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Measures with Fourier Transforms in L2 of a
Half-space

Bassam Shayya

Abstract. We prove that if the Fourier transform of a compactly supported measure is in L2 of a half-

space, then the measure is absolutely continuous to Lebesgue measure. We then show how this result

can be used to translate information about the dimensionality of a measure and the decay of its Fourier

transform into geometric information about its support.

1 Introduction

Let M(R
n) be the space of all complex Borel measures on R

n. The Fourier transform

of a measure µ ∈ M(R
n) is defined for ξ ∈ R

n by

µ̂(ξ) =

∫

Rn

e−2πiξ·xdµ(x).

Our starting point is the following well-known result.

Theorem 1.1 Suppose µ ∈ M(R
n). If µ̂ ∈ L2(R

n), then µ is absolutely continuous to

Lebesgue measure (in symbols, dµ ≪ dx.)

The first goal of this paper is to prove the following stronger version of Theo-

rem 1.1.

Theorem 1.2 (i) Suppose µ ∈ M(R
n) and u is a unit vector in R

n. If µ is compactly

supported and µ̂ ∈ L2({ξ · u ≤ 0}), then dµ ≪ dx.

(ii) Suppose µ ∈ M(R). If µ̂ ∈ L2((−∞, 0]), then dµ ≪ dx.

The simple proof of the fact that Theorem 1.2 implies Theorem 1.1 will be given

in Section 2.

The second goal of this paper is to use this result to show that if µ ∈ M(R
n) is

a positive compactly supported measure such that µ satisfies an appropriate dimen-

sionality condition and µ̂ satisfies an appropriate decay condition, and if K ⊂ R
n

is a symmetric convex body such that bd K is smooth and has a nowhere vanishing

Gaussian curvature, then the set

{R ∈ R : (bd RK) ∩ (supp µ) 6= ∅}

has a positive one-dimensional Lebesgue measure. This application of Theorem 1.2

is closely related to Mattila’s work [6] on Falconer’s distance set conjecture.
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The proof of Theorem 1.2 relies on two papers of Frank Forelli; it uses the main

result of [2] and was inspired by the argument of [3]. Both papers generalize the F.

and M. Riesz theorem, but in different directions.

The F. and M. Riesz theorem Suppose T = R/Z, λ ∈ M(T), and ‖λ‖ > 0. If

λ̂(n) = 0 for all n < 0, then dλ and dx have the same null sets:

∫

E

d|λ| = 0 ⇔

∫

E

dx = 0.

The result of the above theorem remains true when the circle T is replaced by the

real line R. Even more generally,1 we can replace T by R
n.

Theorem 1.3 (Forelli [2]) Suppose λ ∈ M(R
n) and u is a unit vector in R

n. If

λ̂(ξ) = 0 for all ξ in the half-space {ξ · u ≤ 0}, then λ is quasi-invariant in the

direction of u: ∫

E

d|λ| = 0 ⇔

∫

E+tu

d|λ| = 0∀t ∈ R.

Notice that if λ ∈ M(R) is quasi-invariant and ‖λ‖ > 0, then d|λ| and dx are

mutually absolutely continuous, i.e., d|λ| and dx have the same null sets. This follows

immediately from the observation that

∫ ∞

−∞

|λ|(E + x)dx =

∫ ∞

−∞

∫ ∞

−∞

χE+x(t)d|λ|(t)dx

=

∫ ∞

−∞

∫ ∞

−∞

χ−E+t (x)dxd|λ|(t)

=

∫ ∞

−∞

| − E + t|d|λ|(t)

= |E|‖λ‖

for all Borel sets E ⊂ R, where |E| denotes the Lebesgue measure of E.

2 The Support Condition on µ

The support condition on µ in Theorem 1.2(i) can be relaxed to assuming that µ
is compactly supported only in the direction of u. This will be easily seen from the

proof of Theorem 1.2. But the support condition on µ cannot be completely removed

in dimensions n ≥ 2. Let f ∈ H1(R) be a nonzero function and define the measure

µ ∈ M(R
2) by

∫

R2

φdµ =

∫

R

φ(x, 0) f (x)dx (φ ∈ C0(R
2)).

1In [2], Theorem 1.3 is stated and proved in the more general setting of locally compact Hausdorff
spaces on which R acts as a topological transformation group.
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Then µ̂ vanishes in the left half-plane while µ is singular to the two-dimensional

Lebesgue measure.

In spite of the support condition on the measure, Theorem 1.2 implies Theo-

rem 1.1. This can be seen as follows.

Let µ ∈ M(R
n) be such that µ̂ ∈ L2(R

n). We need to show that if E ⊂ R
n has

Lebesgue measure zero, then µ(E) = 0. Let Bk be a sequence of concentric balls in R
n

such that the radius of Bk is k. Let {φk} be a sequence in C∞
0 (R

n) such that φk = 1

on Bk, and let dµk = φkdµ. Then by Young’s inequality,

µ̂k = φ̂k ∗ µ̂ ∈ L2(R
n)

for all k. So by Theorem 1.2, dµk ≪ dx for all k. Since µk(E) → µ(E) as k → ∞ for

all Borel sets E ⊂ R
n, it follows that dµ ≪ dx.

3 Proof of Theorem 1.2

By Plancherel’s theorem, there is a function f ∈ L2(R
n) such that

f̂ (ξ) =

{
µ̂(ξ) if ξ · u ≤ 0,

0 if ξ · u > 0.

Let φ be a C∞
0 function on R

n such that φ̂ ≥ 1 on supp µ. Clearly, φ̂dµ ∈ M(R
n).

Also, by the Cauchy–Schwarz inequality, φ̂ f dx ∈ M(R
n). So, if we define the measure

λ by

(3.1) dλ = φ̂dµ − φ̂ f dx,

then λ ∈ M(R
n) and λ̂ = 0 on a half-space of the form {ξ · u < a} for some a < 0.

Applying Theorem 1.3, we conclude that λ is quasi-invariant in the direction of u.

Suppose E ⊂ R
n is a Borel set of Lebesgue measure zero. Let E ′

= E ∩ (supp µ)

and choose a real number t such that (E ′+tu)∩(supp µ) = ∅. Then |µ|(E ′ +tu) = 0

and |E ′ + tu| = |E ′| = 0, and hence |λ|(E ′ + tu) = 0. Since λ is quasi-invariant in

the direction of u, it follows that |λ|(E ′) = 0. Since φ̂ ≥ 1 on supp µ, it follows by

(3.1) that

∫

E ′

d|µ| ≤

∫

E ′

φ̂d|µ| ≤

∫

E ′

d|λ| +

∫

E ′

|φ̂(x) f (x)|dx = 0.

Thus |µ|(E) = |µ|(E ′) = 0. This proves part (i).

To prove part (ii), we let f be as above (with u = 1) and choose a C∞
0 function

φ on R such that φ̂(ξ) ≥ 1 for |ξ| ≤ 1. For R > 0, we then define the function

φR ∈ C∞
0 (R) by φR(x) = Rφ(Rx) and the measure λR ∈ M(R) by

(3.2) dλR = φ̂Rdµ − φ̂R f dx.
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Then λ̂R = 0 on an interval of the form (−∞, a] for some a < 0, and φ̂R(ξ) ≥ 1 for

all |ξ| ≤ R. So applying Theorem 1.3, and recalling that quasi-invariant measures on

R are absolutely continuous to Lebesgue measure, we conclude that dλR ≪ dx.

Suppose E ⊂ R is a Borel set with |E| = 0. Let ER = E ∩ (−R, R). Then |ER| = 0,

and so |λR|(ER) = 0. Since φ̂R ≥ 1 on (−R, R), it follows by (3.2) that

∫

ER

d|µ| ≤

∫

ER

φ̂Rd|µ| ≤

∫

ER

d|λR| +

∫

ER

|φ̂R(x) f (x)|dx = 0.

Thus |µ|(ER) = 0. Letting R → ∞, we get |µ|(E) = 0, as desired.

4 The Application

A convex body in R
n is a compact convex subset of R

n with nonempty interior. A

convex body K is symmetric if K = −K. The polar body K∗ of a symmetric convex

body K is defined as

K∗
= {x ∈ R

n : |x · y| ≤ 1 for all y ∈ K},

and the support function of K is defined as

hK (x) = sup{x · y : y ∈ K} (x ∈ R
n).

It is easy to see that

hK (x) =
1

sup{R ≥ 0 : Rx ∈ K∗}
(x ∈ R

n).

It is also easy to see that

(4.1) x ∈ bd RK∗ ⇔ hK (x) = R.

Let n ≥ 2 and fix a symmetric convex body K in R
n such that bd K is smooth and

has a nowhere vanishing Gaussian curvature. Let σ be surface measure on bd K and

define the measure σR on bd RK by

∫

bd RK

f dσR =

∫

bd K

f (Rθ)Rn−1dσ(θ) ( f ∈ C(bd RK)).

If θ ∈ S
n−1 and x ∈ bd K are such that θ is the outer unit normal vector to bd K at

x, we define κ(θ) to be the Gaussian curvature of bd K at x. Then a result of Herz [4]

says that

σ̂R(ξ) =
2Rn−1

(R|ξ|)(n−1)/2
κ(ξ/|ξ|)−1/2 cos

(
2π

(
hK (Rξ) −

n − 1

8

))
(4.2)

+ Rn−1O
( 1

(R|ξ|)(n+1)/2

)
.
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For positive compactly supported µ ∈ M(R
n), define

∆K (µ) = {hK (x) : x ∈ supp µ}.

Then by (4.1),

∆K (µ) = {R ∈ R : (bd RK∗) ∩ (supp µ) 6= ∅}.

The aim of this section is to show how Theorem 1.2 can be used to translate infor-

mation about the dimensionality of µ and the decay of µ̂ into information about the

Lebesgue measure of ∆K (µ).

Throughout this section, the ball in R
n of center x and radius r will be denoted

by B(x, r), the Lebesgue measure of a Borel set E ⊂ R
n will be denoted by |E|, and

the notation A ≈ B will mean that C−1A ≤ B ≤ CA for some appropriate positive

constant C . For example, |B(x, r)| ≈ rn.

Let µ ∈ M(R
n) be a positive compactly supported measure with ‖µ‖ > 0. Sup-

pose ∫ ∞

1

∫

bd RK

|µ̂|2dσRdR < ∞.

Then, since bd K has a nowhere vanishing Gaussian curvature,

‖µ̂‖2
L2(Rn) ≈

∫ ∞

0

∫

bd RK

|µ̂|2dσRdR < ∞,

and it follows by Theorem 1.1 that dµ ≪ dx. Since ‖µ‖ > 0, it follows that

| supp µ| > 0, and hence that |∆K (µ)| > 0.

Now by the Cauchy–Schwarz inequality,
∫ ∞

1

∣∣∣
∫

bd RK

µ̂dσR

∣∣∣
2 dR

Rn−1
≤ ‖σ‖

∫ ∞

1

∫

bd RK

|µ̂|2dσRdR,

so it is natural to ask if |∆K (µ)| > 0 will continue to be true under the weaker

assumption ∫ ∞

1

∣∣∣
∫

bd RK

µ̂dσR

∣∣∣
2 dR

Rn−1
< ∞.

It turns out that to answer this question in the affirmative one needs to also assume

that ∫

Rn

dµ(x)

|x|α
< ∞

for some α > n/2, and use Theorem 1.2 instead of Theorem 1.1. Notice that if µ
satisfies the dimensionality condition

µ(B(0, r)) ≤ Crβ (r > 0)

for some positive constants β and C , then
∫

Rn

dµ(x)

|x|α
< ∞

for all 0 < α < β.
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Theorem 4.1 Suppose µ ∈ M(R
n) is a positive compactly supported measure such

that

(4.3) 0 <

∫

Rn

dµ(x)

|x|α
< ∞

for some α > n/2, and

(4.4)

∫ ∞

1

∣∣∣
∫

bd RK

µ̂dσR

∣∣∣
2 dR

Rn−1
< ∞.

Then |∆K (µ)| > 0.

Proof By (4.2),

σ̂R(ξ) =
2Rn−1

(R|ξ|)(n−1)/2
κ(ξ/|ξ|)−1/2 cos

(
2π

(
hK (Rξ) −

n − 1

8

))
+ Rn−1E(ξ)

with

|E(ξ)| ≤

{
C

(R|ξ|)(n+1)/2 if R|ξ| ≥ 1,
C

(R|ξ|)(n−1)/2 if R|ξ| ≤ 1.

Thus,

∫

bd RK

µ̂dσR

=

∫

Rn

σ̂R(ξ)dµ(ξ)

=

∫

Rn

2Rn−1

(R|ξ|)(n−1)/2
κ(ξ/|ξ|)−1/2 cos

(
2π

(
hK (Rξ) −

n − 1

8

))
dµ(ξ)

+

∫

Rn

Rn−1E(ξ)dµ(ξ)

= R(n−1)/2

∫

Rn

2

|ξ|(n−1)/2
κ(ξ/|ξ|)−1/2 cos

(
2π

(
hK (Rξ) −

n − 1

8

))
dµ(ξ)

+ Rn−1E1(R)

with

|E1(R)| ≤

∫

|ξ|≥1/R

C

(R|ξ|)(n+1)/2
dµ(ξ) +

∫

|ξ|≤1/R

C

(R|ξ|)(n−1)/2
dµ(ξ)

≤

∫

Rn

2C

(R|ξ|)α
dµ(ξ)

= 2CR−α

∫

Rn

dµ(ξ)

|ξ|α
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for any α ∈ [(n − 1)/2, (n + 1)/2]. Thus,

1

R(n−1)/2

∫

bd RK

µ̂dσR =

∫

Rn

2

|ξ|(n−1)/2
κ(ξ/|ξ|)−1/2 cos

(
2π

(
hK (Rξ) −

n − 1

8

))
dµ(ξ) + E2(R)

with

|E2(R)| ≤ 2CR(n−1)/2−α

∫

Rn

dµ(ξ)

|ξ|α

for any α ∈ [(n − 1)/2, (n + 1)/2].

Now define a positive measure ν0 ∈ M(R) by2

∫

R

f dν0 =

∫

Rn

f (hK (x))

|x|(n−1)/2
κ(x/|x|)−1/2dµ(x) ( f ∈ C0(R))

(notice that
∫

R
dν0 ≈

∫
Rn |x|

−(n−1)/2dµ(x) < ∞) and a complex measure ν ∈ M(R)

by

dν(t) = eiπ(n−1)/4dν0(t) + e−iπ(n−1)/4dν0(−t).

Then

ν̂(s) =

∫

R

e−2πist eiπ(n−1)/4dν0(t) +

∫

R

e−2πist e−iπ(n−1)/4dν0(−t)

=

∫

R

(
e−2πi(st−(n−1)/8) + e2πi(st−(n−1)/8)

)
dν0(t)

=

∫

R

2 cos
(

2π
(

st −
n − 1

8

))
dν0(t)

=

∫

Rn

2 cos
(

2π
(

shK (x) −
n − 1

8

)) 1

|x|(n−1)/2
κ(x/|x|)−1/2dµ(x).

Thus,
1

R(n−1)/2

∫

bd RK

µ̂dσR = ν̂(R) + E2(R).

Since
∫ ∞

1
(R(n−1)/2−α)2dR < ∞ whenever α > n/2, it follows that E2 ∈

L2([1,∞)) whenever there is an α ∈ (n/2, (n + 1)/2] with
∫

Rn |ξ|
−αdµ(ξ) < ∞.

Thus,
1

R(n−1)/2

∫

bd RK

µ̂dσR − ν̂(R) ∈ L2([1,∞))

whenever there is an α > n/2 with
∫

Rn |ξ|
−αdµ(ξ) < ∞. Thus,

ν̂ ∈ L2([1,∞)) ⇔

∫ ∞

1

∣∣∣
∫

bd RK

µ̂dσR

∣∣∣
2 dR

Rn−1
< ∞

2Since
R

Rn |x|
−αdµ(x) < ∞, we have µ({0}) = 0, so one need not worry about κ(x/|x|) when x = 0.
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whenever there is an α > n/2 with
∫

Rn |ξ|
−αdµ(ξ) < ∞.

Thus, Theorem 1.2, (4.3), and (4.4) imply that ν is absolutely continuous to

Lebesgue measure on R. Since supp ν ⊂ ∆K (µ) ∪ (−∆K (µ)) and ‖ν‖ > 0, this

in turn implies that |∆K (µ)| > 0.

The argument used in the proof of Theorem 4.1 is very close to an argument used

in [7] to prove the following theorem.

Theorem 4.2 (Mattila [6]) Suppose λ ∈ M(R
n) is a positive compactly supported

measure such that

0 <

∫

Rn

∫

Rn

dλ(x)dλ(y)

|x − y|α
< ∞

for some α > n/2, and
∫ ∞

1

(∫

RSn−1

|̂λ|2dσR

) 2 dR

Rn−1
< ∞.

Then |{|x − y| : x, y ∈ supp λ}| > 0.

Notice that if λ satisfies the dimensionality condition

λ(B(x, r)) ≤ Crβ (x ∈ R
n, r > 0)

for some positive constants β and C , then
∫

Rn

∫

Rn

dλ(x)dλ(y)

|x − y|α
< ∞

for all 0 < α < β.

Theorem 4.1 extends Mattila’s theorem to the convex setting. To see this, define

the measure λ̃ ∈ M(R
n) by λ̃(E) = λ(−E) and apply Theorem 4.1 to the measure

µ = λ ∗ λ̃. We refer the reader to [1, 5–7] for more information about Mattila’s

theorem and its important applications to Falconer’s distance set conjecture.
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