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Abstract

The equivariant Heegaard genus of a 3-manifold W with the action of a finite group G of
diffeomorphisms is the smallest genus of an equivariant Heegaard splitting for W. Although
a Heegaard splitting of a reducible manifold is reducible and although if W is reducible, there
is an equivariant essential sphere, we show that equivariant Heegaard genus may be super-
additive, additive, or sub-additive under equivariant connected sum. Using a thin position
theory for 3-dimensional orbifolds, we establish sharp bounds on the equivariant Heegaard
genus of reducible manifolds, similar to those known for tunnel number. Along the way, we
make use of a new invariant for W which is much better behaved under equivariant sums.

2020 Mathematics Subject Classification: 57K30 (Primary); 57K10, 57M60 (Secondary)

1. Introduction

Throughout, let W be a compact, connected, oriented 3-manifold having no spherical
boundary components. Let G be a finite group of orientation-preserving diffeomorphisms
of W. A subset X ⊂ W is equivariant if for all g ∈ G, either g(X) ∩ X =∅ or g(X) = X.
It is invariant if g(X) = X for all g ∈ G. Famously, the Equivariant Sphere Theorem [16]
says that if W is reducible, then there exists an equivariant essential sphere. Consequently,
if W is reducible, then there exists an equivariant system of essential spheres S ⊂ W giving
a factorisation of W into irreducible 3-manifolds. The (disconnected) manifold W|S created
by cutting open along S and gluing in 3-balls is said to be obtained by equivariant surgery
on S. We extend the action of G across the 3-balls.

Closed 3-manifolds also have equivariant Heegaard splittings [45]. (A Heegaard splitting
for a disconnected manifold is the union of Heegaard splittings of its components.) The
equivariant Heegaard genus g(W;G) is the minimum genus of an equivariant Heegaard
splitting for W. (This is the same as the minimal genus of an invariant Heegaard surface for
W.) If G is trivial, then g(W) = g(W;G) is the Heegaard genus of W. In general, g(W;G) ≥
g(W). A reducing sphere for a Heegaard surface H ⊂ W is a sphere intersecting W in a
single essential simple closed curve. If W is reducible, Haken’s lemma states that every
Heegaard surface for W admits a reducing sphere [7]. In particular, if W is reducible, every
invariant Heegaard surface for W admits a reducing sphere.
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Question 1: (Equivariant Haken’s Lemma) If W is reducible and if H is an invariant
Heegaard surface for W, must there exist an equivariant essential sphere in W that is a
reducing sphere for H?

One important consequence of Haken’s lemma is that Heegaard genus of 3-manifolds is
additive under connected sum. That is, g(W) = g(W|S). We could also ask:

Question 2: (Additivity of Equivariant Heegaard Genus) If W is reducible and if S ⊂ W is
an invariant system of reducing spheres such that each component of W|S is irreducible, is
g(W;G) = g(W|S;G)?

A positive answer to Question 1 implies a positive answer to Question 2. Both questions
have a positive answer in the case when G acts freely on W (Corollary 2·8 below). Another
reason to think that the answer to both questions might be “yes,” is that recently Scharlemann
[27] showed that given a collection of pairwise disjoint essential spheres S ⊂ W, there is an
isotopy of any Heegaard surface H for W so that each component of S is a reducing sphere
for H. In particular, if S is as in Question 2 and if H ⊂ W is an invariant Heegaard surface,
then H can be isotoped so that each component of S is a reducing sphere for H. Of course,
the isotopy may destroy the fact that H is invariant.

In fact, the answers to Questions 1 and 2 are negative. Throughout, |X| is either the
cardinality or the number of components of X.

THEOREM. Equivariant Heegaard genus can be sub-additive, additive, or super-
additive. In particular:

(i) if k ≥ 2 is large enough, then there exists a reducible W, an invariant essential
sphere S for W dividing W into two irreducible factors, and a cyclic group G of
diffeomorphisms of W having order k such that

g(W;G) < g(W|S;G);

(ii) for k ≥ 2, there exists a reducible W, an invariant essential sphere S for W dividing
W into two irreducible factors, and a cyclic group G of diffeomorphisms of W having
order k such that

g(W;G) = g(W|S;G);

(iii) for k ≥ 2, there exists a reducible W having a finite cyclic group of diffeomorphisms
G of order k, and an invariant essential sphere S dividing W into two irreducible
manifolds, such that

g(W;G) = g(W|S;G) + k − 1.

Furthermore, g(W;G) can be arbitrarily high for fixed k.

Conclusions (i) and (ii) are the content of Theorems 3·1 and 3·3. Conclusion (iii) is the
content of Theorem 6·4. Consequently, no invariant Heegaard surface H for the manifolds
W in Conclusions (i) or (iii) admits an equivariant reducing sphere. Perhaps not surprisingly
we use facts about the non-additivity of tunnel number to prove those theorems. And so we
are left with:

Question 3: What can we say about the relationship between g(W;G) and g(W|S;G)?
We establish an upper bound for g(W;G) relative to a system of separating summing

spheres. We also note that Rieck and Rubinstein [25] have produced an upper bound on
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g(W;G) in the case when G = {1, τ }, with τ an involution. However, their upper bound does
not apply in the case when W is reducible. Theorem 6·4 shows that the following inequality
for c = 1 is sharp; the other inequality is likely also sharp.

THEOREM 6·10. For any invariant system of summing spheres S ⊂ W such that each
component of S is separating,

g(W;G) ≤ g(W|S;G) + (c(|G| + 1) − 2)(
∣∣W|S

∣∣ − 1)

where c = 1 if every point of W has cyclic stabiliser and c = 2 otherwise.

Turning to lower bounds, we show:

THEOREM 5·5. Suppose that W is closed and connected and that G does not act freely.
If S ⊂ W is an invariant system of summing spheres, then

g(W;G) ≥ |G|(ν/12 − μ/2) + |S| + 1,

where ν is the number of orbits of the components of (W|S) that are not S3 or lens spaces
and μ is the number of orbits of components of W|S that are homeomorphic to S3.

This bound is somewhat weak since g(W;G) ≥ g(W) = g(W|S) ≥ 2ν. However, it does
give some indication of how the order of G affects the equivariant Heegaard genus.
Additionally, Examples 5·6 and 5·7 suggest we are unlikely to be able to improve the lower
bound without additional hypotheses. In a different direction, we show that equivariant
Heegaard genus is additive or super-additive when the factors are equivariantly compara-
tively small. A 3-manifold W is equivariantly comparatively small relative to the action
of a finite group of diffeomorphisms G if every equivariant essential surface F ⊂ W has
g(F) > g(W;G).

THEOREM 5·10. Suppose that when S ⊂ W is an invariant system of summing spheres,
then every component of W|S is equivariantly comparatively small. Then:

g(W;G) ≥ g(W|S;G).

As a by-product of our methods, we produce a new invariant which we call equivari-
ant net Heegaard characteristic net xω(W;G). It is similar to equivariant Heegaard genus,
but its additivity properties are entirely understood, at least when every component of S is
separating:

THEOREM 4·10. There exists an invariant system of summing spheres S ⊂ W such that

net xω(W;G) ≥ net xω(W|S;G) − 2|S|,
and W|S is irreducible. If each component of S is separating, then equality holds.

Like equivariant Heegaard genus, net xω(W;G) is defined by minimising a certain quan-
tity over a surface. In this case, however, it is not an equivariant Heegaard splitting but an
equivariant generalised Heegaard splitting. Theorem 4·10 arises from the fact that equivari-
ant spheres arise as thin surfaces. We explain this in Section 4 using orbifolds. Part of the
point of this paper is to advertise the very useful properties of the invariant net xω, which is
closely related to the invariant “net extent” of [37, 38].
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Orbifolds and Outline.

Three-dimensional orbifolds are the natural quotient objects resulting from finite diffeo-
morphism group actions on 3-manifolds. At least since Thurston’s work on geometrisation
[39, chapter 13], 3-dimensional orbifolds have been the essential tool for understanding
finite group actions on manifolds; they are also important and interesting in their own right.
A closed orientable 3-orbifold is locally modelled on the quotient of a 3-ball by a finite group
of orientation preserving diffeomorphisms. The singular set is the set of points which are the
images of those points with nontrivial stabiliser group. A closed, orientable 3-orbifold can
thus be considered as a pair (M,T) where M is a closed orientable 3-manifold and T ⊂ M is
a properly embedded trivalent spatial graph with integer edge weights ω ≥ 2. If e is an edge
of T with ω(e) = w, then we say that e has weight w. If v ∈ T is a vertex with incident edges
having weights a,b,c, we let xω(v) = 1 − (1/a + 1/b + 1/c).

When (M,T) is a closed, 3-dimensional orbifold, for each vertex v we have xω(v) < 0.
This occurs if and only if, up to permutation, (a,b,c) is one of (2,2,k), (2,3,3), (2,3,4) and
(2,3,5) for some k ≥ 2. Conversely, every trivalent graph T properly embedded in a compact
(possibly with boundary) 3-manifold and having edge weights satisfying xω(v) < 0 at each
trivalent vertex v describes a compact, orientable 3-orbifold. We work somewhat more gen-
erally by taking edge weights in the set N∞

2 = {n ∈N:n ≥ 2} ∪ {∞}. We define 1/∞ = 0.
This is similar to what is allowed by the software Orb [11] for studying the geometry of
3-orbifolds. We consider the edges of weight ∞ as consisting of points belonging to a knot,
link, or spatial graph in M on which G acts freely. Allowing such weights does not create
any additional difficulties and means that our methods may be useful for studying symme-
tries of knots, links, and spatial graphs. Additionally, some of our bounds are achieved only
when there are edges of infinite weight; as these bounds are asymptotically achieved when
edges have only finite weights, it is conceptually clearer to allow edges of infinite weight.
Henceforth, we define “3-orbifold” as follows.

Definition 1·1. A 3-orbifold is a pair (M,T) where M is a compact, orientable 3-manifold,
possibly with boundary and T ⊂ M is a properly embedded trivalent graph such that each
edge e has a weight ω(e) ∈N

∞
2 . We also require that at every trivalent vertex v, xω(v) < 0.

When studying symmetries of knots or spatial graphs in a 3-manifold, vertices of
degree 4 or more may arise, as may vertices incident to edges of infinite weight. Our frame-
work can handle such vertices by considering them as boundary components. Our approach
should be contrasted with the usual methods of proving Haken’s lemma which involve intri-
cate methods of controlling the intersections between a Heegaard surface and an essential
sphere. We replace those arguments with appeals to machinery that guarantee that essential
spheres show up as thin surfaces in a certain type of thin position. The basic structure of our
arguments is as follows.

In Section 2, we define orbifold Heegaard splittings; show that they are the quotients
of invariant Heegaard surfaces of W by G; and show that each orbifold Heegaard splitting
of the quotient orbifold lifts to a Heegaard splitting of W. We also review the correspon-
dence between equivariant essential spheres and orbifold reducing spheres. Section 3 uses
the correspondence to prove that equivariant Heegaard genus can be sub-additive or additive.
Section 4 adapts Taylor–Tomova’s version of thin position to orbifolds. There we define the
“net Heegaard characteristic” net xω of an orbifold and establish its correspondence with
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equivariant net Heegaard characteristic. The equivariant net Heegaard characteristic of W
is bounded above by 2g(W;G) − 2. We also prove Theorem 4·10. The key idea is to use
Taylor–Tomova’s partial order on the orbifold version of Scharlemann–Thompson’s gen-
eralised Heegaard splittings for 3-manifolds. The minimal elements of this partial order
are called “locally thin.” We show that net xω is non-increasing under the partial order and
that orbifold reducing spheres show up as thin surfaces in the generalised Heegaard split-
tings. These two properties make net xω additive under orbifold-sums. Understanding the
net Heegaard characteristic of the result of decomposing the orbifold by essential spheres
allows us to produce lower bounds on net xω, and thus on g(W;G). Section 6 establishes
upper bounds on g(W;G) by adapting the amalgamation of generalised Heegaard splittings
to orbifolds. Although, in principle, this should be straightforward to those who understand
amalgamation of generalised Heegaard splittings, significant issues arise; issues which in
some sense seem to characterize the non-additivity of equivariant Heegaard genus.

2. General Notions, Orbifold Sums, and Orbifold Heegaard Surfaces

Throughout all manifolds and orbifolds are orientable. If X is a topological space, we let
Y � X mean that Y is a path component of X. We let X \ Y denote the complement of an
open regular neighbourhood of Y in X.

We refer the reader to [1, 2] for more on orbifolds. Suppose that (M,T) is an orbifold. A
properly embedded orientable surface S ⊂ M, transverse to T , naturally inherits the structure
of a 2-suborbifold; that is a surface locally modelled on the quotient of a disc or half disc by
a finite group of orientation-preserving isometries. We call the points S ∩ T the punctures
of S. If p ∈ S ∩ T is a puncture its weight ω(p) is the weight of the edge intersecting it. The
orbifold characteristic of S is defined to be:

xω(S) = −χ(S) +
∑

p∈S∩T

(
1 − 1

ω(p)

)
.

This is the negative of the orbifold Euler characteristic of S. Observe that if π : R → S
is an orbifold covering map of finite degree d, then xω(R) = dxω(S). An orbifold is bad if it
is not covered by a manifold and good if it is. The bad 2-dimensional orbifolds are spheres
that either have a single puncture of finite weight or have two punctures of different weight.
2-orbifolds that are spheres with three punctures are turnovers. A good connected 2-orbifold
S is spherical if xω(S) < 0; euclidean if xω(S) = 0; and hyperbolic if xω(S) > 0. A compact,
orientable 3-orbifold is good if it does not contain a bad 2-orbifold [2, theorem 2·5].

Definition 2·1. A 3-orbifold (M,T) is nice if:

(i) for each S � ∂M, xω(S) ≥ 0 and if S is a sphere then |S ∩ T| ≥ 3;

(ii) the pair (M,T) has no bad 2-suborbifolds and no spheres that are once-punctured with
infinite weight puncture;

The reason for forbidding bad 2-suborbifolds is that we cannot surger along them to cre-
ate a valid 3-orbifold. The requirement that xω(S) ≥ 0 for S � ∂M helps with some of our
calculations. The other requirements help with our use of the material from [36, 37]. We
note that (W, ∅) is a nice orbifold. (Recall ∂W has no spheres by our initial definition of W.)
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2·1. Factorisations.

Petronio [24] proved a unique factorisation theorem for closed good 3-orbifolds (M,T)
without nonseparating spherical 2-suborbifolds. We are working in a slightly more general
context (because our orbifolds may not be closed, we allow good nonseparating spherical
2-suborbifolds, and we allow infinite weight edges). Nevertheless, we adopt Petronio’s
terminology and his results carry over to our setting as we now describe.

Suppose that (M1, T1) and (M2, T2) are distinct nice orbifolds. Let p1 ∈ M1 and p2 ∈ M2.
We can perform a connected sum of M1 and M2 by removing a regular neighbourhood of
p1 and p2 and gluing the resulting 3-manifolds together along the newly created spheri-
cal boundary components; after gluing the corresponding sphere is a summing sphere. To
extend the sum to the pairs (M1, T1) and (M2, T2) we place conditions on the points. We
require that they are either in the interiors of edges of the same weight or that they are on
vertices with incident edges having matching weights. The gluing map is then required to
match punctures to punctures of the same weight.

When p1 and p2 are disjoint from T1 and T2, the sum is a distant sum and we write
(M, T) = (M1, T1)#0(M2, T2). When each pi is in the interior of an edge of Ti, it is a con-
nected sum and we write (M, T) = (M1, T1)#2(M2, T2). When each pi is a trivalent vertex,
it is a trivalent vertex sum and we write (M, T) = (M1, T1)#3(M2, T2). This sum is well-
defined, for a particular choice of vertices p1, p2 and bijection from the ends of edges
incident to p1 to those incident to p2. See [42, section 4]. The pair S(0) = (S3, ∅) is the
identity for #0. The pair S(2) = (S3, T) where T is the unknot is the identity for #2. The pair
S(3) = (S3, T) where T is a planar (i.e. trivial) θ-graph, is the identity for #3. In each case,
we allow T to have whatever weights make sense in context. Note that when k < i ≤ j, both
factors of S(i)#kS(j) are trivial. This means that some care is needed when discussing prime
factorisations.

Conversely, suppose that (M,T) is a nice orbifold. Given a connected spherical 2-
suborbifold S ⊂ (M, T) we may split (M,T) open along S and glue in two 3-balls each
containing a graph that is the cone on the points S ∩ T . This operation is called surgery
along S. Observe that the result is still an orbifold and that if M is connected, each compo-
nent of (M, T)|S is incident to one or more scars from the surgery (i.e. the boundaries of the
3-balls we glued in). If S is such a sphere or the disjoint union of such spheres, we denote
the result of surgery along (all components of) S by (M, T)|S. Each component of S produces
two scars in (M, T)|S; we say those scars are matching. If S separates M, then surgery is the
inverse operation to distant sum, connected sum, or trivalent vertex sum.

Since we will be dealing with reducible orbifolds, we need to work with slight generaliza-
tions of compressing discs. Suppose that S ⊂ (M, T) is a surface. An sc-disc for S is a zero or
once-punctured disc D with interior disjoint from T ∪ S, with boundary in S \ T , and which is
not isotopic (by an isotopy everywhere transverse to T) into S. If ∂D does not bound a zero or
once-punctured disc in S, then D is a compressing disc or cut disc corresponding to whether
D is zero or once-punctured. A c-disc is a compressing disc or cut disc. Otherwise, D is a
semi-compressing disc or semi-cut disc respectively. In other words, a semi-compressing
disc or semi-cut disc is a zero or once-punctured disc with inessential boundary in the sur-
face but which is not parallel into the surface. The weight ω(D) of an sc-disc D is equal to
the weight of the edge of T intersecting it and 1 otherwise. Compressing a surface using an
sc-disc D decreases xω by 2/ω(D). If ∂M admits an sc-disc D, then (M, T) \ D is the result
of ∂-reducing (M,T).
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If S does not admit a c-disc, it is c-incompressible. A c-essential surface is a surface
S ⊂ (M, T) where each component is:

(1) a c-incompressible surface

(2) not parallel in M \ T into ∂(M \ T) (i.e. not ∂-parallel); and

(3) not an unpunctured sphere bounding a 3-ball in M \ T .

Observe that for a surface, being parallel in (M,T) to a component of ∂M is more
restrictive than being parallel into ∂(M \ T).

Definition 2·2. An orbifold (M,T) is orbifold-reducible if there exists a c-essential
spherical 2-suborbifold S ⊂ (M, T).

Definition 2·3 (c.f. [24]). Suppose that (M,T) is a nice orbifold and that S ⊂ (M, T) is a
closed spherical essential 2-orbifold. Then S is an system of summing spheres if (M, T)|S
is orbifold-irreducible. A system of summing spheres S is efficient if, for i ∈ {0, 2, 3},
whenever an S(i) component of (M, T)|S contains an i-punctured scar, then it contains the
matching scar.

For a system of summing spheres S ⊂ (M, T), we call (M, T)|S, a factorisation of (M,T)
using S. The main difference between a factorisation using an efficient system of summing
spheres and a prime factorisation is that a factor in an efficient factorisation may contain
a nonseparating sphere. By work of Petronio and Hog-Angeloni–Matveev, in the absence
of nonseparating spherical 2-orbifolds, up to orbifold homeomorphism for an efficient sys-
tem of summing spheres S, both S and its factorisation (M, T)|S are unique; however, these
homeomorphisms are not necessarily realisable by an isotopy in (M,T). We note that neither
the Petronio, Hog-Angeloni–Matveev results nor the following theorem (which is based on
those) is trivial. For instance, as observed in [24, example 1·3], the connected sum of any
knot in S3 with (S1 × S2, S1 × (point)) is pairwise homeomorphic to (S1 × S2, S1 × (point)).
Consequently, (S1 × S2, S1 × (point)) does not have a prime factorization. The crux of
the existence of an efficient splitting system is deferred to Corollary 4·8 below and is a
consequence of Taylor–Tomova’s work on thin position. Based on the discussion in [24,
section 3], the ability of thin position to handle nonseparating spherical 2-suborbifolds seems
to be an instance where the thin position techniques have an advantage over normal surface
techniques. We relegate the proof to the appendix, since it is a slightly more elaborate version
of Petronio’s and Hog-Angeloni–Matveev’s proofs.

THEOREM 2·4 (after Petronio, Hog-Angeloni–Matveev). Suppose that (M,T) is a nice
orbifold that is orbifold-reducible. Then there exists an efficient system of summing
spheres S ⊂ (M, T); indeed, any system of summing spheres contains an efficient subset.
Furthermore, any two such systems S, S’ are orbifold-homeomorphic, as are (M, T)|S and
(M, T)|S′ .

The Equivariant sphere theorem is an important tool for studying group actions on 3-
manifolds. The statement we use is inspired by [1, theorem 3·23] and the subsequent remark.

THEOREM 2·5 (Equivariant sphere theorem [16] (c.f. [4])). Suppose that ρ : (W, T ′) →
(M, T) is a regular orbifold covering, with (W, T’) and (M,T) nice. Then (W, T’) is orbifold-
reducible if and only if (M,T) is orbifold-reducible.
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2·2 Orbifold Heegaard Splittings.

As is well known, a Heegaard splitting of a closed 3-manifold is a decomposition of
the 3-manifold into the union of two handlebodies glued along their common boundary.
Every closed 3-manifold has such a decomposition. 3-manifolds with boundary have a
similar decomposition into two compressionbodies glued along their positive boundaries.
Zimmermann (e.g. [44–46]) defined Heegaard splittings of closed 3-orbifolds and used them
to study equivariant Heegaard genus. In his decompositions, an orbifold handlebody is an
orbifold that is the quotient of a handlebody under a finite group of diffeomorphisms. He
gives an alternative description in terms of certain kinds of handle structures [45, proposi-
tion 1]. We adapt this latter definition to define orbifold compressionbodies. Petronio [23]
also defines handle structures for 3-orbifolds; the definitions differ only on the definition of
2-handles. Zimmermann’s definition has the advantage that handle structures can be turned
upside down. Most of our definitions apply to graphs in 3-manifolds more generally, so we
state them in that generality if possible.

Definition 2·6 (Handle structures). A ball 0-handle or ball 3-handle is a pair (W, TW )
where W is a 3-ball and TW is the cone on a finite (possibly empty) set of points in ∂W.
We also call ball 0-handles and 3-handles, trivial ball compressionbodies. We set ∂+W =
∂W and ∂−W =∅. A product 0-handle or product 3-handle is a pair (W, TW ) pairwise
homeomorphic to (F × I, p × I) where F is a closed orientable surface, p ⊂ F is finitely
(possibly zero) many points. We also call product 0-handles and product 3-handles, trivial
product compressionbodies. We set ∂±W to be the preimage of F × {±1}. The attaching
region for a 0-handle is the empty set and the attaching region for a 3-handle (W, TW ) is
(∂+W, TW ∩ ∂+W). A trivial compressionbody is either a trivial ball compressionbody or
a trivial product compressionbody.

A 1-handle or 2-handle is a pair (H, TH) pairwise homeomorphic to (D2 × I, p × I) where
p is either empty or is the center of D2. The attaching region of a 1-handle is the preimage
of (D2 × ∂I, p × ∂I). The attaching region of a 2-handle is ((∂D2) × I, ∅).

A vp-compressionbody (C, TC) is the union of finitely many 0-handles and 1-handles so
that the following hold:

(1) the 0-handles are pairwise disjoint, as are the 1-handles;

(2) 1-handles are glued along their attaching regions to the positive boundary of the 0-
handles, and are otherwise disjoint from the 0-handles;

(3) if (H, TH) is a 1-handle such that one component (D,p) of its attaching region is glued
to a 0-handle (W, TW ), and if TH �=∅, then p ∈ TH ∩ ∂+W;

(4) C is connected.

See Figure 1 for an example. The “vp” stands for “vertex punctured” and is used since
drilling out vertices changes trivial ball compressionbodies with vertices into trivial product
compressionbodies. If (C, TC) is a vp-compressionbody, we let ∂−C be the union of ∂−W
over the 0-handles (W, TW ) and we let ∂+C = ∂C \ ∂−C. Edges of TC disjoint from ∂+C
are called ghost arcs. Closed loops disjoint from ∂C are core loops. Edges with exactly
one endpoint on ∂+C are vertical arcs and edges with both endpoints on ∂+C are bridge
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Fig. 1. An example of a vp-compressionbody (C, TC). It has one ghost arc, one core loop, one
bridge arc, and three vertical arcs. The horizontal lines represent a closed, possibly disconnected
surface F.

arcs. Dually, vp-compressionbodies may be defined as the union of 2-handles and 3-handles.
Equivalently, if (C, TC) is a connected pair with one component of ∂C designated as ∂+C,
then (C, TC) is a vp-compressionbody if and only if there is a collection of pairwise disjoint
sc-discs 
 for ∂+C such that the result of ∂-reducing (C, TC) along 
 is the union of trivial
ball compressionbodies and trivial product compressionbodies. The collection 
 is a com-
plete collection of sc-discs for (C, TC) if it is pairwise nonparallel. If TC has weights such
that (C, TC) is both a vp-compressionbody and an orbifold, then we call (C, TC) an orbifold
compressionbody.

For a nice orbifold (M,T), an orbifold Heegaard surface is a transversally oriented
separating connected surface H ⊂ (M, T) such that H cuts (M,T) into two distinct orb-
ifold compressionbodies, glued along their positive boundaries. We define the Heegaard
characteristic of (M,T) to be:

xω(M, T) = min
H

xω(H),

where the minimum is over all orbifold Heegaard surfaces H for (M,T). The invariant
xω(M, T) is twice the negative of the “Heegaard number” defined by Mecchia–Zimmerman
[15]. Dividing by 2 would also make the comparison with [37, 38] easier. However,
since orbifold Euler characteristic need not be integral, making that normalisation would
unpleasantly complicate some of the calculations in this paper.

The equivariant Heegaard characteristic of W is

xω(W;G) = min
H

xω(H),

where the minimum is taken over all invariant Heegaard surfaces for H. Zimmermann
proved the following when W is closed; the proof extends to the case when W has boundary
as we explain. See also [5] for a similar result related to strong involutions on tunnel number
1 knots. The statement is deceptively simple as it implies (and its proof relies on) the Smith
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Conjecture as well as a thorough understanding of group actions on 3-balls and products.
See the remark on page 52 of [1].

LEMMA 2·7 (after Zimmermann [45]). Suppose that W has orbifold quotient (M,T).
Every invariant Heegaard surface for W descends to an orbifold Heegaard surface for (M,T)
and every orbifold Heegaard surface for (M,T) lifts to an invariant Heegaard surface for W.
Consequently,

xω(W;G) = |G|xω(M, T).

Proof. Suppose that Y is a compressionbody (i.e. orbifold compressionbody with empty
graph) and that G is a finite group of orientation-preserving diffeomorphisms of Y . We show
the quotient orbifold is an orbifold compressionbody. If ∂−Y =∅ (i.e. Y is a handlebody),
then the quotient orbifold is an orbifold compressionbody by [45]. In particular, the quotient
of a 3-ball is an orbifold trivial ball compressionbody. Consider the case when Y = F × I for
a closed, connected, oriented surface F. Since each element of G is orientation-preserving,
no element interchanges the components of ∂Y . If Y = S2 × I, we cap off ∂−Y with a 3-ball,
extend the G-action across the 3-ball, and appeal to the 3-ball case to observe that the quo-
tient orbifold is a trivial product orbifold compressionbody. Suppose that F �= S2. Let DY be
its double and observe that we can extend the action of G to DY . The 3-manifold DY is a
Seifert fiber space with no exceptional fibers, namely F × S1. Consider an embedded torus
DQ that is the double of an essential spanning annulus Q in Y . By [9, theorem 1·5], DQ can
be isotoped to DQ′ so that for each g ∈ G, gDQ′ is vertical in DQ and is isotopic to gDQ.
Since each g ∈ G preserves each component of ∂Y , there is an annulus Q′ ⊂ Y , vertical in
Y , such that for each g ∈ G, gQ′ is isotopic to gQ by a proper isotopy in Y . Applying this
observation to each annulus in a collection of spanning annuli in Y cutting Y into 3-balls,
we can then conclude that the quotient orbifold of Y by the action of G is a trivial prod-
uct orbifold, as desired. Finally, suppose that ∂+Y is compressible. By the Equivariant Disc
Theorem [17], Y admits an equivariant essential disc. Boundary-reducing along this disc and
inducting on xω(∂+Y) − xω(∂−Y) shows that the quotient orbifold is again an orbifold com-
pressionbody. Our lemma then follows from the definition of invariant Heegaard surfaces,
orbifold Heegaard surfaces, and the multiplicativity of orbifold characteristic under finite
covers.

COROLLARY 2·8. If G acts freely on W, then there exists an invariant system of summing
spheres S ⊂ W such that W|S is irreducible and g(W;G) = g(W|S;G).

Proof. Let (M,T) be the quotient orbifold of the action of G on W. Assume the action is
free so that T =∅. There exists an efficient system of summing spheres S ⊂ M. By Haken’s
Lemma, g(M) = g(M|S). Let S be the pre-image of S in W. By Lemma 2·7 (after converting
from Euler characteristic to genus), g(W;G) = g(W|S;G).

3. Examples of Additivity and Sub-Additivity

As an example of how to work with orbifold Heegaard surfaces, in this section we
show that equivariant Heegaard genus can be both sub-additive and additive. The examples
of super-additivity require different techniques. Our examples arise from cyclic branched
covers of knots in S3. We begin with a preliminary calculation.
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Suppose that K ⊂ S3 is a knot with weight k ≥ 2. When we ignore the weight k, an orbifold
Heegaard surface H for (S3, K) of genus g is a (g,b)-bridge surface where b = |H ∩ K|/2 [3].
Conversely, remembering the weight k, makes each (g,b)-bridge surface H for K into an
orbifold Heegaard surface for (S3, K). If H is such a surface, observe that

xω(H) = 2(g + b − 1) − 2b/k.

If H is disjoint from K, then K lies as a core loop of the handlebody to one side of H. The
tunnel number t(K) of K is the minimum of g(H) − 1 over all such H. If H is any (g,b)-
bridge surface for K, then by attaching tubes along the arcs of K \ H, we can convert H into a
(g + b, 0)-bridge surface for K. Consequently, t(K) ≤ g + b − 1 and xω(S3, K) ≤ 2t(K). The
same technique shows that if, for fixed g, H minimises b, then b ≤ b(K), where, b(K) is
the bridge number of K. (Recall b(K) is the minimal b′ such that K admits a (0,b′)-bridge
surface.)

For i = 1, 2, let Ki ⊂ S3 be a knot of weight k and let Hi be a (gi, bi)-bridge surface for
Ki. Assume that b1, b2 > 0. If we perform the connected sum of K1 and K2 using points of
K1 ∩ H1 and K2 ∩ H2, then H = H1#H2 is a (g1 + g2, b1 + b2 − 1)-bridge surface for K =
K1#K2. Note that if S is the summing sphere for (S3, K) arising from our choice of connected
sum, then xω(S) = −2/k. Consequently,

xω(H) = xω(H1) + xω(H2) − xω(S).

THEOREM 3·1. If k ≥ 2 is large enough, then there exists a reducible W, an invariant
essential sphere S for W dividing W into two irreducible factors, and a cyclic group G of
diffeomorphisms of W having order k such that

g(W;G) < g(W|S;G).

Proof. We recall that there are many examples (e.g. [21, 22, 33]) of prime knots K1, K2

for which tunnel number is sub-additive. That is, t(K1) + t(K2) − t(K1#K2) ≥ 1. Recall K =
K1#K2. Let S be the summing sphere. By [34], b(K) = b(K1) + b(K2) − 1. Suppose that
k > b(K). Let Hi be a (gi, bi)-bridge surface for Ki such that xω(Hi) = xω(S3, Ki). According
to the preamble, xω(Hi) ≥ 2t(Ki) − 2bi/k. Thus,

xω(S3, K1) + xω(S3, K2) − xω(S) ≥ 2(t(K1) + t(K2)) − 2(b1 + b2 − 1)/k

≥ 2t(K) + 2 − 2(b1 + b2 − 1)/k

≥ 2(t(K) + 1 − b(K)/k)

≥ 2t(K)

≥ xω(S3, K).

Passing to the k-fold cyclic branched cover W over K, with G the deck group and S the
preimage of S, produces the desired examples.

Remark 3·2. From Morimoto’s examples of tunnel number degeneration [21] we can see
that in the proof of Theorem 3·1, we can choose the desired K1 and K2 so that b(K) ≤ 6.
Thus, k ≥ 7 suffices in the statement of Theorem 3·1.
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We now turn to examples of additivity.

THEOREM 3·3. For k ≥ 2, there exists a reducible W, an equivariant essential sphere S
for W dividing W into two irreducible factors, and a cyclic group G of diffeomorphisms of
W having order k such that

g(W;G) = g(W|S;G).

Proof. Fix k ≥ 2. For i = 1, 2, let Ki be a torus knot of type (p,q) with p, q relatively prime
and |p| > |q| ≥ 5. By [34], each b(Ki) = |q|. Also, each Ki admits a (1,1)-bridge surface Hi.
Thus, xω(S3, Ki) = xω(Hi) = 2(1 − 1/k). As in the preamble, let K = K1#K2 and H = H1#H2

so that H is a (2,1)-bridge surface for K. Let S be the summing sphere. By the calculations
in the preamble,

4 − 2

k
= xω(H) = xω(S3, K1) + xω(S3, K2) − xω(S).

Let H′ be a (g,b)-bridge surface for K such that xω(H′) = xω(S3, K). In particular, for that
genus g, the number of punctures 2b is minimal. Also, since xω(H′) ≤ xω(H):

g ≤ 2 − (k − 1)(b − 1)

k
< 3.

If g = 0, then by Schubert’s result [34] that bridge number is (− 1)-additive, we have
b = 2|q| − 1. In which case,

2 − 1/k = xω(H)/2 ≥ xω(H′)/2 ≥ (2|q| − 1)(1 − 1/k) − 1

a contradiction to the fact that |q| ≥ 5 and k ≥ 2.
If g = 1, our inequality shows that b ≤ 3. Since K is not the unknot, b ≥ 1. Doll studied

the situation when g = 1 and showed that (for our choice of K1 and K2), b ≥ |q| − 1. (The
proof for arbitrary K1 and K2 can be found in the solution [3, section 5] of his Conjecture
(1.1’) for the case g = 1.) In which case,

4 − 2/k = xω(H) ≥ xω(H′) = 2b(1 − 1/k) ≥ 2(|q| − 1)(1 − 1/k) ≥ 8(1 − 1/k).

But this contradicts the assumption that k ≥ 2.
If g = 2, and b = 0, then the tunnel number of K would be 1, contradicting the fact that K

is composite. Thus, g = 2 and b ≥ 1. Since xω(H′) ≤ xω(H), we have b = 1 and so, xω(H′) =
xω(H).

Thus, xω(S3, K) = xω(H′) = xω(H) = xω(S3, K1) + xω(S3, K2) − xω(S). Passing to the k-
fold cyclic branched cover W over K, with G the deck group and S the preimage of S,
produces the desired examples.

4. Orbifold Thin Position

Building on a long line of work concerning thin position, beginning with Gabai [6]
and particularly including Scharlemann–Thompson [28, 29], Hayashi–Shimokawa [10]
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and Tomova [40], Taylor–Tomova created a thin position theory for spatial graphs in 3-
manifolds. In this section, we explain the minor adaptions needed to make it work for
3-orbifolds.

Definition 4.1 (Taylor–Tomova [36]). Let M be a compact, orientable 3-manifold and
T ⊂ M a spatial graph. A properly embedded closed surface H⊂ (M, T) is a multiple vp-
bridge surface if the following hold:

(i) H is the disjoint union of H+ and H− where each of H± are the union of components
of H;

(ii) each component of (M, T) \H is a vp-compressionbody;

(iii) H+ = ⋃
∂+C and H− ∪ ∂M = ⋃

∂−C where each union is over all components
(C, TC) � (M, T) \H.

When H has a transverse orientation, we can consider the dual digraph; this is the
digraph with a vertex for each vp-compressionbody and an oriented edge corresponding
to each component of H. We consider such H equipped with a transverse orientation such
that the dual digraph is acyclic and each (C, TC) � (M, T) \H is a cobordism from ∂−C to
∂+C. Equipped in this way, H is an oriented multiple vp-bridge surface. We let H(M, T)
be the set of oriented multiple vp-bridge surfaces up to isotopy transverse to T . When (M,T)
is an orbifold, we call the elements of H(M, T) multiple orbifold Heegaard surfaces.

After assigning an orientation, every orbifold Heegaard surface for a nice orbifold (M,T)
is an element of H(M, T). Since every spatial graph in a 3-manifold can be put into bridge
position with respect to any Heegaard surface for the 3-manifold, H(M, T) �=∅. For H ∈
H(M, T), observe that H− =∅ if and only if H=H+ is connected. If T =∅, multiple vp-
bridge surfaces induce the generalised Heegaard splittings of [31]. The following lemma is
a straightforward extension of Lemma 2·7.

LEMMA 4·2. Suppose that (M, T) → (M′, T ′) is a finite-sheeted orbifold cover and that
H ∈H(M′, T ′). Then the preimage of H is a multiple orbifold Heegaard surface for (M,T).

When (M,T) does not contain any once-punctured spheres, Taylor and Tomova [37] define
an invariant called “net extent” on elements of H(M, T). We now adapt that invariant to the
orbifold context.

Definition 4·3. Suppose that (M,T) is a nice orbifold. For H ∈H(M, T), the net Heegaard
characteristic is

net xω(H) = xω(H+) − xω(H−).

We define the net Heegaard characteristic of (M,T) to be:

net xω(M, T) = min
{

net xω(H):H ∈H(M, T)
}
.

We define net xω(W;G) similarly, but minimise only over invariant H ∈H(W, ∅).
Proposition 5·3 below ensures that net xω(M, T) is well-defined and that there exists H ∈

H(M, T) with net xω(H) = net xω(M, T). The proof of the next lemma follows easily from
Lemma 4·2.

https://doi.org/10.1017/S0305004123000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000038


64 S. A. TAYLOR

LEMMA 4·4. Suppose that W has quotient orbifold (M,T). Then

net xω(W;G) = |G| net xω(M, T).

In [36], Taylor and Tomova defined a set of operations on elements of H(M, T) and used
them to define a partial order called thins to and denoted J →H. A minimal element in the
partial order is said to be locally thin. The operations involved in the definition of the partial
order are all versions of the traditional “destabilisation” and “weak reduction” of Heegaard
splittings of 3-manifolds and “unperturbing” of bridge surfaces for links. We do not need the
precise definitions of the operations in this text, but we do need the following information.
For our purposes, we group the operations into four categories (deferring to [36] for precise
definitions):

(I) destabilisation, meridional destabilisation, ∂-destabilisation, meridional
∂-destabilisation, ghost ∂-destabilisation, meridional ghost ∂-destabilisation;

(II) unperturbing, undoing a removable arc;

(III) consolidation;

(IV) untelescoping.

The next lemma summarises the key aspects of these operations. Pay particular attention
to the disc D used in the operations (I). In Lemma 4·6, we will need to analyse the effect of
compressing along this disc on net Heegaard characteristic.

LEMMA 4·5 (Taylor–Tomova). The following hold:

(i) all of the operations listed in (I) involve replacing a thick surface J �J + with a new
thick surface H such that H is obtained from J by compressing along a compressing
disc or cut disc D and, if ∂D separates J, discarding a component. The component
that is discarded is parallel to a surface obtained by tubing together some components
of ∂M and vertices of T along edges of T disjoint from H;

(ii) all of the operations in (II) remove two punctures from a thick surface J �J +;

(iii) consolidation removes a thick surface and a thin surface from J that together bound
a product vp-compressionbody with interior disjoint from J ;

(iv) untelescoping replaces a thick surface J �J + with two new thick surfaces H1 and
H2 and creates additional thin surfaces F. These surfaces arise from a pair of dis-
joint sc-discs on opposite sides of J. H1 and H2 are each obtained (up to isotopy) by
compressing along one of the discs and F is obtained by compressing along both.

LEMMA 4·6. Suppose that (M,T) is an orbifold. As an invariant on H(M, T), net xω is
non-increasing under the partial order →.

Proof. This lemma follows fairly directly from Lemma 4·5. Suppose that one of the moves
in a thinning sequence replaces a thick surface J with another thick surface H. Consider,
first, the possibility that the move was of type (I). Let D be the disc we compress along, as
in Lemma 4·5. If ∂D is non-separating on J, we have

xω(H) = xω(J) − 2 + 2(1 − 1/ω(D)) ≤ xω(J).
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Thus, in such a case, the move does not increase net xω. If ∂D separates J, recall that after
compressing we discard one component J′ of the resulting surface. That is, H ∪ J′ is the
result of the compression of J. We have

xω(H) = (xω(J) − 1 + (1 − 1/ω(D)) + ( − xω(J′) − 1 + (1 − 1/ω(D)).

Suppose, in order to obtain a contradiction, that xω(H) > xω(J). Then

0 ≥ −1 + (1 − 1/ω(D)) > xω(J′) ≥ −χ(J′) + (1 − 1/ω(D))

where the last inequality follows from the fact that J′ contains a scar from the compression
by D. Since J′ is a closed surface, it must be a sphere. We recall from Lemma 4·5 that it is
parallel to a certain surface S obtained by tubing together components of ∂M and vertices of
T along edges of T disjoint from H. Let � be the graph with a vertex for each component of
∂M and each vertex of T that goes into the creation of S and with edges the edges we tube
along. Since J′ is a sphere and is parallel to S, � must be a tree and each component of ∂M
that is a vertex of T is a sphere. If � has an edge, there are at least two leaves and, by our
definition of orbifold, each must be incident to at least two vertical arcs, giving S at least 4
punctures. But in that case xω(J′) ≥ 0, a contradiction. Thus, � is an isolated vertex; that is,
J′ is parallel to either a component of ∂M or to a vertex of T . If it is a component of ∂M,
then xω(J′) ≥ 0, by hypothesis. Thus, J′ is parallel to a vertex v of T . The vertex v is trivalent
with incident edges having weights a,b,c and

0 < −xω(J′) − 1 + (1 − 1/ω(D)) = −1 + 1/a + 1/b + 1/c − 1/ω(D).

If ω(D) = 1, then we have a contradiction. If ω(D) �= 1, then D was a cut disc and so one
of a,b,c is equal to ω(D). Thus, in this case also, we have a contradiction. We conclude that
xω(H) ≤ xω(J) and that none of the moves of type (I) increase net xω.

The moves of type (II) remove two punctures from a thick surface and so cannot increase
net xω. If H �H+ and F �H− are parallel, then xω(H) = xω(F) and so consolidation does
not change net xω. Finally, consider the operation of untelescoping. The three new surfaces
H1, H2, and F (as in the statement of Lemma 4·5) are all obtained by compressions along
sc-discs for J. An easy computation shows that xω(J) = xω(H1) + xω(H2) − xω(F) and so
untelescoping also leaves net xω unchanged.

The next theorem is key to our endeavors. We have stated only what we need for this
paper. We say that H+ is sc-strongly irreducible if it is not possible to untelescope it (i.e.
use move (IV) above).

THEOREM 4·7 (Taylor–Tomova). Suppose that T is a spatial graph in an orientable
3-manifold M such that no component of ∂M is a sphere with two or fewer punctures
and there is no once-punctured sphere in (M,T). Then for every J ∈H(M, T) there exists
a locally thin H ∈H(M, T) such that J →H. Furthermore, for any locally thin H the
following hold:

(i) Each component of H+ is sc-strongly irreducible in (M, T) \H−;

(ii) H− is c-essential in (M,T);

(iii) If (M,T) contains a c-essential sphere with 3 or fewer punctures, then so does H−;

(iv) If (M,T) is irreducible and if a component of H+ is a sphere with three or fewer
punctures then H=H+;

(v) If (C, TC) � (M, T) \H is a trivial product compressionbody, then ∂−C ⊂ ∂M.
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Proof. We note that in [36] saying that T is irreducible, by definition, means that (M,T)
does not contain a once-punctured sphere. The existence of H given J is [36, theorem 6·17].
Conclusions (i), (ii), and (v) can be found as conclusions (i), (iv) and (iii) of [36, theorem
7·6], respectively. Conclusion (iii) follows from [36, theorem 8·2]. Conclusion (iv) is similar
to the proof of conclusion (v) of [36, theorem 7·6]. The details are similar to some of the
arguments that follow, so we omit them here.

Examining the proof of conclusion (iii) in Theorem 4·7 provides us with more informa-
tion about orbifolds. In particular, it produces another proof of the existence of systems
of summing spheres. By Theorem 2·4, this also implies that efficient systems of summing
spheres exist. The proof is nearly identical to that of [36, theorem 8·2] and [37, proposition
5·1]. Since the argument is completely topological, it is also the case that if H is locally thin,
then H− contains a collection of turnovers cutting (M,T) into suborbifolds that contain no
essential turnovers. For convenience, we provide the proof in the Appendix.

COROLLARY 4·8. Suppose that (M,T) is a nice orbifold and let H ∈H(M, T) be locally
thin. Then H− contains a system of summing spheres for (M,T).

THEOREM 4·9. Suppose that (M,T) is a nice orbifold. Let S ⊂ (M, T) be an efficient
system of summing spheres. Then

net xω(M, T) ≥ net xω((M, T)|S) − xω(S).

If each component of S is separating, then equality holds.

Proof. We first show that net xω(M, T) ≥ net xω((M, T)|S) − xω(S). Choose J ∈H(M, T)
such that net xω(J ) = net xω(M, T). This is possible by Proposition 5·3 below. By Theorem
4·7 and Lemma 4·6, there exists a locally thin H ∈H(M, T) with J →H and net xω(H) =
net xω(M, T). By Corollary 4·8, there exists an efficient set of summing spheres S ⊂H−.
As we remarked, S is unique up to orbifold homeomorphism, as is (M, T)|S. When we split
(M,T) open along S, each component of S is converted to two boundary components of
(M, T) \ S. Boundary components are not included in the sum in the definition of net xω

and capping them off with trivial ball compressionbodies does not change that. The result
follows.

When each component of S is separating, the proof that net xω(M, T) ≤ net xω((M, T)|S) −
xω(S) is nearly identical to that of [37, theorem 5·5]. In each component of (M, T)|S mark
the points where sums will be performed. Since each component of S is separating, the
dual graph to S is a tree. In each component (Mi, Ti) of (M, T)|S choose Hi ∈H(Mi, Ti)
such that net xω(Hi) = net xω(Mi, Ti). Again this is possible by Proposition 5·3 below. By
transversality we may also assume each Hi is disjoint from the marked points. As in the
proof of [37, theorem 5·5], we may reverse orientations on the Hi as necessary to ensure
that their union with S is an oriented multiple orbifold Heegaard surface for (M,T). The
desired inequality follows.

THEOREM 4·10. There exists an invariant system of summing spheres S ⊂ W such that

net xω(W;G) ≥ net xω(W|S;G) − 2|S|,
and W|S is irreducible. If each component of S is separating, then equality holds.
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Proof. If W is not orbifold-reducible, then the theorem is vacuously true. Otherwise, it
is orbifold-reducible. By the Equivariant Sphere Theorem, the quotient orbifold (M,T) is
orbifold-reducible. We verify that (M,T) is nice. Note that as T is the singular set, no edge
has infinite weight. Let P � ∂M be a 2-sphere. If xω(P) < 0, then its pre-image in ∂W is the
union of essential spheres, but there are none. Thus, xω(P) ≥ 0. Since (M,T) is covered by a
manifold, there are no bad 2-suborbifolds. Consequently, (M,T) is nice.

By Lemma 4·4, net xω(W;G) = |G| net xω(M, T). By Theorem 4·9, there is an efficient sys-
tem of summing spheres S for (M,T) such that net xω(M, T) ≥ net xω((M, T)|S) and equality
holds if every component of S is separating. Let S be the lift of S to W. If a component of S
is non-separating, each component of its preimage in W would be non-separating.

We have:

net xω(W;G) = |G| net xω(M, T) ≥ |G| net xω((M, T)|S) − |G|xω(S) = net xω(W|S;G) − xω(S).

If each component of S is separating, then so is each component of S and equality holds.
Let W ′ be a component of W|S. Its image in (M,T) is a component of (M, T)|S. If W ′ were
orbifold-reducible, then its image would be also, by the Equivariant Sphere Theorem. But
this contradicts the fact that S is an efficient system of summing spheres.

Suppose that some S0 � S is inessential. Then it bounds a 3-ball B ⊂ W. Without loss of
generality, we may assume that S0 is innermost; i.e. the interior of B is disjoint from S. The
image of B in (M,T) is then the quotient of B by its stabiliser. By [45], it is a trivial ball
compressionbody and its boundary is inessential. This contradicts the fact that S is efficient.
Thus, each component of S is essential.

Remark 4·11. The proof of Theorem 4·9 demonstrates the advantage that invariant multiple
vp-bridge surfaces have over invariant Heegaard surfaces. Although there is no guarantee
that if W is reducible there is an equivariant sphere intersecting a minimal equivariant
Heegaard splitting in a single closed loop, we can guarantee that there is an equivariant
sphere showing up as a thin surface in an equivariant generalised Heegaard splitting of W.

5. Lower Bounds

The main purpose of this section is to find lower bounds on net xω(M, T) for an orbifold
(M,T) and use that to prove Theorems 5·5 and 5·10. Along the way, we prove Proposition
5·3 which guarantees that net xω(M, T) is well-defined and that there exists H ∈H(M, T)
with net xω(H) = net xω(M, T).

5·1. Analysing Orbifold Compressionbodies.

Definition 5·1. A lens space is a closed 3-manifold of Heegaard genus 1, other than S3 or
S1 × S2. A core loop in a solid torus D2 × S1 is a curve isotopic to {point} × S1. A core loop
in a lens space or S1 × S2 is a knot isotopic to the core loop of one half of a genus 1 Heegaard
splitting. A Hopf link in S3, S1 × S2, or a lens space is a 2-component link such that there is a
Heegaard torus separating the components and so that each component is a core loop for the
solid tori on opposite sides of a Heegaard torus. A pillow (C, TC) is a vp-compressionbody
with boundary a 4-punctured sphere that is the result either of joining two (3-ball, arc) trivial
ball compressionbodies by an unweighted 1-handle or joining two (3-ball, trivalent graph)
compressionbodies by a weighted 1-handle. (See Figure 2.) An orbifold that is a pillow or
trivial ball compressionbody is Euclidean if the boundary surface is. A Euclidean double
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Fig. 2. The two types of pillow.

pillow is a pair (S3, T) with an orbifold bridge surface H such that each of (S3, T) \ H is
a Euclidean pillow. (The terminology stems from the fact that Euclidean orbifolds admit a
complete metric locally modeled on Euclidean 2 or 3-space.)

If (C, TC) is the disjoint union of orbifold compressionbodies, let N(C, TC) = xω(∂+C) −
xω(∂−C). Our key identity for an multiple orbifold Heegaard surface H ∈H(M, T) is:

2 net xω(M, T) − xω(∂M) =
∑

(C,TC)

N(C, TC), (1)

where we sum over the vp-compressionbodies (C, TC) � (M, T) \H. This follows immedi-
ately from the fact that each component of H+ and each component of H− appears exactly
twice as a boundary component of (M, T) \H.

LEMMA 5·2. Suppose that (C, TC) is an orbifold compressionbody with no compo-
nent of ∂−C a once-punctured sphere. If N(C, TC) < 0, then (C, TC) is a trivial ball
compressionbody. Also, if N(C, TC) = 0 and ∂−C =∅, then (C, TC) is one of:

(i) Euclidean trivial ball compressionbody;

(ii) Euclidean pillow;

(iii) (solid torus, ∅);

(iv) (solid torus, core loop).

Proof. Let 
 be a complete collection of sc-discs for (C, TC) such that ∂-reducing (C, TC)
along 
 results in trivial vp-compressionbodies (C′, T ′

C). Each disc of 
, leaves 2 “scars”
on ∂+C′. If E is a scar, let ω(E) = 1 if it is unpunctured and otherwise let ω(E) be the weight
of the puncture. Let (C0, T0) � (C′, T ′

C). Let N′(C0, T0) be equal to the sum of N(C0, T0)
with 1/ω(E) for all scars E on ∂+C0. Observe that

N(C, TC) =
∑

(C0,T0)

N′(C0, T ′
0),

where the sum is taken over all (C0, T0) � (C′, T ′).
If (C0, T0) is a product compressionbody then N′(C0, T0) ≥ N(C0, T0) = 0 with equality

if and only if every scar on ∂+C0 has weight ∞. Suppose that (C0, T0) is a trivial ball
compressionbody.

Case 1: T0 =∅.

If 
 =∅, then (C, TC) = (C0, T0) and N(C, TC) = −2. Otherwise, by the choice of

, ∂+C0 contains at least 2 scars, each of weight 1. If it contains exactly 2, then (C, TC)
is (solid torus, ∅). If it has at least 3 scars, then N′(C0, T0) ≥ 1.
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Case 2: T0 is an arc of weight k.

If 
 =∅, then (C, TC) = (C0, T0) and N(C, TC) = −2/k ≥ −1. If N(C, TC) = 0, then
k = ∞. If 
 �=∅, then ∂+C0 contains at least one scar. By our choice of 
, either (C, TC)
is (solid torus, core loop) or ∂+C0 contains at least 1 scar of weight 1. In which case,
N′(C0, T0) ≥ 0. Equality holds if and only if k = 2, there is exactly one scar and it has
weight 1.

Case 3: T0 contains an interior vertex.

Note that N(C0, T0) = xω(∂+C) = xω(v) < 0 where v is the internal vertex of T0. If 
 =∅,
then we have our result. If 
 �=∅, then ∂+C0 contains at least one scar and it either has
weight 1 or has weight equal to the weight of one of the punctures on ∂+C. In which case,
N′(C0, T0) ≥ 0. Equality holds only when there is exactly one scar, it contains a puncture,
and the two punctures not contained in the scar both have weight 2.

This concludes our analysis of the individual cases and, in particular, we may assume that

 �=∅ and that (C, TC) is neither (solid torus, ∅) or (solid torus, core loop). By our analysis,
each component (C0, T0) � (C′, T ′

C) has N′(C0, T0) ≥ 0. Thus, N(C, TC) ≥ 0. Suppose that
N(C, TC) = 0. Then N′(C0, T0) = 0 for each component of (C′, T ′

C). Consequently, each
component is one of:

(i) a product compressionbody such that every scar has infinite weight;

(ii) a trivial ball compressionbody containing an arc and with a single scar of weight 1;

(iii) a trivial ball compressionbody containing a trivalent vertex and with edges of weight
(2,2,k) with k ≥ 2. It has a single scar of weight k.

The compressionbody (C, TC) can be reconstructed by attaching possibly weighted 1-
handles to the scars on (C′, T ′). Thus our result holds if N(C, TC) ≤ 0.

We next have two propositions whose proofs are closely related.

PROPOSITION 5·3. Suppose that (M,T) is a nice orbifold and that H ∈H(M, T). Then either
net xω(H) ≥ (1/2)xω(∂M) or (M,T) is one of S(0), S(2) or S(3). Furthermore, there exists a
locally thin H ∈H(M, T) with net xω(H) = net xω(M, T). If (M,T) is an S(i), for i ∈ {0, 2, 3},
then any locally thin H is an i-punctured sphere.

PROPOSITION 5·4. Suppose that (M,T) is a nice, closed orbifold that is orbifold-irreducible
and that H ∈H(M, T) is locally thin. Then either net xω(H) ≥ 1/6 or one of the following
exceptional cases holds:

(i) S(0), S(2), or S(3);

(ii) M = S3 or a lens space and T is a core loop, Hopf link and H is an unpunctured torus;
or

(iii) (M,T) is a Euclidean double pillow and H is a four-punctured sphere.

The remainder of the section is devoted to the proofs of these propositions. A key book-
keeping device for a vp-compressionbody (D, TD) is its ghost arc graph. This is the graph
� whose vertices are the components of ∂−D and the vertices of TD. The ghost arcs of TD
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are the edges. For example, if (D, TD) has a single ghost arc and it joins distinct components
of ∂−D, then � is a single edge. The key observation is that if ∂+D is a sphere, then � is
acyclic and if ∂+D is a torus, then � contains at most one cycle. If it contains a cycle, then
∂−D is the union of spheres (that is, it does not contain a torus).

Begin by assuming only that (M,T) is a nice orbifold. Let H ∈H(M, T) be locally thin.
Recall from Corollary 4·8 that H− contains an efficient system of summing spheres S.
Assume, for the time being, that S =∅; equivalently, that (M,T) is orbifold-irreducible.
Since each component of H− is c-essential in (M,T), this also implies that no S0 �H−
is a sphere with |S0 ∩ T| ≤ 3 and xω(S0) < 0.

Case 1: Some (C, TC) � (M, T) \H has N(C, TC) < 0.

By Lemma 5·2, (C, TC) is a trivial ball compressionbody. Observe that ∂+C is a sphere
with 0, 2 or 3 punctures. Let (D, TD) � (M, T) \H be the other vp-compresionbody having
∂+D = ∂+C. If ∂−D =∅, then M = C ∪ D and (D, TD) is also a trivial ball compressionbody.
In this case, (M,T) is either S(0), S(2) or S(3). Assume there exists F � ∂−D.

Let � be the ghost arc graph for (D, TD). As ∂+D is a sphere, � is acyclic and the compo-
nents of ∂−D are all spheres. Since (M,T) is nice, none of them are once-punctured. Since
S =∅, F is at least thrice-punctured and has xω(F) ≥ 0. If � contains an isolated vertex,
(D, TD) is a product. Since H is locally thin, F = ∂−D ⊂ ∂M. If TC contains an interior
vertex v, we must have 0 > xω(v) = xω(F) ≥ 0, a contradiction. If TC does not contain an
interior vertex, then F is twice-punctured, contradicting our definition of nice 3-orbifold.
Thus, we may assume that � does not have an isolated vertex. Since no component of ∂−D
is a twice-punctured sphere, each leaf of � is incident to at least two vertical arcs, so there
is at most one leaf. Since � is acyclic, this is a contradiction. Consequently, (M,T) is one of
the exceptional cases in the statement of Proposition 5·3.

Case 2: Every (C, TC) � (M, T) \H has N(C, TC) ≥ 0.

By (i), we see that net xω(H) ≥ xω(∂M)/2. Let L be the product of all the finite weights on
T . Note that for any J ∈H(M, T), the quantity 2L net xω(J ) is an integer, as is 2Lxω(∂M)/2.
By Theorem 4·7, for any J ∈H(M, T), there exists a locally thin H ∈H(M, T) with J →H.
By Lemma 4·6, net xω(J ) ≥ net xω(H). If (M,T) is one of the exceptional cases from
Proposition 5·3, then by the analysis in Case 1, H is connected and so L net xω(J ) is
bounded below by a constant depending only on (M,T). If (M,T) is not one of the excep-
tional cases from Proposition 5·3, then we see that 2L net xω(J ) ≥ 2Lxω(∂M)/2 ≥ 0. Thus,
in either case, since the invariant 2L net xω defined on H(M, T) is integer-valued and bounded
below by a number depending only on it achieves its minimum on a locally thin element of
H(M, T). That element also minimizes net xω. This concludes the analysis when S =∅ for
the proof of Proposition 5·3.

Now suppose that S �=∅. Expand S to include all summing spheres in H−; continue to
call it S. As we have observed previously,

net xω(H) = net xω(H \ S) − xω(S).

Let (M0, T0) � (M, T)|S and let H0 = (H \ S) ∩ M0. If net xω(H0) < 0, then (M0, T0) is
one of the exceptional cases from Proposition 5·3. Since H is locally thin, each component
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of S is essential, so (M0, T0) �= S(0). If (M0, T0) = S(2), then at least one of the compo-
nents S′ of S used to sum with (M0, T0) must be unpunctured. Thus, if T0 has weight k, we
have:

net xω(H0) − 1

2
xω(S′) = −2

k
+ 1 ≥ 0.

Similarly, if (M0, T0) is an S(3), then at least one of the components S′ � S used to sum
with (M0, T0) must be either unpunctured or twice punctured and with the weight of the
punctures equal to the weight c of one of the edges of T0. In that case, letting a,b be the
weights of the other punctures,

net xω(H0) − 1

2
xω(S′) ≥ 1 −

(
1

a
+ 1

b
+ 1

c

)
+ 1

2
· 2

c
≥ 0.

Consequently, net xω(H) ≥ xω(∂M)/2, even in this situation. As before, the quantity
L net xω is an integer-valued invariant on H(M, T) bounded below by a constant depend-
ing only on (M,T) and so, as before, there is a locally thin H ∈H(M, T) with net xω(H) =
net xω(M, T). This concludes the proof of Proposition 5·3.

Henceforth, suppose that (M,T) is closed and orbifold-irreducible and not one of
the exceptional cases from Proposition 5·3. By our previous remarks, this implies that
N(C, TC) ≥ 0 for every (C, TC) � (M, T) \H. The dual digraph to H is acyclic, so it has at
least one source and one sink. The sources and sinks are exactly those (C, TC) � (M, T) \H
with ∂−C =∅. Suppose that (C, TC) is one such. Note that N(C, TC) = xω(∂+C). Let
(D, TD) � (M, T) \H be the other orbifold compressionbody with ∂+D = ∂+C = H.

Observe that xω(H) ≥ −χ(H) + |H ∩ T|/2. Equality holds only if every puncture on H has
weight 2. Consequently, if 1/6 > xω(H), then H is a sphere with |H ∩ T| ≤ 4. If |H ∩ T| ≤ 3,
then by our analysis above (M,T) is one of the exceptional cases from Proposition 5·3.
Consider, therefore, the case that |H ∩ T| = 4. If at least one puncture does not have weight
2, then xω(H) ≥ 1/6, so assume that each puncture has weight 2. If ∂−D =∅, then H divides
(M,T) into two Euclidean pillows. Suppose ∂−D �=∅ and let � be the ghost arc graph for
(D, TD) as above. It is acyclic. Each component of ∂−D is a sphere with at least three punc-
tures, since (M,T) is orbifold-irreducible and nice. Also ∂−D ⊂ ∂M since M is closed. An
isolated vertex of � is a sphere incident to at least three vertical arcs and a leaf is a sphere
incident to at least two vertical arcs. Since H has four punctures, if � has an isolated ver-
tex, that vertex is the entirety of � and it is incident to four vertical arcs. This implies
(D, TD) is a product and contradicts local thinness of H. Thus, � has two leaves, each
incident to two vertical arcs. At least one of those leaves F is a component of ∂−D (the
other may be a vertex of T). Since (M,T) is orbifold-irreducible, xω(F) ≥ 0. Consequently,
at least two of the arcs incident to F have weight at least 3. At least one of those is a
vertical arc, contradicting the fact that each puncture of H has weight 2. Consequently,
N(C, TC) = xω(H) ≥ 1/6.

Since the dual digraph to H has at least one source and one sink either (M,T) is one
of the exceptional cases of Proposition 5·3, or H is a four punctured sphere dividing
(M,T) into two Euclidean pillows, or 2 net xω(H) ≥ 2 · (1/6). This concludes the proof of
Proposition 5·4.

Figure 3 shows that our bound of 1/6 is asymptotically sharp.
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Fig. 3. An example of an orbifold with underlying 3-manifold S3. The thick circles represent
thick spheres and the thin circle is a thin sphere of a multiple vp-bridge surface H. Arbitrary
gluing maps preserving the punctures pointwise can be used along the thick spheres. For a ∈N

∞
2

we have net xω(H) = 1/6 + 1/a and the orbifold characteristic of the thin sphere is 1/6 − 1/a.
Thus, for a ≥ 6, H− does not contain a spherical orbifold. As a → ∞, we approach 1/6.

5·2. Equivariant Heegaard Genus and the Order of the Group.

THEOREM 5·5. Suppose that W is closed and connected and that G does not act freely.
If S ⊂ W is an invariant system of summing spheres, then

g(W;G) ≥ |G|(ν/12 − μ/2) + |S| + 1,

where ν is the number of orbits of the components of (W|S) that are not S3 or lens spaces
and μ is the number of orbits of components of W|S that are homeomorphic to S3.

Proof. Let (M,T) be the quotient orbifold and note that no edge of T has infinite weight.
Let S be the image of S and note that each component of (M, T)|S is orbifold-irreducible by
the definition of “system of summing spheres” and Theorem 2·5. By Theorem 2·4, S contains
an efficient subset. Let S0 ⊂ S be the preimage of a component of S that is not in our chosen
efficient subset. Since W is closed, each component of W|S that is not a component of W|S0

is a homeomorphic to S3. Thus, passing from S to S \ S0 increases the right-hand side of our
inequality by |G|/2 − 1. Since G does not act freely, it is not the trivial group. We conclude
that it is enough to prove our result when S is efficient. Furthermore, by Theorem 2·4, we
may prove it when S is any efficient system of summing spheres for (M,T), not merely the
given one.

Recall that xω(W;G) ≥ |G| net xω(M, T). By Theorem 4·7 and Proposition 5·3, there is a
locally thin H ∈H(M, T) such that net xω(H) = net xω(M, T). Furthermore, H− contains an
efficient set of summing spheres (Corollary 4·8). Call them S. Let S be the preimage of S in
W. By Theorem 4·9, we have

net xω(M, T) = net xω((M, T)|S) − xω(S).
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Suppose some (Mi, Ti) � (M, T)|S is an S(0). Since S is efficient, the matching scar
to every scar in (Mi, Ti) is also in (Mi, Ti). It follows that (M, T)|S = (Mi, Ti). In which
case, T =∅, and G acts freely, contrary to hypothesis. Henceforth, we may assume no
(Mi, Ti) � (M, T)|S is an S(0). Suppose that (Mi, Ti) is an S(2). Then xω(Mi, Ti) ≥ −1 and
each component of the pre-image of (Mi, Ti) in W|S, is a copy of S3. Similarly, if (Mi, Ti) is
an S(3), then xω(Mi, Ti) ≥ −1/2 and each component of the pre-image of (Mi, Ti) in W|S is
also a copy of S3. Conversely, by the classification of finite groups of diffeomorphisms of
S3, if Wi � W|S is a copy of S3, then its image in (M, T)|S is an S(k) for some k ∈ {0, 2, 3}.
Consequently, μ both the number of orbits of S3 components of W|S and the number of
(Mi, Ti) that are S(2) or S(3).

If (Mi, Ti) is a (S3, Hopf link), (lens space, core loop), (lens space, Hopf link) or a
Euclidean double pillow, then xω(Mi, Ti) = 0. If a component Wi of W|S covers (Mi, Ti),
then Wi admits an invariant Heegaard torus, but no Heegaard sphere. Indeed, any Wi that is a
lens space has xω(Wi) ≥ 0. Amalgamating a generalised Heegaard splitting of a 3-manifold
produces a Heegaard surface and does not change xω. Thus, net xω(Wi;G) ≥ 0, whenever Wi

is a lens space.
If (Mi, Ti) is neither an S(k) for k ∈ {0, 2, 3} nor a (S3, Hopf link), (lens space, core

loop), (lens space, Hopf link), or a Euclidean double pillow, then by Proposition 5·4,
net xω(Mi, Ti) ≥ 1/6.

Consequently,

xω(W;G) ≥ |G| net xω(M, T) ≥ |G|(ν/6 − μ − xω(S)) = |G|(ν/6 − μ) − xω(S).

Converting to genus, we have

g(W;G) ≥ |G|(ν/12 − μ/2) + |S| + 1

EXAMPLE 5·6. Consider a lens space M containing an unknot T such that there is a
2-sphere S in M bounding a 3-ball in M containing T. Give T weight 2 and let W be the
3-manifold such that there is an orientation preserving involution of W whose quotient pro-
duces the orbifold (M,T). Observe that W is homeomorphic to the connected sum of M with
itself. This is depicted in Figure 4.

Let S be the preimage of S in W. Since S ∩ T =∅, the surface S is the union of two spheres
and W|S is the disjoint union of two lens spaces (each homeomorphic to M) and a copy of S3.
Thus, |G|ν/12 − |G|μ/2 + |S| + 1 = 2. Notice that (M,T) has an orbifold Heegaard surface
H with xω(H) = 1. The surface H is a torus intersecting T twice. The preimage of H in W is
an invariant Heegaard surface H ⊂ W of genus 2. Thus, in this case, our inequality is sharp.

EXAMPLE 5·7. Let M1 = S3 and let T1 be the spatial graph constructed as follows, and
depicted in Figure 5. Choose a 2-bridge knot K and and attach both an upper and lower
tunnel to obtain T1. The graph T1 has four edges that intersect a bridge sphere H1 and
two edges (the upper and lower tunnels) that are disjoint from H1. Give one of the edges
intersecting H1 a weight of 3 and give all the other edges weight 2. The subgraph T0 of T1

with edges of weight 2 is a trivial θ-curve in S3. The double-branched cover of S3 over a
cycle in T0 is again S3 and the third edge of T0 lifts to an unknot. Taking another double-
branched cover over that unknot again produces S3. Thus, S3 is a 4-fold orbifold cover over
(M1, T0). The edge of weight 3 in T lifts to a knot κ in the cover. The sphere H1 lifts to a
bridge sphere for (S3, κ) such that |H1 ∩ κ| = 4. In particular, κ is either the unknot or a
2-bridge knot. Since K is knotted, κ is a 2-bridge knot.
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Fig. 4. The covering of the orbifold (M,T) by (W, ∅) in Example 5·6. The manifold M is a lens
space and W = M × M. The surface S is the union of two disjoint spheres; it is a double cover
of the unpunctured sphere S. The knot T is an unknot contained in 3-ball bounded by the sphere
S. The horizontal lines represent bridge surfaces for (M,T) and (W, ∅), with H being a twice
punctured torus and H being a genus 2 surface.

Fig. 5. The singular set T1 and the bridge sphere H1 for the orbifold (M1, T1) in Example 5·7

Let W1 be the 3-fold branched cover of S3 over κ . Thus, (M1, T1) is the quotient of W1 by
a group of diffeomorphisms of order 12 (isomorphic to the product of two groups of order 2
and one of order 3). As long as κ is not a torus knot or the figure-eight knot, W1 is hyperbolic
[2, chapter 1]. Let (M,T) be the distant sum of (M1, T1) with (M2, ∅), a lens space having
empty singular set. Let S be the summing sphere. The action of G on W1 extends to an
action of (a group isomorphic to) G on the connected sum W of W1 with 12 copies of M2.
The sphere S lifts to 12 copies of S2. The right hand-side of the inequality in Theorem 5·5 is
then 14. The orbifold (M, T) admits an orbifold Heegaard surface with orbifold characteristic
13/6. (It is a torus having three punctures of weight 2 and one of weight 3.) This lifts to an
invariant Heegaard surface of W having genus 14. So our lower bound is sharp in this case
as well.

5·3. Comparatively Small Factors.

A 3-orbifold (M,T) is comparatively small if each c-essential surface F ⊂ (M, T) has
xω(F) > xω(M, T).
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LEMMA 5·8. Suppose that (M,T) is a comparatively small nice orbifold. Then
net xω(M, T) = xω(M, T).

Proof. By definition, xω(M, T) ≥ net xω(M, T). We now show xω(M, T) ≤ net xω(M, T).
Let H ∈H(M, T) be locally thin, with net xω(H) = net xω(M, T). We claim H− =∅.

Suppose, for a contradiction, that H− �=∅. The dual digraph to H has at least one source
and at least one sink. Each such source and sink corresponds to a (C, TC) � (M, T) \H with
∂−C ⊂ ∂M. Let (C, TC) be one such and let (D, TD) � (M, T) \H be distinct from (C, TC) but
have ∂+D = ∂+C. Then H− ∩ ∂−D �=∅; let F be a component. Since H is locally thin, F is
c-essential in (M, T) (Theorem 4·7). Since (M, T) is comparatively small, xω(F) > xω(M, T).
By Lemma 5·2,

N(C, TC) + xω(∂−C) = xω(∂+C) = xω(∂+D) ≥ xω(F) > xω(M, T) ≥ net xω(M, T).

As there are at least two such (C, TC), by (1) and the niceness of (M, T), we conclude
net xω(M, T) > net xω(M, T), a contradiction. Thus,H− =∅. Consequently, H is an orbifold
Heegaard surface for (M,T) and so net xω(H) ≥ xω(M, T).

THEOREM 5·9. Suppose that (M,T) is a nice 3-orbifold. Assume also that for some
(hence, any) efficient system of summing spheres S each component of (M, T)|S is com-
paratively small. Then

xω(M, T) ≥ net xω(M, T) ≥ xω((M, T)|S) − xω(S).

Proof. If (M,T) is orbifold-irreducible, the result is vacuously true. Suppose that (M,T)
is orbifold-reducible. By Theorem 2·4, each component of (M, T)|S is comparatively small
for any efficient system of summing spheres S. By definition, xω(M, T) ≥ net xω(M, T). By
Theorem 4·9, net xω(M, T) ≥ net xω((M, T)|S) − xω(S) for an efficent system of summing
spheres S. By Lemma 5·8, net xω((M, T)|S) = xω((M, T)|S), and the result follows.

THEOREM 5·10. Suppose that when S ⊂ W is an invariant system of summing spheres,
then every component of W|S is equivariantly comparatively small. Then:

g(W;G) ≥ g(W|S;G).

Proof. Without loss of generality, we may assume that W is reducible. Let (M,T) be the
quotient orbifold. Observe that it is nice and orbifold-reducible. Let S be an efficient system
of summing spheres for (M,T). We claim that each component of (M, T)|S is comparatively
small. To see this, suppose that (Mi, Ti) � (M, T)|S and that F ⊂ (Mi, Ti) is a c-essential
surface. Let Wi be a component of the preimage of (Mi, Ti). Since (Mi, Ti) is orbifold-
irreducible, F is not a sphere. Thus, no component of the preimage of F to W is a sphere.
Let F be the preimage of F in W|S, with Fi = F ∩ Wi. Let Gi ⊂ G be the stabiliser of Wi. We
have xω(F) = xω(Fi)/|Gi|.

By the equivariant loop theorem [17], F is incompressible. Suppose that some F′ � F is
∂-parallel in W. Let W ′ � W \ F′ be homeomorphic to F′ × I. We may assume that F′ was
chosen so that the interior of W ′ is disjoint from F. The image of W ′ in (M,T) is the quotient
of a trivial product compressionbody (namely W ′) by a finite group of diffeomorphisms
(the stabiliser of F′). By Lemma 2·7, it a product trivial compressionbody. Thus, F bounds
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Fig. 6. Creating a removable arc.

a trivial product compressionbody with a component of ∂W and so F is not c-essential, a
contradiction. Thus, F is essential in W|S. Since Wi is equivariantly comparatively small,
xω(Fi) > xω(Wi). Thus,

xω(F) = xω(Fi)/|Gi| > xω(Wi)/|Gi| = xω(Mi, Ti).

Thus, each component of (M, T)|S is comparatively small. Our result follows from
Theorem 5·9 after multiplying by |G|.

6. Upper Bounds

In this section we use multiple orbifold Heegaard surfaces to construct upper bounds on
the equivariant Heegaard genus of W and explain why the bound is sharp. Throughout this
section, we use the inverse operation to “undoing a removable arc” mentioned earlier.

Definition 6·1. Suppose that (M,T) is a nice orbifold and that H ∈H(M, T). Suppose also
that an edge α of T \H is a ghost arc contained in (C, TC) � (M, T) \H. Choose a cut disc
or semi-cut disc D ⊂ (C, TC) intersecting α exactly once. Choose an arc κ in D from ∂D to
D ∩ α. In a neighborhood of D in M, isotope α by an isotopy following κ , so that the interior
of α is pushed across ∂+C, as in Figure 6. Dually, we may isotope H. This converts H into
a new J ∈H(M, T) such that

net xω(J ) = net xω(H) + 2(1 − 1/ω(α)).

The ghost arc α is converted into the union of two vertical arcs and a bridge arc on the
opposite side of ∂+C from the vertical arcs. We call this move creating a removable arc
from α.

In 3-manifold theory, generalised Heegaard splittings may be amalgamated to create
Heegaard splittings [35]. In our situation, it is not always possible to amalgamate multi-
ple orbifold Heegaard surfaces to create Heegaard surfaces. Ghost arcs are the obstruction
and creating removable arcs allows us to amalgamate.

Definition 6·2. Suppose that (M,T) is an orbifold and that H ∈H(M, T). Suppose that
(Mi, Ti) � (M, T) \H− for i = 1, 2 and that F = ∂M1 ∩ ∂M2 �=∅. Let Hi =H+ ∩ Mi. We
say that H1 and H2 are amalgable if whenever ei ⊂ Ti \H for i = 1, 2 are edges sharing an
endpoint, then at least one is not a ghost arc.

PROPOSITION 6·3 (Amalgamation). If H1 and H2 are amalgable, then there exists J ∈
H(M, T) and H �J + such that J \ H =H \ (H1 ∪ H2 ∪ F) and net xω(J ) = net xω(H).
Furthermore, each ghost arc of T \J contains at least one ghost arc of T \H.
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Proof. Our proof is similar to that of [26, theorem 4·1]. Let (C, TC), (D, TD) � (M, T) \H
be the components with H1 = ∂+C and H2 = ∂+D. Choose complete collections of sc-discs

C ⊂ (C, TC) and 
D ⊂ (D, TD). We choose these discs somewhat carefully. They must
have the properties that the only edges of TC and TD intersecting 
C and 
D respectively
are ghost arcs or core loops and that each ghost arc and core loop intersects exactly one such
disc. It is not difficult to see that 
C and 
D can be chosen to satisfy these conditions. For
simplicity in the discussion, assume that F is connected. If it is not, the proof goes through
with only minor changes in wording.

Boundary reduce (C, TC) and (D, TD) using 
C and 
D to obtain (C′, T ′
C) and (D′, T ′

D)
respectively. One component of each is a trivial product compressionbody having F as a
boundary component. Observe that these components are disjoint from any core loops in TC

or TD. Let X be their union with TX = T ∩ X. Notice that X is homeomorphic to F × I. Let
∂CX be the component of ∂X intersecting ∂+C and ∂DX the component intersecting ∂+D.
Each component of TX is a vertical arc. Consider the scars δC on ∂CX resulting from the
∂-reduction along 
C. Some of them are unpunctured discs and others are punctured discs.
Each punctured disc is incident to an arc of TX whose other endpoint may lie on F, but does
not lie in the scars δD ⊂ ∂DX resulting from the ∂-reduction along 
D. Extend B = δC ∩ ∂CX
vertically through X via a solid tubes B × I. The frontier of the tubes is ∂B × I. Since no
component of TX is incident to both δC and δD, we may shrink the tubes of B containing
an arc of TX and isotope the ends on ∂DX of the other tubes so that the tubes are disjoint
from δD.

Delete the discs that are the ends of the tubes from H2 and attach the frontiers of the
tubes. When we compressed H1 along 
C, we used a regular neighbourhood that can be
parameterised as 
C × I. Reattach ∂
C × I to the ends on ∂CX of the frontiers of the tubes.
Call the surface we created H.

We claim that H is a vp-bridge surface for (M′, T ′) = (M1, T1) ∪F (M2, T2). Let (D′, T ′
D)

be the other vp-compressionbody of (M, T) \H with ∂+D′ = H2 and (C′, T ′
C) the other vp-

compressionbody with ∂+C′ = H1. Let (U, TU) be the component of (M′, T ′) \ H containing
(D′, T ′

D). Let (V , TV ) be the other component. Observe that the union of 
C with a complete
set of sc-discs for (D′, T ′

D) is a complete set of sc-discs for (U, TU). Thus, (U, TU) is a
vp-compressionbody. Let 
′

C be a complete set of sc-discs for (C′, T ′
C). We can extend

∂
′
C ∩ ∂CX through X to lie on ∂DX. As before, we can ensure they miss the scars of 
D.

The union of these discs with 
D is then a complete set of sc-discs for (V , TV ), showing that
it is also a vp-compressionbody. Thus, H is a vp-bridge surface for (M′, T ′).

Let J be as in the statement of the proposition. The dual digraph to H contains a con-
nected subgraph α with edges that corresponding to the surfaces H1, F, and H2. It has a
single source and a single sink. Give H the transverse orientation inherited from H1 and H2.
The dual digraph to J is obtained from that of H by replacing α with a single edge. Since
the dual digraph to H was acyclic, so is the dual digraph to J . Thus, J ∈H(M, T). The
computation net xω(J ) = net xω(H) is easily verified by compressing H along the discs 
C

to recover H2.
Finally, suppose that α is a ghost arc of T \J . Traversing α we start at a thin surface in

J − or vertex of T and end on a thin surface of J − or vertex of T . If during the traversal,
we never traverse an arc of TX , then α is a ghost arc of T \H. If we do traverse an arc of TX ,
then α must have one endpoint in δC ∪ δD, as otherwise it wouldn’t be a ghost arc of T \J .
But this implies that it contains a ghost arc of T \H.
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6·1. Examples of super additivity

THEOREM 6·4. For k ≥ 2, there exist reducible W having a finite cyclic group of diffeo-
morphisms G of order k, and an invariant essential sphere S dividing W into two irreducible
manifolds, such that

g(W;G) = g(W|S;G) + k − 1.

Furthermore, g(W;G) can be arbitrarily high when G is a cyclic group of fixed order.

Associated to each Heegaard surface H of genus at least 2 of a compact 3–manifold X,
is a nonnegative integer invariant d(H), called Hempel distance [12]. When d(H) = 0, the
Heegaard surface H is reducible. When d(H) = 1, the Heegaard surface H can be unte-
lescoped to a generalised Heegaard surface with multiple components. Essential surfaces
or strongly irreducible Heegaard surfaces can often be used to provide upper bounds on
Hempel distance. Furthermore, if every thick component of a multiple Heegaard surface has
high enough Hempel distance, the generalised Heegaard surface is locally thin. We apply
this philosophy in our context.

By [18], for each t ∈N and N ∈N, there exists a knot K ⊂ S3 such that S3 \ K admits a
Heegaard surface of genus t + 1 and Hempel distance d(H) ≥ N. Fix t, N, k ∈N. For i = 1, 2,
choose knots Ki in S3 such that each has a Heegaard surface Hi of its exterior of genus
t + 1 (and xω(Hi) = 2t) and Hempel distance at least ζ = 2(4t + N + 2(1 − 1/k) + 2)/(1 −
1/k) + 3. We use the following, drawn from work of Scharlemann, Scharlemann–Tomova
and Tomova. The statement for F is due to Scharlemann [30, theorem 3·1] and is a gener-
alisation of [8]. The case when J is disjoint from Ki is the main result of [32] and when J
intersects Ki, it is the main result of [41]. We rephrase their results, using our terminology.

THEOREM 6·5 (Scharlemann, Scharlemann-Tomova, Tomova). If F ⊂ (S3, Ki) is an
essential connected surface, then −χ(F) + |F ∩ Ki| > ζ − 3. If J ∈H(S3, Ki) is connected,
then either −χ(J) + |J ∩ T| > ζ − 3 or J → Hi.

Let K = K1#K2. Consider (S3, K) as an orbifold where K is given weight k ∈N
∞
2 . Note

that (S3, K) has a multiple orbifold Heegaard surface H with H+ = H1 ∪ H2 and S =H−
the twice-punctured summing sphere realising K as a connected sum of K1 and K2. (We also
need to give H one of the two orientations making it an oriented multiple vp-bridge surface.)
For the record, we have net xω(H) = 4t + 2/k. By the definitions of Hempel distance and the
partial order → (both of which we have omitted), H is locally thin.

LEMMA 6·6. We have net xω(S3, K) = net xω(H). Furthermore, if J ∈H(M, T) is locally
thin and has net xω(J ) ≤ net xω(S3, K) + N + 2(1 − 1/k), then up to isotopy and orientation
reversal, H can be obtained from J by deleting pairs of twice-punctured spheres from J −
and J +. In particular, net xω(J ) = net xω(H).

Proof. Let J ∈H(S3, K) be locally thin and have net xω(J ) ≤ net xω(S3, K) + N + 2(1 −
1/k). Since (S3, K) is orbifold-reducible, J − contains an efficient system of summing
spheres for (S3, K). By Theorem 6·5 (or, indeed, by [12]), both K1 and K2 are prime knots.
Consequently, there is a unique essential summing sphere for (S3, K), up to isotopy. Isotope
J so that S �J −. Suppose that there exists F �J − \ S. Choose F so that it bounds a 3-
submanifold X ⊂ S3 with interior disjoint from J − (i.e. F is outermost). Let J =J + ∩ X
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and let (C, TC) � (S3, K) \J be the orbifold compressionbody with J = ∂+C and ∂−C =∅.
Without loss of generality, we may assume that F is on the same side of S as K1. If F is
essential in (M, T) \ S, then by Theorem 6·5,

2(4t + N + 2(1 − 1/k) + 2) = (1 − 1/k)(ζ − 3)

< (1 − 1/k)( − χ(F) + |F ∩ K1|)
≤ −χ(F) + (1 − 1/k)|F ∩ K1|
= xω(F).

By Lemma 5·2, N(C, TC) = xω(H) ≥ xω(F) and so, by (1),

net xω(S3, K) + N + 2(1 − 1/k) ≥ net xω(J )

> 4t + N + 2(1 − 1/k) + 2

= net xω(H) + N + 2(1 − 1/k) − 2/k + 2

≥ net xω(S3, K) + N + 4(1 − 1/k).

This is a contradiction. Thus, F must be inessential in (S3, K) \ S. Since F is c-essential
in (S3, K), it must be isotopic to S. Perform the isotopy to make F coincide with S. After
the isotopy, X is the side of S = F containing K1. By Theorem 6·5, either −χ(J) + |J ∩ T| >
ζ − 3 or J → Hi. In the former case, we have:

N(C, TC) = xω(J) = −χ(J) + (1 − 1/k)|J ∩ T| > (1 − 1/k)(ζ − 3)

= 2(4t + N + 2(1 − 1/k) + 2).

The same arithmetic as before establishes a contradiction. Thus, J → Hi. However, J is
locally thin, so in fact, J is isotopic to Hi (ignoring orientations).

We have shown that each outermost F �J − is isotopic to S. Furthermore, if J − is
connected, then J is isotopic to H, ignoring orientations. Suppose that J − is discon-
nected. Since every surface in S3 separates, there are at least two outermost F1, F2 �J −.
They cobound (Y , TY ) ⊂ (S3, K) that is a product compressionbody homeomorphic to (S2 ×
I, {p1, p2} × I), where p1, p2 ∈ S2. Since each component of J − is c-essential, each compo-
nent of J − must be parallel to each of F1 and F2 in (Y , TY ). Suppose that Fi, Fi+1 �J −
cobound a submanifold (Y ′, T ′

Y ) � (Y , TY ) \J −. Note that (Y ′, T ′
Y ) is homeomorphic to

(Y , TY ). Let J′ =J + ∩ Y ′. Since J is locally thin, J′ must be a twice-punctured sphere
bounding a trivial ball compressionbody B(J′) to one side. We conclude that

net xω(J ) = xω(H1) + xω(H2) + −2

k
(|J −| − 1) − −2

k
|J −| = xω(H1) + xω(H2) + 2

k
= net xω(H).

Thus, net xω(H) = net xω(S3, K). Furthermore, after deleting all the components of J ∩ Y
except F1, we obtain a multiple vp-bridge surface isotopic to H, ignoring orientations.

We will also need the following:

Definition 6·7. Suppose that H ∈H(M, T). The net geometric intersection number of
H is net ι(H) = |H+ ∩ T| − |H− ∩ T|.
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We can now calculate the Heegaard characteristic of (S3, K).

LEMMA 6·8. xω(S3, K) = 4t + 2

Proof. There are four orbifold compressionbody components of (S3, K) \H. The two not
adjacent to S =H− are disjoint from K and each of the other two contain a single ghost
arc, both of whose endpoints are on S. Choose one of them and use it to create a removable
arc. Call the new multiple orbifold Heegaard surface H′ with two thick surfaces and thin
surface S. Note that the thick surfaces are amalgable. Amalgamate them, converting H′ into
a connected H′ ∈H(M, T) with

net xω(H′) = net xω(H′) = net xω(M, T) + 2(1 − 1/k) = 4t + 2.

Let J be an orbifold Heegaard surface for (S3, K) such that xω(J) = xω(S3, K). There is a
locally thin J ∈H(S3, K) such that J →J . By Lemma 6·6,

net xω(M, T) + 2(1 − 1/k) = xω(H′) ≥ xω(J) ≥ net xω(J ) ≥ net xω(H) = net xω(M, T).

By Lemma 6·6, net xω(J ) = net xω(H) and after deleting pairs of twice-punctured spheres
from J − and J +, J is isotopic to H (ignoring orientations). As in Lemma 4·5, the thinning
moves that create J from J potentially consist of four types of moves. Since S3 is closed and
K is a knot, of the moves listed in Type (I), we never need to perform a ∂-destabilisation,
meridional ∂-destabilisation or meridional ghost ∂-destabilisation. Performing a ghost ∂-
destabilisation, involves compression along a separating compressing disc and the discarding
of a torus boundary component. (That torus is isotopic to the frontier of a regular neighbour-
hood of K.) Such a move decreases negative orbifold Euler characteristic of a thick surface
by 2 ≥ 2(1 − 1/k). Destabilisation also decreases the negative orbifold Euler characteristic
of a thick surface by 2. Meridional destabilisation decreases it by 2/k. The moves in Type
(II) decrease it by 2(1 − 1/k). Consolidation and untelescoping leave net xω unchanged.

We see, therefore, that in the thinning sequence producing J from J, there can be at
most one move that is a ghost ∂-destabilisation, destabilisation, unperturbation, or undoing
a removable arc. All other moves are either meridional destabilisation, untelescoping, or
consolidation. Ghost ∂-stabilisation, destabilisation, meridional destabilisation, untelescop-
ing, and consolidation do not decrease net ι. Unperturbing and undoing a removable arc
decrease net ι by 2.

Observe that net ι(J ) = net ι(H) = −2. Since J is connected, K \ J contains no ghost arcs.
Thus, net ι(J) ≥ 0. Thus, at least one unperturbing or undoing a removable arc are required
in the thinning sequence producing J from J. We have already seen that there is at most
one, so there must be exactly one and we cannot have any meridional destabilisations. We
conclude that the thinning sequence producing J from J consists of exactly one unpertur-
bation or undoing a removable arc and some number of untelescopings and consolidations.
We conclude that xω(J) = xω(H′). Thus, xω(S3, K) = xω(H′) = 4t + 2.

The first examples of pairs of knots producing super-additivity of tunnel number were
given in [19, 20]. Setting k = ∞ produces other examples, using a similar method to
[14, 43].

Proof of Theorem 6·4. Fix t, k ∈N with k ≥ 2. For each N ∈N, construct K1, K2 as above.
By Lemma 6·8, xω(S3, K) = 4t + 2. Let W be the k-fold cyclic branched cover over K, with G
the deck group. Then, by Lemma 2·7, xω(W;G) = 4tk + 2k. The manifold W is the connected
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sum of W1 and W2 which are the k-fold branched covers over K1 and K2 respectively. By
Lemma 6·6, xω(Wi) = 2t. Let S be the lift of a summing sphere for (S3, K). Observe that S
is efficient as K1 and K2 are prime. Thus xω(W|S;G) = 4tk and xω(W;G) = xω(W|S;G) + 2k.
Converting to genus, we have

g(W;G) = g(W|S;G) + k − 1.

6·2. A General Upper Bound

In this section, we adapt our example to produce a general upper bound for equivariant
Heegaard genus of composite manifolds. As usual, we start by considering orbifolds.

THEOREM 6·9. Suppose that (M,T) is orbifold-reducible and that S is a system of
summing spheres, with each component of S separating. Then

xω(M, T) ≤ xω((M, T)|S) − xω(S)(1 − c) + 2c|S|
where c = 1 if T has no vertices and c = 2 if it does.

Proof. Let (Mi, Ti) for i = 1, ..., n be the components of (M, T)|S. Choose an orbifold
Heegaard surface Hi ⊂ (Mi, Ti) such that xω(Mi, Ti) = xω(Hi). Assign transverse orientations
chosen so that if we set H+ = ⋃

Hi and H− = S, then H=H+ ∪H− ∈H(M, T). This is
possible since the dual graph to S is a tree. Thus,

net xω(H) =
∑

xω(Hi) − xω(S).

Consider a point p ∈ T ∩ S such that both edges of T \H incident to p are ghost arcs.
Let S0 � S contain p. As the two ghost arcs lie in the same edge of T , they have the same
weight ω(p). Let α be the one lying on the same side of S as its normal vector and suppose
α ⊂ (Mi, Ti). Perform the isotopy of Definition 6·1 to create a removable arc from α. The
isotopy converts α into the union of a bridge arc and two vertical arcs, with the bridge arc
on the opposite side of Hi from the two vertical arcs. Dually, we may isotope Hi. After the
isotopy, xω(Hi) has increased by 2(1 − 1/ω(p)). Do this for each such ghost arc in (Mi, Ti)
incident at a puncture of S0 to a ghost arc on the opposite side of S. The most we increase
xω(Hi) by is 2

∑
(1 − 1/ω(p)), where the sum is over the punctures of S0. This is equal to

4 + 2xω(S0). Doing the same thing for each component of S increases net xω(H) by at most
4|S| + 2xω(S). However, notice that if a ghost arc has both its endpoints on S (rather than on
S and a vertex of T) then at worst we only need to perform our move once for each point
of |S ∩ T|, rather than twice. Such will be the case if T has no vertices, for example. In that
case, we increase xω(H) by at most

∑
p (1 − 1/p) where the sum is over all punctures p of S.

In such a case, we increase xω(H) by at most 2|S| + xω(S). We then have a new J ∈H(M, T)
such that

net xω(H) ≤ net xω(J ) ≤ net xω(H) + D,

where D = 2|S| + xω(S) if T is a link and D = 4|S| + 2xω(S) otherwise. Notice that no two
ghost arcs of T \J are incident to the same point of T ∩ S.

Amalgamation does not create additional ghost arcs, so by Proposition 6·3 we may amal-
gamate the thick surfaces of J two at a time to eventually obtain a connected J ∈H(M, T)

https://doi.org/10.1017/S0305004123000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000038


82 S. A. TAYLOR

such that net xω(J ) = xω(J). Thus,

xω((M, T)|S) − xω(S) + D ≥ net xω(J ) = xω(J) ≥ xω(M, T).

This can be rearranged into the claimed inequality.

THEOREM 6·10. If every sphere in W separates, then for any equivariant system of
summing spheres S ⊂ W,

g(W;G) ≤ g(W|S;G) + (c(|G| + 1) − 2)
(∣∣W|S

∣∣ − 1
)

where c = 1 if every point of W has cyclic stabiliser and c = 2 otherwise.

Proof. If W is irreducible, then we can take S =∅ and n = 1 and the result is vacu-
ously true. Suppose that W is reducible. By Theorem 2·5, the quotient orbifold (M,T) is
orbifold-reducible. Recall that T has no vertices if and only if every point of W has cyclic
stabiliser. Let S be an efficient system of summing spheres and S its lift to W. Note that
−2(n − 1) = −2|S| = |G|xω(S). By Lemma 2·7, xω(W;G) = |G|xω(M, T) and xω(W|S;G) =
|G|xω((M, T)|S). The result follows from Theorem 6·9 after converting the inequalities in
the conclusion of that theorem to be in terms of genus.

Remark 6·11. The examples of Theorem 6·4 show that our upper bound is sharp when every
point of W has cyclic stabiliser. It is likely possible to adapt those examples to show that the
inequality is sharp even when some points of W do not have cyclic stabiliser.
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Appendix A. Efficient Factorisations

In this section we sketch the proof that, even when there are nonseparating spheri-
cal suborbifolds, efficient factorizations exist and the factors are unique up to orbifold
homeomorphism.

COROLLARY 4·8. Suppose that (M,T) is a nice orbifold and let H ∈H(M, T) be locally
thin. Then H− contains a system of summing spheres for (M,T).

Proof. If (M,T) is not orbifold-reducible, there is nothing to prove, so suppose that it is. Let
S ⊂ (M, T) be an essential summing sphere. Isotope it to intersect H− in the minimal number
of loops. Since S has three or fewer punctures, each component of S ∩H− is inessential in
S. Let ξ be an innermost such loop on S, with D ⊂ S the unpunctured or once-punctured
disc it bounds. Let F �H− contain ξ . Since F is c-essential, the curve ξ must be inessential
on F. Let E ⊂ F be the unpunctured or once-punctured disc it bounds. Since (M,T) is nice,
|E ∩ T| = |D ∩ T|. If both E and D are once-punctured, then since (M,T) is nice, the weights
of the punctures are the same. Observe that if S intersects the interior of E, the intersection
curves are also inessential in F. Let ζ ⊂ E be an innermost such component; possibly ζ =
ξ . Let E′ ⊂ E be the unpunctured or once-punctured disc it bounds in F and D′ ⊂ S the
unpunctured or once-punctured disc it bounds in S. Again, we have |E′ ∩ T| = |D′ ∩ T| and
if E′ and D′ are both once-punctured, then the punctures have the same weight.

Compress S using E′ to arrive at S′. Note that S′ consists of two components, neither with
more punctures then S. Although the total number of punctures may have gone up, it does so
if and only if E′ and D′ are once-punctured. In which case, one component of S′ is a sphere
with the same number of punctures and orbifold Euler characteristic as S and the other is a
twice-punctured sphere with both punctures of the same weight. If E′ was once-punctured,
then neither component of S′ is an unpunctured sphere or a twice-punctured sphere bounding
a trivial ball compressionbody, as |S ∩H−| was minimised, up to isotopy. Similarly, if E′
was unpunctured, then neither component of S′ is an unpunctured sphere bounding a ball
disjoint from T . Thus, some component of S′ is an essential summing sphere with no more
punctures than S and with xω(S) ≤ xω(S′). Repeating the argument, we arrive at an essential
summing sphere S” for (M,T) with xω(S′′) ≤ xω(S), with S” having no more punctures than
S, and with S′′ ∩H− =∅. The argument of [36, theorem 7·2] shows that we can further
isotope S” to be disjoint from H.
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Let (C, TC) � (M, T) \H be the component containing S”. Let 
 ⊂ (C, TC) be a complete
collection of sc-discs for (C, TC). Isotope S” in (C, TC) to minimise |
 ∩ S′′|. The intersec-
tion consists of loops, since S” is closed. An argument identical to that above shows that
we can compress S” to make it disjoint from 
. We may as well assume that S” was dis-
joint from 
 to begin with. The sphere S” then lies in a trivial compressionbody. Since it is
c-essential, it is parallel to a component of ∂−C. All that is needed for the above argument
to work is that each component of H− is c-incompressible and each component of H+ is
sc-strongly irreducible.

Thus, if (M,T) contains an essential unpunctured sphere, so does H−. Let S be the union
of all unpunctured spheres in H−. Notice that HS =H \ S restricts to a multiple vp-bridge
surface for each component of (M, T)|S. It is easy to see that each component of H−

S remains
c-incompressible and each component of H+

S is sc-strongly irreducible. Thus, (M, T)|S does
not contain an essential unpunctured sphere. The previous argument then shows that if
(M, T)|S contains an essential twice-punctured summing sphere, then H−

S does as well. Let
Q ⊂H−

S be the union of all the twice-punctured summing spheres. The same argument as
in the unpunctured case shows that (M, T)|S∪Q contains no essential unpunctured or twice-
punctured summing spheres. Finally, repeat the analysis for thrice-punctured spheres to see
that H− contains a collection of summing spheres P such that (M, T)|P contains no essential
summing spheres.

THEOREM 2·4 (after Petronio, Hog-Angeloni–Matveev). Suppose that (M,T) is a nice
orbifold that is orbifold-reducible. Then there exists an efficient system of summing
spheres S ⊂ (M, T); indeed, any system of summing spheres contains an efficient subset.
Furthermore, any two such systems S, S’ are orbifold-homeomorphic, as are (M, T)|S and
(M, T)|S′ .

Proof. If every spherical 2-suborbifold of (M,T) is separating, and if no edge of T has
infinite weight and if M is closed, then this is exactly Petronio’s theorem. If T has some edges
of infinite weight or if M is not closed, then this can be deduced as in [13, theorems 8 and 9].
The case when (M,T) contains nonseparating spherical 2-suborbifolds needs to be handled
somewhat differently; although the essence of the argument is the same. In Corollary 4·8
above we proved that if (M,T) is a nice orbifold, then there exists a system of summing
spheres Ŝ ⊂ (M, T). A subset of the components of Ŝ will be efficient, as we now explain.
Begin by setting S = Ŝ. Consider the components of (M, T)|S one at at time, in some order.
Suppose a component is an S(0) and contains a (necessarily unpunctured) scar but not the
matching scar. Let P � S be the sphere producing the scar. Remove P from S. The effect
on (M, T)|S is, up to homeomorphism, to remove an S(0) component. We then restart the
process. We handle the S(2) and S(3) components similarly. The end result is that after
removing some components from Ŝ we arrive at a subset S that is efficient.

We now consider uniqueness, adapting the arguments of [13, 24]. We start by establishing
some basic moves on systems of spheres. Suppose that S0 ⊂ (M, T) is a sphere with n0 ≤ 2
punctures and that S1 ⊂ (M, T) is a disjoint sphere with n0 ≤ n1 ≤ 3 punctures. Let α be an
embedded arc joining S1 to S0. If n0 = 0, assume α is disjoint from T . If n0 = 2, assume that
α is an arc lying in the interior of an edge of T . Let S2 be the result of tubing S1 to S0 along α.
Notice that S2 has the same number of punctures as S1. We say that S2 is obtained by sliding
S1 over S0 using the sliding arc α. Observe that (S2 ∪ S0) is orbifold-homeomorphic to (S1 ∪
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S0) and that (M, T)|(S2∪S0) is orbifold-homeomorphic to (M, T)|(S1∪S0). If S1 is essential, then
in most cases S2 will also be essential. The only time it is not, is if either:

(i) S1 and S2 are parallel unpunctured or twice-punctured spheres in (M,T) and the region
of parallelism contains α, or

(ii) if S1 is thrice-punctured, and the component of (M, T)|S0∪S1 is an S(3).

Suppose that S ⊂ (M, T) is an efficient system of summing spheres and that S0 ⊂ (M, T)
is an essential sphere having n0 ≤ 2 punctures which is either a component of S or is disjoint
from S and not parallel to a component of S. Let S1 � S be distinct from S0. Suppose that α

is a sliding arc such that we may slide S1 over S0 using α and that the interior of α is disjoint
from S. Let S2 be the the sphere that results from the sliding. By our previous remarks and the
definition of efficient, S2 is essential. Furthermore, in (M, T)|S0 , the sliding can be achieved
by an isotopy of S1. It is then easy to see that S′ = (S \ S1) ∪ S2 is efficient.

Suppose that S, P ⊂ (M, T) are both efficient systems of summing spheres but that
either S and P are not orbifold-homeomorphic or (M, T)|S and (M, T)|P are not orbifold-
homeomorphic. Suppose that there are such choices for S and P so that S ∩ P is the union of
components of S (equivalently, of P). Out of all such choices, choose S and P so that |S ∩ P|
is maximal. Let P0 � P \ S, if such exists. Since P0 is inessential in (M, T)|S either it bounds
a 3-ball in M|S disjoint from the graph or it is ∂-parallel. Let B be either the 3-ball or the
region of parallelism. We may assume that P0 was chosen so that the interior of B is disjoint
from P \ S.

Consider, first, the possibility that B is a 3-ball; that is P0 is unpunctured. If all the spheres
of S with scars in B, lie in S ∩ P, then there is an S(0) component of (M, T)|P containing one
scar from P0, but not the other. This contradicts the fact that P is efficient. Thus, there is
a sphere S0 � S \ P with at least one scar in B. Suppose S0 has both scars in B. We may
join the scars by an arc in B that is disjoint from all other other scars from S in B. This arc
can be closed up to a loop in (M, T)|P intersecting S0 exactly once, contradicting the fact
that (M, T)|P is irreducible. Thus, S0 has exactly one scar in B. Using arcs in B, slide P0

over each sphere of S, except for S0, having a scar in B. We arrive at the situation where B
contains only one scar, and that scar is a scar from S0. Consequently, P0 is then parallel to
S0, contradicting our choice of S and P to maximize |S ∩ P|. Thus, B is not a 3-ball.

Suppose therefore that B is a product region. The boundary of B consists of P0 \ T together
with a subsurface F of ∂(M0 \ T0). If B contains a pair of matching unpunctured scars, we
may slide P0 as before, to remove them. Using arcs in B, we may also slide P0 over each
unpunctured sphere in S having a single scar in B, to remove that scar. Thus, we may assume
that B contains no unpunctured scars. If every scar in B (and therefore in F) corresponds to
a sphere of S ∩ P, then as before we contradict the assumption that P is efficient. Similarly,
if a scar from a sphere of S \ P lying in B has its matching scar in B, then (M, T)|P is not
irreducible. Suppose that P0 is twice-punctured. This implies that F is an annulus joining
the components of ∂(P0 \ T). Working from either end of F, we slide P0 over components
of S \ S0, until the only scar left in B is that from S0. At this point, P0 is parallel to S0, a
contradiction. Thus, P0 is not a twice-punctured sphere.

Suppose that P0 is a thrice-punctured sphere. Using arcs in B, we can slide P0 over the
twice-punctured spheres with scars in B, to arrive that the situation where either there are no
scars in B or there is a single thrice-punctured scar in B and no other scars. If there is no scar
in B, then (after the slides) P0 is inessential in (M,T). By our earlier remarks, this contradicts
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the fact that P is efficient. Thus, there is a thrice-punctured scar in B. Let S0 � S correspond
to it. If S0 � P, then (M, T)|P contains an S(3) component having exactly one scar from P0.
This contradicts the assumption that P is efficient. Thus, S0 � S \ P. Since P is then parallel
in (M,T) to S0, we contradict our choice of S and P. We conclude that P ⊂ S. If P �= S, then
it is easy to see that S cannot be efficient, a contradiction. Thus, S = P. This contradicts the
hypothesis that either S and P are not orbifold-homeomorphic or that (M, T)|S and (M, T)|P
are not orbifold-homeomorphic.

As a result of the preceding argument, the result holds when S ∩ P =∅. Suppose that S
and P are chosen so that they are transverse and |S ∩ P| is minimal. Since both S and P are
transverse to T , S ∩ P consists of circles. Choose one ζ that is innermost in S. It bounds an
unpunctured or once-punctured disc D ⊂ S with interior disjoint from P. Use D to compress
P. This separates some component P0 of P into two components P1 and P2. Both of which
can be isotoped in (M,T) to be disjoint from P. Thus, both are inessential in (M, T)|P. A
sequence of slides and isotopies, then allows us to replace P with an efficient system of
summing spheres P̂ ⊂ (M, T) such that P and P̂ are pairwise orbifold-homeomorphic, as are
(M, T)|P and (M, T)|̂P and for which |S ∩ P̂| < |S ∩ P|, a contradiction. Thus, it must be the
case that an two efficient systems of summing spheres S and P are orbifold-homeomorphic
and we also have (M, T)|S and (M, T)|P orbifold-homeomorphic.
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