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Mellin Transforms of Whittaker Functions

Anton Deitmar

Abstract. In this note we show that for an arbitrary reductive Lie group and any admissible irreducible

Banach representation the Mellin transforms of Whittaker functions extend to meromorphic func-

tions. We locate the possible poles and show that they always lie along translates of walls of Weyl

chambers.

Introduction

Whittaker functions occur naturally in the theory of automorphic forms as the

Fourier coefficients of cusp forms. As a consequence, inner products of Poincaré

series with cusp forms are Mellin transforms of Whittaker functions [14, 4]. In the

case of groups of real rank one there are Poincaré series whose Mellin transforms give

the Kloosterman zeta functions [2]. Thus the results of this paper (which in the rank

one case are already in [2]) can be used to derive the meromorphicity of the Klooster-

man zeta function for rank one groups. Mellin transforms of products of Whittaker

functions are in certain cases equal to factors of Rankin-Selberg L-functions [11],

[12]. In [15], E. Stade gives explicit expressions for the Mellin transforms of class one

principal series Whittaker functions for the group GLn(R) and thus verifies a conjec-

ture of Goldfeld regarding the poles of this Mellin transform. In [8] S. Friedberg and

D. Goldfeld show the meromorphicity of the Mellin transform of Whittaker func-

tions attached to class one vectors of principal series representations in the case of a

quasi-split group.

In the present paper we show the meromorphicity of the Mellin transform of the

Whittaker function attached to an arbitrary differentiable vector of an arbitrary rep-

resentation of an arbitrary reductive group. Since the Mellin transform is taken over

the maximal split torus of the derived group it does not make a difference, for the

purposes of this paper, to assume that the group is semisimple, and we will do so.

It turns out, that the poles of the Mellin transform all lie along translates of walls of

Weyl chambers.

1 Whittaker Functions

Let G be a semisimple connected Lie group with finite center. Fix a maximal compact

subgroup K and let θ denote the Cartan involution with fixed point set K. We will

write g0 for the real Lie algebra of G and g for its complexification. Next U (g) will

denote the universal enveloping algebra of g. We will interpret U (g) as the algebra of

all left invariant differential operators on G.
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Let P = MAN be a minimal parabolic subgroup, where we assume that A and

hence also M are θ-stable. Let m0, a0, n0 be the real Lie algebras of the groups M, A,

N , and let m, a, n be their complexifications. Let Φ+
= Φ

+(a, g) be the set of positive

roots of the pair (a, g) given by the choice of the parabolic P. For α ∈ Φ+(a, g) let

gα denote its root space and let mα = dim gα. Further let g0,α = gα ∩ g0. Then

n0 =
⊕

α∈Φ+ g0,α. Let ρ
P
=

1
2

∑

α∈Φ+ mαα be the modular shift of P.

The Killing form on g is positive definite on a0. It induces an identification of a0

with its dual a∗0 and also a bilinear form 〈· , ·〉 on a∗0 .

Let π be a continuous representation of G on some Banach space. Let π∞ the

Fréchet space of differentiable vectors for π. Fix a continuous linear functional ψ =
ψη on π∞ such that

ψ
(

π(n)φ
)

= η(n)ψ(φ)

for every φ ∈ π∞. Such a ψ is called a Whittaker functional to the character η. For

φ ∈ π∞ set

Wφ(x) = ψ
(

π(x)φ
)

, x ∈ G,

the corresponding Whittaker function on the group G. Since G = NMAK, it suffices,

for growth questions, to consider Wφ restricted to MA.

Proposition 1.1 Assume that π is admissible and of finite length. There is a finite set

{D j} ⊂ U (g) and a natural number k0, depending on π, such that for all φ ∈ π∞ we

have

|Wφ(am)| ≤
∑

w∈W

ak0wρ
P

∑

j

‖D jφ‖.

Proof The continuity of ψ implies that there is a finite set {D ′j} ⊂ U (g) such that

|Wφ(1)| ≤
∑

j

‖D ′jφ‖.

From [16], Lemma 2.2 we derive the existence of c > 0, k ′ ∈ N such that the operator

norm can be estimated:

‖π(am)‖ ≤ c
∑

w∈W

ak ′wρ
P

for a ∈ A, m ∈ M. We thus get

Wφ(am) =Wπ(am)φ(1)

≤
∑

j

‖D ′jπ(am)φ‖

=

∑

j

‖π(am) Ad(am)−1D ′jφ‖

≤ c
∑

w∈W

ak ′wρ
P

∑

j

‖Ad(am)−1D ′jφ‖.
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Let U (g)ν be the finite dimensional space of all D ∈ U (g) of degree ≤ ν. Let {D ′′j }
be a basis of U (g)ν . For ν large enough we get

Ad(am)−1D ′j =
∑

i

ai, j(am)D ′ ′i .

By the properties of the adjoint action it follows that there is a constant c1 > 0 with

ai, j(am) ≤ c1

∑

w∈W a2νρ
P . The lemma follows with D j being a multiple of D ′ ′j .

From the preceding lemma we will now conclude that the Whittaker function

Wφ(am) actually is rapidly decreasing.

Proposition 1.2 Let π be admissible and of finite length. Let α0 ∈ Φ
+(a, g) be a

positive root such that log η is nontrivial on the root space g0,α0
⊂ n0. For every natural

number N there are D1, . . . ,Dm ∈ U (g) such that for every φ ∈ π∞ and every a ∈ A

we have

|Wφ(am)| ≤ a−Nα0

(

∑

w∈W

ak0wρ
P

)(

m
∑

j=1

‖D jφ‖
)

.

Proof Let X1, . . . ,Xn be a basis of the root space g0,α0
. Since η is nontrivial on g0,α0

the function

f (m) =
∑

j

∣

∣ log η
(

Ad(m)X j

) ∣

∣

is nowhere vanishing on M. Since M is compact there is c > 0 with f (m) ≥ c for all

m ∈ M. It follows

WX jφ(am) =
d

dt
Wφ

(

am exp(tX j)
) ∣

∣

t=0

=
d

dt
Wφ

(

exp
(

Ad(am)tX j

)

am
)
∣

∣

∣

t=0

=
d

dt
η
(

exp
(

t Ad(am)X j

)

)
∣

∣

∣

t=0
Wφ(am)

= log η
(

Ad(am)X j

)

Wφ(am)

= aα0 log η
(

Ad(m)X j

)

Wφ(am).

So for a ∈ A it follows

∑

j

|WX jφ(am)| = |Wφ(am)|aα0

∑

j

∣

∣ log η
(

Ad(m)X j

)
∣

∣

≥ caα0 |Wφ(am)|.

Iterating this process gives for arbitrary N ∈ N the existence of {D ′j} ⊂ U (n) such

that

|Wφ(am)| ≤ a−Nα0

∑

j

|WD ′j φ
(am)|.
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Applying the last lemma to D ′jφ gives the claim.

A character N → T factors over Nab
= N/[N,N], where [N,N] denotes the

closed subgroup of N generated by all commutators aba−1b−1 for a, b ∈ N . Then

Nab is an abelian, simply connected Lie group with Lie algebra nab
= n/[n, n], where

in this case [· , ·] denotes the Lie bracket. It follows that N ab is isomorphic to its Lie

algebra and the characters of N thus identify with the linear functionals on nab . Let

nsimp =

⊕

α∈Φ+(a,g)
α simple

gα

and n0,simp = nsimp ∩ g0.

Lemma 1.3 We have

n0 = n0,simp ⊕ [n0, n0].

Proof This follows from Proposition 8.4d) of [10].

It follows that each linear functional on n0,simp extends to a character on N . This

implies that there are characters η which are nontrivial on g0,α for each simple root

α. In this case we call η a generic character. Let∆ ⊂ Φ+ be the set of simple roots.

Corollary 1.4 Suppose that π is admissible of finite length and that the character η is

generic. For every natural number N there are D1, . . . ,Dm ∈ U (g) such that for every

φ ∈ π∞ and every a ∈ A we have

|Wφ(am)| ≤ min
α∈∆

a−Nα
(

∑

w∈W

ak0wρ
P

)(

m
∑

j=1

‖D jφ‖
)

.

Proof This is a direct consequence of the proposition.

Let Γ be an arithmetic subgroup of G for which P is cuspidal. To be able to apply

this corollary we have to make sure that there are generic characters which are trivial

on Γ ∩ N . By [13], Theorem 1.13 we infer that the image of Γ in N ab is a lattice,

which implies that Nab/Γ is a torus. This implies the existence of an abundance of

generic characters that are trivial on Γ.

2 The Mellin Transform, Rank One

This section rests on the method developed in [2] for the case SO(n, 1).

Let τ be a finite dimensional unitary representation of the compact group M. Let

ξτ be an arbitrary matrix coefficient of the representation τ . For φ ∈ π∞ and λ ∈ a∗

let

Iφ(ξτ , λ) =

∫

A

∫

M

Wφ(am)ξτ (m)aλ−ρP da dm.
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For µ ∈ a∗0 we write µ > 0 if 〈µ, α〉 > 0 for all α ∈ Φ+ and µ > ν if µ− ν > 0. For

the rest of this section we assume that π is admissible of finite length. From the last

two lemmas we get

Proposition 2.1 Suppose η is generic, then the integral Iφ(ξτ , λ) converges absolutely

for Re(λ) > k0ρP
, where k0 is the number of Proposition 1.1. The linear functional

φ 7→ Iφ(ξτ , λ) is continuous on π∞.

Let (X j) be a basis of n such that each X j ∈ g0,α j
for some root α j . Write Z(g) for

the center of U (g).

Lemma 2.2 Let D ∈ Z(g), then D can be written as

D = DAM +
∑

j

X jD j

with DAM ∈ Z(a ⊕ m) and D j ∈ U (g). Moreover we have DAM ∈ Z(a ⊕ m)M the

subalgebra of M-invariants.

Proof Write n− = θ(n), then we have the decomposition

g = n− ⊕ a⊕m⊕ n

and hence, by the Poincaré-Birkhoff-Witt Theorem:

U (g) = U (a⊕m)⊕
(

nU (g) + U (g)n−
)

.

So D ∈ Z(g) can be written as DAM + f with f ∈ nU (g) + U (g)n−. Since G is

connected we get Z(g) = U (g)G, so for m ∈ M and D ∈ Z(g) we have Ad(m)D = D.

The decomposition above is stable under M, so it follows that Ad(m)DAM = DAM ,

which implies

Z(g) ⊂ (a⊕m)M ⊕
(

nU (g) + U (g)n−
)

.

Writing X−j = θ(X j) we see by the Poincaré-Birkhoff-Witt Theorem that f is a sum

of monomials of the form

XaD1(X−)b,

where for a, b ∈ Z
d
+ with d = dim N :

Xa
= Xa1

1 · · ·X
ad

d , (X−)b
= (X−1 )b1 · · · (X−d )bd ,

and D1 ∈ U (a⊕m). For H ∈ a we compute that

[H,XaD1(X−)b]

equals

(

a1α1(H) + · · · + adαd(H)− b1θ(α1)(H)− · · · − bdθ(αd)(H)
)

XaD1(X−)b.
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Since f lies in nU (g) + U (g)n− it follows that only monomials occur with a and b

not both zero. Next, since f commutes with each H ∈ a it follows that for each

monomial both a and b are nonzero, which implies the lemma.

Assume now that the representation π is quasi-simple, which means that the center

Z(g) acts by scalars. Let ∧π : Z(g)→ C denote the infinitesimal character of π, i.e.

π(D)φ = ∧π(D)φ

holds for every φ ∈ π∞, D ∈ Z(g). For σ ∈ M̂ and ν ∈ a∗ the representation

πσ,ν = IndG
P

(

σ ⊗ (ν + ρ
P
)⊗ 1

)

is known to be quasi-simple. Let ∧σ,ν denote its infinitesimal character.

Proposition 2.3 For D ∈ Z(g) write D = DAM +
∑d

j=1 X jD j as in the last lemma. Let

r j denote the matrix coefficient r j(m) = η
(

−Ad(m)X j

)

. Then, for 〈Re(λ), ρ
P
〉 > 0

we have

Iφ(ξτ , λ) =

∑d
j=1 ID jφ(r jξτ , λ + α j)

∧π(D)− ∧τ ,ρ
P
−λ(D)

.

Proof For D ∈ Z(g) we have on the one hand

IDφ(ξτ , λ) = ∧π(D)Iφ(ξτ , λ),

and on the other

IDφ(ξτ , λ) = IDAMφ(ξτ , λ) +

d
∑

j=1

IX j D jφ(ξτ , λ).

We compute

IX jφ(ξτ , λ) =

∫

A

∫

M

WX jφ(am)ξτ (m)aλ−ρP dm da

=

∫

A

∫

M

aα j log η
(

Ad(m)X j

)

Wφ(am)ξτ (m)aλ−ρP dm da

= Iφ(r jξτ , λ + α j)

To prove the proposition it remains to show

IDAMφ(ξτ , λ) = ∧τ ,ρ−λ(D)Iφ(ξτ , λ).

Fix λ ∈ a∗ with Re(λ) large. Let τ̆ denote the contragredient representation to τ and

consider the representation γ of AM given by

γ = (λ− ρ
P
)⊗ τ̆ .
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Note that the function am 7→ ξτ (m)aλ−ρP is a matrix coefficient of γ, we denote it by

ξγ(am).

On U (g) we have a unique C-linear involuntary anti-automorphism given by

X ′ = −X for X ∈ g. For D ∈ U (g) we have

∫

G

D f (x)g(x) dx =

∫

G

f (x)D ′g(x) dx.

We compute

IDAMφ(ξτ , λ) =

∫

A

∫

M

WDAMφ(am)ξτ (m)aλ−ρP dm da

=

∫

A

∫

M

DAMWφ(am)ξγ(am) dm da

=

∫

A

∫

M

Wφ(am)D ′AMξγ(am) dm da

= ∧τ ,ρ
P
−λ(D)Iφ(ξτ , λ)

The proposition follows.

Let b ⊂ m be a Cartan subalgebra and let W = W (a ⊕ b, g) be the big Weyl

group. Via the Harish-Chandra homomorphism the infinitesimal character ∧π can

be viewed as (a Weyl group orbit of) an element of the dual space of a⊕ b.

Let r = dim A. If r = 1 there are at most two positive roots in Φ+(a, g). Let α0 be

the short positive root in this case. Let R denote the adjoint representation of M on

n. Let λτ ∈ b∗ be the infinitesimal character of τ .

Theorem 2.4 If r = 1 then the function Iφ(ξτ , λ) has a meromorphic continuation

to a∗. There is a possible pole at λ only if the following conditions are satisfied: There

are integers 0 ≤ l ≤ k and an irreducible subrepresentation γ of τ ⊗ R⊗k such that, λγ
denoting its infinitesimal character we have that

λγ + ρ
P
−
(

λ + (k + l)α0

)

lies in the Weyl group orbit of ∧π .

Proof The function Iφ(ξτ , λ) is holomorphic in the region Re(λ) > k0ρP
. Let α1

be the short positive root. Now Proposition 2.3 shows that Iφ(ξτ , λ) extends to a

meromorphic function on {Re(λ) > k0ρP
− α1} with possible poles where

∧π(D) = ∧τ ,ρ
P
−λ(D)

for every D ∈ Z(g). This can only be when the two infinitesimal characters ∧π and

∧τ ,ρ
P
−λ are in the same Weyl group orbit. We iterate this replacing ξτ by r jξτ which

is a matrix coefficient of τ ⊗ R. Further iteration gives the claim in the case r = 1.
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3 The Higher Rank Case

For every simple root α ∈ ∆ let Gα be the connected Lie subgroup of G with Lie

algebra generated by g0,−α ⊕ g0,α. Then Gα is semisimple of real rank one with split

torus

Aα = {a ∈ A | aβ = 1 for all β ∈ ∆, β 6= α}.

Let aα,0 be the Lie algebra of Aα and aα its complexification. Let Mα = M ∩ Gα and

τα = τ |Mα
.

The set ∆ is a basis of a∗, hence every λ ∈ a∗ can uniquely be written as λ =
∑

α∈∆ λα, where λα ∈ a∗α. Let mα be the multiplicity of the root α and let ρ∆
P
=

1
2

∑

α∈N∆
mαα.

Theorem 3.1 Let π be an irreducible admissible Banach representation of G. Let φ ∈
π∞, then the function λ 7→ Iφ(ξτ , λ) extends to a meromorphic function on a∗ with

possible poles along the sets (λ − 2ρ∆
P

)α = cα, where α ∈ ∆ and cα ∈ a∗α is such

that there is an irreducible Gα-subquotient πα of π and there are integers 0 ≤ l ≤ k

and an irreducible subrepresentation γ of τα ⊗ (Ad |nα)⊗k such that, ∧γ denoting its

infinitesimal character we have that

∧γ + ρα
P
−
(

cα + (k + l)α
)

lies in the Weyl orbit of ∧πα .

The proof of this theorem will occupy the rest of the section. We start by consider-

ing a special case. So let (σ,Vσ) be an irreducible unitary representation of M. Since

M is compact it follows that σ is finite dimensional. Let ν ∈ a∗ and let π̄σ,ν be the cor-

responding principal series representation induced from the parabolic P̄ = MAN̄ op-

posite to P. The representation is defined to be the right regular representation on the

Hilbert space Hσ,ν of all functions f : G→ Vσ satisfying f (man̄x) = aν−ρPσ(m) f (x)

for man̄ ∈ MAN̄ and
∫

K
‖ f (k)‖2 dk < ∞, modulo nullfunctions. The space of

smooth vectors π̄∞σ,ν coincides with the set of f which are smooth on G. We espe-

cially consider f of the form

f (man̄n) = aν−ρPϕ(n)

for n ∈ N , where ϕ ∈ C∞c (N,Vσ). This function, defined on the open Bruhat cell

P̄P, extends by zero to a smooth function on G. Let U∞σ,ν ⊂ H∞σ,ν denote the subset of

all f of this form.

Let H∞σ be the space of all smooth f : K → Vσ with f (mk) = σ(m) f (k) for

m ∈ M, k ∈ K. For ν ∈ a∗ the function

fν(man̄k) = aν−ρPσ(m) f (k)

defines an element of H∞σ,ν and this attachment sets up an isomorphism of Frechét

spaces H∞σ → H∞σ,ν for any ν. Let U∞σ ⊂ H∞σ be the inverse image of U∞σ,ν then this

space does not depend on ν, which justifies the notation.

From [17], Theorem 15.4.1 and Theorem 15.6.1 we take
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Theorem 3.2 Let η be generic and let ν ∈ a∗ with Re(ν) < 0. Then for any f ∈ H∞σ
the integral

Jσ,ν( f ) =

∫

N

η(n)−1 fν(n) dn

converges and extends to a holomorphic map on a∗.

Let ψ be any Whittaker functional on π̄∞σ,ν , then ψ(U∞σ,ν) = 0 implies ψ = 0. Fur-

ther, for any Whittaker functional ψ there is a functional µ on Vσ such that

ψ( f ) = µ
(

Jσ,ν( f )
)

.

Fix ν with Re(ν) < 0. Let f ∈ U∞σ and let ϕ ∈ C∞c (N,Vσ) be the function

such that fν(man̄n) = aν−ρPσ(m)ϕ(n). Let ψ be a Whittaker functional and µ be the

corresponding functional on Vσ . Then we have

W fν (am) = µ
(

∫

N

η(n)−1 fν(nam) dn
)

=

∫

N

η(n)−1aν−ρPµ
(

σ(m)ϕ(nam)
)

dn.

Thus for λ ∈ a∗ with Re(λ) > k0ρP
we get that I fν (ξτ , λ) equals

Ĩ f (ξτ , λ + ν) =

∫

A

∫

N

∫

M

η(n)−1aλ+ν−2ρ
Pµ
(

σ(m)ϕ(nam)
)

ξτ (m) dm dn da.

Recall that ∆ ⊂ Φ+ denotes the set of simple roots. Let N0 = exp(
⊕

α /∈N∆
nα) and

Nα = exp(nα ⊕ n2α) for α ∈ ∆. For n ∈ N define

ϕ̃(n) = ϕ̃µ,σ,τ (n) =

∫

M

µ
(

σ(m)ϕ(nm)
)

ξτ (m) dm.

We have a canonical identification C∞c (N,Vσ) ∼= C∞c (N) ⊗ Vσ . We equip C∞c (N)

with the usual inductive limit topology, then the space C∞c (N) contains as a dense

subspace the algebraic tensor product

T =
(

⊗

α∈∆

C∞c (Nα)
)

⊗C∞c (N0).

Let Tσ,ν ⊂ Uσ,ν be the subspace of all f as above with ϕ = fν |N in T ⊗ Vσ . Now

suppose ϕ lies in T ⊗ Vσ , then ϕ̃ lies in T, since the spaces g0,α, α ∈ Φ+ are stable

under M. So suppose that ϕ̃ is a finite sum

ϕ̃ =

k
∑

i=1

(

∏

α∈∆

ϕ̃i,α

)

ϕ̃i,0,
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where ϕ̃i,α ∈ C∞c (Nα) and ϕ̃i,0 ∈ C∞c (N0). Then

I fν (ξτ , λ) =

∫

A

∫

N

η(n)−1aλ+νϕ̃(na) dn da

=

k
∑

i=1

∫

A

aλ+ν−2ρ
P

∏

α∈∆

∫

Nα

η(n−1
α )ϕ̃i,α(na

α) dnα

∫

N0

ϕ̃i,0(na) dn da

Let ρ∆
P
=

1
2

∑

α∈N∆
mαα, then

∫

N0

ϕ̃i,0(na) dn = a2(ρ
P
−ρ∆

P
)

∫

N0

ϕ̃i,0(n) dn.

We may assume that
∫

N0

ϕ̃i,0(n) dn = 1

for any i. Then we get

I fν (ξτ , λ) =

k
∑

i=1

∫

A

aλ+ν−2ρ∆
P

∏

α∈∆

∫

Nα

η(n−1
α )ϕ̃i,α(na

α) dnα da.

We can write A =
∏

α∈∆ Aα, where Aα = {a ∈ A | aβ = 1 for all β ∈ ∆, β 6= α}.
Then we get

I fν (ξτ , λ) =

k
∑

i=1

∏

α∈∆

∫

Aα

aλ+ν−2ρ∆
P

∫

Nα

η(n−1
α )ϕ̃i,α(na

α) dnα da.

Fix an index i and a simple root α. Let Gα be the connected subgroup of G corre-

sponding to the Lie subalgebra generated by

n−α ⊕ nα.

Then G is a real rank one semisimple group with split torus Aα. Let Pα = P ∩ Gα

and Mα = M ∩ Gα, then Pα = MαAαNα is a minimal parabolic of Gα. Mapping a

function h on M to m0 7→
∫

M
h(m0m)ξτ (m) dm is an L2-projection onto the part of

L2(M) spanned by ξτ . Therefore it follows that for any n ∈ Nα:

∫

Mα

ϕ̃i,α(nm)ξτ (m) dm = ϕ̃i,α(n).

Writing ξτ also for ξτ |Mα
we get

Lemma 3.3 We have

I fν (ξτ , λ) =

k
∑

i=1

∏

α∈∆

IGα

fi,α,ν
(ξτ , λ− 2ρ∆

P
),
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where IGα

fi,α,ν
(ξτ , λ− 2ρ∆

P
) denotes the Mellin transform with respect to the group Gα and

fi,α,ν ∈ IndGα
Pα

(σ ⊗ ν ⊗ 1) is given by

fi,α,ν(mαaαn̄αnα) = a
ν+ρα

P
α σ(mα)ϕi,α(nα),

and

ϕi,α(nα) =

∫

M

σ(m)ϕ(nm
α )ξτ (m) dm.

Note that IGα

fi,α,ν
(ξτ , λ − 2ρ∆

P
) only depends on the restriction of λ to Aα. By the

results of Section 2 it follows that IGα

fi,α,ν
(ξτ , λ− 2ρ∆

P
) extends to a meromorphic func-

tion and so then does I fν (ξτ , λ). The position of possible poles can be read off from

Theorem 2.4

We next want to show that I fν (ξτ , λ) extends to a meromorphic function for any

fν ∈ H∞σ,ν . We need the

Lemma 3.4 Let f ∈ H∞σ,ν , then for every d ∈ N there is a sequence f j ∈ T∞σ,ν such

that ID f j
(ξτ , λ) converges to ID f (ξτ , λ) locally uniformly on Re(λ) > k0ρP

for every

D ∈ U (g) of degree≤ d.

Proof Fix d ∈ N. We show the lemma in two steps. First assume that f ∈ U∞σ,ν ,

i.e. f (man̄n) = aν−ρPσ(m)ϕ(n), where ϕ ∈ C∞c (N,Vσ). Then there is a sequence

(ϕ j) j∈N in T ⊗ Vσ such that ϕ j converges to ϕ in the inductive limit topology. Let

f j be defined by f j(man̄n) = aν−ρPσ(m)ϕ j(n). Let N ∈ N, then by Corollary 1.4 we

know we know that there are D1, . . . ,Dm ∈ U (g) with

|W f j
(am)| ≤ min

α∈∆
a−Nα

(

∑

w∈W

ak0wρ
P

)(

m
∑

k=1

‖Dk f j‖
)

.

Since ϕ j converges to ϕ we conclude that ‖Dk f j‖ converges to ‖Dk f ‖ for every k,

which implies that there is a constant C > 0 such that

|W f j
(am)| ≤ C min

α∈∆
a−Nα

(

∑

w∈W

ak0wρ
P

)

,

for all j ∈ N. The claim follows by dominated convergence.

To prove the general case let now f ∈ H∞σ,ν and d ∈ N. By the first part of this

proof it now suffices to show that there is a sequence f j ∈ U∞σ,ν such that ID f j
(ξτ , λ)

converges to ID f (ξτ , λ) for every D ∈ U (g) of degree ≤ d. For this let (δ j) j be a

sequence of functions N → [0, 1] such that

• δ j ∈ C∞c (N) for every j ∈ N, and

• δ j+1 ≥ δ j for every j ∈ N, and

• for every n ∈ N there is a j ∈ N with δ j(n) = 1.
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Now set f j(man̄n) = aν−ρPσ(m) f (n)δ j(n), then f j ∈ U∞σ,ν and f j converges point-

wise on P̄N to f .

For f ∈ H∞σ,ν let

S( f ) =

∫

N

‖ f (n)‖ dn.

On p. 382 of [17] it is shown that this integral converges. Then S defines a norm on

H∞σ,ν and

‖ Jσ,ν( f )‖ ≤ S( f ).

We compute
∫

N

‖ f (nam)‖ dn = aRe(ν)+ρ
P

∫

N

‖ f (n)‖ dn,

so that

W f (am) ≤ aRe(ν)+ρS( f ).

The proof of Proposition 1.2 now gives

Lemma 3.5 There are D1, . . . ,Dm ∈ U (n) such that

|W f j
(am)| ≤ min

α∈∆
a−NαaRe(ν)+ρ

P

m
∑

l=1

S(Dl f j).

Finally the sequence δ j can be chosen so that their U (n)-derivatives remain

bounded, so there is a constant C > 0 so that S(Dl f j) ≤ C for all l and all j. This

implies Lemma 3.4.

We want to apply the preceding lemma to derive the meromorphic continuation

of I fν (ξ, λ) for general fν . In order to do this we need

Lemma 3.6 Let fν ∈ T∞σ,ν and write as in Lemma 3.3:

I fν (ξτ , λ) =

k
∑

i=1

∏

α∈∆

IGα

fi,α,ν
(ξτ , λ− 2ρ∆

P
).

For α ∈ ∆ let Dα ∈ U
(

Lie(Gα)
)

, then there is D ∈ U (g) such that

ID fν (ξτ , λ) =

k
∑

i=1

∏

α∈∆

IGα

Dα fi,α,ν
(ξτ , λ− 2ρ∆

P
).

Proof It suffices to consider the case Dα = Id if α 6= α0 for some fixed α0 and

Dα0
= X ∈ Lie(Gα0

). For this it suffices to assume that X lies in a generating set of

Lie(Gα0
), so, one may take X inside n−α0

or inside nα0
. In both cases we take D = X

and the claim follows since the factors associated to α 6= α0 are annihilated by X.
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The fact that I fν (ξτ , λ) admits a meromorphic continuation now follows from

Lemma 3.4, Lemma 3.3 and Proposition 2.3. This all works for Re(ν) > 0. But since

I fν (ξτ , λ) = Ĩ f (ξτ , λ + ν),

we automatically get the meromorphicity for all ν.

We intend to generalize this result to an arbitrary Banach representation π. For

this we need

Lemma 3.7 Let π be an admissible irreducible Banach representation of G, then there

are σ ∈ M̂ and ν ∈ a∗ such that the Frechét representation π∞ is a quotient of π∞σ,ν .

Proof Let πK denote the admissible irreducible (g,K)-module of K-finite vectors in

π. The dual (g,K)-module π̆K also is admissible and irreducible. By the subrepre-

sentation theorem there exist σ ∈ M̂ and ν ∈ a∗ such that π̆K injects into π̄σ̆,ν,K .

Dualizing we get a nontrivial and hence surjective (g,K)-map from π̄σ,ν,K to πK ,

which proves the claim for the underlying (g,K)-modules. By Corollary 10.5 of [6]

the claim follows.

So let finally π be an arbitrary admissible irreducible Banach representation of

G. Let φ ∈ π∞ and let F : π̄∞σ,ν → π∞ be a surjective homomorphism. Pick some

f ∈ π̄∞σ,ν such that F( f ) = φ. Then ψ ◦ F is a Whittaker functional on π̄∞σ,ν . It then

follows

Iφ(ξτ , λ) = I f (ξτ , λ),

so the meromorphic continuation of Iφ(ξτ , λ) is established. Theorem 3.1 is proven.
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