′i + 1, 1), then Xji stochastically dominates Xj′i when

ji > j′i. Hence, we obtain the upper bound

∞∑
j1=d1

. . .

∞∑
jk=dk

(1 + o(1))
k∏

i=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)ji
PW

(
Xdi<

(
1 + W

θ − 1

)
log (n/�i)

)]

= (1 + o(1))
k∏

i=1

E

[(
W

θ − 1 + W

)di

PW

(
Xi <

(
1 + W

θ − 1

)
log (n/�i)

)]
,

(6.27)
where we note that Xi ≡ Xdi by the definition of Xi and Xdi . It thus remains to show that

k∑
t=1

P

(
Zn(vt) ≥ dt + �d1/4

t �,Zn(vi) ≥ di, i �= t, vi > �i, i ∈ [k]
)

(6.28)

is negligible compared to (6.27). We show this holds for each term in the sum, and since all di,
i ∈ [k], diverge, it suffices to show this holds for t = 1. The in-degrees in the WRT model are
negative quadrant dependent under the conditional probability measure PW . That is, by [12,
Lemma 7.1], for any indices r1, . . . , rk ∈ [n], ri �= rj when i �= j,

PW(Zn(ri) ≥ di, i ∈ [k]) ≤
k∏

i=1

PW(Zn(ri) ≥ di) .

We can thus bound the term with t = 1 in (6.28) from above by
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n∑
j1=�1+1

n∑
j2=�2+1

j2 �=j1

· · ·
n∑

jk=�k+1
jk �=jk−1,...,j1

E

[
PW

(
Zn(j1) ≥ d1 + �d1/4

1 �
) k∏

i=2

PW(Zn(ji) ≥ di)

]

≤E

[
PW

(
Zn(v1) ≥ d1 + �d1/4

1 �, v1 > �1

) k∏
i=2

PW(Zn(vi) ≥ di, vi > �i)

]
,

where the last step follows by allowing the indices ji to take on any value between �i + 1 and
n, i ∈ [k]. We can now deal with each of these probabilities individually instead of with all the
events at the same time, which makes obtaining an explicit bound for the probability of the
event {Zn(vi) ≥ di, vi > �i} easier. We claim that, with a very similar approach to that in the
proof of the upper bound for (5.4) (see also the steps (5.47)–(5.51) in the proof of [7, Lemma
5.11] for the case �1 = . . . �k = n1−ε for some ε ∈ (0, 1)), it can be shown that this expected
value is bounded from above by

(1 + o(1))E

⎡⎣(
W

θ − 1 + W

)d1+�d1/4
1 �

PW

(
X1 ≤

(
1 + W

θ − 1

)
log (n/�1)

)⎤⎦
×

k∏
i=2

E

[(
W

θ − 1 + W

)di

PW

(
Xi ≤

(
1 + W

θ − 1

)
log (n/�i)

)]

≤ (1 + o(1))θ−�d1/4
1 �

k∏
i=1

E

[(
W

θ − 1 + W

)di

PW

(
Xi ≤

(
1 + W

θ − 1

)
log (n/�i)

)]
.

This upper bound can be achieved for each term in (6.28) (with �d1/4
1 � changed accordingly),

so that (6.28) is indeed negligible compared to (6.27) and hence can be included in the o(1)
term in (6.27). This proves the upper bound in (5.5).

For a lower bound we directly obtain

P (Zn(vi) ≥ di, vi > �i, i ∈ [k]) ≥
d1+�d1/4

1 	∑
j1=d1

· · ·
dk+�d1/4

k 	∑
jk=dk

P (Zn(vi) = ji, vi > �i, i ∈ [k]) .

With an approach similar to that used for the upper bound, we can use (5.4) and now bound
the probability from below by replacing Xji with X̃i ≡ X

di+�d1/4
i 	 instead of Xdi , to arrive at the

lower bound

d1+�d1/4
1 	∑

j1=d1

· · ·
dk+�d1/4

k 	∑
jk=dk

(1 + o(1))
k∏

i=1

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)ji

PW

(
Xji <

(
1 + W

θ − 1

)
log (n/�i)

)]

≥ (1 + o(1))
k∏

i=1

E

⎡⎣(
W

θ − 1 + W

)di(
1 −

(
W

θ − 1 + W

)�d1/4
i 	)

PW

(
X̃i <

(
1 + W

θ − 1

)
log (n/�i)

)⎤⎦
≥ (1 + o(1))

k∏
i=1

E

[(
W

θ − 1 + W

)di

PW

(
X̃i <

(
1 + W

θ − 1

)
log (n/�i)

)]
,
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where in the last step we use that 1 − (W/(θ − 1 + W))�d1/4
i 	 ≥ 1 − θ−�d1/4

i 	 = 1 − o(1) almost
surely, since di diverges for any i ∈ [k]. This concludes the proof of the lower bound in (5.5)
and hence of Proposition 5.1. �

7. Extended results for the beta and gamma cases

In this section we discuss two examples of vertex-weight distributions as provided
in Assumption 2.1, for which results similar to those of Theorems 2.2 and 2.3 and
Proposition 5.2 (where the latter two hold for the atom case) can be proved.

Example 7.1. (Beta case.) We consider a random variable W with a beta distribution, i.e. with
a tail distribution as in (2.2) for some α, β > 0. We define, for j ∈Z, B ∈B(R),

X̃(n)
j (B) :=

∣∣∣∣{i ∈ [n] : Zn(i) = �logθ n − β logθ logθ n	 + j,
log i − μ log n√

(1 − σ 2) log n
∈ B

}∣∣∣∣,
X̃(n)

≥j (B) :=
∣∣∣∣{i ∈ [n] : Zn(i) ≥ �logθ n − β logθ logθ n	 + j,

log i − μ log n√
(1 − σ 2) log n

∈ B

}∣∣∣∣,
εn := (logθ n − β logθ logθ n) − �logθ n − β logθ logθ n	,

cα,β,θ := 
(α + β)


(α)
(1 − θ−1)−β .

(7.1)

Then we can formulate the following results.

Theorem 7.1. Consider the WRT model, that is, the WRG model as in Definition 2.1 with
m = 1, with vertex-weights (Wi)i∈N which are distributed according to (2.2) for some α, β > 0,
and recall θ = 1 +E [W]. Let v1, v2, . . . , vn be the vertices in the tree in decreasing order of
their in-degree (where ties are split uniformly at random); let di

n and �i
n denote the in-degree

and label of vi, respectively; and fix ε ∈ [0, 1]. Recall εn from (7.1) and let (nj)j∈N be a positive,
diverging integer sequence such that εnj → ε as j → ∞. Finally, let (Pi)i∈N be the points of the
Poisson point process P on R with intensity measure λ(x) = cα,β,θ θ

−x log θ dx, ordered in
decreasing order, let (Mi)i∈N be a sequence of i.i.d. standard normal random variables, and
define μ := 1 − (θ − 1)/(θ log θ ), σ 2 := 1 − (θ − 1)2/(θ2 log θ ). Then, as j → ∞,

(
di

nj
− �logθ nj − β logθ logθ nj	,

log (�i
nj

) − μ log nj√
(1 − σ 2) log nj

, i ∈ [nj]

)
d−→ (�Pi + ε	, Mi, i ∈N).

Proposition 7.1. Consider the WRT model, that is, the WRG model as in Definition 2.1
with m = 1, with vertex-weights (Wi)i∈[n] which are distributed according to (2.2) for some
α, β > 0. Recall that θ := 1 +E [W] and that (x)k := x(x − 1) · · · (x − (k − 1)) for x ∈R,
k ∈N, and (x)0 := 1. Fix K ∈N; let (jk)k∈[K] be a fixed non-decreasing sequence with 0 ≤
K′ := min{k : jk+1 = jK}; let (Bk)k∈[K] be a sequence of sets Bk ∈B(R) such that Bk ∩ B� =∅

when jk = j� and k �= �; and let (ck)k∈[K] ∈N
K
0 . Recall the random variables X̃(n)

j (B), X̃(n)
≥j (B)

and εn, cα,β,θ from (7.1). Then
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E

⎡⎣ K′∏
k=1

(
X̃(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X̃(n)

≥jk
(Bk)

)
ck

⎤⎦ = (1 + o(1))
K′∏

k=1

(
cα,β,θ (1 − θ−1)

(1 + δ)β
θ−k+εn�(Bk)

)ck

×
K∏

k=K′+1

(
cα,β,θ

(1 + δ)β
θ−k+εn�(Bk)

)ck

.

Remark 7.1. A more general result as in Proposition 5.2 holds in this particular exam-
ple as well. However, as only the factorial moments of X̃(n)

j (B), X̃(n)
≥j (B) are of interest for

Theorem 7.1, these more general results are omitted here.

We note that the beta distribution satisfies Conditions C1, C2, and C3 of Assumption 2.1,
so that this case is already captured by Theorem 2.2. Therefore, we do not need to state an
analogue of this theorem here.

Theorem 7.1 and Proposition 7.1 are the analogues of Theorem 2.3 and Proposition 5.2. As
the proof of the theorem presented here is very similar to the proof of Theorem 2.3 (namely,
using Proposition 7.1 with a subsequence nj such that εnj , as in (7.1), converges to some ε ∈
[0, 1], combined with the method of moments), we omit it here. The proof of the proposition
is very similar to the proof of Proposition 5.2 when using (A.6) from Corollary A.1 in the
appendix, and is also omitted.

Example 7.2. (Gamma case.) We consider a random variable W with a tail distribution as in
(2.3) for some b ∈R, c1 > 0, τ ≥ 1 such that b ≤ 0 when τ > 1 and bc1 ≤ 1 when τ = 1 (this
condition is to ensure that the probability density function is non-negative on [0,1)). We define

Cθ,c1 := 2

log θ

√
1 − θ−1

c1
, C := ec−1

1 (1−θ−1)/2√πc−1/4+b/2
1 (1 − θ−1)1/4+b/2,

cθ,c1 := Cθ
C2

θ,c1
/2

, Kθ,c1,τ := 1

θ

(
τ

cτ
1(1 − θ−1)

)γ

,

(7.2)

and, for j ∈Z, B ∈B(R),

X̃(n)
j (B) :=

∣∣∣∣{i ∈ [n] : Zn(i) = ⌊
logθ n − Cθ,c1

√
logθ n + (b/2 + 1/4) logθ logθ n

⌋ + j,

log i − μ log n√
(1 − σ 2) log n

∈ B

}∣∣∣∣,
X̃(n)

≥j (B) :=
∣∣∣∣{i ∈ [n] : Zn(i) ≥ ⌊

logθ n − Cθ,c1

√
logθ n + (b/2 + 1/4) logθ logθ n

⌋ + j,

log i − μ log n√
(1 − σ 2) log n

∈ B

}∣∣∣∣,
εn := (

logθ n − Cθ,c1

√
logθ n + (b/2 + 1/4) logθ logθ n

)
− ⌊

logθ n − Cθ,c1

√
logθ n + (b/2 + 1/4) logθ logθ n

⌋
.

(7.3)

Then we can formulate the following results.

https://doi.org/10.1017/apr.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.52


Location of high-degree vertices in WRG with bounded weights 913

Theorem 7.2. Consider the WRT model, that is, the WRG model as in Definition 2.1 with
m = 1, with vertex-weights (Wi)i∈N which are distributed according to (2.3) for some b ∈R,
c1 > 0, τ ≥ 1 such that b ≤ 0 when τ > 1 and bc1 ≤ 1 when τ = 1, and let γ := 1/(τ + 1). Fix
k ∈N, c ∈ (0, θ/(θ − 1)); let (di)i∈[k] be k integer-valued sequences that diverge as n → ∞,
such that di ≤ c log n for all i ∈ [k]; and let (vi)i∈[k] be k distinct vertices selected uniformly at
random without replacement from [n]. For τ ∈ [1, 2), the tuple

(
log vi − (log n − (1 − θ−1)(di + Kθ,c1,τ d1−γ

i ))√
(1 − θ−1)2di

)
i∈[k]

,

conditionally on the event Zn(vi) ≥ di for all i ∈ [k], converges in distribution to (Mi)i∈[k],
where the Mi are i.i.d. standard normal random variables, and with Kθ,c1,τ as in (7.2).

Remark 7.2.

(i) We see here that the behaviour of the labels of high-degree vertices is different compared
to Theorem 2.2, where the second-order term Kθ,c1,τ d1−γ

i is not present. This is due to
the exponential decay of the vertex-weight tail distribution near one, which does not
satisfy Condition C2, as discussed in Items (i) and (iii) of Remark 2.3, as well as in the
heuristic arguments in Section 3.

(ii) The statement of the theorem is different from that of Theorem 2.2, as there is no need
to distinguish between two cases. This is due to the fact that the distribution in (2.3)
satisfies Condition C3 and so the two cases can be presented as one.

(iii) When τ = 1, we observe that d1−γ
i = √

di, so that the tuples contain a constant term.
Hence, the statement in Theorem 7.2 for τ = 1 is equivalent to saying that the tuple

(
log vi − (log n − (1 − θ−1)di)√

(1 − θ−1)2di

)
i∈[k]

,

conditionally on the event Zn(vi) ≥ di for all i ∈ [k], converges in distribution to (M′
i)i∈[k],

where the M′
i are i.i.d. N (−Kθ,c1,1, 1) random variables.

(iv) When τ ≥ 2 we expect more higher-order terms to appear, which require a proof with
even more precise and technical estimates and hence are not included here.

In the case that τ = 1, we have a precise asymptotic expression for p≥d from Theorem 3.2.
This enables us to derive the following more detailed results.

Theorem 7.3. Consider the WRT model, that is, the WRG model in Definition 2.1 with m =
1, with vertex-weights (Wi)i∈[n] which are distributed according to (2.3) for τ = 1 and some
b ∈R, c1 > 0 such that bc1 ≤ 1. Recall θ = 1 +E [W] and Cθ,c1 , cθ,c1 , Kθ,c1,1 from (7.2). Let
v1, v2, . . . , vn be the vertices in the tree in decreasing order of their in-degree (where ties are
split uniformly at random), let di

n and �i
n denote the in-degree and label of vi, respectively, and

fix ε ∈ [0, 1]. Recall εn from (7.3) and let (nj)j∈N be a positive, diverging integer sequence such
that εnj → ε as j → ∞. Finally, let (Pi)i∈N be the points of the Poisson point process P on R

with intensity measure λ(x) = cθ,c1θ
−x log θ dx, ordered in decreasing order, let (Mi,θ,c1 )i∈N be

a sequence of i.i.d. N (−Kθ,c1,1, 1) random variables, and define μ := 1 − (θ − 1)/(θ log θ ),
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σ 2 := 1 − (θ − 1)2/(θ2 log θ ). Then, as j → ∞,(
di

nj
−

⌊
logθ nj − Cθ,c1

√
logθ n +

(
b

2
+ 1

4

)
logθ logθ nj

⌋
,

log (�i
nj

) − μ log nj√
(1 − σ 2) log nj

, i ∈ [nj]

)

d−→ (�Pi + ε	, Mi,θ,c1 , i ∈N).

Proposition 7.2. Consider the WRT model, that is, the WRG model as in Definition 2.1 with
m = 1, with vertex-weights (Wi)i∈[n] which are distributed according to (2.3) for some b ∈R,
c1 > 0 such that bc1 ≤ 1. Recall that θ := 1 +E [W] and that (x)k := x(x − 1) · · · (x − (k − 1))
for x ∈R, k ∈N, and (x)0 := 1. Fix K ∈N; let (jk)k∈[K] be a fixed non-decreasing sequence with
0 ≤ K′ := min{k : jk+1 = jK}; let (Bk)k∈[K] be a sequence of sets Bk ∈B(R) such that Bk ∩ B� =
∅ when jk = j� and k �= �; and let (ck)k∈[K] ∈N

K
0 . Recall the random variables X̃(n)

j (B), X̃(n)
≥j (B)

and the sequence εn from (7.3), as well as cθ,c1 and Cθ,c1 from (7.2), and let �θ,c1 denote the
cumulative distribution function of N (−1/

√
c1θ (θ − 1), 1). Then

E

[
K′∏

k=1

(
X̃(n)

jk
(Bk)

)
ck

K∏
k=K′+1

(
X̃(n)

≥jk
(Bk)

)
ck

]
= (1 + o(1))

K′∏
k=1

(
cθ,c1 (1 − θ−1)θ−k+εn�θ,c1 (Bk)

)ck

×
K∏

k=K′+1

(
cθ,c1θ

−k+εn�θ,c1 (Bk)

)ck

.

Remark 7.3. A more general result as in Proposition 5.2 holds in this particular exam-
ple as well. However, as only the factorial moments of X̃(n)

j (B), X̃(n)
≥j (B) are of interest for

Theorem 7.3, these more general results are omitted here.

We observe that the behaviour of the labels of high-degree vertices in the above results is
different from e.g. Theorem 2.2. Since the higher-order terms of the asymptotic expression for
the degree are of the same order as the second-order rescaling of the label of the high-degree
vertices, this causes a correlation between the higher-order behaviour of the degree and the
location, so that more complex behaviour is observed.

Theorems 7.2 and 7.3 and Proposition 7.2 are the analogues of Theorems 2.2 and 2.3 and
Proposition 5.2, respectively. As the proofs of the theorems presented here are very similar to
the proofs of Theorems 2.2 and 2.3 (namely, one uses (A.4) rather than (A.2) in the proof of
Theorem 2.2 to prove Theorem 7.2, and one uses Proposition 7.2 with a subsequence nj such
that εnj , as in (7.3), converges to some ε ∈ [0, 1], combined with the method of moments to
prove Theorem 7.3), we omit them here. The proof of the proposition is very similar to the
proof of Proposition 5.2 using (A.4) from Lemma A.1 in the appendix, and is also omitted.

Appendix A
Lemma A.1. Consider the same definitions and assumptions as in Proposition 5.1. We provide
the asymptotic value of P(Zn(v1) ≥ d, v1 > �) under several assumptions on the distribution of
W and a parametrisation of � in terms of d. In all cases we let d diverge as n → ∞. We first
set, for x ∈R,

� := n exp(−(1 − θ−1)d + x
√

(1 − θ−1)2d). (A.1)

We now distinguish between the different cases.
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When W has a distribution that satisfies Conditions C1 and C2 of Assumption 2.1,

P (Zn(v1) ≥ d, v1 ≥ �) =E

[(
W

θ − 1 + W

)d
]

(1 − �(x))(1 + o(1)) = p≥d(1 − �(x))(1 + o(1)).

(A.2)
Furthermore, let W satisfy the gamma case of Assumption 2.1 for some b ∈R, c1 > 0, τ ∈ [1, 2)
such that b ≤ 0 when τ > 1 and bc1 ≤ 1 when τ = 1; set γ := 1/(τ + 1); and for x ∈R and
with Kθ,c1,τ as in (7.2), define

� := n exp(−(1 − θ−1)(d + Kθ,c1,τ d1−γ ) + x
√

(1 − θ−1)2d). (A.3)

Then

P (Zn(v1) ≥ d, v1 ≥ �) =E

[(
W

θ − 1 + W

)d]
(1 − �(x))(1 + o(1)) = p≥d(1 − �(x))(1 + o(1)).

(A.4)

Remark A.1.

(i) For k > 1 and with (di, �i)i∈[k] satisfying the assumptions of Proposition 5.1, it follows
that

P (Zn(vi) ≥ di, vi > �i, i ∈ [k]) = (1 + o(1))
k∏

i=1

P (Zn(vi) ≥ di, vi > �i) ,

so that the result of Lemma A.1 can immediately be extended to the case k > 1 as
well with �i = n exp(−(1 − θ−1)di + xi

√
(1 − θ−1)2di) and (xi)i∈[k] ∈R

k (and a similar
adaptation for (A.3)).

(ii) With only minor modifications to the proof, we can show that in all cases of
Lemma A.1,

P (Zn(v1) = d, v1 > �) = (1 − θ−1)P (Zn(v1) ≥ d, v1 > �) (1 + o(1))

is satisfied. This holds in the case of k vertices, as in Item (i), as well.

A direct corollary of Lemma A.1 is that we can obtain several precise asymptotic expres-
sions for P(Zn(v1) ≥ d, v1 ≥ �) for particular choices of the random variable W, whose
distribution satisfies either Conditions C1 and C2 or the gamma case, and for which we have
a precise asymptotic expression for p≥d. The asymptotics follow from combining Lemma A.1
with Theorem 3.2.

Corollary A.1. When W satisfies the atom case for some q0 ∈ (0, 1], and with � as in (A.1),

P (Zn(v1) ≥ d, v1 > �) = q0θ
−d(1 − �(x))(1 + o(1)). (A.5)

When W satisfies the beta case for some α, β > 0, and with � as in (A.1),

P (Zn(v1) ≥ d, v1 > �) = 
(α + β)


(α)(1 − θ−1)β
d−βθ−d(1 − �(x))(1 + o(1)). (A.6)

When W satisfies the gamma case for τ = 1 and some b ∈R, c1 > 0 such that bc1 ≤ 1, and with
� as in (A.3),

P (Zn(v1) ≥ d, v1 ≥ �) = Cdb/2+1/4e−2
√

c−1
1 (1−θ−1)d

θ−d(1 − �(x))(1 + o(1)),

where C is as in (7.2).
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Remark A.2. By the parametrisation of �, the event {v1 > �} is equivalent to{
log v1 − (log n − (1 − θ−1)di)√

(1 − θ−1)2di

∈ (x, ∞)

}
.

As a result, we can rewrite e.g. (A.5) as

P

(
Zn(v1) ≥ d,

log v1 − (log n − (1 − θ−1)di)√
(1 − θ−1)2di

∈ (x, ∞)

)
= q0θ

−d�((x, ∞))(1 + o(1)),

and it can, in fact, be generalised to any set A ∈B(R) rather than just (x, ∞) with x ∈R. A
similar notational change can be made in (A.6), (A.4), and (A.2).

Proof of Lemma A.1. We first observe that for our choice of � (as in both (A.1) and (A.3)),
the conditions on � in Proposition 5.1 are met (for n sufficiently large) since d diverges with n.
By Proposition 5.1, we thus have the bounds

P(Zn(v1) ≥ d, v1 > �) ≤ (1 + o(1))E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

)]
,

P(Zn(v1) ≥ d, v1 > �) ≥ (1 + o(1))E

[(
W

θ − 1 + W

)d

PW

(
X̃ <

(
1 + W

θ − 1

)
log (n/�)

)]
,

where X ∼ Gamma(d + 1, 1), X̃ ∼ Gamma(d + �d1/4	 + 1, 1). To prove the desired results, it
suffices to provide an asymptotic expression for the expected values on the right-hand side.
We do this for the expected value in the upper bound; the proof for the other expected value
follows similarly.

We use the following approach to prove (A.2). To obtain an upper bound, we use that W ≤ 1
almost surely in the conditional probability, which yields

P (Zn(v1) ≥ d, v1 > �) ≤ (1 + o(1))E

[(
W

θ − 1 + W

)d
]
P

(
X <

θ

θ − 1
log (n/�)

)
,

so that it remains to prove that the probability converges to 1 − �(x). By the parametrisation
of �, it follows that

P

(
X <

θ

θ − 1
log (n/�)

)
= P

(
X < d − x

√
d
)

= P

(
X −E [X]√

Var(X)
≤ d − x

√
d −E [X]√

Var(X)

)
.

(A.7)
As X can be viewed as a sum of d + 1 i.i.d. rate-one exponential random variables, the central
limit theorem can be applied to the left-hand side in the final probability. Moreover, as E [X] =
d + 1 and Var(X) = d + 1, it follows that the limit equals 1 − �(x), as desired.

To obtain a lower bound, we take some sequence td ≥ 1 that tends to infinity with d (and
hence with n). We then bound

P(Zn(v1) ≥ d, v1 > �)

≥ (1 + o(1))E

[(
W

θ − 1 + W

)d

1{1−1/td≤W≤1}

]
P

(
X <

θ

θ − 1

(
1 − 1

θ td

)
log (n/�)

)
.

(A.8)

https://doi.org/10.1017/apr.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.52


Location of high-degree vertices in WRG with bounded weights 917

We can write the probability as

P

(
X < d − x

√
d − (d − x

√
d)/(θ td)

)
.

Hence, with the same steps as in (A.7), we arrive at the same limit 1 − �(x) whenever
√

d/td =
o(1). So, let us set td = dβ for some β ∈ (1/2, 1/(1 + τ )). We observe that this interval is non-
empty since τ ∈ (0, 1). It remains to show that for this choice of td, the expected value on the
right-hand side of (A.8) with the indicator is asymptotically equal to the same expected value
when the indicator is omitted. Equivalently, we require that

E

[(
W

θ − 1 + W

)d

1{W≤1−1/td}

]
= o

(
E

[(
W

θ − 1 + W

)d
] )

. (A.9)

To prove this, we bound the expected value on the left-hand side from above and the one on the
right-hand side from below. We start with the former. Since x �→ x/(θ − 1 + x) is increasing on
(0,1], we directly have that

E

[(
W

θ − 1 + W

)d

1{W≤1−1/td}

]
≤

(
1 − 1/td
θ − 1/td

)d

≤ exp(−(1 − θ−1)d/td)θ−d. (A.10)

To bound the other expected value from below, we let t̃d := tβ̃ for some β̃ > β. As x �→ x/(θ −
1 + x) is increasing on (0,1), we obtain the lower bound

E

[(
W

θ − 1 + W

)d
]

≥E

[(
W

θ − 1 + W

)d

1{W≥1−1/̃td}

]
≥

(
1 − 1/̃td
θ − 1/̃td

)d

P
(
W ≥ 1 − 1/̃td

)
.

(A.11)
Now, using Condition C2 from Assumption 2.1 yields for n sufficiently large the lower bound(

1 − 1/̃td
θ − 1/̃td

)d

a exp
(−c1̃tτd

)
.

We then bound(
1 − 1/̃td
θ − 1/̃td

)d

= θ−d
(

1 − θ − 1

t̃dθ − 1

)d

= θ−d exp(−(1 − θ−1)d/̃td +O(d/̃t2d)).

Combining these results, we obtain the lower bound

E

[(
W

θ − 1 + W

)d
]

≥ a exp(−(1 − θ−1)d/̃td − c1̃tτd +O(d/̃t2d))θ−d. (A.12)

The upper bound in (A.10) is negligible compared to this lower bound when d/̃td = o(d/td)
and t̃τd = o(d/td). That is, we require that β < β̃ and β̃τ < 1 − β. Such a β̃ can be found since
β < 1/(1 + τ ). As a result, the claim in (A.9) follows, which results in the desired lower bound
and finishes the proof of (A.2).

Finally, we prove (A.4), that is, the case when W satisfies (2.3) for some b ∈R, c1 > 0
and τ ∈ [1, 2) such that b ≤ 0 if τ > 1 and bc1 ≤ 1 if τ = 1. Set γ := 1/(τ + 1). Note that this
distribution does not satisfy Condition C2 in Assumption 2.1. The behaviour here is different,
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since the main contribution to the expected value E
[
(W/(θ − 1 + W))d

]
comes from W =

1 − Kd−γ for K a positive constant. At the same time, for W = 1 − Kd−γ ,

PW

(
X ≤

(
1 + W

θ − 1

)
log (n/�)

)
= P

(
X ≤ θ

θ − 1

(
1 − K

dγ

)
log (n/�)

)
no longer converges to the tail of a standard normal distribution when � is as in (A.1), as the
log (n/�)/dγ term is of the same order as the variance of X when τ = 1 and of higher order
when τ > 1. As a result, we need � to be as in (A.3).

To be able to obtain the desired result, we first need a lower bound for p≥d when τ > 1 (for
τ = 1 this is already provided in Theorem 3.2). With similar steps as in (A.11)–(A.12) and with
td = (cτ

1(1 − θ−1)d/τ )γ , we obtain, for some constants K, K̃ > 0,

E

[(
W

θ − 1 + W

)d
]

≥ θ−d exp(−(1 − θ−1)d/td − (td/c1)τ − Kd/t2d)

= θ−d exp

(
− τγ

1 − γ

(
(1 − θ−1)d

c1

)1−γ

− K̃d1−2γ

)
,

(A.13)

We now aim to find an upper and lower bound for

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]
.

We start with an upper bound. We let ε ∈ (0, 1) be fixed (when τ = 1) or set ε = ε(d) = K1d−γ /2

for some large constant K1 (when τ > 1). We then bound

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

≤E

[(
W

θ − 1 + W

)d

1{1−(1−ε)/td<W<1}

]

+E

[(
W

θ − 1 + W

)d
]
P

(
X ≤ θ

θ − 1

(
1 − 1 − ε

θ td

)
log (n/�)

)
.

(A.14)

We then show that the first expected value on the right-hand side is negligible compared to the
second, and that the probability has a non-zero limit. We start with the expected value. By the
distribution of W as in (2.3), we find

E

[(
W

θ − 1 + W

)d

1{
1− 1−ε

td
<W<1

}] =
∫ 1

1−(1−ε)/td
d(θ − 1)

xd−1

(θ − 1 + x)d+1
(1 − x)−be−(x/(c1(1−x)))τ dx

≤ (1 + o(1))d
∫ ∞

td/(1−ε)

(
1 − 1/y

θ − 1/y

)d

yb−2e−((y−1)/c1)τ dy.

In the last step, we used the fact that x−1 = 1 + o(1) for x ∈ (1 − (1 − ε)/td, 1), the fact
that (θ − 1)/(θ − 1 + x) ≤ 1, and a variable transformation x = 1 − 1/y. We now introduce
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the function f : (0, 1) → (0, 1), with f (ε) = 1/2 + (1/2)(1 + τε)(1 − ε)τ . Since, for all ε > 0
sufficiently small, (1 + τε)(1 − ε)τ = 1 − ε2τ (τ + 1)/2 + o(ε2) < 1, this function satisfies

f (ε) > (1 + τε)(1 − ε)τ > (1 − ε)τ+1, and f (ε) < 1, for all ε ∈ (0, 1). (A.15)

We then observe that, for any b ∈R, we can bound ybe−((y−1)/c1)τ ≤ e−f (ε)((y−1)/c1)τ for all
y > td/(1 − ε) when n is sufficiently large, since f (ε) < 1 holds (note that this upper bound
holds for ε > 0 fixed and also for ε = K1d−γ /2 and any constant K1 > 0 when τ > 1). A bound
similar to (A.10) also yields(

1 − 1/y

θ − 1/y

)d

≤ θ−d exp

(
−(1 − θ−1)

d

y − 1
+ (1 − θ−1)2 d

(y − 1)2

)
. (A.16)

Combining both bounds and using that (1 − θ−1)2d/(y − 1)2 ≤ Cd1−2γ for y > td/(1 − ε) and
some constant C > 0 yields the upper bound

Kdθ−d
∫ ∞

td/(1−ε)
y−2 exp

(
−(1 − θ−1)

d

y − 1
− f (ε)

(
y − 1

c1

)τ

+ Cd1−2γ

)
dy, (A.17)

where K > 0 is a large constant. The exponential is decreasing in y for all y > 1 + tdf (ε)−γ . By
the first inequality in (A.15), it thus follows that the exponential in the integral is maximised
for y = td/(1 − ε) > 1 + tdf (ε)−γ . As a result, we obtain the upper bound

Kdθ−d exp

(
−(1 − θ−1)(1 − ε)

d

td
− f (ε)

(
td

c1(1 − ε)

)τ

+ C′d1−2γ

)

= Kdθ−d exp

(
−

(
1 − ε + f (ε)

τ (1 − ε)τ

)
τγ

(
(1 − θ−1)d

c1

)1−γ

+ C′d1−2γ

)
.

(A.18)

Here we change the constant C to a constant C′ > C, since

d

td/(1 − ε) − 1
+ f (ε)

(
td/(1 − ε) − 1

c1

)τ

= (1 − ε)
d

td
+ f (ε)

(
td

c1(1 − ε)

)τ

+O(d1−2γ ).

(A.19)
We have that 1 − ε + f (ε)/(τ (1 − ε)τ ) > 1 + 1/τ = 1/(1 − γ ) for all ε ∈ (0, 1) by the first
inequality in (A.15). Thus, the lower bound in (A.13) yields that for any ε > 0 fixed,

E

[(
W

θ − 1 + W

)d

1{1−(1−ε)/td<W<1}

]
= o

(
E

[(
W

θ − 1 + W

)d
] )

. (A.20)

Whilst this holds for all τ ∈ [1, 2), we need a stronger statement for τ ∈ (1, 2), namely that
(A.20) is true with ε = K1d−γ /2 (which does not hold for τ = 1). We stress that all of the
above steps also hold with this choice of ε. Additionally, a Taylor expansion yields that

1 − ε + f (ε)

τ (1 − ε)τ
= 1

1 − γ
+ τ + 1

4
ε2(1 + o(1)) >

1

1 − γ
+ τ + 1

8
ε2, as ε ↓ 0.

Using this in (A.18), we obtain
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E

[(
W

θ − 1 + W

)d

1{1−(1−ε)/td<W<1}
]

≤ Kθ−d exp

(
− τγ

1 − γ

(
(1 − θ−1)d

c1

)1−γ

+
(
C′ − K2

1
(τ + 1)τγ

8

(
(1 − θ−1)

c1

)1−γ )
d1−2γ

)

= θ−d exp

(
− τγ

1 − γ

(
(1 − θ−1)d

c1

)1−γ

− K̃1d1−2γ (1 + o(1))

)
,

where the constant K̃1 is positive for all large K1 and grows polynomially in K1. Again using
the lower bound in (A.13) implies that we need to choose K1 sufficiently large so that K̃1 > K̃.
This then implies that (A.20) holds for τ > 1 with ε = K1d−γ /2 as well.

We now determine the limit of the probability on the right-hand side of (A.14). We again
distinguish between the two cases τ = 1 and τ > 1 and start with the former. First, observe that
d1−γ = √

d when τ = 1. Then, since E [X] = Var(X) = d + 1 and � is as in (A.3), for a fixed
ε > 0,

P

(
X ≤ θ

θ − 1

(
1 − 1 − ε

θ td

)
log

(
n

�

))

= P

(
X −E [X]√

Var(X)
≤ (Kθ,c1,1 − x)

√
d − 1√

d + 1
− (1 − ε)(d + (Kθ,c1,1 − x)

√
d)

θ td
√

d + 1

)
.

(A.21)

As td = √
c1(1 − θ−1)d when τ = 1 and with Z ∼N (0, 1), this equals

P
(
Z ≤ Kθ,c1,1 − x − (1 − ε)Kθ,c1,1

) + o(1) = 1 − �(x − εKθ,c1,1) + o(1). (A.22)

Combining this with (A.20) in (A.14) yields, for τ = 1 and any ε > 0 fixed,

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

≤E

[(
W

θ − 1 + W

)d]
(1 − �(x − εKθ,c1,1))(1 + o(1)).

(A.23)

When τ ∈ (1, 2), we adapt (A.21) and (A.22) with ε = K1d−γ /2 to obtain

P

(
X ≤ θ

θ − 1

(
1 − 1 − ε

θ td

)
log

(
n

�

))

= P

(
X −E [X]√

Var(X)
≤ Kθ,c1,1d1−γ − x

√
d − 1√

d + 1
− (1 − K1d−γ /2)(d + (Kθ,c1,1 − x)

√
d)

θ td
√

d + 1

)
.

(A.24)
We observe that d/(θ td) = Kθ,c1,1d1−γ , so that the right-hand side can be simplified as

P

(
X −E [X]√

Var(X)
≤ −x + o(1) +O(d1/2−3γ /2)

)
= 1 − �(x) + o(1). (A.25)

Here, the last step follows from the fact that O(d1/2−3γ /2) = o(1) when τ < 2 since 1/2 −
3γ /2 < 0. We also stress that this is possible only when ε tends to zero with d. If ε were fixed,
this would yield a limit of one rather than 1 − �(x).
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Combining this with (A.20) when τ > 1 and ε = K1d−γ yields

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

≤E

[(
W

θ − 1 + W

)d]
(1 − �(x))(1 + o(1)).

(A.26)

In a similar way, we construct a matching lower bound (up to error terms). Namely, for ε ∈
(0, 1),

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

≥E

[(
W

θ − 1 + W

)d

1{1−(1+ε)/td<W<1}
]
P

(
X <

θ

θ − 1

(
1 − 1 + ε

θ td

)
log (n/�)

)
.

(A.27)

Again, we let ε be fixed when τ = 1 and set ε = K1d−γ /2 for some large constant K1 when
τ > 1. As in (A.21) and (A.22), for the probability on the right-hand side we have

P

(
X <

θ

θ − 1

(
1 − 1 + ε

θ td

)
log (n/�)

)
= 1 − �(x + εKθ,c1,1) + o(1) (A.28)

when τ = 1 and ε > 0 is fixed, and similarly to (A.24) and (A.25),

P

(
X <

θ

θ − 1

(
1 − 1 + K1d−γ /2

θ td

)
log (n/�)

)
= 1 − �(x) + o(1) (A.29)

when τ ∈ (1, 2) and ε = K1d−γ /2. It remains to bound the expected value on the right-hand
side of (A.27). We instead consider the expected value

E

[(
W

θ − 1 + W

)d

1{
0<W<1− 1+ε

td

}]
=

∫ 1−(1+ε)/td

0

d(θ − 1)xd−1

(θ − 1 + x)d+1
(1 − x)−be−(x/(c1(1−x)))τ dx.

We first bound (1 − x)−b ≤ tb∨0
d and (θ − 1)/(θ − 1 + x) ≤ 1, and split the integral into two

parts by dividing the integration range into (0, 1 − 2(1 + ε)/td) and (1 − 2(1 + ε)/td, 1 − (1 +
ε)/td). This yields the upper bound

dtb∨0
d

θ − 1

∫ 1−2(1+ε)/td

0

(
x

θ − 1 + x

)d−1

dx + 2dtb∨0
d

∫ 1−(1+ε)/td

1−2(1+ε)/td

(
x

θ − 1 + x

)d

e−(x/(c1(1−x)))τ dx.

Using the fact that x �→ x/(θ − 1 + x) is increasing on (0,1) and applying a variable transfor-
mation x = 1 − 1/y in the second integral, we obtain the upper bound

dtb∨0
d (θ + o(1))

θ − 1

(
1 − 2(1 + ε)/td
θ − 2(1 + ε)/td

)d

+ 2dtb∨0
d

∫ td/(1+ε)

td/(2(1+ε))
y−2

(
1 − 1/y

θ − 1/y

)d

e−((y−1)/c1)τ dy.

We now use (A.16) and steps similar to those that yielded (A.17). We can then bound this from
above by
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Kdtb∨0
d θ−d exp

(
−(1 − θ−1)

2(1 + ε)d

td

)

+ dtb∨0
d θ−d

∫ td/(1+ε)

td/(2(1+ε))
y−2 exp

(
−(1 − θ−1)

d

y − 1
−

(
y − 1

c1

)τ

+ (1 − θ−1)2 d

(y − 1)2

)
dy,

for some constant K > 0. As 2(1 + ε) > 1/(1 − γ ) for all τ ≥ 1 and any ε > 0, it follows from
the choice of td and the lower bound in (A.13) that the first term is negligible compared to
E

[
(W/(θ − 1 + W)d

]
, both when τ > 1 and ε = K1d−γ /2, and when τ = 1 and ε is fixed.

We thus focus on the integral only from now on. We bound the final term in the second
integral from above by C2d1−2γ for some constant C2 > 0. The remainder in the exponent is
increasing for y < 1 + td. With the same reasoning as in (A.19), we can bound the integral from
above by

θ−dd exp

(
−

(
(1 + ε) + 1

τ (1 + ε)τ

)
τγ

(
(1 − θ−1)d

c1

)1−γ

+ C′
2d1−2γ

)
(A.30)

for some C′
2 > C2. Since (1 + ε) + τ−1(1 + ε)−τ > 1/(1 − γ ) for any ε > 0, it follows from the

lower bound in (A.13) that this upper bound is negligible compared to E
[
(W/(θ − 1 + W)d

]
for any τ ≥ 1 when ε is fixed. Combined with (A.28) this yields, for τ = 1 and ε fixed,

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

≥E

[(
W

θ − 1 + W

)d]
(1 − �(x + εKθ,c1,1))(1 + o(1)).

Combining this with (A.23), since ε can be taken arbitrarily small and by the continuity of �,
we finally arrive at

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]

=E

[(
W

θ − 1 + W

)d]
(1 − �(x))(1 + o(1)),

which proves (A.4) when τ = 1.
To obtain the same result for τ > 1 with ε = K1d−γ /2, we use a Taylor expansion to find

that

(1 + ε) + τ−1(1 + ε)−τ = 1

1 − γ
+ τ + 1

2
ε2(1 + o(1)) >

1

1 − γ
+ τ + 1

4
ε2, as ε ↓ 0.

Using this in (A.30) yields, for some constant K̃1 > 0, the upper bound

θ−d exp

(
− τγ

1 − γ

(
(1 − θ−1)d

c1

)1−γ

−
(

τ + 1

4
K2

1τγ (1 − θ−1)

c1

)1−γ

− C′
2

)
d1−2γ

)
.

As in the proof of the upper bound, we conclude that (A.13) implies that choosing K1 large
enough yields, for τ > 1 and ε = K1d−γ /2,
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E

[(
W

θ − 1 + W

)d

1{
0<W<1− 1+ε

td

}]
= o

(
E

[(
W

θ − 1 + W

)d])
.

Combining this with (A.29) in (A.27), we thus arrive at

E

[(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

θ − 1

)
log (n/�)

) ]
≥E

[(
W

θ − 1 + W

)d]
(1 − �(x)(1 + o(1)).

Together with (A.26), this establishes (A.4) for τ > 1 and concludes the proof. �
Lemma A.2. Consider the same conditions as in Lemma 5.1, and let ε ∈ (0 ∨ (c(1 − θ−1) −
(1 − μ)), μ) and X̃ ∼ Gamma(dn + �d1/4

n 	 + 1, 1). Then

E

[(
W

θ − 1 + W

)dn

PW

(
X̃ ≤

(
1 + W

θ − 1

)
log(n1−μ+ε)

)]
≥E

[(
W

θ − 1 + W

)dn
]

(1 − o(1)).

We observe that this result is similar in nature to (A.2) in Lemma A.1. However, as we now
have � = nμ−ε, rather than a precise parametrisation in terms of dn as in Lemma A.1, we can
make a more general statement here (though not as precise and useful) that does not require
Condition C2 of Assumption 2.1.

Proof. Fix δ ∈ (0, (1 − (θ − 1)(c/(1 − μ + ε) − 1) ∧ 1)). It is readily checked that by the
choice of ε, such a δ exists. We bound the expected value from below by writing

E

[(
W

θ − 1 + W

)dn

1{1−δ<W≤1}

]
P

(
X̂ ≤

(
1 + 1 − δ

θ − 1

)
log (n1−μ+ε)

)
, (A.31)

where X̂ ∼ Gamma(c log n + �(c log n)1/4	 + 1, 1), which stochastically dominates X̃ as dn ≤
c log n. It thus remains to prove two things: the probability converges to one, and the expected
value is asymptotically equal to E

[
(W/(θ − 1 + W))dn

]
. Together, these statements prove the

lemma. We start with the former. By the choice of δ, it follows that

cδ,θ,ε :=
(

1 + 1 − δ

θ − 1

)
1 − μ + ε

c
> 1.

Thus, as X̂/(c log n)
a.s.−→ 1, the probability in (A.31) equals 1 − o(1). It remains to prove that

E

[(
W

θ − 1 + W

)dn

1{1−δ<W≤1}

]
=E

[(
W

θ − 1 + W

)dn
]

(1 − o(1)),

which is equivalent to showing that

E

[(
W

θ − 1 + W

)dn

1{W≤1−δ}

]
= o

(
E

[(
W

θ − 1 + W

)dn
] )

. (A.32)

By Theorem 3.2, for any ξ > 0 and n sufficiently large,

E

[(
W

θ − 1 + W

)dn
]

= p≥dn ≥ (θ + ξ )−dn .
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So, take ξ ∈ (0, δ(θ − 1)/(1 − δ)). Then, as x �→ x/(θ − 1 + x) is increasing in x,

E

[(
W

θ − 1 + W

)dn

1{W≤1−δ}

]
≤

(
1 − δ

θ − δ

)dn

=
(

θ + δ(θ − 1)

1 − δ

)−dn

= o
(
(θ + ξ )−dn

)
,

so that (A.32) follows. Combined with the lower bound on the probability in (A.31), it yields
the desired lower bound. �
Lemma A.3. Consider the same definitions and assumptions as in Proposition 5.1 (but without
indices). Let c := lim supn→∞ d/ log n and assume that c ∈ [0, θ/(θ − 1)). Then

1

nγ
= o

(
E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

(θ − 1)

)
log (n/�)

)] )
holds for γ = 1 when c ∈ [0, 1/(θ − 1)], and for γ sufficiently large when c ∈ (1/(θ −
1), θ/(θ − 1)).

Proof. We first consider the case c ∈ [0, 1/(θ − 1)], for which we can set γ = 1. We con-
sider two sub-cases: (i) d is bounded from above, and (ii) d diverges (but d is at most
(1/(θ − 1)) log n(1 + o(1)) for all n large). For (i) we immediately have that

PW

(
X <

(
1 + W

(θ − 1)

)
log (n/�)

)
≥ P(X < log (n/�)) ≥ P

(
X < (1 − ξ )(1 − θ−1)(d + 1)

)
,

when n is sufficiently large and ξ small, since � ≤ n exp(−(1 − ξ )(1 − θ−1)(d + 1)) for any
ξ > 0. Since X is finite almost surely for all n ∈N as d is bounded, the probability on the right-
hand side is strictly positive. The expected value that remains is again bounded from below by
a positive constant, since d is bounded from above. It thus follows that 1/n negligible compared
to the expected value.

For (ii), we obtain a lower bound by restricting the weight W in the expected value to
(1 − δ, 1] for some small δ > 0. This yields the lower bound

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

(θ − 1)

)
log (n/�)

)
1{W∈(1−δ,1]}

]

≥ (1 − θ−1)

(
1 − δ

θ − δ

)d

P

(
X <

θ − δ

θ − 1
log (n/�)

)
P (W ∈ (1 − δ, 1]) .

(A.33)

Note that P(W ∈ (1 − δ, 1]) is strictly positive for any δ ∈ (0, 1) by Condition C1. Furthermore,
since � ≤ n exp(−(1 − ξ )(1 − θ−1)(d + 1)) for any ξ > 0,

θ − δ

θ − 1
log (n/�) ≥ (1 − δ/θ )(1 − ξ )(d + 1) =: (1 − ε)(d + 1).

Applying this inequality to the probability on the right-hand side of (A.33) together with the
equivalence between sums of exponential random variables and Poisson random variables via
Poisson processes, we conclude that

P

(
X <

θ − δ

θ − 1
log

(
n

�

))
≥ P (X < (1 − ε)(d + 1)) = P (P1 ≥ d + 1) ≥ P (P1 = d + 1) ,

(A.34)
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where P1 ∼ Poi((1 − ε)(d + 1)). With Stirling’s formula this yields

P (P1 = d + 1) = e−(1−ε)(d+1) ((1 − ε)(d + 1))d+1

(d + 1)!

= (1 + o(1))eε(d+1)(1 − ε)d+1 1√
2πd

= (1 + o(1))
(1 − ε)eε

√
2πd

ed(log (1−ε)+ε),

(A.35)

where we observe that the exponent is strictly negative for any ε ∈ (0, 1). Finally, combining
(A.35) with (A.34) in (A.33), and since (1 − δ)/(θ − δ) ≥ (1 − δ)/θ , we arrive at the lower
bound

(1 + o(1))
(1 − θ−1)P (W ∈ (1 − δ, 1]) (1 − ε)eε

√
2πd

exp(d(log (1 − ε) + ε + log ((1 − δ)/θ ))).

(A.36)
By choosing δ and ξ (used in the definition of ε) sufficiently small, log (1 − ε) + ε can be set
arbitrarily close to zero (though negative), and log ((1 − δ)/θ ) = log (1 − δ) − log θ can be set
arbitrarily close to (though smaller than) − log θ . Since − log θ > −(θ − 1) and c ∈ [0, 1/(θ −
1)], it follows that for some small κ > 0 and δ, ξ sufficiently small, for all n sufficiently large,

1√
d

exp(d(log (1 − ε) + ε + log ((1 − δ)/θ ))) ≥ exp(−(1 − κ) log n) = n−(1−κ),

which, together with (A.33), yields the desired result.
For the case c ∈ (1/(θ − 1), θ/(θ − 1)), we follow the same approach but now use the fact

that d ≤ (θ/(θ − 1)) log n for all n large. We thus obtain the lower bound

E

[
θ − 1

θ − 1 + W

(
W

θ − 1 + W

)d

PW

(
X <

(
1 + W

(θ − 1)

)
log (n/�)

)]
≥ e−Cd ≥ n−Cθ/(θ−1),

for some large constant C > 0. The desired result holds for γ > Cθ/(θ − 1), which concludes
the proof. �
Lemma A.4. Fix �, n ∈N such that � < n. Suppose f : R→R is a positive integrable function,
increasing on [�, x∗] and decreasing on [x∗, n], where x∗ ∈ (�, n) is not necessarily an integer.
Then ∫ n

�

f (x) dx − f (x∗) ≤
n∑

j=�+1

f (j) ≤
∫ n

�

f (x) dx + f (x∗).

Proof. As f is increasing on [�, �x∗	] and decreasing on [�x∗�, n], we directly have that

n∑
j=�+1

f (j) = f (�x∗�) +
�x∗	∑

j=�+1

f (j) +
n∑

j=�x∗�+1

f (j) ≤ f (x∗) +
∫ �x∗	

�

f (x) dx +
∫ n

�x∗�
f (x) dx.

The final two terms can be combined into a single integral from � to n to yield an upper bound,
since f (x) is positive for all x ∈R.
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For the lower bound, we use an equivalent approach and the fact that∫ �x∗�

�x∗	
f (x) dx ≤ f (x∗)

to obtain the desired lower bound. �
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